

Tilburg University

Testing Nested and Non-Nested Periodically Integrated Autoregressive Models

Franses, P.H.; McAleer, M.

Publication date: 1995

Link to publication in Tilburg University Research Portal

Citation for published version (APA): Franses, P. H., & McAleer, M. (1995). *Testing Nested and Non-Nested Periodically Integrated Autoregressive Models.* (CentER Discussion Paper; Vol. 1995-10). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Center for Economic Research

No. 9510

460

TESTING NESTED AND NON-NESTED PERIODICALLY INTEGRATED AUTOREGRESSIVE MODELS

By Philip Hans Franses and Michael McAleer

January 1995 RII auto regressive model

ISSN 0924-7815

TESTING NESTED AND NON-NESTED PERIODICALLY INTEGRATED AUTOREGRESSIVE MODELS*

Philip Hans Franses

Econometric Institute Erasmus University Rotterdam

Michael McAleer

Department of Economics University of Western Australia

ABSTRACT

Periodically integrated time series require the differencing filter $1-\alpha_s B$ to remove the stochastic trend, where not all α_s equal unity. A non-periodic integrated time series needs the filter 1-B for similar reasons. When the seasonal fluctuations for the non-periodic integrated series can be described by seasonal dummy variables for which the corresponding parameters are not constant within the sample, such a series may not be easily distinguished from a periodically integrated time series. In this paper, nested and non-nested testing procedures are proposed to distinguish between these two alternative stochastic and non-stochastic seasonal processes, when it is assumed, without loss of generality, there is a single unknown structural break in the seasonal dummy parameters. Several empirical examples using quarterly real macroeconomic time series for the United Kingdom illustrate the nested and nonnested approaches.

JEL classification codes: C22, C52

* The authors wish to thank John Geweke, Andrew Harvey, Marius Ooms, Adrian Pagan, Jeremy Smith, Ken Wallis and seminar participants at the London School of Economics, Monash University, and the Universities of Cambridge, Edinburgh, Tasmania and Warwick for helpful comments. The first author thanks the Royal Netherlands Academy of Arts and Sciences for its financial support. The second author wishes to acknowledge the financial support of the Australian Research Council and the Royal Netherlands Academy of Arts and Sciences. Much of this paper was written while the second author was visiting CentER at Tilburg University and the Tinbergen Institute at Erasmus University Rotterdam. An earlier version of the paper was presented at the Australasian meeting of the Econometric Society, Armidale, Australia, July 1994.

1. INTRODUCTION

An empirical regularity for many macroeconomic time series is that their variation is largely dominated by a trend and seasonal fluctuations. Given that interest frequently lies in the underlying cyclical patterns of such time series, it is important to have some knowledge about the characteristics of both the trend and seasonality. A major debate in empirical macroeconomics on whether the trend is stochastic or deterministic seems to have settled in favour of the stochastic trend representation. In fact, most empirical tests for unit roots have not been able to reject the null hypothesis of a unit root, i.e the stochastic trend model. Strictly speaking, this implies that shocks to a certain variable exert a permanent impact on the sequential pattern of its time series. In other words, the direction of an underlying trend can change because of exogenous shocks.

A second debate in empirical macroeconomics focuses on the characteristic properties of the seasonal fluctuations. These properties range from constant seasonal patterns, which can be described using seasonal dummy variables, to changing seasonal patterns, which may be described using seasonal unit root processes. For many macroeconomic series, the seasonality seems to change slowly over time. Sometimes these changes may be multiplicative and on other occasions they may be dependent on changes in the trend. Of course, an important question is whether constant parameter seasonal dummy models are sufficiently adequate to describe such slow changes, or whether the changes are such that they display unit root (i.e. stochastic trend) like behaviour. A flexible class of time series models which can address this question is the periodically integrated [PI] time series model. This class of model allows for multiplicative seasonality, for slowly changing patterns, for seasonal and non-seasonal unit roots, and for seasonal fluctuations that are dependent on the pattern of the stochastic trend. A detailed exposition of this class of models is given in Boswijk and Franses (1993). A definition of the concept of periodic integration originates from Osborn (1988). In section 2 below, a brief overview of some of the main issues in this class of model is given.

A periodically integrated time series of order 1 is defined by its differencing filter $(1-\alpha_s B)$, where B is the familiar backward shift operator and $\prod_{s=1}^{S} \alpha_s = 1$ (where not all $\alpha_s = 1$), which is required to remove the stochastic trend from the time series. It is straightforward to see that the variation in the α_i values allows for multiplicative seasonality, and that exogenous shocks have a different impact on the time series in different

2

seasons. In other words, changes in the underlying stochastic trend may have an effect on the intra-year, or seasonal, fluctuations. Empirical evidence on periodic integration in UK macroeconomic time series is given in Franses and Romijn (1993), in which it is found that the periodically integrated time series model can provide a useful description for 18 of the 25 quarterly time series considered.

A third empirical aspect of macroeconomic time series is that there can be structural breaks in the observed sample, which may be caused, e.g., by changes in the measurement system. Typically, the outcome of such a structural that it affects the autocorrelation function (see, break is e.g., Perron, 1989). Hence, it may also affect the choice of the appropriate differencing filter to eliminate a stochastic trend. Since the estimates of α_{*} in the differencing filter $(1-\alpha_s B)$ for the periodically integrated time series are typically close to unity, one or more structural breaks in a quarterly time series may well give the incorrect impression that $(1-\alpha_s B)$ is needed instead of (1-B). In other words, if a PI process is found to yield an adequate description of a time series, it would seem natural to compare it with a non-periodically integrated [I] process with structural shifts in one or more of the seasonal means. In this paper attention is focused on the selection between such an integrated process with non-constant parameters and a PI process. Since these two processes may be interpreted as non-nested models, non-nested testing procedures may be appropriate for testing each hypothesis. Furthermore, given that a PI model with shifts in the intercept parameters may also be regarded as a reasonable description of the data, a nested testing procedure is also considered. It is assumed, without loss of generality, that there is a single unknown one-time parameter change for the seasonal dummy variables. A simple method to test for the presence of such a change is also presented.

The outline of the paper is as follows. In section 2, the research question is motivated by highlighting specific aspects of the two types of stochastic and non-stochastic seasonal models. Nested and non-nested testing procedures are proposed in section 3, and both procedures are illustrated for six quarterly real macroeconomic time series for the United Kingdom in section 4. Some concluding remarks are given in section 5.

