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Abstract

This paper considers linear production situations with a finite number of pro-
duction facilities, each with its own production technology and market prices.
The economic agents control resources at the different facilities. Transport of
resources, products and technology is restricted. Sufficient conditions for the cor-
responding TU-game to be balanced are discussed. This result extends the results
of Owen (1975), Granot (1986) and Curiel, Derks, and Tijs (1989). An example is
presented in some detail.
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1 Introduction and preliminaries

Owen (1975), Granot (1986) and Curiel, Derks, and Tijs (1989) analyzed linear produc-
tion (LP) games. These are transferable utility (TU) games associated with the following
type of situation : there is one facility at which a linear production technology is avail-
able. A finite number of agents control the resources needed for production. Prices
of the products are fixed exogenously. In the corresponding LP-game, the worth of a
coalition of agents is the maximal value of a bundle it can produce with the resources it
controls. Sufficient conditions were given for the LP-game to be balanced, i.e. to have
a non-empty core. Moreover, it was shown that if these conditions are satisfied, there is
a core element of the LP-game which can be computed by solving only the dual of the
linear program of the grand coalition. Computing the worths of the other coalitions is
not necessary.

Koster (1990) analyzed a similar type of situation involving two facilities and transport
of products, resources and technology from one facility to the other. The same conditions
as above insure the corresponding LP-game is balanced.

This paper generalizes this setup. We consider situations with a finite number of
facilities, each with its own linear production technology and exogenously fixed prices
on products. We assume the markets are insatiable : every product manufactured or
imported at a facility can be sold for its price at that facility. Furthermore, there are
no capacity restraints, but at each facility only a finite amount of resources is available,
which is controlled by the players. The facilities are public goods : usage of a facility by
a coalition does not inhibit its use by another coalition. A linear cost is associated to the
use of the technology of a facility. If these production sites were isolated, nothing new
would be obtained. However, we allow transport of products, resources and technology
between the facilities, along exogenously given routes. The possible transport routes
for products, resources and technologies are represented by directed graphs. We assume
there are linear losses during transport and linear transport costs. In the corresponding
LP-game, each coalition of players tries to produce a bundle of maximal worth with the
resources it controls, possibly transporting resources, products and technologies to take
advantage of opportunities at every site.

In section 2 an example is presented in some detail to clarify the ideas. In section 3
the model is formally presented. Generalizing the results mentioned above, it is shown
that under certain conditions on the control over resources, the LP-game is balanced,
and that a core element can be found by solving only the dual of the linear program of
the grand coalition.

Preliminaries
A few concepts from cooperative game theory and graph theory are summarized below.
A transferable utility game or TU-game (N, v) consists of a finite set N = {1,...,n} of

players, and a characteristic function v : 2¥ — R, with v(@) = 0. For a coalition S C N,
the worth v(S) represents the economic revenue S can generate. The problem how to
allocate the worth of the grand coalition N among the players is then adressed, taking
into account that no coalition S will accept an allocation which allocates less to S than
S could generate by seceding. This leads to the core C(v) of a TU-game (N, v), defined



by
Clv)={z € RV | Y z;=v(N)and Y z; > v(S) for all S C N}.
1EN €S
A game with a non-empty core is called balanced.

A directed graph or digraph D on a set of vertices V is a subset of V x V. An arcis an
ordered pair (v, w) € VxV. Fora vertex v € V, we denote D(v) := {w € V | (v,w) € D}
and D7'(v):= {u € V | (u,v) € D}. If the digraph D represents transport possibilities,
w € D(v) is interpreted as ‘v can export to w’, and u € D~!(v) is interpreted as ‘v can
import from u’. A digraph D on V is reflezive if (v,v) € D for all v € V. A digraph D
on V' is transitive if (u,v) € D and (v,w) € D imply (u,w) € D.

2 An example

In this section, we present an example to clarify the ideas. Consider three facilities, f, g
and h, which allow linear production of five products py,...,ps, using two resources r,
and r,.

At facility f products p; and p, can be manufactured. Producing one unit of p,
requires one unit of r; and three units of r,, while manufacturing one unit of p, requires
no units of r; and two units of r,. We represent these technology constraints by a
technology matrir A/ of which the first column corresponds to product p1, the second
column to p; and the rows correspond in a similar way to the resources ry, r,. So,

1 @
/o
#=(32):

and production of a bundle ¢ = (¢;,¢;) of products at facility f requires the resource
bundle Afq = (q1,3q + 2¢2).

