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ABSTRACT

Within the last decade, several estimation techniques have been pProposed
for estimation of series which exhibit some form of long-term persistence, or
long memory, in their conditional mean. Among these toch;\iquu are two-step
estimation procedures based on the spectrum of the series, and maximum likelihood
estimation (MLE) procedures based in both the frequency and time domains. This’
paper presents the theoretical derivation of a generalized method of moments
(GMM) estimator for long-nemor} time series. The GMM estimation technique
provides an attractive alternative estimation Procedure since it does not require
the distributional assumptions necessary under maximum likelihood estimation
techniques.

The moment conditions exploited by the GMM estimator make use of the
theoretical and estimated autocorrelation functions of the long-memory process.
The paper presents numerical results from variance calculations using all
available moment conditions as well as groups of moment conditions to oxl.-inq the

efficiency of the GMM estimator relative to that of the MLE.



1. INTRODUCTION

Many economic and financial time series are characterized by strong
persistence in their mean such that when expressed in levels the series appear
to be nonstationary, or contain a unit root, yet when expressed in first
differences the series appear to be overdifferenced. The traditional
nonstationary Autoregressive-Integrated Moving Average ARIMA(p,d,q) model of Box
and Jenkins (1976), where the parameter of integration can take on only integer
values, 1is not able to account for the long-term persistence which is
characteristic of these series. This can be especially rtlovaqt in applied
analysis since empirical investigation of such series must be done within the
framework of a model which is able to account for the substantially high order
of correlation present in these series.

Several estimation techniques have been developed within the 1;:t decade
to estimate the degree of persistence of a fractionally integrated, long-memory
process. Among these techniques is the frequency-domain based, two-step
estimation procedure of Geweke and Porter-Hudak (1983) which utilizes the
spectrum of a series in estimating the parameter of fractional integration.
Alternatively, the maximum likelihood estimation procedures of Hosking (1984b),
Fox and Taqqu (1986), and Sowell (1992), which have been based in both the time
and frequency domains, utilize standard firnc-ordorAconditionl in maximizing the
log of the likelihood function of the fractionally integrated process. This
paper presents the derivation of an alternative estimation procedure to estimate
the degree of persistence of a long-memory process, which is based on the
technique of generalized method of moments (GMM).

The generalized method of moments estimation technique is an attractive

alternative framework in which to estimate the parameter of fractional



integration of a long-memory process since it does not require the distributional
assumptions necessary under maximum 1likelihood estimation techniques and
consequently offers the advantage of robustness in parameter estimation. In
addition, approximate MLE can often involve numerically cumbersome techniques
which may be avoided, in some part, with the technique of generalized method of
‘moments. For the fractionally integrated process, the GMM estimation technique
exploits the set of moment conditions that equate the expected value of the
sample autocorrelations to the corresponding popﬁlnclon autocorrelations,
evaluated at the true parameter values. In this way a consistent estimate of the
parameters can be obtained.

The plan of the rest of the paper is as follows. The following section
discusses the GMM estimation ccghnlquo in the context of the fractionally
integrated model and presents the motivation for the use of GMM in this context.
Section 3 presents the derivation of the asymptotic distribution of the estimated
autocorrelations under specified assumptions. This section also presents the
derivation of the asymptotic variance of the GMM estimator. Section 4 provides
an investigation of the estimation procedure by examining the asymptotic
efficiency of the estimator for a range of values of the parameter d using
various moment conditions as well as subsets of moment conditions. The paper

ends with a brief summary and concluding section.

