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Abstract

The MC-value is introduced as a new single-valued solution concept for

monotonic NTU-games. The MC-value is based on marginal vectors, which aze

extensions of the well-known marginal vectors for TU-games and hyperplane

games. As a result of the definition it follows that the MC-value coincides with

the Shapley value for TU-games and with the consistent Shapley value for

hyperplane games. It is shown that on the class of bargaining games the MC-

value coincides with the Raiffa-Kalai-Smorodinsky solution. Furthermote, two

characterizations of the MC-value are provided on subclasses of NTU-games

whích need not be convex valued. 1'his allows (or a comparison between the

MC-valuc and the egalitarian solutiou introduced by Ralai and Samet (1985).
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1 Introduction

Since the introduction of NTU-games by Aumann and Peleg in 1960, many solution

concepts have been proposed for this general class of games which extends both the

class of TU-games and the class of bargaining games. Most of these solution con-

cepts are based on well-known solutions for TU-games. For example, the Shapley

NTU-value (Shapley (1969)), assigns to each NTU-game a set of outcomes based

on so-called a-transfer TU-games associated to this NTU-game. It is well-known

that the Shapley NTU-value is an extension of the Shaplcy value and the Nash bar-

gaining solution'to NTU-games. Based on this fact Aumann (1985a) developed a

characterization of the Shapley NTU-value using the characterizations of the Shap-

ley value (Shapley (1953)) and the Nash solution (Nash (1950)). For the Harsanyi

value (Harsanyi (1963)) a similar reasoning can be followed.

An alternative way to extend the Shapley value to NTU-games was introduced in

Maschler and Owen (1989) and (1992). Their consistent Shapley value is a single-

valued solution concept based on the following idea: First, the notion of the Shapley

value is extended in a straightforward way to so-called hyperplane games, and, based

on this extension, a value for general NTU-games is defined by associating hyperplane

games to a general NTU-game.

Another solution concept for NTU-games is the compromise value introduced by

Borm, Keiding, McLean, Oortwijn, and Tijs (1992). This solution concept for NTU-

games is based on ideas underlying the r-value for TU-games introduced by Tijs

(1981). The compromise value is a single-valued solution concept that assigns to

each NTU-game a payoff vector which is a compromise between an upper and a lower

bound for the core. In Borm et aL (1992), and Otten, Borm, and Tijs (1994) it is

shown that the compromise value can be considered as an extension of the r-value for

TU-games and the Rai(Fa-Kalai-Smorodinsky (RKS) solution for bargaining games

(Raiffa (1953), Kalai and Smorodinsky (1975)).

In this paper we introduce a new single-valued solution concept for monotonic 0-

normalised NTU-games, the marginal based compromise value, or shortly, the MC-

value. This solution concept assigns to each game an etFcient outcome lying on the

line through 0 and an upper value, which is based on marginal contributions of players
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to coalitions. These marginal vectors are extensions of the marginals for TU-games,

which can be used to describe the Shapley value. We show that the MC-value by

definition extends the Shapley value and the RKS-solution to monotonic NTU-games.

Moreover, we provide two characterizations of the MC-value. The second one illus-

trates that also axiomatically the MC-value can be considered as an extension of the

RKS-solution.

The most natural candidate for a comparison with the MC-value is the egalitarian

solution introduced by Kalai and Samet (1985). Not only because both solution con-

cepts are defined for NTU-games which are not necessarily convex valued, but mainly

because for both solution concepts the outcome is determined by a starting point and

a vector which indicates the direction to move in order to obtain an efficient outcome.

The main difference between the MC-value and the egalitarian solution is that this

direction is fixed for the egalitarian solution and for the MC-value the direction de-

pends on the game, which seems far more natural.

The paper is organised as follows.

In section 2 we start with notations and some basic definitions. Marginal vectors

for monotonic NTU-games are defined as an extension oí the marginals for TU- and

hyperplane games.

In section 3 the MC-value is introduced, and it is shown that the MC-value extends

the Shapley value for TU-games, the consistent Shapley value for hyperplane games,

and the RKS-solution for bargaining games to the general class of NTU-games.

Section 4 discusses several properties of the MC-value and yields two characteriza-

tions of the MC-value on large subclasses of NTU-games. Also a comparison between

the MC-value and the egalitarian solution is provided.

