
  

 

 

Tilburg University

Alternating bid bargaining with a smallest money unit

van Damme, E.E.C.; Selten, R.; Winter, E.

Publication date:
1989

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van Damme, E. E. C., Selten, R., & Winter, E. (1989). Alternating bid bargaining with a smallest money unit.
(CentER Discussion Paper; Vol. 1989-32). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/90090bee-21fd-4bb7-ac48-dd817f8e7706


Discussion
`~ paperEco~amic Research

II III I II~ I I ~I R I II Il l k II I~ flnl N III IIII NI I

32



No. 8932
ALTERNATING BID BARGAINING
WITH A SMALLEST MONEY UNIT F

by Eric van Damme, -
Reinhard Selten and Eyal Winter

.July, 1989



1

Alternating Bid Bargaining with a
Smallest Money Unit

Eric van Damme' Reinhard Selten" Eyal Winter"`

April, 1989

' CentER for Economic Research, Tilburg University, the Netherlands

and SFB 303, University of Bonn.

Department of Economics, University of Bonn.

'~`~` SFB 303, University of Bonn and Hebrew University, Jerusalem.



2

Contents

1 Introduction

2 The Bargaining Model

3 Results

4 Thc Rlak NeUtral CRAe.

5 Referencea

Abatract

In a seminal paper, Ariel Rubinatein hae ehown that impatience
impliea determinatenesa of the 2-peraon bargaining problem. In thia
note we ahow that this reault depends also on the asaumption that
the eet of alternativea ie a continuum. If the pie can be divided only
in finitely many different waye, (for example, becauae the pie is an
amount of money and there ia a amalleat money unit), any partition
can be obtained as the reault of a aubgame perfect equilibrium if the
time interval between aucceasive offera is auR'iciently amall.

3

8

8

11

16



3

1 Introduction

A natural way of modelling two-person bargaining as an extensive game

makes use of a game structure in which two players take turns in making

bids. In each round one player makes a bid; then the other player either

accepts or rejects this offer; in case of rejection the rejector makes the next

bid, etc. We use the term "alternating bid models" for bargaining games of

this structure. A pioneering investigation of alternating bid models is due

to Ingolf Stàhl (1972). Later Ariel Rubinstein has created a very influential

bargaining theory based on an alternating bid model (Rubinstein (1982)).

The bargaining problem consídered here is the division of a fixed amount

of money. Rubinstein's model permits arbitrary divisions and thereby pro-

vides a continuum of possible agreements. An alternative to the assumption

of infinite divisibility of money is the introduction of a smallest money unit.

It is our aim to explore the consequences of this assumption for alternating

bid bargaining. As (ar as other assumptions are concerned our analysis is

based on Rubinstein's framework.

Rubinstein's theory specifies a unique solution, the uniquely determined

subgame perfect equilibrium of his model. It will be shown that the intro-

duction of a smallest money unit destroys Rubinstein's uniqueness result.

If both players are risk neutral, the amount of money to be distributed is

~ 50,000, the smallest money unit is lc, the yearly interest rate is 10~o and

one bargaining round takes 1 minute, then all divisions of the S 50,000 are

supported by subgame perfect equilibria of the modífied model (see propo-

sition 1 and the explanation of table 1 in section 4).

Ingolf Stáhl already investigated alternating bid models with a finite

number of agreemente. (Stàhl (1972), also see Stáhl (1988) in which Stàhl's
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original model is compared to that of Rubinstein). He examined models

of finite and of infinite length. However, his research questions were dif-

ferent from ours. He aimed at sufficient conditions for uniqueness. We are

interested in non-uniqueness as a consequence of the presence of a amallest

money unit.

It is impossible to construct an absolutely reafistic bargaining model.

Every real bargaining situation has many special features which are minor

influences on the bargaining result. Idealization is an unavoidable ingredi-

ent of model construction. Is it really necessary to model a relatively in-

conspicuous institutional detail like the presence of a smallest money unit?

Maybe the correct answer is no. However, Rubinstein's theory heavily re-

lies on very small time coats due to discounting. It should not take more

than one minute to make a bid. The bidder does not have to do more than

pronounce a number. Even for quite sizable amounts of money the interest

for one minute at a reasonable yearly rate is very small. Why should very

small intereat losses be modelled explicitely? Maybe also here the answer

is no.

The smallest money unit and the time discount are both minot strate-

gic influences, but these forces interact. Therefore, either both should be

considered or both should be neglected. In this sense Rubinstein's model

is an imbalanced idealization. His theory relies on an explicitely modelled

weak influence and ignores a weak counteracting force.