2. GMM ESTIMATION IN THE CONTEXT OF THE FRACTIONALLY INTEGRATED MODEL

The estimation technique of generalized method of moments makes use of a
set of orthogonality conditions that are implied by the model to be estimated
such that the expected value of the orthogonaliﬁy condition is equal to zero at

the true parameter value. For the case of the fractionally integrated model,



consider the non-zero mean, stationary time series (y.) expressed in

ARFIMA(p,d,q) form as introduced in Chapter II as
) A - L%y - W) = 0L/ € = u,

where for -3 < d < i, Ye is said to be fractionally integrated of order d, the
polynomials #(L) and ¢(L) are as defined in Chapter II, and u, is a stationary
and invertible error process. Following the framework of Hansen's (1982) GMM
estimator, estimation of a (p x 1) parameter vector A via the GﬁH estimation
technique involves the use of m orthogonality restrictions where m is at least
as great as p. Defining the (m X 1) vector of orthogonality conditions as son;
function g(y,,A), the GMM estimator of A is given as that value of the parameter

vector which satisfies
(2.) min E(y,A)’ W g(y.}),
A

where g(y,A) is the standard expression! for the orthogonality condition of the

GMM estimator written in the form of an average as

! In the context of the fractionally integrated process expressed in (1.),
use of an orthogonality condition of the form g(y,A) is not directly applicable
due to the difficulty in expressing the orthogonality conditions in the form of
an average. This problem arises because the typical orthogonality condition of
the fractionally integrated process is a function of an infinite number of terms.
Therefore, as an alternative, the function g(-) is expressed in the form of a
moment condition for the fractionally integrated process, as discussed later in
this section.



T
(. A) = T ¥ gy 0.
t=1

In this formulation, W is an (m X m) positive definite, symmetric weighting
matrix defined as that matrix which has the characteristic of minimizing the
sample orthogonality conditions. The minimized value of the criterion function

. (2.) will be asymptotically distributed as Chi-square with (m - p) degrees of
freedom. Within the context of the GMM estimation procedure, fho expression
g(y,)) should converge to zero for the true parameter vector and not for any
other element of the parameter space. Additionally, the optimal weighting
matrix, W, is given as

W = [cov g(yc,k)]'l.

Under weak regularity conditions, Hansen (1982) shows that the GMM

estimator of the patametét vector )\ satisfies
X PP B
JT Oggy - ) = N(O,[D’CTID] ™)

1l is the optimal weighting matrix. In this representation, D is defined

where C~
as the (m x p) matrix of partial derivatives of the moment conditions with
respect to the parameter vector; that is,

P 16T
g Ar

The GMM estimation procedure may be applied to many standard econometric



models, each of which exploits its own unique set of moment conditions and
uynpcocicnlly optimal weighting matrix. For the case of the fractionally
integrated model, the moment conditions exploited make use of the theoretical and
estimated autocorrelation functions of the model. Consider, for simplicity, the

zero-mean ARFIHA(O,d,O) process
(3.) a-udy, -u

where u, is a stationary error process, d € (-4,4), and p, = corr(y._,y ) is
3 LA |

<
defined as the jth autocorrelation function of the process. The simple model
expressed in (3.) is a single parameter model such that A consists of a single
element, d.? Recall that for the model given by (3.), pJ may be expressed

simply as a function of d, as given earlier in Chapter II, as

r(1-d)r¢j+d) n (d+i-1)
j r(d)r(j+d-1) -a

The moment condition exploited by the fractionally integrated model, considering

the first k moments, may be expressed as E[; - p(d)] = 0 where
P = [Plu Wy g -Pk]' and

p(d) = [py(d), . . . ()]’

2 This estimation procedure may be applied to the more general, multi-
parameter ARFIMA representation given by (1.) in which case ) would be a vector
and would include the parameters of the autoregressive and moving average
polynomials.
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within the context of the fractionally integrated model, the GMM estimator of the

parameter vector A may be expressed as that value of d which satisfies

%.) 5(d) = atn (6 - 2] W[5 - p(d)]

and the asymptotically optimal weighting matrix, ¥, is given as
A -1
W = [covip - p(d))] .