At facility g products ps and p4 can be manufactured, so the technology matrix A? has
columns corresponding to p3 and ps and rows corresponding to r; and r,. At facility A
product ps can be manufactured, so the column of A* corresponds to ps and the rows
correspond to ry and r,. The technology coefficients in these matrices are as follows.

ve(1) a=()

At each facility there is an exogenously given vector of prices at which products can
be sold at that facility. The price vector at facility f is ¢/ = (4,1,4,1,4), which means
that at f a bundle ¢ = (q,...,¢s5) of products has worth 4q; + ¢, + 4q5 + q4 + 4¢s,
which we denote by (¢/, ¢). Implicitly we assume the markets are insatiable : everything
produced can be sold. Similarly, the price vectors at g and h are ¢ = (1,3,1,3,1) and
c" = (2,1,2,1,2) respectively. Note that a price is specified for each product at each
facility. The structure of the price vectors and the similarity of the production matrices
at f and g is due to products p;, p; and ps being close substitutes produced at different
facilities. A similar argument explains the equality in prices for products p, and ps. By
abuse of notation, if P C P = {p,...,ps}, g € R” andc € R is a price vector, we
will write (c,q) instead of ¢ pr cpgp.



There are two players, called 1 and 2, each of whom owns a bundle of resources at
each facility. Player 1 owns the bundles /(1) = (0,5), (1) = (3,0) and b*(1) = (2,0)
at f, g and h respectively, while player 2 owns the bundles &/(2) = (0,3), »(2) = (1,2)
and b*(2) = (0,3) at f, g and h respectively. The players can cooperate by pooling their

* resources.

Players can transport products, resources and technologies according to the following
rules. Transport costs are zero. Resource transport is possible from ¢ to f and A, and
from f to h. Product transport is possible from f to h and vice versa and technology
transport is possible from f to h. These transport possibilities are modeled by means of
transport graphs (see figure 1).

[ ® h f o e h fe ® h

Resource transport Product transport Technology transport

Figure 1: The transport graphs

We will first analyze the situation in which no transport is possible, and then gradually
include transport possibilities. With such a LP situation a cooperative transferable
utility (TU) game (N, v) is associated in the following way. The player set is N = {1,2},
and a coalition S C N has value v(S) equal to the maximal revenue it can obtain through
the sale of goods produced with resources the members of S own.

First, suppose there is no transport at all. In order to know what player 1 can obtain
from production at facility f, we have to solve

max{(c/,¢’) | A7¢' < ¥ (1), ¢’ 20, ¢ e R P}} =25
Similarly, at g she can obtain
max{(c?,¢°) | A%° < ¥(1), ¢° 20, ¢° € RIPP}} =

and at h,
max{(c", ¢") | A"¢" < B*(1), ¢* >0, ¢/ e RI»}} = 0.

As there is no interaction between the three facilities, we can total these three revenues
to obtain v({1}) = 2.5. Similarly, we compute v({2}) = 1.5+3+0 = 4.5, and v({1,2}) =
4+ 3+ 2 =29. Because the resource bundles b/(S) vary from coalition to coalition and
the prices ¢/ are constant, it may be easier to compute the value of the dual programs,
which have the same feasible region for all coalitions.

If players can transport technology along the routes depicted in figure 1, they can
manufacture products at h using either the production techniques represented in the
technology matrix A/ or the techniques represented in technology matrix A*. Accord-
ingly, we replace the technology matrix A* by the matrix A* = (A/, A*). The other



technology matrices are unchanged : A/ = A/, A% = A?. We are again in the same sort
of situation as when there was no transport at all, except that now

- 1 0 2
h {p1.p2.ps} B s
¢"€R and A ( 3 9 ] ) :

Denoting the corresponding characteristic function by vr, we see that
vT({I})=‘2.5, L'T({2})=6, UT({1,2})= 10.

Now, suppose players can also transport products along the routes depicted in figure 1.
Then a good produced at facility h can be sold at either facility f or facility h, hence
it can be sold for the maximum of the price at f and the price at h. The same goes
for products manufactured at f, hence we replace the price vectors ¢/ and c* with the
(coordinatewise) maximum of ¢/ and c*. Denote these new price vectors by & = &/,
The only change from the previous snuahon is that now ¢* = (4,1,4,1,4). Denote the
corresponding characteristic function by vrp. Computing the worths of the coalitions
yields

vrp({1}) = 2.5, vrp({2}) = 6, vrp({1,2}) = 12.6.