Assume that both bargainers are risk neutral; let A be the amount of

money to be distributed and let ó be the discount rate for one bargaining

round. We assume that both players have the same discount rate. In Ru-

binstein's theory the solution is of the following type: A player who makes

a bid asks for x. A player accepts every offer which gives him at least A- x
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and rejects everything else. The solution requires indifference between A-x

and bx. This yields x - A~(1 f b).

Rubinstein's theory excludes strategy combinations of the following type

as possible solutions: Player 1 always asks for y and player 2 always asks

for A- y. Both accept any offet which gives them at least what they ask

for and reject all others. If player 1 asks for a little more, say y f e, then

player 2[acea a choice between A- y- e for acceptance and b(A - y) for

rejection. Obviously he must accept, if we have e C (1 - b)(A - y). This

contradicts the assumption of a subgame perfectness.

Now consider the consequencea of the introduction oí a amallest money

unit g. Agreement payoffs must be integer multiples of g. If now player

1 wants to ask for more than y, he has to demand at least y~- g. If g

is greater than (1 - b)A player 1 cannot give an incentive to player 2 to

accept less than A- y. The smallest money unit prevents him from in-

creasing his demand by an amount e which is smaller than the interest loss

(1 -b)(A-y). This heuristic argument indicates why Rubinstein's unique-

ness result is destroyed by the introduction of a smallest money unit. The

siae of the smallest money unit puts a lower bound on exploitable interest

losses on the other side. Note that decreasing the time between offers corre-

aponds to increasing b and that [or b sufficiently large always g 1(1 - á)A.

Hence, for short intervals between offers it may be expected that indeed any

distribution can be obtained by some subgame períect equilibrium. (See

Proposition 1).

In Rubinstein's bargaining solution agreement is reached at once. More

than one bargaining round cannot be played, unless mistakes are made.

Contrary to this in the presence of a smallest money unit subgame perfect

equilibrium may involve many bacgaining rounds, before an agreement is

~x
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reached (proposition 2) 1.

Undoubtedly Rubinstein's ingenious bargaining theory merits our admi-

ration, but we cannot avoid the conclusion, that his model does not provide

a balanced idealization of real bargaining situations. The driving force be-

hind his uniqueness result ie provided by the exploitability of small interest

losses by even smaller increases of a bidder's demand. In the presence of a

smalle.st money unit such destabilization possibilities are easily loat, since

it becomea impossible to deviate sufficiently little. Needless to say that

the same critique applies to more elaborate models of bargaining that also

assume perfect divisibility of money, such as the various strategic models

of bargaining under incomplete information. (Let us just quote Sobel and

Takahashi (1982) as a representative example).

Our analysis is based on the same game theoretic rationality assump-

tions as Rubinstein's theory. Presumably teal bargaining behaviour would

not be influenced by a smallest money unit of insignificant size and equally

insignificant time discounts. Nevertheless, it is worthwhile to use the con-

cept of a subgame perfect equilibrium point in order to explore the inter-

action and the comparative importance of both influences.

2 The Bargaining Model

Two players, denoted by 1 and 2, have to divide an amount of money

(normalised to) 1. Let g~ 0 denote the smallest money unit. The set of

possible agreements is

lOsborne and Rubinstein ( 1989, Sect. 3.9.1.) give an example to show that finitely

many alternatives may lead to multiple equilibria and to delay. They do not inveetigate
the general consequencea of shrinking the time between offers.



X-{(k,g,k2g) ~ k; E N,(k, f k,)g C 1}

and X` denotes the set of efficient agreements ((kl f kZ)g - 1).

(1)

Bargaining takes place over time, starts at t- 0, and proceeds accord-

ing to the following rules:

RovNn t(t E N,t even): Player 1 proposes x E X; after hearing 1's

proposal, player 2 either accepts or rejects. If 2 accepts, the game termi-

nates with agreement x, otherwise the game moves to round t f 1.

RoUND t(t E N,t odd): Player 2 proposes x E X, after hearing 2's

proposal, player 1 either accepts or rejects. If 1 accepts, the game ends

with agreement x, otherwise the game reaches round t-F 1.

Denote by G x, t ~ the outcome where agreement on x is reached in round

t and let D denote perpetual disagreement. Let 0 be the length of a single

bargaining round. We will assume that there ezist constants T,,TS,1 0,

and strictly increasing concave functions U,, U2 (having domain [0,1]) with

U;(0) - 0 such that the preferences of the players can be repreaented by

the utility functions V; given by

V,(G x,t ~) - e-''o`U;(x) and V,(D) - 0 (2)

For justification oí this assumption, we refer to Fishburn and Rubinstein

( 1982).
The above fully describes the game to be denoted I'(0). Strategies, Nash

equilibria and (subgame) perfect equilibria are defined in the standard way,
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hence, these definitions will not be repeated here ( see Rubinstein ( 1982)).