2. MOTIVATION

2.1 A Stochastic Seasonal Specification

Consider a macroeconomic time series y_t which is observed at quarterly intervals over N years, where t is the quarterly index running from 1,...,n, and n = 4N. A flexible class of time series models that allows for seasonal unit roots, non-seasonal unit roots and periodic integration is the periodic autoregressive process [PAR] (see Tiao and Grupe (1980) and Osborn (1991), inter alia). A PAR process of order p, PAR(p), can be represented by

$$y_t = \mu_s + \phi_{1s} y_{t-1} + \dots + \phi_{ps} y_{t-p} + \varepsilon_t$$
(1)

where the index s denotes the parameter values can vary over the four seasons, s = 1,...,S, where S is set equal to 4. The expression in (1), and all subsequent representations, can also be useful when S takes such values as 2, 6 or 12, but in this paper the analysis concentrates on quarterly series. The ε_t are assumed to follow a standard white noise process. In some applications, it may be useful to replace ε_t by ε_{st} , but this extension does not effect the analysis except for the application of a straightforward modified estimation method to allow for seasonal heteroskedasticity. Concise discussions of estimation aspects of periodic time series models can be found in, e.g., Pagano (1978) and Vecchia and Ballerini (1993), *inter alia*. The parameters in model (1) can be estimated by applying ordinary least squares to

$$y_t = \sum_{s=1}^{S} D_{st} \mu_s + \sum_{s=1}^{S} D_{st} (\phi_{1s} y_{t-1} + \dots + \phi_{ps} y_{t-p}) + \epsilon_t$$

where the D_{st} are seasonal dummy variables which equal one in season s and zero in all other seasons, and the number of parameters is (p+1)S.

For the purpose of investigating stochastic trend properties of y_t , a more convenient representation of (1) relies on stacking the y_t observations in the (4×1) vector $Y_T = (Y_{1T},...,Y_{4T})$, where T runs from 1,...,N, N = n/4 and Y_{sT} is the observation in season s in year T (see, e.g., Osborn (1991), Franses (1994), and Tiao and Grupe (1980)). Note that equation (1) is already a non-stationary process in the sense that the autocorrelation function varies with the season. Using the stacked observation notation, model (1) can be rewritten as

$$A_0 Y_T = \mu + A_1 Y_{T-1} + \dots + A_m Y_{T-m} + \varepsilon_T$$
(2)

where the A_j , j = 0,...,m, are (4×4) parameter matrices, with A_0 being lower diagonal and the μ and ε_T containing the stacked μ_s and ε_t . The value of mdepends on p in (1) according to $m \leq [1+p/4]$. To check for unit roots in the PAR(p) process, it is necessary to investigate whether the solutions to

$$|A_0 - A_1 z - \dots - A_m z^m| = 0 \tag{3}$$

are on or outside the unit circle. Boswijk and Franses (1993) propose a test for the presence of at most a single unit root in a PAR(p) process. Franses and Paap (1994) find empirical support for the presence of only a single unit root in many UK macroeconomic time series.

In the case of a single unit root (i.e., a so-called periodically integrated autoregressive time series of order p [PIAR(p)]), the model in (1) can be rewritten as

$$(1 - \alpha_s B)y_t = \mu_s + \beta_{1s}(1 - \alpha_{s-1}B)y_{t-1} + \dots + \beta_{p-1,s}(1 - \alpha_{s-p+1}B)y_{t-p+1} + \varepsilon_t$$
(4)

subject to the non-linear restriction

$$\alpha_1 \alpha_2 \alpha_3 \alpha_4 = 1. \tag{5}$$

Note that $\alpha_{-k} = \alpha_{4-k}$ for k = 0,1,2... The parameters α_s and β_{js} are functions of the parameters ϕ_{ps} in (1). The $1-\alpha_s B$ filter is called the periodic differencing filter, where B is the familiar backward shift operator. The model in (4) subject to (5) can be estimated using non-linear least squares. Since $(1-\hat{\alpha}_s B)y_t$ is a periodically stationary time series, where $\hat{\alpha}_s$ is the nonlinear least squares estimator of α_s , the t ratios for the estimated β_{is} parameters in (4) can be compared with the fractiles of the asymptotic standard normal distribution.

It is clear from (4) and (5) that, given (5), the ordinary integrated time series process that requires the 1-B filter to remove the stochastic trend is nested within (4). In that case, all the α_s are equal to 1, and hence (5) holds automatically. In terms of unit roots, the (1-B) filter implies the presence of a single unit root in the Y_T process in (2).

A periodically integrated time series process can describe time series which display changing seasonal fluctuations because of changes in the underlying stochastic trend. This is most easily observed from the differencing filter $1-\alpha_s B$. The difference between two consecutive seasons a and b, say $Y_{aT}-Y_{bT}$, is not constant over time when a stochastic trend is driving each of these time series, and this difference depends on the pattern of the trend.

2.2 A Non-stochastic Seasonal Specification

When a PIAR process is found to describe the data adequately, seasonal patterns are allowed to change because of changes in the trend. Strictly speaking, this implies that care must be taken in using seasonal adjustment procedures since the assumption that the unadjusted series and the seasonal component are orthogonal may be violated. In fact, part of the stochastic trend may be affected and/or not all seasonal fluctuations might be removed. Given such an impact of a PIAR model, it seems natural to check whether the changes in the seasonal patterns might have been caused by deterministic shifts instead of by a stochastic variation. In practice, the α_s parameters are often estimated as being unequal, although they might be very close to unity. Hence, it seems reasonable to contrast the PIAR model in (4)-(5) with a model that considers the first-order differenced time series, $(1-B)y_l$, when it can be described using a (periodic) autoregression and allows for a one-time structural break at given time τ , namely

$$(1-B)y_t = \delta_s + I_{(t\geq\tau)}\delta_s^* + \beta_{1s}(1-B)y_{t-1} + \dots + \beta_{p-1,s}(1-B)y_{t-p+1} + \varepsilon_t.$$
(6)

In (6), the variable $I_{(t\geq\tau)}$ is an indicator function which is equal to 1 when $t \geq \tau$, and the number of parameters is 8+4(p-1). For convenience, it is assumed that the model remains periodic so that the β parameters vary seasonally. The δ_s^* parameters have values that may be different from zero, which implies that the growth rates can change at time τ . Of course, before testing (6) against (4)-(5), it should be verified whether the model in (6) is statistically adequate in terms of uncorrelated and homoskedastic errors and the absence of non-normality. In the next section, testing procedures are proposed for choosing between (4)-(5) and (6) when they are both nested within a more general model and also when they are non-nested.