Finally, suppose transport of resources is also possible. In contrast to the previous
cases, this program cannot be solved by three separate linear programs. Denoting t/'/*
the bundle of resources transported from a facility f! to a facility f2, one can see that
the optimization problem player 1 now faces is

max (¢/,¢7) + (&0, ¢?) + (*,¢")

8 t Algd < W)+t —tfh
Asgf < B(1) — t9) — 1o,
Ahqh .<_ bh(l)+tfh+t‘qh,
¢ fq* = 0,
th 19! b > 0,
9 4 t9h < (1),
W S,

which has the value 12. Hence, denoting the characteristic function corresponding to
this situation by vrpr, we see vrpr(1) = 12. Player 2 faces a similar linear program with
value vrpg(2) = 8.5 and coalition {1,2} has to solve

max (&/,¢7) + (&%, ¢%) + (e*, ¢*)

& £ Algl < W)+ ¥ (2) +tf -
A% < B(1) + b )—t”—tg",
Argh < BR(1) + b8(2) + tIh + 19k,
¢, ¢" > 0,
tih t9f b > 0,
1/ 4tk < b9(1) 4 b9(2),
tih < B(1) 4+ 6/(2),

which yields vrpr({1,2}) = 21.4.



3 The Main Result

Consider a finite set N = {1,...,n} of players, who can make use of a finite set F' of
facilities to manufacture products. The (finite) set of resources is denoted by R, the
(finite) set of all products by P and the subset of those products which a facility f € F
can manufacture by P/. Assume the sets P/ are disjoint. Production is linear, i.e. there
exist nonnegative numbers (a{p),ek‘pep/ for each facility f, such that production of g,
units of product p € P/ at facility f, requires a{Pq, units of resource r as input. Hence,

production of a bundle ¢ € Rf/ of products at facility f requires the bundle of resources
Alq, where A = (af)),crpeps is the technology matrix at f. Assume that for each
facility f, and for each product p € P/, there is at least one resource r with a{’, > 0.
This means that no product can be created out of nothing.

At every facility f. there is an exogenously given price vector ¢/ € RF. We assume the
markets in which the products are sold to be insatiable, i.e. every product p produced
at (or transported to) a facility f can be sold at f for the price c,f, Hence, with some

abuse of notation, a bundle ¢ € R” is worth

((«qu) = E c;fq,,

peP!

at facility f.

The resources available are controlled by the players in the following way. For each
coalition S € 2V \ {0} and each facility f, there is a bundle 5/(S) € R¥ of resources
S can use to produce at facility f. These resource bundles constitute a resource game
(N,b!) for each facility f and each resource r. Grouping the resources, one gets the
function b/. In the example presented in section 2, the resource games were additive :
b/(S) = Ties bi(i) for all coalitions S.

The facilities are connected by three transport networks. These are represented by
reflexive directed graphs, one for product transport denoted by Dp, one for resource
transport denoted by Dg, and one for technology transport, denoted by Dr. We interpret
these graphs as follows : (f,f') € Dgr (Dp, Dr) denotes that resources, (products,
technology) can be transported from facility f to facility f'. We assume the digraphs
are reflexive because at a facility f, the technology and resources of f itself are always
available and products produced at f can always be sold at f.

In the example, there were neither transport costs nor licence costs. In the general
model, linear costs are associated to transport of resources and products. For (f, f') €
Dr, denote by G/’ the cost of transporting one unit of resource r from f to f’. Similarly,
for (f, f') € Dp and p € P/ the cost of transporting one unit of product p from f to f’ is
denoted by E,{f'. Assume that per unit of product p € P? produced at facility f € Dr(g),
a licence fee Lf,f has to be paid by the producer.

Moreover, suppose not everything sent arrives, and denote by p//" and 7I"{/’ the fraction
which arrives after transport of resource r and product p from f to f’, respectively.

A linear production situation with transports, in short, an LPT, is a collection
X’V- F- Rv P1 (ij Ajwcl~b/)f€l"v DRv DP; DTa(E!gvﬂ'!g)(f.g)EDpv (Gigsplg)(f,y)EDns
(L?9)(s.9)eDr as described above.