Rather, we directly turn to our main results.

3 Results

PROPOSITION 1. If 0 ia au)~iciently amal! , apecifically if 0 ia auch

that for i- 1, 2

U:(1 - 9)~U.(1) G e-.,o (3)

then, for any eBïcient agreement x E X` there exiata a auógame perfecE

equíliórium of P(~) that reaulta in the outcome C x,0 1.

PROOF. Note that (3) says that player i prefers getting the full amount

1 one period later to receiving 1-g now. Since U; is concave this condition

implies that for all x; E~g, 1~

U;(x: - g)~U.(x~) ~ e-''o (4)

Let x F X` and write x-(xi,x7). Consider the pair of etationairy strate-

gies o~ -( v~ , vs ) defined by

v; : Always propose x;

Accept any proposal y with y; 1 x;,

Reject any other proposal.

If o-~ is played, the outcome G x, 0) results. We claim that Q~ is a

subgame perfect equilibrium ií (3) is satisfied. Because of stationarity, it

suffices to show that one-period deviations are not profitable. Hence, we
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must verify that it does not pay to deviate in round t when from round
t f 1 on play will always be in accordance to a~. Obviously, given the ac-
ceptance~rejectance decision of the uther player, the best one can propuse
is x since x is efficient in X. Clearly, it is also optimal for player i to accept

any offer that yields him at least x;. The crucial step is to verify that, if
x; ~ 0, it is optimal for player i to reject any offer y with y; C x;. However,

this is guaranteed by (4). O

All equilibria constructed thus far result in an immediate efficient agree-
ment. However, since there is a multiplicity of such equilibria, it is easy tu
construct alternative equilibria that du not have these nice properties. The
idea is to sustain a path ~r in which both players have positive payoffs with
the threat to continue with the equilibrium from Proposition 1 that yields
player á the payoff zero if á deviates írom ~r. Formally,this construction is
carried out in Proposition 2. It is convenient to introduce the following

notation: x' -(1,0),xZ -(0,1) and o' - v~'. Finally, iT denotes the
player who proposes in round T(hence iT - Tmod2 -~ 1).

PROPOSITION 2. Let x E X with x ~(0, 0) and T E N. If 0
eatiefeee ( 3J, there exíeta a aubgame perfect equilibrium of I'(0) that re~ulta

in the outcom e C x,T ~.

PROOF. We will confine ourselves to the case where xlxz 1 0 and leave

the details of the remaining cases to the reader. Consider the strategy pair
o - (ol,os) defined by

o; :In round t(t G T) : Propose x`; accept x' but reject any other proposal.
In round T: Propose x; accept x and x', but reject any other proposal.

ln round t ( t ~ T) : Play accurding to o;T.
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Let rr(ol,~a) be the path induced by (or,vZ). The strategy pair v-
(ái,á2) is constructed from o by means of

i~; : I'lay according Lo o;, however, if in any ruund f. ' T there is a devíation
frun, a(o~,nz) and if the tirst deviation ie by player k, then irnmedi-

ately after this deviation switch to playing v3-k for the remainder oí

the game Z.

We claim that Q is a subgame perfect equilibrium of I'(~) whenever (3)

is satisfied. Note that ó resulta in the outcome G x,T ~. To prove the

claim, it sufïtces (because oí Proposition 1) to show that deviating in some
round t c T is not profitable. However, this is easily verified: If a proposing

player deviates he ends up with zero, hence, deviating is not profitable for

him. Deviating is clearly nut attractive for the responding player as long
as the proposal is on the equilibium path ( it will yield payoff zero). If the

proposer has deviated, rejection yields the responder 1 in the next period,

hence, ií ( 3) is satisfied, he should reject anything less than 1, exactly as Q

says that he should do. Consequently, á is a subgame perfect equilibrium

if 0 is small.~

Proposition 2 shows that really almost anything can happen in a sub-

game perfect equilibrium if the time between offers is small. The only
uutcumes that are nol covered by thc lhcurem are ( i) agreement on the
outcome in which no player receives anything and (ii) perpetual disagree-

ment. It is easy to see that none of these outcomes can arise in a subgame

perfect equilibrium if there exists some x E X with xlx2 ~ 0. Hence,

Proposition 2 fully describes the set of all subgame perfect equilibrium out-

comes.