Finally, we conclude this paper with some rernarks and open problems in section 5.

2 NTU-games and marginal vectors

We start with some notations. Let N be a finite set. A coalition is a subset of N.

By RN we denote the set of all functions from N to R. The elements of RN will be
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identified with ~N~-dimensional vectors whose coordinates are indexed by the mem-

bers of N (~N~ denotes the cardinality of N). If x E RN and i E N, we will write x;

in stead of x(i). Further, if x E RN, and 0 ~ S C N is a coalition, we write xs for

the restriction of x to S, i.e., xs :- (x;);ES E Rs, and es E RN denotes the vector

with es - 1 if i E S, and es - 0, otherwise.

Forx,y E RN,wewritex 1 y ifx; ~ y; foralli E N,andx ~ y ifx; ~y;forall

á E N. Further, for x, a E RN, we define a r x E RN by (a s x); :- a;x; for all t E N.

LetR~:-{xERN~x~O},andR~}:-{xERN~x10}.

Let A C RN and a E RN. Define a.A :- {~sa ~ a E A}. Further, the boundary of A

is denoted by 8A, int(A) denotes the relative interior of A, and the convex hull of A is

denoted by conv(A). A is called compnehensive if x E A and y G x imply y E A. The

comprehensive hull of A is the set comp(A) :- {x E RN ~ x G y for some y E A}.

Finally, the set of all permutations of N is denoted by II(N). For x E RN and

o E TI(N), we define o(x) E RN by o(x); :- xo~;l for all i E N. A C RN is called

symmetric if for all x E A, and all a E Ii(N), we have o(x) E A.

A non-transjemble utility game or NTU-gnme is a pair (N,V), where N-{1,...,n}

is a finite seL of players, and V is a map assigniug to each coalition S E 2N `{g} a

subset V(S) of Rs of atlainable payoff vectors such that

(i) V({i})-{xER`~xCO}foralliEN,

(ii) V(S) is non-empty, closed and comprehensive for each S E 2N `{~},

(iii) The set Vo(S) :- {x E V(S) ~ x 1 0} is bounded for each S E 2~`' `{0}.

Conditions (ii) and (iii) are standard. Condition (i) is a 0-normalisation whieh is not

very restrictive either. IL is irnposed only for the sake of convenience. Note that we do

not require the sets V(S) to be convex. So this allows for utility functions which are

not necessarily of the von Neumann-Morgenstern type (cf. Kalai aod Samet (1985)).

The set of all NTU-games with player set N is denoted by I'N. Often we identify an

NTU-game (N,V) with V. NTU-games, introduced by Aumann and Peleg (1960),

form a rather large class ofgames which comprises the well-known class of transferable

utility games (von Neumann and Morgenstern (1944)) and the class of cooperative
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(pure) bargaining games (Nash (1950)).

A transJerable utility game (TU-gnmeJ is a pair (N,v), where N is the set of players

and v : 2N ~ R is a function which assigns to each coalition a real number such that

v(0) - 0. Here, we also require that v({i}) - 0 for all i E N(0-normalisation). The

NTIJ-game (N, V) corresponding to the TU-game (N, v) is given by

V(S) :- {z E RS ~ z(S) ~ v(S)}.

for each S E 2N `{0}.

A(pureJ óargaining game ( with disagreement outcome 0) is an NTU-game (N,V),

with Vo(N) ~ 0 and

V(S)-{zERS~xGO} CorallSE2N`{0,N}.

Let V be an NTU-game. The core of V, denoted C(V ), consists of all payoff vectors

attainable for the grand coalition N which are not dominated by any coalition S, i.e.,

C(V) :- {z E V(N) ~ as ~ int(V(S)) for all S E 2~ ~{0}}.

In the sequel we restrict attention to the class of monotonic NTU-games. An NTU-

game V is called monotonic if Cor all S,T E 2N, with 0 ~ S C T, and all z E V(S),

there exists a y E V(T) with ys ~ z, or equivalently, if the projection of V(T) on

RS contains the set V(S). The class of monotonic NTU-games V E I'N is denoted

by I'm.

Definition 2.1 Let V E I'm be a monotonic NTU-game and let o E II(N). The

marginal vector m'(V ) is defined by

má~;~(V) :- max{t E R ~ (mót~~,...,mó~,-~~,t) E V(o(1),...,a(i))}

for all i E N. If there is no confusion about the game V we write m' instead of

m"(V).