With an LPT, we associate a (TU-)game (N, v) as follows : N is the set of agents and
the worth v(S) of a coalition S € 2V is the maximal value of a production plan using
the resources S controls. More precisely, a production plan specifies which products
are to be made where, according to which technology and with which resources. A
production plan for coalition S has to satisfy the condition that at no facility more
resources are used than the resources available after resource transport. After transport
of the manufactured products to markets where they are most profitable, they are sold.
The revenue obtained by this sale minus the costs generated by transport, is the value
of the production plan.

Taking transport possibilities into account, one can see that at a facility f, every
product p in

P! = U P2
9€DT(f)

can be produced. Hence we replace P/ with P/ and A/ with

Al = U AS.
9€DZ(f)

Moreover, suppose (h, f) € Dr. Then each unit of product p € P*» C P/ produced at
facility f requires a licence fee of Lgl to be paid and generates c;’,7r,{9 - EP/’ when sold at
a facility ¢ € Dp(f). Denoting y * z the vector with coordinates

(y*2)k = vk
for two vectors y and z of the same size, we see that we can replace ¢/ with

¢ = max (g *nf? - EI9) - Z thcph,
9€Dp(f) heD;' (1)

P is the vector defined by

Ph _ 1 iprPh,
» =10 ifpg P

where e

€

Hence, production of a bundle ¢/ € R” ata facility f requires the resource bundle A7/
and yields a net payoff of
@.d)=3 gg.
peP/

If we denote by t*/ the resource bundle transported from h to f, we see that the cost of
this transport is (G*/,¢"/) and that only the bundle t*/ * p*/ arrives at f.
Hence, the worth of a coalition S is



v(S) = maxz ,¢) - Z (GM,thf)

JeF heDR'(f)
8:/ e
Algl < M(S)+ Y (M pM)= 3 t/forall fEF,
heDR (f) 9€DR(S)
Z t/9 < b/(S)forall f €F,
9€Dr(f)
g/ > Oforall f€eF,
t/e > 0forall (f,g9) € Dg.

Theorem 1 If all resource games (N, b/) in a linear production situation with transports
are balanced, then the associated game (N, v) is also balanced and a core element can
be computed by solving just one linear program.

Proof : The linear program is bounded for each coalition S. This is ensured by the
assumption that no product can be manufactured without using resources. Moreover,
producing nothing is feasible for all S, so the programs are all feasible. Hence the dual
programs are bounded and feasible, and the values of the primal and dual program
coincide for each S. The dual program for coalition S is

min ) ({7, 8/(8)) + (2/,6/(8)))

JeF
R o
y/Al > & forall f€F,
v —yIxplt 42l > —G'9forall (f,g) € Dg,
y/,27 > Oforall feF.

Note that 3/, z/ € R® for all f € F and that the feasible region of the dual program
is independent of S. For each facility f and each resource r, (N, b/) is balanced, hence
take u/ € RV a core element of (N,b!). Let (y/)ser, (2/):er be an optimal vector of
the dual program of the grand coalition N. This vector is a feasible vector for the dual
programs for all coalitions. Define z € RY by

=3 3 (4 +=l)ul.

JEFreER

Then for each coalition S,

Y= LYW+,

€S feFreR €S
> ¥ YW+ (S
fEFreR
= S, b(S)) + (=1, 6/(S))
JeF
> v(S5).



The first inequality holds because u/ is a core element of (N, /), the second one because
(¥%)ser, (27):eF is a feasible vector for the dual program of S. If S = N then these
inequalities are equalities. Hence z is a core element of (N, v) and (N,v) is balanced. O

The optimal vector (y?)ser, (2/):er can be interpreted economically as follows. yf
is a shadow price for resource r when used at facility f. The constraints of the dual
programs imply that y/ + z/ > y?p/9 — G/9 for each (f,g9) € Dg and each resource r.
The right hand side can be seen as the shadow price for resource r when transported
from facility f to facility g. By complementary slackness, y! + 2/ = y9pl? —G19if t{7 > 0.
So, if any amount of resource r is exported from facility f, then y/ + 2/ is the maximal
shadow price for resource r among the facilities g € Dg(f). Hence z{ is the extra value
of resource r when resource transport is allowed.

The converse of the theorem is not true in general, but if N, F, R, P,
(P!,¥)ser, Dr, Dp, D1,(E’%,71%)(10eDps (G'%,0"%)(s.5)eDrs (L??)(19)eD, are given
and there exist an f € F and an r € R such that the resource game (N,b/) is not
balanced, production matrices (A/) e and cost vectors (¢/)ser can be constructed such
that the LPT-game associated to this LPT is not balanced.
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