3. NESTED AND NON-NESTED TESTING PROCEDURES

The two time series models given in (4)-(5) and (6) are, at first glance, nonnested in that neither can be obtained from the other by the imposition of appropriate restrictions (see McAleer (1994) for a recent survey of the empirical literature). In particular, (4) sets to zero the coefficient of the structural break dummy variable $I_{(t\geq r)}$, whereas (6) imposes a unit root restriction rather than a periodic unit root restriction (and implicitly imposes the non-linear restriction given in (5)).

Several procedures are available for testing each of these two models, depending on whether they are interpreted as non-nested models or as specializations of an interpretable more general model. The literature on testing non-nested hypotheses distinguishes between models which arise through differences in theoretical approaches, differences in specifying the auxiliary assumptions such as serial correlation and heteroskedasticity, and through alternative approaches to econometric modelling. At a practical level, non-nested models may arise through using incorrect models, incorrect restrictions, incorrect dynamic structures and/or incorrect transformations of variables.

3.1 Nested Procedures

If the time series models given in (4)-(5) and (6) are essentially based on empirical observation, then the theoretical foundations of the competing models may not be of great substance. In such a context, when the two models are simply competing empirical explanations which do not preclude a more general explanation, a straightforward method of testing each of these models is to nest both in the more general model, with 3+8+4(p-1) parameters, given by

$$(1 - \alpha_s B)y_t = \beta_{1s}(1 - \alpha_{s-1}B)y_{t-1} + \dots + \beta_{p-1,s}(1 - \alpha_{s-p+1}B)y_{t-p+1} + \kappa_s + I_{(t>\tau)}\kappa_s^* + \varepsilon_t$$
(7)

which is to be estimated subject to (5). It is assumed, in the first instance, that τ is known. Equation (7) is not only a convenient and obvious method of testing both (4)–(5) and (6), but is also useful in that it might be an empirically acceptable model. The validity of (7) rests in its ability to accommodate both periodic integration and a structural break. It should be noted that the structural break is accommodated within the periodically integrated model, so that the non-linear restriction in imposed in estimating (7). The general model (7), in which all variables are (periodically) stationary, may be estimated using non-linear least squares, which yields a residual sum of squares RSS_G .

The PI model in (4)-(5) implies that there is no structural break, so that the κ_s^* parameters in (7) are equal to zero, in which case the κ_s are equal to the μ_s in (4). Since the κ_s^* are coefficients of stationary variables, i.e. the corresponding variables have a value of one for $t \ge \tau$, the residual sum of squares of the PI model, say RSS_{PI} , can be compared with RSS_G from (7) using the standard (asymptotic) F test. This test will be denoted $F_{PI}(4,n-k)$, where k is the number of parameters in the general model and PI in (4)-(5) is the null hypothesis.

The integrated time series model (6) implies that each of the α_s in (7) is equal to one, in which case the non-linear restriction is satisfied automatically. Hence, (6) also assumes there is a single unit root in the multivariate representation (2). Otherwise formulated, there are three cointegrating relations between the Y_{sT} elements corresponding to the y_t series generated by (4)-(5) and (6). Hence, comparing these models does not involve a change in the number of unit roots. When each α_s is equal to one, the κ_s and κ_s^* in (7) equal δ_s and δ_s^* , respectively. Denoting the residual sum of squares from estimating (6) by ordinary least squares as RSS_I , model (6) can be tested against (7) using the standard (asymptotic) F test, denoted as $F_I(3,n-k)$, where k = 4p+7 in (7) and I is the null hypothesis. The three restrictions to be tested arise from the fact that (7) is estimated under the non-linear restriction (5), in which case there are only three free α_s parameters.

A further restriction to be tested on (7) is that each of the α_s is equal to one and that the κ_s^* are equal to zero, wherein the integrated model with no structural break is the null hypothesis. Such a test is different from testing each of the δ_s^* in (6) to be equal to zero, since (6) has already imposed the restriction that the α_s are equal to unity. Consequently, the powers of the tests are likely to differ, depending on which of (6) or (7) is correct. In the context of nested tests, (7) is the maintained hypothesis, whereas (4)-(5), (6), and (6) with the δ_s^* set to zero are the respective null hypotheses.

The interpretation to be given to these test statistics is straightforward. A significantly large value of F_{PI} (F_I) leads to the rejection of the PI (I) model in (4)-(5) ((6)) in favour of the general model with both periodic integration and a structural break. A significant test statistic for the null hypothesis of an integrated model with no structural break also leads to the general model (7). Insignificant test statistics in each of these three cases leads to non-rejection of the respective null hypotheses. It should be emphasized that, in the nested case, the general model given in (7) may not only be statistically valid but may also be interpreted as a useful model in itself.

3.2 Non-nested Procedures

When the models in (4)-(5) and (6) are non-nested, in that using the standard (asymptotic) F test in a model such as (7) cannot be entertained, non-nested testing procedures should be used. Dastoor and McAleer (1989) propose four classifications of tests for competing non-nested linear regression models, depending on whether there are exactly two or more than two competing linear regression models. For linear regression models in the absence of linear or non-linear parametric restrictions, several procedures are available. In the case of two non-nested models considered here, a distinction is made between the Cox-type tests of Pesaran (1974), Davidson and MacKinnon (1981) and Fisher and McAleer (1981), and the non-nested F tests of Deaton (1982), Dastoor (1983), Gourieroux et al. (1983), Mizon and Richard (1986) (based on encompassing), and McAleer and Pesaran (1986) (based on Roy's (1953) union-intersection principle). It should be noted that the (asymptotic) nested F test given in (7) is not a non-nested test of (4)-(5) versus (6) based on the non-nested procedures just mentioned. Moreover, Monte Carlo results indicate that non-nested tests are generally more powerful than nested F tests based on a general model such as (7).