In considering the efficiency of the GMM estimator, it should be the case
that any estimator based on all available moment conditions should be relatively
more efficient than that based on only a subset of these moment conditions.
However, in the case of the fractionally integrated process there will be some
advantage to considering the GMM estimator based on a subset of moment
conditions, especially in the case where a stationary ARMA component exists in
the series. In such a model, the autocorrelation functions for the lower-order
moments of the process will be a function of the autoregressive and moving
average parameters of the model as well the parameter d. As such, the
autocorrelation functions for the lower-order moments will be quite different
from those autocorrelations that exist at higher-order moments, which are simply
a function of the parameter d. In this sense the autocorrelation functions for
the lower-order moments may be thought of as beiﬁ; "contaminated” when a
stationary ARMA component exists in the series. As a result, it would be of

interest in this context to determine whether the efficiency of the GMM estimator



is maintained when using some subset of the moment conditions, for example
moments (r + 1) through ((r + 1) + k), such that the first r moments may be
discarded. Simple asymptotic variance calculations may be employed to determine
these relative efficiencies, and these operations are discussed further in

section 4.

3. ASYMPTOTIC DISTRIBUTION THEORY

In order to determine the asymptotic dlstribudon and optimal weighting
matrix of the generalized method of moments estimator for the fractionally
integrated process, it is necessary to derive the asymptotic distributfon of the
moment condition, [p - p(d)]. Recall that d,, solves the operation 3S(d)/3d
= 0 as given in equation (4.). Th%l expression may be written in the form of its

Taylor-series expansion as

3s(d) as@ | a¥s) 3
g . = d - @,
ad ad ad2 x :

where d, lies between d and 3 Equating the above expansion to zero and solving

for (3 - d) gives

2
3a°s(d)]-1 as(d)
""i"] a5(d)

ool s
[ ad2 ad

where 3S(d)/3d = -2 D’W[p - p(d)],



32s(d)/aa? = 2 p’wD + op(1),

and D is as defined previously. It follows that the asymptotic distribution of

the GMM estimator of d satisfies

2
& 3°s(d)]-1 as(d)
ﬁ(d-d)--[adi] 8

L orv) ! WA - p(d)].

The asymptotic distribution of ﬁ[; - p(d)] for the fractionally
integrated, long-memory process is given in Hosking (1984a). Hosking considers
the fractionally integrated ARIMA(p,d,q) process as expressed in (1.) where €
is an independent and identically, but not necessarily normally, Jilttibutod

white noise error process with mean zero and variance 02. € has a finite fourth

moment, and Ye has mean u. The sample autocorrelation function is defined as

T-3
;J . 3_:’(3’:1- ) eey - 9
B 2
t.zl Ye - 9

where ¥ = 1/T ‘)i Ye is the sample mean of the process. For the standard,
stationary, short-memory time series process where d takes on integer values,
there are standard results for the asymptotic distribution of the sample
autocovariance function. However, in the case of the fractionally integrated,

long-memory time series process where -4 < d < %, Hosking (1984a) shows that
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these standard results hold for d € [-%,%) but not for d = %. This discrepancy
may be attributed to the treatment of the estimation of the mean of the
fractionally integrated process. That is, for % < d <% the effect of replacing
u with § is not negligible, even asymptotically, and large bias (of the same
order of magnitude as that of the standard deviation) is introduced into the
estimate of the autocorrelation function. Consequently, the remaining analysis
‘ of this chapter will restrict attention to the range of values of the parameter
vector for which d € [-4,k). Within this range’ the estimated autocorrelation
functions will be distributed asymptotically normal with variance of order 1/T.

Following Hosking (1984a), the estimated nutocorre;ation function, ; has
covariance matrix C which has i,j th element given by

.

