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ABSTRACT: This paper develops a formal decision theoretic approach to testing for a unit root in
economic time serles. The approach is empirically implemented by specifying a loss function based on
predictive variances; models are chosen so as to minimize expected loss. In addition, the paper
broadens the class of likelihood functions traditionally considered in the Bayesian unit root literature by
i) allowing for departures from normality via the specification of a likelihood based on general elliptical
densities; Ii) allowing for structural breaks to occur; iii) allowing for moving average errors; and iv) using
mixtures of various submodels to create a very flexible overall likelihood.
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The economic literature devoted to the Issue of unit roots in economic time series has grown
immensely since the seminal papers of Dickey and Fuller (1979) and Nelson and Plosser (1982).
Although the majority of the literature assumes a classical econometric perspective, a growing Bayeslan
unit root literature has emerged (see DeJong and Whiteman (1991a,b), Phillips (1991), Sims (1988), Koop
(1991a,b), Schotman and van Dilk (1991a,b), Wago and Tsurumi (1990), Zivot and Phillips (1991)). In
many cases, Bayesian results differ substantially from their classical counterparts.

This paper makes a contribution to this growing body of Bayeslan unit root literature. It
considers more general classes of models and methods of drawing inferences than presently exist. The
paper uses models that are mixtures over various submodels with general elliptical distributions and
differ in both their covariance structure and their treatment of structural breaks. The resuiting mixed
model is very flexible and encompasses a wide variety of dynamic structures. In addition, the paper uses
a formal decision theoretic framework based on predictive varlances and the conservative notion that
it is worse to underestimate than to overestimate predictive variances. This approach accords naturally
with a Bayeslan paradigm and provides an explicit forum for choosing between stationary, unit root, and
explosive models.

Section 1 of the paper introduces our hypothesis of interest and the methodology we use to test
It. Section 2 discusses the sampling model, Section 3 the prior density, and Section 4 the posterior
density. Section 5 treats the decision problem while Section 6 applies the methods to the extended
Nelson-Plosser data set. Section 7 concludes.

Section 1: What Are We Testing?

Our aim is to determine whether a unit root Is present, ie. to test an exact restriction. One
obvious way s to calculate posterior odds comparing the model with a unit root imposed agalnst the
unrestricted model. This method requires that an Informative (proper) prior be placed over p, the
coefficient which equals one under a unit root. Koop (1991a,b) calculates posterior odds using
Informative natural conjugate priors. Schotman and van Dijk (1991a) use proper priors that require less
subjective prior input but at the cost that their priors are data-based.

Rather than test explicitly for a unit root, an alternative methodology (DeJong and Whiteman
(1991a,b) and Phillips (1991)) Is to calculate the posterior probability that o Is in some region near one.
This method has the advantage that proper priors are no longer necessary and thus the analysis may
be made more "objective”. The disadvantage Is that the definition of p as “close to one" is highly
subjective. By way of example, consider Phillips (1991) who calculates the probability that | p | 2.975 and
| o | 1. The former is highly subjective whereas the latter Is suitable for testing for nonstationarities (le.
unit root or explosive behavior) but not for the presence of a unit root per se. In this paper, we use
proper priors on p which allow us to compute posterior odds for the exact unit root null.

Furthermore we use a decision theoretic framework to carry out the unit root tests. The loss
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function used in the decision analysls is based on predictive behavior which can differ cruclally for
stationary (H,: | p| <1), unit root (H,: p=1), and explosive (H,: |p|>1) models. Hence our decision
problem Is set up In terms of these three regions for p.

Section 2: The Likelihood Function

Bayeslan methods require the specification of a likelihood function. Phillips (1991), for example,
bases his likelihood function on the following specification:

k-1
Y- "’ﬂ*PYr-|*§¢Aya-l’ct ™

with ¢, Lid. N(019),
while DeJong and Whiteman (1991a) use a different parameterization. Since analytical resuits cannot
always be obtained for their parameterization and extensive Monte Carlo integration is required, Phillips’
parameterization Is preferred (see Phillips (1991))."

We expand the class of considered likellhoods In three important directions: a) By relaxing the
normality assumption; b) By relaxing the L.I.d. assumption; and c) By allowing for structural breaks (Perron
(1989), Banerjee, Lumsdaine and Stock (1990) and Zivot and Phillips (1990)). We lety (where y=(y,,....¥y)’)
have any density within the class of multivariate elliptical densities, thereby covering such densities as
the multivariate normal, muitivariate-t and Pearson type-Il. Moreover, we allow the covariance matrix to
take the form 72V(n), where V(n) is any positive definite symmetric matrix parameterized by a finite vector
n. Techniques for handling extensions a) and b) are described in Osiewalski and Steel (1990) and Chib
et al. (1990).

In this paper, no single model need be selected for final analysis. Several different structural breaks
and structures for V(n) can be chosen, and a supermodel, which is a finite mixture of the varlous
submodels, used. We allow V(n) to have various structures in the ARMA class. The motivation behind
the Inclusion of a moving average component Is discussed in Schwert (1987).