Pesaran and Hall (1988) derive Cox-type tests of two non-nested linear regression models subject to linear restrictions, and incorporate small sample adjustments for the mean and variance of the statistic under the assumption of non-stochastic regressors. If the models are subject to non-homogeneous linear restrictions, substituting the restrictions yields transformed dependent variables which differ between the two non-nested models. In testing (4)-(5) and (6) against each other, it is possible to obtain several asymptotically equivalent Cox-type tests, but small sample adjustments are not appropriate given the nature of the regressors. For present purposes, the most computationally convenient method of testing the two models is to use weights

 $(1-\lambda)$ and λ for the models given in (4) and (6), respectively, to yield

$$(1-\lambda)(1-\alpha_{s}B)y_{t} + \lambda(1-B)y_{t} =$$

$$(1-\lambda)[\mu_{s} + \beta_{1s}(1-\alpha_{s-1}B)y_{t-1} + \dots + \beta_{p-1,s}(1-\alpha_{s-p+1}B)y_{t-p+1}] +$$

$$\lambda[\delta_{s} + I_{(t\geq\tau)}\delta_{s}^{*} + \beta_{1s}(1-B)y_{t-1} + \dots + \beta_{p-1,s}(1-B)y_{t-p+1}] + \varepsilon_{t}$$
(8)

which is to be estimated subject to (5). In (8), λ is not identifiable without imposing restrictions. Since there are several methods for identifying λ (see McAleer and Pesaran (1986) for further details), the method adopted here is to use sample information. Where such information is obtained from the alternative non-nested model, the outcome is a *J*-type test (see Davidson and MacKinnon (1981)). Specifically, to test H_0 : $\lambda=0$ in (8), estimates of the parameters from (6) are used to replace the unknown parameters as follows:

$$(1-\lambda)(1-\alpha_{s}B)y_{t} + \lambda(1-B)y_{t} = (1-\lambda)[\mu_{s} + \beta_{1s}(1-\alpha_{s-1}B)y_{t-1} + \dots + \beta_{p-1,s}(1-\alpha_{s-p+1}B)y_{t-p+1}] + \lambda[\hat{\delta}_{s} + I_{(t\geq\tau)}\hat{\delta}_{s}^{*} + \hat{\beta}_{1s}(1-B)y_{t-1} + \dots + \hat{\beta}_{p-1,s}(1-B)y_{t-p+1}] + \varepsilon_{t}$$
(9)

which is to be estimated subject to (5). Since all the variables in (9) are (periodically) stationary, non-linear least squares applied to (9)-(5) yields a *t* ratio for the estimate of λ which is asymptotically distributed as standard normal. Let the *t* ratio for the test of PI in (4)-(5) against I in (6) be denoted as t_{PI} .

A test of H_1 : $\lambda = 1$ in (8), namely testing (6) against (4)-(5), may be obtained by replacing the unknown parameters of (4) with estimates from (4)-(5) as follows:

$$(1-\lambda)(1-\hat{\alpha}_{s}B)y_{t} + \lambda(1-B)y_{t} = (1-\lambda)[\hat{\mu}_{s} + \hat{\beta}_{1s}(1-\hat{\alpha}_{s-1}B)y_{t-1} + \dots + \hat{\beta}_{p-1,s}(1-\hat{\alpha}_{s-p+1}B)y_{t-p+1}] + \lambda[\delta_{s} + I_{(t\geq\tau)}\delta_{s}^{*} + \beta_{1s}(1-B)y_{t-1} + \dots + \beta_{p-1,s}(1-B)y_{t-p+1}] + \varepsilon_{t}$$
(10)

which is not estimated subject to (5). Since all the variables in (10) are (periodically) stationary, non-linear least squares applied to (10) yields a t ratio for the estimate of $(1-\lambda)$ which is asymptotically distributed as

standard normal. Let the t ratio for the test of I in (6) against PI in (4)-(5) be denoted as t_I .

There are four possible outcomes for the non-nested testing procedure. First, t_{PI} is significant while t_I is not, so PI is rejected while I is not. Hence, the integrated time series model (6) is selected. Second, t_I is significant while t_{PI} is not, in which case the PI model is selected over the I model. Third, neither t_{PI} nor t_I is significant, so the tests may lack power because neither model is rejected. Consequently, both the PI and I models may be adequate representations of the data. Fourth, both t_{PI} and t_I are significant, which implies that neither of the models (4)-(5) nor (6) adequately describes the series, even though misspecification may not have been detected for either of the models using standard diagnostic checks. This outcome indicates that each of the models should be modified in some way.

It should be noted that equations (8), (9) and (10) are not models for interpretation, but are simply devices for obtaining test statistics for the two non-nested models. Therefore, neither (9) nor (10) has an interpretive value, unlike the more general model (7) in the nested case.

An important empirical question which now arises is the determination of the value of τ . It is assumed that a PI model is estimated and it is desired to check whether (6) is more appropriate. The value of τ may be determined by applying parameter constancy tests to (4)-(5). Such a procedure necessarily involves a series of tests, which will affect the overall significance level of the tests. In this paper it is proposed to use the likelihood ratio (*LR*) test statistic

$$LR = n\log(RSS/(RSS_1 + RSS_2)) \tag{11}$$

for each subsample defined by various choices for τ , where RSS is the residual sum of squares that corresponds to the entire sample, while RSS_1 and RSS_2 correspond to the first and second subsamples. This LR statistic concerns a test for coefficient stability conditional on variance equality (see Pesaran et al. (1985) for an overview of parameter constancy tests). In the case considered here of an unknown change-point, we propose to use the test statistic $\sup(LR)$, which is the largest LR value over all τ 's. The distribution of $\sup(LR)$ is derived in Andrews (1993) for a wide class of models, including non-linear models.

4. EMPIRICAL APPLICATIONS

In this section the nested and non-nested testing procedures developed above are applied to six empirical applications. These applications concern the logarithms of quarterly real macroeconomic time series for the United Kingdom over the effective sample period 1956.1-1988.4. The variables are GDP, Total Investment ("Investment"), Exports, Imports, Total Consumption ("Consumption") and Consumption of Nondurables ("Nondurables"). In Franses and Paap (1994), these variables are found to be periodically integrated of order one. The variables GDP, Investment and Exports can be described using PIAR(2) models, while the other three variables can be described using PIAR(1) models. To obtain an impression of typical α_s values, their estimates are reported in Table 1. It is evident that these values are very close to unity. The standard errors are usually smaller than 0.01, although these should be treated with care since the time series contain a stochastic trend. Formal tests for the adequacy of the (1-B) filter are performed in Franses and Paap (1994), and the overall result is that this restriction on the α_s parameters can be rejected with prob-values typically smaller than 0.01.