Note that the marginal vectors are well-defined, because of the definition of NTU-

games and monotonicity. It is also clear that m' E 8V(N) and m` 1 0 for all

~ E n(N).
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The interpretation of the vector m' is as follows: If o(1), ..., Q(n) is a certain order on

the players, then m" assigns to player o(1) the maximum he can obtain in V({o(1)}).

m;t~~ is the maximum player a(2) can get in V({o(1),0(2)}) given that he should

guarantee player o(1) a payoff of m;~~~, etc. So the marginal vector m' assigns to each

player the maximum he can get if he should guarantee his predecessors the payoffs

already given to them.

The concept of marginal vectors is not a new idea. In the context of TU-games

marginal vectors can be used to describe the Shapley value (Shapley (1953)). Also in

the field of NTU-games marginal vectors are known: Maschler and Owen (1989) used

marginal vectors to define the consistent Shapley value, which is an extension of the

Shapley value to the class of hyperplane games. Our definition of marginal vectors

for monotonic NTU-games is a straightforward extension of the previous notions of

marginal vectors.

3 The MC-value

In this section we will introduce a new single-valued solution concept for monotonic

NTU-games based on the marginal vectors, the MC-value.

Definition 3.1 Let GN C rN. A solution concept on GN is a map F which assigns

to each game V E GN a(possibly ernpty) subset F(V ) of RN. F is called a value on

GN if it assigns to each V E GN a single point in RN.

Many solution concepts have been proposed for NTU-games. The ones which re-

ceived most attention in the literature are the Shapley NTU-value (Shapley (1969))

and the }larsanyi value (Narsanyi (1963)). These sohition concepts are based on

the Shapley value for TU-games. Other solution concepts for NTU-games based on

different principles and for various classes are the egalitarian solutions by Kalai and

Samet (1985), the consistent Shapley value (Maschler and Owen (1989), (1992)) and

the compromise value (Borm et al. (1992)).

Before we introduce the MC-value, we first remark that for TU-games the Shap-

ley value can be viewed as the unique efBcient convex combination of 0 and the sum
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of the marginal vectors. ' Therefore, the Shapley value can be regarded as a compro-

mise value, i.e., a value which assigns to each game an outcome which is an efficient

compromise between an upper value and a lower value for the game. This observation

leads us to the following definition.

Definition 3.2 Let V E I'm be a monotonic NTU-game. Denote

b(V) :- ~ m'.
oen(NI

The margina! Gased compmmise value of V, or shortly, the MC-value of V is the

largest convex combination of 0 and 6(V) which is an element of óV(N). Formally,

A1C(V) :- max{crb(V) ~ a E Rt,nb(V) E V(N)}.

'1'he MC-value is well-dcfincd sincc Vo(N) is uonetnpty aud compact and thc vec-

tor b(V) is nonnegative ( note that 6(V) - 0 if and only if Vo(S) - {0} for all

S C N, S~(~). The vector b(V) can be regarded as an upper value for V. ~

Clearly, the MC-value is a generalisation of Lhe Shapley value to the class of mono-

tonic, 0-normalised NTU-games. The following theorem shows that the MC-value not

only by definition extends the Shapley value, but also the consistent Shapley value for

hyperplane games and the Raiífa-Kalai-Smorodinsky solution for bargaining games

(Rai(fa ( 1953), Kalai and Smorodinsky (1975)).

Theorem 3.3

(i) On the class of monotonic, 0-normalised TU-games the MC-value coincides with

the Shapley value.

(ii) On the class of monotonic, 0-normalised hyperplane games the MC-value coin-

cides with the consistent Shapley value.

'This was pointed out by Carles Rafels.
~The 0.normalisation we imposed is not very restrictive: the MC-value can be extended to a

covariant value on the dass of all monotonic games in the following way: Translate an arbitrary

monotonic game into a 0-normalised game, compute the MC-value for this game, and then tranelate

it back to obtain a solution for the original game.
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(iii) On the class of bargaining games the MC-value coincides with the Raiffa-Kalai-

Smorodinsky solution.

The proof is straightforward and there(ore it is left to the reader.