(5.) 4y " 1/T (_);1(»Mi ¥ g 52 pips)(;v"-1 ol W 2 njp'))

and C = (cij }. In applying the GMM estimation procedure to the single parameter
fractionally integrated process, then, the asymptotic distribution of [; - p(d)]
will be given by JT (; - p(d)) ~ N(0,C) where the dimension of C will be defined
by the number of moments used in estimation, and the asymptotic distribution of

the GMM estimator will be given by

(6.) /T - a) -~ N[o,(clpyly.e

3 For d = %, asymptotic normality is retained but the variance of the
estimated autocorrelation function is of order 1/T(log T). For d € (%,h),
asymptotic normality is not retained and the variance is of order grAcCad)

* In this representation the optimal weighting matrix, defined in (2.) as

W, is given by cl
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4. ASYMPTOTIC PERFORMANCE OF THE GMM ESTIMATOR FOR THE FRACTIONALLY
INTEGRATED MODEL

The asymptotic performance of the generalized method of moments estimator
for the fractionally integrated process is examined by calculating the large
sample variance of 3 as given in (6.). To perform this calculation it is
necessary to compute [D’ C'ID]'I-vhorc D and C are functions of the parameter d
and the number of moments, k, used in estimation. 1In the general case, the
efficiency of the GMM estimator should be greatest when calculations are
performed utilizing all available moment conditions. However, in the case of the
fractionally integrated process, which uses the estimated autocorrelations in
calculation, the possible number of available moment conditions is infinite.
Relative efficiency, then, should continue to increase as a greater nunbe; of
moments are used in estimation such that more moments will always be prof.tl;od.
As such, the use of any subset of moments in estimation should provide lower
levels of efficiency relative to that in which a greater number of moments are
employed.

The calculation of the vector of partial derivatives, D, and the covariance
matrix of the estimated autocorrelation functions, C, is as follows. Recall that

the (k x 1) vector p(d) is given by

d
14
d d+l
Td 72d
p(d) =
d d+l d+2 d+(k-1)
| T4 72-d 3-d° "~ kd |
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It follows then that D is given by

)
(d-1)2
-2(-1-2d+2d2)
(a-1)2 (d-2)2

3(4+12d-9d2-6d3+34%)
D - (d-1)2 (d-2)2 (d-3)?

Sl R R D)
| (@-1Za-2%@-3? .- (@-0? ]

where f(-) will be a function of d1 and 1 = (0, 1, 2, 3, . .« . 5 2[k:1]). From
the above expressions and the formula given by (6.), the values of D and C are
calculated for various values of d € [-},%) taken at discrete intervals, that is
d=-.50, -.45, -.40, . . ., .20, .24, and various numbers of moment conditioms.
Relative efficiency comparisons are provided in Tables 1 through 4 which will
each be discussed in turn below.

Table 1 presents the asymptotic variance calculations of the GMM estimator
for given values of d using moments 1 through "n" in calculation, where n = 1,
2,3, ..., 20. In each case it appears that as the number of moments used in
estimation increases, the asymptotic variance of the GMM estimator converges to
that of the maximum likelihood estimate, («'2/6)'1 = .6079, as given in Li and
McLeod (1986). For positive values of d it appears quite reasonable to conclude
that the relative efficiencies of the GMM estimator and the MLE are comparable
when only 10 moments are used, although the efficiency of the GMM estimator

decreases slightly as the absolute value of d increases. For negative values of
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d the convergence of the variance of the GMM estimator to that of the MLE
requires the use of additional moment conditions in calculation, and the
efficiency of the estimtc;r also decreases over this range as the absolute value
of d increases.

As discussed in section 2, there is some interest in employing the GMM
_ estimation technique to the fractionally integrated model since this procedure
allows for calculation of the estimator based upon subsets of moments so that
earlier moments may be dropped from estimation. ﬁls notion is particularly
attractive within the framework of the long-memory process since the presence of
autoregressive and moving average components in the process may contaminate the
autocorrelation functions for lower-order moments. Tables 2 through 4 allow for
an examination of the efficiency of the GMM estimator when dropping earlier
moments in calculation, and the results of each table are discussed below.