insert Table 1

To test for a structural break at an unknown change-point in each of the six PIAR models, the LR test statistic (11) was calculated for various values of τ . Since it is desired to estimate each parameter with the same number of observations, τ was always set equal to the first quarter of each year. The LR test is calculated for τ ranging from 1960.1 through to 1984.1, which ensures that there are at least 20 observations in the subsamples to estimate the parameters. The largest value of the LR statistics, denoted sup(LR), is reported in Table 2, and the corresponding value of τ is given in the next column. The final column of Table 2 contains the 5% critical values for sup(LR), which have been interpolated from the asymptotic critical values displayed in Table I in Andrews (1993).

insert Table 2

It is observed from Table 2 that there is a significant structural break for four of the six series. Furthermore, for two series the possible break occurs in 1969.1, which corresponds to the year following a major VAT increase. Although the $\sup(LR)$ values for Imports and Consumption are not significant at

12

the 5% level, the indicated breaks are considered in the empirical illustration of testing both nested and non-nested hypotheses.

Insert Table 3

In Table 3 are reported the results of the nested and non-nested test procedures for the six UK variables. The third and fourth columns of Table 3 provide the nested test statistics. It is concluded from these results that the PI model with breaks, i.e. the nesting model, is preferred over the nested PI and I models for five of the six variables, since both the PI and I models are rejected. For Exports, the PI model is preferred since the I model is rejected but the PI model is not. Except for Exports and Nondurables, where the PI model is preferred and both models are rejected, respectively, the non-nested test results in columns five and six of Table 3 give different results from those using the nested testing approach. It should be emphasized that, in contrast to the rejection of both the PI and I models in favour of the general model for Nondurables in the nested case, rejection of PI and I using non-nested tests does not suggest whether an appropriate model exists. For Investment, the statistics do not reject either the PI model or the I model. For Imports and GDP, the PI specification is rejected in favour of the I model with a structural break, while for Consumption it is the reverse.

Insert Table 4

Since the nested and non-nested test procedures do not generally lead to agreement, the values of the Schwarz model selection criterion for the models (4)-(5), (6) and (7) are also calculated and are reported in Table 4. From these values, the PI model yields the most parsimonious description of the data for four of the six variables, while the PI model with a break in (7) is selected for GDP and Nondurables. The I model with a break in (6) is not chosen for any variable.

Overall, it can be concluded that the various testing and model selection methods do not lead to a specific model being preferred. In general, it seems that the PI model with a structural break may be useful for GDP and Nondurables. The estimation results for the latter variable, by way of illustration, are

$$(1 - \alpha_s B) y_t = \delta_s + I_{(t \ge \tau)} \delta_s^* + \varepsilon_t$$
⁽¹²⁾

where τ is 1969.1

$$\hat{\alpha}_1 = 1.051 \qquad \hat{\alpha}_2 = 0.929 \qquad \hat{\alpha}_3 = 1.022 \qquad \hat{\alpha}_4 = 1/(\hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_3) = 1.022 (0.015) \qquad (0.013) \qquad (0.014) \qquad (0.015)$$

and

$$\hat{\delta}_1 = -0.617 \\ (0.151) \\ \hat{\delta}_2 = 0.789 \\ (0.137) \\ \hat{\delta}_3 = -0.214 \\ (0.148) \\ \hat{\delta}_4 = 0.018 \\ (0.144) \\ \hat{\delta}_4^* = 0.019 \\ (0.006) \\ \hat{\delta}_4^* = 0.019 \\ (0.006) \\ \hat{\delta}_4^* = 0.019 \\ (0.006) \\ \hat{\delta}_4 = 0.019 \\$$

where the asymptotic standard errors are given in parentheses. It might be desired to simplify this model even further since not all δ_s and δ_s^* are statistically significant. It is clear, however, that $\hat{\delta}_1^*$ and $\hat{\delta}_4^*$ are significantly different from zero, and that the α_s values are close, though not equal, to unity.

For Investment, Exports and Consumption, it might be concluded that a PI model without a break is useful, although the evidence is not equally strong for all variables. For Imports, a model like (6) might be specified. The corresponding results, after deleting insignificant $\hat{\delta}^*_s$ estimates, are $\hat{\delta}_1 = 0.014 \ (0.007), \hat{\delta}_2 = 0.035 \ (0.07), \hat{\delta}_3 = 0.032 \ (0.009), \hat{\delta}_4 = -0.037 \ (0.009)$ and $\hat{\delta}^*_{34} = 0.030 \ (0.009)$, where $\hat{\delta}^*_{34}$ refers to the variable with -1 in the third quarter and +1 in the fourth quarter, starting in 1967. Hence, the total seasonal variation has not changed, since the seasonal component in quarter 3 has decreased by the same amount as the increase in the seasonal component in quarter 4.

5. CONCLUDING REMARKS

This paper has been concerned with testing alternative specifications of integrated time series. Two specifications were considered, namely one which is periodically integrated with differencing filter given by $1-\alpha_s B$ (where not all α_s equal unity), and an integrated time series with filter 1-B which requires seasonal dummy variables with corresponding parameters subject to change over the sample. Simple nested and non-nested testing procedures were

proposed to distinguish between the two stochastic and non-stochastic seasonal processes. When the two specifications are not based on strong theoretical foundations, both may be nested within a more general framework and standard (asymptotic) F tests may be used to test the appropriate restrictions. Insignificant test statistics lead to non-rejection of the respective null hypotheses, whereas significant test statistics for both null hypotheses leads to rejection of both in favour of the more general model. In the non-nested case, where differences in theoretical approaches, in the auxiliary assumptions or in the approaches to econometric modelling predominate, a more general model is not entertained in the testing process. Therefore, rejection of the two non-nested models indicates that both are misspecified in ways not detected by standard (and possibly less powerful) diagnostic checks. However, there is no indication as to how to correct or accommodate the apparent misspecifications.

The procedures seem to work well in practice. Six empirical examples, using quarterly real macroeconomic time series for the United Kingdom highlighted various interpretations. In the case of Imports, the I model with a structural break was preferred to the PI model using the non-nested procedure, whereas the nested tests rejected both in favour of the general model. For Nondurables, both the PI and I models were rejected in favour of the general specification incorporating both PI and a structural break, using the nested and non-nested procedures. Thus, in the case of several variables, time series models which had passed standard diagnostic checks were rejected on the basis of evidence provided by a non-nested alternative or by a more general model not implied by the diagnostics.