We conclude this section with a modified version of an example of Shafer (1980)

which has led to an interesting debate on the interpretation of the Shapley NTU-

valuc (cL Aumann (19856, 1986), Roth (1986)).

Example 3.4 Consider the following exchange market ï with thrce agents and two

commodities. The initial commodity bundles w` of the agents 1,2 and 3, and the

utility functions u; are given by

w~ -(1 - ~,0), w2 -(0, 1- c). w3 -~~,~). and for (xi,~x) E Rt

ni(ri.rx) - u~(zi,x2} - min{z~,xi}, t~s(Ti,xx) - i(z~ -i- xs).

HercOGcGs.

The corresponding NTU-game (N,V) is given by

V({i})-{tER~tGO}, i-1,2

V({3}) -{t E R ~ t ~ E},

V({1,2}) -{(t,, tz) E R{'.2} ~ t~ } tZ G 1- e, t, G 1- E, t~ G 1- e},

Í~({l,,~l}) -{(tl,t3) E
R{1.3j I tl ~ tg G~} ZE, t, G E, t3 G Z~~E},

v({2,`~i}) -{(t2,t3) E R{2~3} I t1 ~ t3 G 2-~ ~E, t~ ~ E, t3 ~ Z~ Zf},

V({1,2,s}) - {(t,,t~,t,) E R" I t, t tz f t, ~ l, t, ~ l, t, ~ l, t, G t}.

Note that V is not 0-normalised if e~ 0. If we compute the MC-value of this game

by following the approach described in footnote 2, we obtain

A4C(V) -( 5 - 5 f, 5- 5c, ~ f 5c).
12 12 1'2 12 6 6

This outcome is also prescribed by the Shapley NTU-value. However, other solution

concepts such as the compromise value and the Harsanyi solution yield different

outcomes (see for example Borm et al. (1992)). There the outcome for player 3 is 0 if

e- 0, while the MC-value and the Shapley NTU-value always give a positive payoff

to player 3 of at least e. This fact has been a topic in an extensive discussion about

the Shapley NTU-value between Aumann and Roth.
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4 Characterizations of the MC-value

In this section we investigate several properties of the MC-value and moreover, two

characterizations of the MC-value are provided. We conclude this section with a

comparison between the MC-value and the egalitarian solution.

Some properties of the MC-value are summarised in proposition 4.1.

Proposition 9.1 On the class rm of monotonic NTU-games the MC-value satisfies

the following properties.

Í~)
(ii)

weak Pareto optimality: A4C(V) E aV(N) for all V E rm.

scale covariance: MC(a ~ V) - a r MC(V) for all a E Rt} and all V E rm.

(The game ~~ V is defined by (a s V)(S) :- a~ V(S) for all S C N, S~ 0.)

(iii) symmetry: MC;(V) - MC~(V) for all V E rm and all i,j E N which are

symmetric in V. }íere, players i, j E N are called symmetric in V if

(1) for all S C N`{i, j}, all x E V(S U {i}) it holds that y E V(S U{j}),

where y E R~{'} is defined by y~ - x; and ys - xs,

(2) for all S C N, i, j E S and all x E V(S), we have y E V(S), where y E Rs

is defined by y; - x~, y~ - x; and ys`{;~} - xs`{;,~}.

(iv) 6-symmetry: MC;(V) - MC~(V) for all á, j E N with b;(V) - 6~(V), and all

v E rm.

(v) conditíona! monotonicity: MC(V) G MC(W) for all V,W E rm with V(N) C

W(N), 6(W) ~ 0, and 61W - y~vy~ for all i,j E N.

Proof. We will only prove (ii). The other properties are obvious. Let V E rm,

~ E R~t and o E 17(N). The reader easily verifies that m'(a ~ V) - a~ m"(V), and

so b(a~ V) - a~b(V). From this it immediately follows that MC(arV) - a~MC(V).

O

The properties (i), (ii) and (iii) are standard. Besides these three the MC-value
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satisfies also other standard properties as individual rationality, unanimity, and the

null player property. Property (iv) is a stronger version of symmetry. It is introduced

to characterize the MC-value and states that if for two players in a game the sum

of all their marginal contributions is equal, then they should get the same payoff.

Property (v) is a strengthening of thP (restricted) monotonicity which is used to

characterize the RKS-solution for bargaining games. The interpretation is that if the

set of attainable payoffs for the grand coalition becomes larger and the direction of

the upper value does not change, then no player will be worse off in the new situation.