' Table 2 presents the asymptotic variance of 3 when using only moment "n"
in calculation, where n =1,2,3, ... ,10. In this way it will be possible
to examine the contribution of each individual moment condition to the efficiency
of the GMM estimator. Table 2 clearly indicates the sacrifice in efficiency for
a given value of d when using only one moment condition ln_ estimation, .
particularly when using any individual moment after the first moment. For
negative values of d, for example, the asymptotic vn_rtance of the estimator
increases dramatically when using any moment other than the first in calculation.
For example, for d = -.05, the asymptotic variance of the GMM estimator based on
the use of moment two only is more than five times that based on moment one only.
The loss in efficiency when using only the second moment is even more dramatic
as the value of d decreases to d = -.49. In addition, Table 2 indicates that

similar losses in efficiency are evident when calculation is based on use .of only
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moment three, or only moment four, and so on. The same sacrifice in efficiency
in using only one moment is evident for positive values of d as well, although
the magnitude of the increase in the asymptotic variance is somewhat smaller.
For example, for d = .05, the asymptotic variance of the GMM estimator based on
the use of only moment two is approximately three times that of the estimator
based on only moment one; recall, as discussed above, that for = -.05 the
variance is more than five times greater.

Recall that Table 1 illustrated the trade off that existed between the
efficiency of the GMM estimator and the absolute value of the parameter d. That
is, the relative efficiency of the GMM estimator based on moments 1 through n
increases as the absolute value of d decreases. The same trade off is evident
in Table 2. When using only a single moment to calculate the GMM estimator, the
asymptotic variance of the estimator decreases as the absolute value of d
decreases. This trade off may be explained for the fractionally integrated
process by considering the relative contribution of successive moments to the
efficiency of the estimator, for a given value of d. As expressed in (6.), the
elements of the vector D represent the derivatives of the moment conditions with
respect to the parameter, d. In the case of the fractionally integrated process,
there is relatively little change in each element of the vector D boyond the
first element. This may be attributed to the relative flatness of the
autocorrelation functions beyond the first moment, for a given value of d. In
addition, the diagonal elements of the matrix C, as expressed in (6.), show
relatively little change beyond the first element. It appears, then, in the case
of the fractionally integrated process that, for a given value of d, a
significant amount of information is contained in the first moment and thus there

exists a sacrifice in the efficiency of the GMM estimator when using any one
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moment, other than the first, in calculation.

Table 3 presents the results of using subsets of five moment conditions in
calculating the asymptotic variance of the GMM estimator in which the first
moment used in estimation is equal to "n", and n =1, 2, 3, . . . , 10. Again,
it can be seen that, for a given value of d, the asymptotic efficiency of the GMM
estimator decreases significantly when the first moment is dropped from the
calculations. For example, for d = -.05, the asymptotic variance using moments
2 through 6 is more than four times that using moments 1 through 5. 1In addition,
the results of Table 3 indicate that the estimator based on a subset of five
moment conditions, dropping earlier moments in calculation, is relatively less
efficient than the estimator based on more (or all available) moment conditions.
As observed in Tables 1 and 2, :h? same trade off exists between the efficiency
of the GMM estimator and the value of d when using a subset of five moments; for
a given subset of five moments, the efficiency of the GMM estimator increases as
the value of d approaches zero. In addition, Table 3 clearly indicates the
sacrifice in the efficier.\cy of the GMM estimator that results from dropping more
and more of the earlier moments from the calculations. That is, for any given
value of d, the asymptotic variance of the GMM estimator increases as more of the
earlier moments are dropped from the calculations. . For any given value of d when
using a subset of five moment conditions, the relative efficiency of the GMM
estimator is the greatest when using the first five moments.

The results of Table 3 should not be surprising given the findings of Table
2 which indicate the relative importance of the first moment condition in
estimation. It appears that any calculations whi‘ch omit the first moment
condition result in considerable loss of efficiency.