Extensions of the tests proposed in this paper may take various forms. It was assumed throughout the analysis of the integrated model with a structural break that the value of τ , the breakpoint, can be determined using a test for parameter constancy. Preferably, a joint test of τ and the non-nested alternative of PI simultaneously would obviate the need to be concerned with the sequential testing problem, and would also extend the applicability of the procedure (see Bera et al. (1992) for the derivation of a joint test of non-nested models together with departures from the auxiliary assumptions regarding the errors of a linear regression model). Extensions to multiple structural breaks, slowly changing breaks and continuous breaks could also be examined within the context of the problem analysed here. In each case, the PI model may be non-nested with respect to its I counterpart with known or unknown structural breaks.

Variable	Order of PIAR	$\hat{\alpha}_1$	$\hat{\alpha}_2$	$\hat{\alpha}_3$	â,
GDP	2	1.007	0.916	1.069	1.014
Investment	2	1.050	0.885	1.074	1.003
Exports	2	0.947	1.025	1.036	0.994
Imports	1	0.965	1.028	0.983	1.025
Consumption	1	1.036	0.912	1.058	1.000
Nondurables	1	1.002	0.929	1.033	1.039

Table 1Periodic Differencing Filter $(1-\hat{\alpha}_s B)$ based on PIAR(p) Modelsfor Six UK Macroeconomic Time Series over 1956.1-1988.4

Note: The periodic differencing filter is estimated under the non-linear restriction $\alpha_4 = 1/(\alpha_1 \alpha_2 \alpha_3)$. The statistical package MicroTSP (version 7.0) is used for these computations. The PIAR models pass diagnostic checks for first and first-to-fourth order residual autocorrelation, first order periodic autocorrelation and first order ARCH.

Variable	Order of PIAR	$\sup(LR)^{(1)}$	$ au^{(2)}$	5% level ⁽³⁾
GDP	2	42.718*	1969.1	25.2
Investment	2	34.855*	1964.1	27.6
Exports	2	29.585 *	1979.1	27.0
Imports	1	16.001	1967.1	19.4
Consumption	1	16.906	1969.1	18.8
Nondurables	1	35.815*	1969.1	18.8

 Table 2

 Testing for a Structural Break in PIAR Models

* Significant at the 5% level.

⁽¹⁾ The Likelihood Ratio test, *LR*, refers to a test for coefficient stability conditional on variance stability in PIAR models, under the non-linear restriction $\alpha_1 \alpha_2 \alpha_3 \alpha_4 = 1$. Sup(*LR*) refers to the largest value of the *LR* test values for all break-points considered. The *LR* test corresponds to the familiar analysis of covariance Chow test (see Pesaran *et al.* (1985)).

(2) This value of τ is the first quarter of the second sample period and is used to calculate the *LR* test statistics. The *LR* test compares the residual sum of squares of the PIAR model for 1956.1- $(\tau-1)$ with that of τ -1988.4.

(3) Critical values at the 5% level for the $\sup(LR)$ test in case of an unknown break-point. These values are interpolated from the asymptotic critical values displayed in Table I in Andrews (1993). There are 7 parameters to be estimated in the PIAR(1) model and 11 in the PIAR(2) model. The fraction of the sample 1956.1-1988.4 for which there may be a break-point (denoted as π_0 in Andrews' Table I) can be calculated using the value of τ .

Variable	Break-point	Break-point Nested tests ⁽¹⁾		Non-nested tests	
	au	FPI	F_{I}	t_{PI}	t_{I}
GDP	1969.1	6.152*	6.394*	3.083*	1.738
Investment	1964.1	3.233*	4.161*	1.939	1.891
Exports	1967.1	1.317	3.256*	1.423	2.789*
Imports	1979.1	3.194*	3.999*	2.164*	1.827
Consumption	1969.1	3.252*	15.971*	-0.033	6.083*
Nondurables	1969.1	4.871*	10.454*	2.213*	1.416*

 Table 3

 Nested and Non-nested Test Statistics for Six UK Macroeconomic Time Series

* Significant at the 5% level.

⁽¹⁾ The F_{PI} test has (4,117) and (4,121) degrees of freedom for PIAR(2) and PIAR(1) models, respectively, while the F_I test has (3,117) and (3,121) degrees of freedom, respectively.

			Model	
Variable	Break-point $ au$	PI	I with break	PI with break
GDP	1969.1	-1029.85	-1030.12	-1035.51**
Investment	1964.1	-843.51**	-839.09	-837.82
Exports	1967.1	-833.37**	-823.72	-819.66
Imports	1979.1	-835.54**	-831.43	-829.26
Consumption	1969.1	-1083.82**	-1048.38	-1077.77
Nondurables	1969.1	-1162.78	-1147.18	-1162.96**

Table 4 Schwarz Criteria for Nested and Non-nested PIAR Models

** Smallest value of the Schwarz criterion, i.e. the corresponding model is selected.

REFERENCES

- Andrews, D.W.K. (1993), Tests for parameter instability and structural change with unknown change point, *Econometrica*, 61, 821-856.
- Bera, A.K., M. McAleer, M.H. Pesaran and M.J. Yoon (1992), Joint tests of nonnested models and general error specifications, *Econometric Reviews*, 11, 97-117.
- Boswijk, H.P. and P.H. Franses (1993), Unit roots in periodic autoregressions, Tinbergen Institute Discussion Paper 93-230, Rotterdam.
- Canova, F. and B.E. Hansen (1993), Are seasonal patterns constant over time? A test for seasonal stability, unpublished manuscript, Brown University.
- Dastoor, N.K. (1983), Some aspects of testing non-nested hypotheses, Journal of Econometrics, 21, 213-28.
- Dastoor, N.K. and M. McAleer (1989), Some power comparisons of joint and paired tests for nonnested models under local hypotheses, *Econometric Theory*, 5, 83-94.-94.
- Davidson, R. and J.G. MacKinnon (1981), Several tests for model specification in the presence of alternative hypotheses, *Econometrica*, 49, 781-93.
- Deaton, A.S. (1982), Model selection procedures, or, does the consumption function exist?, in G.C. Chow and P.Corsi (eds.), Evaluating the reliability of macro-economic models, New York: Wiley, 43-65.
- Fisher, G.R. and M. McAleer (1981), Alternative procedures and associated tests of significance for non-nested hypotheses, *Journal of Econometrics*, 16, 103-19.
- Franses, P.H. (1994), A multivariate approach to modelling univariate seasonal time series, Journal of Econometrics, 63, 133-151.
- Franses, P.H. and R. Paap (1994), Model selection in periodic autoregressions, Oxford Bulletin of Economics and Statistics, 56, 421-439.
- Franses, P.H. and G. Romłjn (1993), Periodic integration in quarterly UK macroeconomic variables, International Journal of Forecasting, 9, 467-476.
- Gourieroux, C., A. Monfort and A. Trognon (1983), Testing nested or non-nested hypotheses, Journal of Econometrics, 21, 83-115.
- Johansen, S. (1991), Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, *Econometrica*, 59, 1551-80.
- McAleer, M. (1994), The significance of testing empirical non-nested models, Journal of Econometrics, to appear.
- McAleer, M. and M.H. Pesaran (1986), Statistical inference in non-nested econometric models, Applied Mathematics and Computation, 20, 271-311.