Now we will provide two characterizations of the MC-value on subclasses of monotonic

NTU-games. Attention will be restricted to the class I'm of monotonic NTU-games

V E 1'm satisfying b(V) 7 0. This is a weak condition which means that every player

has a positive marginal contribution to at least one coalition. Note that b(V) 1 0

guarantees the existence of a strictly positive point in V(N), so in particular, games

with null players are excluded.

We have the following characterization oí the MC-value on the class Im.

Theorem 4.2 The MC-value is the unique value on I'm which satisfies

(i) weak Pareto optimality,

(ii) scale covariance,

(iii) b-symmetry.

Proof. From proposition 4.1 it follows thaL thc MC-valuc satisfies ( i)-(iii). Let

F: f'm -~ RN satisfy the three properties, and let V E I'm. We show that

F(V) - MC(V).

Since b(li) 1 0, the vector a E R~~ with coordinates a; :- 6~yl for all i E N is well-

defined. Consider the game a~ V. Clearly, ~~ V E Pm, and 6(a ~ V)- a~ 6(V )- eN.

b-symmetry o[ F and the MC-value implies F,(a ~ V) - Fj(a ~ V) for all i, j E N and

MC;(a ~ V)- MC~(a ~ V) for all i, j E N. From weak Pareto optimality of F and

the MC-value it follows that F(a : V) - MC(a ~ V). Scale covariance now yields
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F(V ) - MC(V ). o

Finally, we present a characterization of the MC-value which can be considered as

a generalisation of the characterization of the RKS-solution for bargaining games by

Kalai and Smorodinsky (1975). For this, we have to impose an extra condition on

the set Vo(N). Namely,

Va(N) is non-level, i.e., if x,y E 8Vo(N) and x 1 y, then x- y

The non-levelness condition is a standard condition that is often used in characterí-

zations of solution concepts for NTU-games (see for example, the characterization of

the Shapley NTLI-value by Aumann (1985a)). Let Im denote the class of all V E I'm

for which Vo(N) is non-levcl. Then we have

Theorem 4.3 The MC-value is the unique value on i'm which satisfies

(i) weak Pareto optimality,

(ii) scale covariance,

(iii) symmetry,

(iv) conditional monotonicity.

Pmof. Let F: Im~ RN satisfy the properties ( i)-(iv). From the proof of theorem

4.2 it follows that it is sufHcient to show that F(V) - MC(V) for games V E rm

with 6(V) - eN. Let V be such a game. Since b(V) 1 0, it follows that MC(V) ) 0.

Moreover, 6-symmetry of the MGvalue implies MC;(V) - MC~(V) for all i, j E N.

Consider the following bargaining game W.

( {xERS~.rGO}, ifS~N,

W(~) ~- Sl {x E V(N) ~ a(x) E V(N) for all a E fl(N)}, if S- N.

Note Lhat W(N) is the largest symrnctric subset of V(N). Since MC;(V) - MC~(V)

for all i,j E N, it follows that MC(V) E W(N), and because MC(V) E 8V(N) it

also follows that MC(V) E 8W(N). Hence, b(W) ~ 0, and since W(N) is symmetric,

it easily follows that 6;(W) - b~(W) for all i, j E N. So the origin 0, 6(V) and b(W)
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are lying on one line.

Claim: W E I'„N,.

Proof of the claim. It is sufficient to show that Wo(N) is non-level. Let x E 8Wo(N),

and suppose there exists a y E aWo(N) with y 1 x,y ~ x. Since x,y E Wo(N), we

~iave rr(z), a(y) E Vo(N) for all o E II(A'). 1~larmver, ~(y) ? s(x), e(y) ~ 6(x) fcr all

v. Non-levelness of Vo(N) implies that o(x) E int(Vo(N)) for all a. Hence, for each

o E iI(N) there exists an e, E Rt} such that L;(v(x),eo) :- {z E RN I IIz-Q(x)~~ e

e,} C Vo(N). 3 Take e:- min{e, ~ o E II(N)}. Then Li(a(x),e) C Vo(N) for all

a E lI(N), and since Ci(v(.z), e) - o(Ci(x, e)), it follows that Ci(x, e) C Wo(N). Hence,

x E int(Wo(N)), which yields a contradiction. So the claim is proved.