Finally, Table 4 presents the results of using a subset of ten moment



conditions in calculating the asymptotic variance of the GMM estimator, where the
first moment used in estimation is equal to "n" andn =1, 2, 3, . . . , 10. The
results of Table &4 are very similar to those of Table 3 in that they indicate the
relative loss in efficiency in using subsets of moment conditions where earlier
moments are dropped from estimation. It is evident that calculations based on
a subset of ten moment conditioﬁs, especially when dropping the first moment,
involve significant losses in efficiency, with the greatest loss occurring when
the largest number of earlier moments are dropped from the calculations. Again,
given the results of Table 2 this should not be surprising since a great deal of
information is contained in the first moment. It does appear, however, that the
efficiency of the GMM estimator is greater when a larger subset of moment
conditions are used in the calculations. That is, for any given value of d, the
asymptotic variance of the GMM estimator based on a subset of ten moments is
smaller than that based on a subset of five moments. It is still the case,
however, that the use of a greater number of moments in calculation of the GMM
estimator, as opposed to the use of any subset of moments, dominates in terms of

the asymptotic efficiency of the estimator.

5. SUMMARY AND CONCLUSION

This chapter has examined the use of the estimation technique of
generalized method of moments in estimating the parameters of the fractionally
integrated process. The use of this technique is particularly appealing in this
context since it does not require the distributional assumptions encountered in
using maximum likelihood estimation techniques, and also because it avoids the
computational difficulty often encountered in employing approximate MLE

techniques. In addition, the relative efficiencies of the two methods appear to
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be comparable, asymptotically, as the variance calculations provided in Table 1
{ndicate convergence of the variance of the GMM estimator to that of the MLE (a
value of .6079). The GMM estimation technique appears to be a reasonable
procedure to employ in the context of the simple ARFIMA(0,d,0) processes.

It does appear, however, that GMM applied to the fractionally integrated
process requires the use of lower-order autocorrelations in order to avoid large
losses of efficiency. The results of Tables 1 through 4 demonstrate that the
relative efficiency of the GMM estimation technique, when ;ppliod to the
fractionally integrated process, is greatest when using a greater number of
moment conditions in estimation. Table 2 shows the significant loss in
efficiency which is encountered when the first moment is dropped from estimation.
This apparently is due to the relatively small contribution of information
attributable to successively higher moments of the long-memory process. This
observation 1is further confirmed in Tables 3 and 4 where th;ro exintﬁ
considerable inefficiency in using subsets of moment conditions, particularly as
a greater number of the earlier moments are dropped in estimation.

These results are especially relevant if one allows for short-run dynamics
in the model, as in the case of the ARFIMA(p,d,q) process. For p > 0 or q > 0,
the lower-order autocorrelations may be substantially different than those for
the (0,d,0) part of the process. Since it appears that these lower-order
autocorrelations cannot be dropped from estimation without sacrificing
efficiency, it is reasonable to consider GMM estimation of the ARFIMA(p,d,q)
model in the context in which d is estimated jointly with the autoregressive and
moving average parameters of the process. This is an important topic for further

research.
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.9577 .8814
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TABLE 1

n=5
.2611
.2065
1370
.0752
.0125
.9510
.8919
.8346
.7804
L7294
.6833
.6444
.6184
.6179
.6759
.8088
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' .9567

.9036
.8524
.8026
- 1553
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.6705
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.6740
.7945

d) Using Moments 1, 2, 3,

n=7
1.1037
1.0615
1.0053
.9629
.9159
.8690
.B236
.7793
.7372
.6974
.6615
.6317
.6133
.6176
.6719
.7822

n=8

1.0573
1.0149

.9626
.9268
.9105
.8425
.8015
.7614
.7233
.6873
.6547
.6279
.6120
.6176
.6698
.71714