~Note that, if i ia the proposet in tound t G T, then playet j will switch to ~ nlrendy
in round t.
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4 The Risk Neutral Case

In this sectiun we confine ourselves to the case where players are risk neu-
tral, i.e. u;(x) -- x. This case is most favotable for the point we wish to
make. lf both players are (equally) risk averse, the range of equilibrium
payo(ís will be smaller: If the utility function v displays greater risk aver-
siun that u, then v(x - g)w(x) 1 u(x - g)~u(x) so that is becomes more
difficult to obtain x in a subgame equilibrium (cf. Eq. (4)).

Let us first illustrate the bound un 0 given in (3) by períorming some
numerical calculations. Take rl - rz - lOplo per year, and let the smallest

money unit be 1 cent ( v; 0.01). Proposition 1 implies that, if the time be-
tween offers is 0, any efficient division of an amuunt up to A(~) (as given
in Table 1) can be obtained in a subgame perfect equilibrium.

~ A(0)
1 day S 36.50
1 hour ~ 876
1 min á 52,576
l sec ~ 3,225,806

Table 1.

Ií the amount of money to be divided is larger than A(0), then the
simple strategies from Proposition 1 are no longer in equilibrium if x is

"sufficiently asymmetric", but, of course, there may be more sophisticated
equilibria that still result in such x. For given r;, U;, ~,g and an amount to

be divided, A, we have not computed the (absolute) gap between the beat
and the worst equilibrium payoff (we conjecture that, it remains bounded

away far from zeru as A tends to infinity), however, it is easy tu see that
this gap becomes smaller relative to A. Proving the latter is e.quivalent to

shuwing that the gap tends tu zero when g tends to zero, with A fixed at 1
and all other parameters remaining constant as well. Assume r~ - rz and
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write b - e-"o.

Denute by M (resp. m) the supremum (resp. infimum) uf the aubgame
pcrfect equilibrinm payuffs of player I in I'(~). P'ullowing the argument
outlined in Shaked and Sutton [I'J84~, it ia easy to aee that in the generic
case where êM and bm are not integer multiples of g, M and m muat satiafy
the equations

M-1-[bm] (5)

m - 1 -- (bM] (6)

where ~bx] denotes the s~nallest integer multiple o( g that is at least equal
to bx. 'l'he Fqs. (5) and (Fi) imply

M - [bM] - m - [bm], (7)

which is equivalent to saying that there is some k E N such that

n-(k }-1)gCbnGn-kgfornE{m,M}, (8)

Rewriting the last inequality yields

kgcn(1-b)G(ktl)gfornE{m,M}, (9)

which implies

M- m c g~(1 - b). (10)
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We see that M- m tends to zero iC g tends to zero. Furthermore, if g tenda
tu zeru, ~bm~ cunverges to bm, so that the limit oC M solves the equation

M - 1 - bM (11)

an expression that is familiar from the work of Rubinstein. Hence, we may
state

PROPOSITION 3. If g tenda to zero, the payo,(je aaaociated to any
auógame perfect equitiórium of I'(0) converge to the payoffa of the unique

aubgame perfect equitiGríum of the continuurn game.

Finally, it is oi some interest to see how the properties of the finite horizon
bargaining game P(O, T), (i.e. truncate I'(0) after T rounda) are affected
by the introduction of a smallest money unit. It is trivial to see that, for a
fixed horizon T, if 0 is aufficiently small, all subgame períect equilibria of
I'(~, T) yield the player who has the final right to make a proposal almoat
1. More interesting, however, is the queation what happens for fized 0 and
g, when T tends to infinity. The analysis is easy if inequality ( 3) is satisfied.
Let player 2 make the final proposal. In the last round, this player obtains
at least 1-g, so that in the second to last round he rejecta any proposal that
yields him less than 1- g. Consequently, the equilibrium payoffa o[ player 1
in the second to last round are bounded above by g. Therefore, in the third
to last round player 2's equilibrium payoff is again at least 1 - g, and the
argument can be continued to the beginning of the game: The equilibrium
payoffs of the player who makes the last proposal are bounded below 3 by

3There ezist equilibria in which, in the second to Inst round, plnyer 1 mnkea the proposal
(1,0) that is rejected and upon which plnyer 2 continues with ( g, 1- g). lt is not optimnl
for player 1 to make an alternntive proposnl since player 2 would interpret this ns a signnl
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e-'.o(1 - g). Comparing this result with Proposition 2 we see that there is
a discontinuity at T- oo. This discontinuity is not present in Rubinstein's
continuous specification. In that case, also the finite horizon model has a
unique subgame perfect equilibrium and, as T tends to infinity, the payoffa
associated with this equilibrium converge to the equilibrium payoffs of the
infinite horizon game.

to continue with (0,1)in the final round (and hcnce, would reject it unless the propoanl
itself was (0,1)).
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