- Mizon, G.E. and J.-F. Richard (1986), The encompassing principle and its application to non-nested hypotheses, *Econometrica*, 54, 657-78.
- Osborn, D.R. (1988), Seasonality and habit persistence in a life-cycle model of consumption, *Journal of Applied Econometrics*, 3, 255-66.
- Osborn, D.R. (1991), The implications of periodically varying coefficients for seasonal time series processes, *Journal of Econometrics*, 48, 373-84.
- Pagano, M. (1978), On periodic and multiple autoregressions, Annals of Statistics, 6, 1310-17.
- Perron, P. (1989), The great crash, the oil price shock, and the unit root hypothesis, *Econometrica*, 57, 1361-1401.
- Pesaran, M.H. (1974), On the general problem of model selection, *Review of Economic Studies*, 41, 153-71.
- Pesaran, M.H. and A.D. Hall (1988), Tests of non-nested linear regression models subject to linear restrictions, *Economics Letters*, 27, 341-48.
- Pesaran, M.H., R.P. Smith and J.S. Yeo (1985), Testing for structural stability and predictive failure: a review, *The Manchester School*, 53, 280-295.
- Roy, S.N. (1953), On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, 24, 220-38.
- Tiao, G. and M.R. Grupe (1980), Ilidden periodic autoregressive-moving average models in time series data, *Biometrika*, 67, 365-73.
- Vecchia, A.V. and R. Ballerini (1991), Testing for periodic autocorrelations in seasonal time series data, *Biometrika*, 78, 53-63.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

No.	Author(s)	Title
9440	J. Arin and V. Feltkamp	The Nucleolus and Kernel of Veto-rich Transferable Utility Games
9441	PJ. Jost	On the Role of Commitment in a Class of Signalling Problems
9442	J. Bendor, D. Mookherjee, and D. Ray	Aspirations, Adaptive Learning and Cooperation in Repeated Games
9443	G. van der Laan, D. Talman and Z. Yang	Modelling Cooperative Games in Permutational Structure
9444	G.J. Almekinders and S.C.W. Eijffinger	Accounting for Daily Bundesbank and Federal Reserve Intervention: A Friction Model with a GARCH Application
9445	A. De Waegenaere	Equilibria in Incomplete Financial Markets with Portfolio Constraints and Transaction Costs
9446	E. Schaling and D. Smyth	The Effects of Inflation on Growth and Fluctuations in Dynamic Macroeconomic Models
9447	G. Koop, J. Osiewalski and M.F.J. Steel	Hospital Efficiency Analysis Through Individual Effects: A Bayesian Approach
9448	H. Hamers, J. Suijs, S. Tijs and P. Borm	The Split Core for Sequencing Games
9449	GJ. Otten, H. Peters, and O. Volij	Two Characterizations of the Uniform Rule for Division Problems with Single-Peaked Preferences
9450	A.L. Bovenberg and S.A. Smulders	Transitional Impacts of Environmental Policy in an Endogenous Growth Model
9451	F. Verboven	International Price Discrimination in the European Car Market: An Econometric Model of Oligopoly Behavior with Product Differentiation
9452	P.JJ. Herings	A Globally and Universally Stable Price Adjustment Process
9453	D. Diamantaras, R.P. Gilles and S. Scotchmer	A Note on the Decentralization of Pareto Optima in Economies with Public Projects and Nonessential Private Goods
9454	F. de Jong, T. Nijman and A. Röell	Price Effects of Trading and Components of the Bid-ask Spread on the Paris Bourse

No.	Author(s)	Title
9455	F. Vella and M. Verbeek	Two-Step Estimation of Simultaneous Equation Panel Data Models with Censored Endogenous Variables
9456	II.A. Keuzenkamp and M. McAleer	Simplicity, Scientific Inference and Econometric Modelling
9457	K. Chatterjee and B. Dutta	Rubinstein Auctions: On Competition for Bargaining Partners
9458	A. van den Nouweland, B. Peleg and S. Tijs	Axiomatic Characterizations of the Walras Correspondence for Generalized Economies
9459	T. ten Raa and E.N. Wolff	Outsourcing of Services and Productivity Growth in Goods Industries
9460	G.J. Almekinders	A Positive Theory of Central Bank Intervention
9461	J.P. Choi	Standardization and Experimentation: Ex Ante Versus Ex Post Standardization
9462	J.P. Choi	Herd Behavior, the "Penguin Effect", and the Suppression of Informational Diffusion: An Analysis of Informational Externalities and Payoff Interdependency
9463	R.H. Gordon and A.L. Bovenberg	Why is Capital so Immobile Internationally?: Possible Explanations and Implications for Capital Income Taxation
9464	E. van Damme and S. Hurkens	Games with Imperfectly Observable Commitment
9465	W. Güth and E. van Damme	Information, Strategic Behavior and Fairness in Ultimatum Bargaining - An Experimental Study -
9466	S.C.W. Eijffinger and J.J.G. Lemmen	The Catching Up of European Money Markets: The Degree Versus the Speed of Integration
9467	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm for Markovian Queueing Networks
9468	H. Webers	The Location Model with Two Periods of Price Competition
9469	P.W.J. De Bijl	Delegation of Responsibility in Organizations
9470	T. van de Klundert and S. Smulders	North-South Knowledge Spillovers and Competition. Convergence Versus Divergence
9471	A. Mountford	Trade Dynamics and Endogenous Growth - An Overlapping Generations Model
9472	A. Mountford	Growth, History and International Capital Flows
9473	L. Meijdam and M. Verhoeven	Comparative Dynamics in Perfect-Foresight Models