.0219
.9780
.9303
.8932
.9035
.8214
. 7840
L7473
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.6793
.6495
.6251
.6111
.6176
.6677
.7620

n=10

.9938
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.8667
.8977
.8043
.7697
.7358
.7034
.6728
.6453
.6229
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.6176
.6657
.7538
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.49
.45
.40
.35
.30
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.20
.15
.10
.05
.00
.05
.10
.15
.20
.24
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.9230
.8837
.8446
.8930
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.6622
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.8834
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.7340

TABLE 1 (Cont'd)
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L9244
.8674
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.8768
L7584
4317
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.6814
.6559
.6345
.6175
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.6174
.6590
.7287

n=15
L9135
.8533
.8280
L7748
.8737
.7505
L7251

.6775
.6531
.6327
.6167
.6090
.6174
.6576
.7239

n=16

.9043
.8407
.8185
.7587
.8712
L7435
«7193
.6934
.6740
.6506
.6312
.6160
.6089
.6173
.6562
L7195

n=17
.8963
.8295
.8101
L7442
.8691
51372
.7140
.6885
.6768
.653¢4
.6298
.6153
.6088
.6172
.6549

L7155

n=-18
.8894
.8193
.8026
.7306
.8664
.7316
.7094
.6843
.6764
.6522
.6286
.6148
.6087
.6171
.6537
.7118

n=19
.8834
.8101
. 7960
L1179
.8643

.~ 4253

.7051
.6806
.6742
.6509
.6275
.6143
.6086
.6170
.6526
.7084

=20
.8783
.8017
.7901
.7062

.8625
.7200
.7013
L6771
.6728

.6496
.6265
.6139

.6085
.6170
.6515
.7052
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d=-.49
d=- .45
d=- .40
d=-.35
d=-.30
d=-.25
d=-.20
d=-.15
d=-.10
d=--.05

d=.05
d-.10
d=.15
d=.20
d=-.24

e e e = =N W W

n=1
.4013
.1353
.8206
.5256
.2507
.9946
.7580
.5399
.3407
.1604

.8613
L7491
.6769
.6884
.8629

TABLE 2

Asymptotic Variances of /T (d - d) Using Moment n Only

n=2
276.54
516.27
2586.1
9569.9
454,92
118.74
46.549
22.004
11.620
L1534
.0000
.5586
.7451
.3053
1628
.3540

[ I

n=3
383.92
463.86
703.37
1619.9
23430.0
2853.1
357.98
103.09
39.89%

+18.073

9.0000
4.8958
2.9065
1.9431
1.5944
1.7723

n=4
706.60
742.51
888.06
1346.3
3452.5
644700.0
2059 .4
326.53
96.409
36.554
16.000
7.7839
4.1977
2.5900
2.0000
2.1492

n=5 n=6 n=7
1230.1  2029.5  3132.8
1199.8  1868.7  2760.0
1282.2  1824.7  2546.7
1611.0  2062.6  2681.0
2827.7°  3039.3  3496.8
15100.0  8865.4  7585.4
13130.0 220000.0 543400.0
847.18  1948.1  4164.0
193.24  343.76  563.21
63.441  99.403  145.45
25.000  36.000  49.000
11.166  15.014  19.328
5.5978 ° 7.0958  8.7097
3.2467  3.9125  4.6027
2.3914  2.7697  3.1317
2.4982 - 2.8275  3.1409

4622.
3936.

n=9
6543.
5430.
4598.
4378.
4916.
7987.
48290.0
17570.0
1282.3
271.58
81.000
29.081
12.085
5.9566
3.8552
3.7322

& Vo= o &N

n=10
9126.8
7358.4
6006.6
5465.4
5886.4
8718.1
36590.0
35730.0
1816.1
352.19
100.00
34.572
13.904
6.6543
4.2052
4.0137
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00
.05
.10
15
.20
.24