Symmetry and weak Pareto optimality of F and the MC-value imply F(W) -

MC(W). ' Since MC(V) E 8W(N), and 0, b(V ) and 6(W) are lying on one line, it

follows that MC(W) - MC(V). Further, conditional monotonicity of F yields that

F(V) 1 F(W) - MC(V). Since MC(V) E 8Vo(N), non-levelness of Vo(N) implies

F(V) - MC(V). o

Theorem 4.2 and 4.3 provide characterizations of the MC-value on large classes

of NTU-games, where in particular, the sets V(S) need not be convex as usually

is required for characterizations of solution concepts for NTU-games (cf. Aumann

(1985a), Borm et al. (1992)). This makes the egalitarian solution introduced by Kalai

and Samet (1985) a natural candidate for comparison with the MC-value, because

the egalitarian solution is also characterized on a class of NTU-games which need not

be convex valued. The main difference in the domain of the characterizations of the

egalitarian sohition and the MC-value is tl~at the egalitarian solution is characterized

on a class oi NTU-games for which no monotonicity and non-levelness condition is

required.

If we compare theorem 4.3 with the characterization of the egalitarian solution given

3~~s~~ denotes the Euclidean norm of x E RN.
4Note that we only use an even weaker version of symmetry, which states that if all players in a

game are symmetric, then they will all receive the same payoff.
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in Kalai and Samet (1985), it is striking that in both characterizations a monotonic-

ity property plays a crucial role. It should be remarked that the MC-value dces not

satisfy the monotonicity property which is used to characterize the egalitarian solu-

tion, and the latter does not satisfy the conditional monotonicity property introduced

above.

Another aspect which justifies the comparison between the egalitarian solution and

the MC-value is that both solution concepts are based on a payoff vector which can

be considered as a starting point and a direction in which to move from the starting

point to an efficient outcome for the grand coalition. However, for the egalitarian

solution this direction is independent of the game under consideration, while for

the MGvalue the direction is determined by the game. As a consequence of the

fixed direction the egalitarian solution sometimes yields counterintuitive outcomes,

and moreover, it does not satisfy Lhe covariance property. Therefore, the egalitarian

solution depends on the utility representation oC the preferences of the players.

5 Concluding remarks

Theorem 3.3 shows that the MC-value by definition generalises the Shapley value for

TU-garncs and the RKS-solution for bargaining games. As theorcm 4.3 illustrates the

MC-value also axiomatically can be considered as an extension of the RKS-solution.

It remains an open problem, however, whether an axiom system for the MC-value

can be developed based on characterizations of the Shapley value (cf. Shapley (1953),

Young (1985)).

It is well-known that for TU-games the core is contained in the convex hull of the

marginal vectors (Weber (1988), cL Derks (1992)). Hence, for TU-games this `Weber

set' is a'core catcher'. Shapley (1971) proved thaL for convex TU-games the core

coincides with the convex hull of the marginal vectors. It is an interesting problem

to examine possible relations between marginal vectors and the core for monotonic

NTU-games. Some results are listed below.
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In the context of NTU-games there are at Ieast two notions of convexity: ordinal

convexity (Vilkov (1977)) and cardinal convexity (Sharkey ( 1982)). Both ordinal and

cardinal convexity are extensions of the notion of convex TU-games to NTU-games.

Although for convex TU-games all marginal vectors are core elements, this result can

not be extended to the NTU- case: There are counterexamples both for ordinal and

cardinal convex games. 5

A possible extension of the Weber set towards the general class of NTU-games is

the following. For a game ( N, V) define the Weber set W(V ) of V as the set of all

weak Pareto optimal points a E V(N) for which there exists a point y E conv({m' ~

a E II(N)}) with x~ y. Clearly, this definition extends the Weber set for TU-games

to the NTU-case. For the very simple class of 1-corner games, i.e., games (N,V) E I'm

where V(S) is the comprehensive hull of a single point for each S, it is not difficult

to show that W(V) indeed is a core catcher. However, for monotonic NTU-games

where V(N) is not convex obviously Lhe Weber se,t need not be a core catcher. We

do not know whether C(V) C W(V) for all NTU-games V E ['m for which V(N) a

convex set. Clearly, it is true for convex valued bargaining games.
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