No.	Author(s)	Title
9474	L. Meijdam and M. Verhoeven	Constraints in Perfect-Foresight Models: The Case of Old-Age Savings and Public Pension
9475	Z. Yang	A Simplicial Algorithm for Testing the Integral Property of a Polytope
9476	H. Hamers, P. Borm, R. van de Leensel and S. Tijs	The Chinese Postman and Delivery Games
9477	R.M.W.J. Beetsma	Servicing the Public Debt: Comment
9478	R.M.W.J. Beetsma	Inflation Versus Taxation: Representative Democracy and Party Nominations
9479	JJ. Herings and D. Talman	Intersection Theorems with a Continuum of Intersection Points
9480	K. Aardal	Capacitated Facility Location: Separation Algorithms and Computational Experience
9481	G.W.P. Charlier	A Smoothed Maximum Score Estimator for the Binary Choice Panel Data Model with Individual Fixed Effects and Application to Labour Force Participation
9482	J. Bouckaert and H. Degryse	Phonebanking
9483	B. Allen, R. Deneckere, T. Faith and D. Kovenock	Capacity Precommitment as a Barrier to Entry: A Bertrand -Edgeworth Approach
9484	JJ. Herings, G. van der Laan, D. Talman, and R. Venniker	Equilibrium Adjustment of Disequilibrium Prices
9485	V. Bhaskar	Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems
9486	K. Aardal, M. Labbé, J. Leung, and M. Queyranne	On the Two-level Uncapacitated Facility Location Problem
9487	W.B. van den Hout and J.P.C. Blanc	The Power-Series Algorithm for a Wide Class of Markov Processes
9488	F.C. Drost, C.A.J. Klaassen and B.J.M. Werker	Adaptive Estimation in Time-Series Models
9489	Z. Yang	A Simplicial Algorithm for Testing the Integral Property of Polytopes: A Revision
9490	H. Huizinga	Real Exchange Rate Misalignment and Redistribution

No.	Author(s)	Title
9491	A. Blume, D.V. DeJong, YG. Kim, and G.B. Sprinkle	Evolution of the Meaning of Messages in Sender-Receiver Games: An Experiment
9492	RA. Dana, C. Le Van, and F. Magnien	General Equilibrium in Asset Markets with or without Short-Selling
9493	S. Eijffinger, M. van Rooij, and E. Schaling	Central Bank Independence: A Paneldata Approach
9494	S. Eijffinger and M. van Keulen	Central Bank Independence in Another Eleven Countries
9495	H. Huizinga	The Incidence of Interest Withholding Taxes: Evidence from the LDC Loan Market
9496	V. Feltkamp, S. Tijs and S. Muto	Minimum Cost Spanning Extension Problems: The Proportional Rule and the Decentralized Rule
9497	J.P.J.F. Scheepens	Financial Intermediation, Bank Failure and Official Assistance
9498	A.L. Bovenberg and R.A. de Mooij	Environmental Tax Reform and Endogenous Growth
9499	J. Ashayeri, R. Heuts, A. Jansen and B. Szczerba	Inventory Management of Repairable Service Parts for Personal Computers: A Case Study
94100	A. Cukierman and S. Webb	Political Influence on the Central Bank - International Evidence
94101	G.J. Almekinders and S.C.W. Eijffinger	The Ineffectiveness of Central Bank Intervention
94102	R. Aalbers	Extinction of the Human Race: Doom-Mongering or Reality?
94103	H. Bester and W. Güth	Is Altruism Evolutionarily Stable?
94104	H. Huizinga	Migration and Income Transfers in the Presence of Labor Quality Externalities
94105	F.C. Drost, T.E. Nijman, and B.J.M. Werker	Estimation and Testing in Models Containing both Jumps and Conditional Heteroskedasticity
94106	V. Feltkamp, S. Tijs, and S. Muto	On the Irreducible Core and the Equal Remaining Obligations Rule of Minimum Cost Spanning Extension Problems
94107	D. Diamantaras, R.P. Gilles and P.H.M. Ruys	Efficiency and Separability in Economies with a Trade Center
94108	3 R. Ray	The Reform and Design of Commodity Taxes in the Presence of Tax Evasion with Illustrative Evidence from India

No.	Author(s)	Title
94109	F.H. Page	Optimal Auction Design with Risk Aversion and Correlated Information
94110	F. de Roon and C. Veld	An Empirical Investigation of the Factors that Determine the Pricing of Dutch Index Warrants
94111	P.JJ. Herings	A Globally and Universally Stable Quantity Adjustment Process for an Exchange Economy with Price Rigidities
94112	V. Bhaskar	Noisy Communication and the Fast Evolution of Cooperation
94113	R.C. Douven and J.E.J. Plasmans	S.L.I.M A Small Linear Interdependent Model of Eight EU-Member States, the USA and Japan
94114	B. Bettonvil and J.P.C. Kleijnen	Identifying the Important Factors in Simulation Models with Many Factors
94115	H. Uhlig and N. Yanagawa	Increasing the Capital Income Tax Leads to Faster Growth
9501	B. van Aarle, A.L. Bovenberg and M. Raith	Monetary and Fiscal Policy Interaction and Government Debt Stabilization
9502	B. van Aarle and N. Budina	Currency Substitution in Eastern Europe
9503	Z. Yang	A Constructive Proof of a Unimodular Transformation Theorem for Simplices
9504	J.P.C. Kleijnen	Sensitivity Analysis and Optimization of System Dynamics Models: Regression Analysis and Statistical Design of Experiments
9505	S. Eijffinger and E. Schaling	The Ultimate Determinants of Central Bank Independence
9506	J. Ashayeri, A. Teelen and W. Selen	A Production and Maintenance Planning Model for the Process Industry
9507	J. Ashayeri, A. Teelen and W. Selen	Computer Integrated Manufacturing in the Chemical Industry: Theory & Practice
9508	A. Mountford	Can a Brain Drain be Good for Growth?
9509	F. de Roon and C. Veld	Announcement Effects of Convertible Bond Loans Versus Warrant-Bond Loans: An Empirical Analysis for the Dutch Market
9510	P.H. Franses and M. McAleer	Testing Nested and Non-Nested Periodically Integrated Autoregressive Models