1-5
1.2611
1.2065
1.1370
1.0752
1.0125

.9510
.8919
.8346
.7804
.7294
.6833
. 6444
.6184
.6179
.6759
.8088

2-6
18.783
25.396
43.514
104.33
243.61
80.067
23.526

.7678
.0525
.0305
.5866

.2080
.0710
.1052
.3202

o e e e e W N O
g
@

TABLE 3

Asymptotic Variances of /T (d - d) Using Five Moments

3-7
30.082
35.049
47.144
79.417
205.21
1100.9
178.61
38.425
14.130
6.7501
2.4957
2.4652
1.7925
1.4693
1.4667
1.7423

4-8
50.677
54.530
65.464
93.092
233.60
770.22
1179.6
108.16
29.573
12.000
6.0128
3.5344
2.3886
1.8734
1.7913
2.1097

5-9
81.124
82.519
93.257
118.20
293.37
568.87
7417.6
259.33
53.255
18.781
8.6091
4.7070
3.0021
2.2523
2.0937
2.4411

6-10
123.23
119.99
129.49
151.85
352.72
528.54
7995.3
569.49
87.237
27.314
11.604
5.9816
3.6355
2.6272
2.3809
2.7470

7-11
178.13
168.15
174.34
193.27
368.21
540.65
4483.7
1197.7
136.46
37.697
15.003
7.3544
4.2890
2.9992
2.6566
3.0341

8-12
247.71
228.73
226.67
242.42
315.24
580.11
3238.2
2485.3
201.61
50.014
18.808
8.8226
4.9633
3.3702
2.9257
3.3067

9-13
336.24
303.11
285.86
300.21
373.03
635.27
2735.5
5223.9
286.87
64.412
23.010
10.383
5.6568
3.7398
3.1872
3.5676

10-14
445.14
392.54
360.89
365.64
439.79
703.36
2517.4

11492.0
393.32
80.942
27.614
12.034
6.3707
4.1180
3.4432
3.8189

0z



d=- .49
d=-.45
d=-.40
d=-.35
d=--.30
d=-.25
d=-.20
d=-.15
d=-.10
d=-.05
d=.00
d=.05
d=.10
d=.15
d=.20
d=.24

1-10
.9938
.9480
.9047
.8667
.8977

.7697
.7358
.7034
.6728

..6453

.6229
.6105
.6176
.6657
.7538

2-11
7.6420
9.5782
14.678
26.757
101.99
72.637
22.335
8.4917
4.2714
.5812
.7927
.3797
.1597
.0629
.0989
1.2490

P = N

Asymptotic Variances of JT (4 -

3-12
11.667
13.336
17.880
26.655
88.877
211.98
175.82
32.553
11.275
5.3867
3.1769
2.1680
1.6728
1.4420
1.4644
1.6753

4-13
18.301
19.683
24.570
32.747
89.724
173.74
870.72
90.117
22.508
9.0495
4.7666
2.9939
2.1727
1.8127
1.789%
2.0540

TABLE &

5-14
27.366
28.216
33.483
40.604
99.346
162.58
1398.0
214.99
38.964
13.592
6.5621
3.8625
2.6698
2.1530
2.0880
2.3980

d) Using Ten Moments

6-15
39.155
39.070
46.352

53.169
110.97
166.95
1128.2
475.75
61.773
19.045
8.55817
4.7770
3.1693
2.4822
2.3677

2.7154

7-16
53.889
52.494
57.196
62.260
114.12
178.92
924.65
1013.1
92.229
25.452
10.758
5.7375
3.6742

2.8034

2.6330
3.0119

8-17
72.010
68.820
71.978
76.579
107.84
195.72
825.65
2167.8
146.48
37.398
13.159
6.7442
4.1864
3.1193

-+ 2.8890

3.2918

9-18
94.265
88.312
88.853
94.173
120.12
215.98
783.05
4756.9
216.36
49.635
15.758
7.7965
4.7057
3.4308
3.1356
3.5580

10-19
121.09
111.19
109.44
116.78
135.37
236.49
770.91
10826.
311.04
54.364
18.558
8.8950
5.2343
3.7462
3.3751
3.8126
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