Formalizing the ideas described In the preceding paragraphs, we begin with the model with no
structural breaks (M,). We mix over m different correlation structures so that each individual model Is
labelled M, (i=1,...,m). For each model M,, we take:

Ply I en-ﬁv"-y"-Mu)' IT'RVM(',)I"/’ (2)
Gul(y-hyu(0,))7Vid () (v-h,u(6,))]

! In the emplrical section we follow DeJong and Whiteman (1991a,b) and set k=3.
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where g(.) Is a nonnegative function which satisfies (for all | and T),
-7,
l’u" gn(U)du=T(T/2)m T2, ()]

In other words, we assume y has a T-variate elliptical density. Note that (3) is a necessary and sufficient
condition for (2) to be a proper denslty, yg, is the vector of Initlal observations (y,,, -...Y,)', and hy(6,)
Is a vector of length T with property:

k-1
[hn(en)] B H+Bt+ Yy ‘Izi: ¢,Ay,_,

Since we assume this function to be identical for all covariance structures, we drop the | subscript and

write:
hy(B)=py_+X\ay (4)
where
Y-r'(yu'YV-"-YY-‘)/-
X061 XY,

xl”'(1 »'-Ay,.v---vAy'J‘ |)I-
A= B @y ) =8P,

and hence 6, = (p, a,)".
For future reference we define:

0yy{6,) =V -Ny(8.0) Vil (m) (v-h(6,)) ®)
The model without structural breaks (M,) Is then given by the mixture of the probabilities In (2)
over the m covariance structures:
Py Gn,t'.q.é,yn,M,‘)
-E 8, Pyl 6,0 My),

I=1

(©)

where & = (§,,...,8,)’ is a vector of mixing parameters with 520 and ¥§=1.

We obtain the model with structural breaks (Mg) by mixing over various covariance structures
(j=1.....m) and breakpoints (q=1,..,T-1). Note that we use the same covarlance structures as In the
previous model. Although not necessary, doing so simplifies the notation such that Vy,=Vg =V, for I=|.
Moreover, we conceptually allow for the structural breaks to occur at any point in our sample. Two types
of structural breaks, level breaks and trend breaks, can occur atanytimeq=1,...,T-1. Perron (1989) argues
for the presence of a level break in 1929 and a trend break in 1973 for most U.S. macroeconomic time
series. To reduce the burden of computation only the latter two breaks are included in the empirical
analysis although the general notation Is retained throughout this section.
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M, Is a mixture over models with different structural breakpolnts and covariance structures (Mg,,).
Note that each of these submodels has the likelihood function:

Pl | 0410y Mg - | T2V/(n)l 2 G
G5l -D3e(8 TV, (1) (/-hg, (8]

where gg() satisfies (3) for all J, g and T, and
Ngq(B5) =Nsq(6'5) =Y+ Xy +Xpe@p=pY 1 +Xs 5.

We define Xog = (X3,... X7’
and  X{* = (DU(q), DT(@))",
where DU(q), = 1 if t>qand 0 otherwise (level break)
and DT(q), = t-q I t>qand 0 otherwise (trend break)
Furthermore a, = (d,.dy)’ and hence

Xso=Xy X5 and ag-(a, ap).

Inthis setup 6,=(p ag’)'=(p ' a,)'= (6’ @,)’ and the structural break models have two parameters more
than those lacking structural breaks. In our empirical setup we restrict d, to zero for 1973 and take dg
to be zero for 1929, leaving just one parameter in a,, for each of the structural break models. For future
reference we define

so05,m) = -hso@) V' (m)(-hse(6)- ®
The overall model (Mg), mixed over structural breaks and covarlance structures, ls:

P(y | 65,7, 7. -.Vn.Ms)
-E 1,2 K, Ply 1647 r].yn,M,h)

J=1

()

where ¥ = (v,1..-7,)’ @nd & = (k,,....xy.,)’ are mixing parameters with y, x, 2 0V |, qand Ly, = Ix,
=1,

Finally, we mix over the no-structural-break and structural-break models to obtain the sampling
model

P(y | 65T, A,B.y,x,y&-;\i& Py 18,70y qMy)
(10)

+(1- A)i‘ 1,2 Ky Py | 6570y 0 Mso)

J=1



with0 < A s 1.

To summarize: (10) is the overall sampling model to be used in this paper. It mixes over two
models, one with and one without structural breaks. We weight the model with no structural breaks over
covariance structures (see (6)) and the model with structural breaks over covariance structures and
structural breaks (see (9)). Each of the mT submodels in (10) can have a different type of elliptical density.
Not only do our likelihoods allow for normal, Cauchy and Student-t densities, but for densities with
truncated talls (eg. Pearson type-ll densities) as well.

It remains to specify the choices for V|(n). Since most, if not all the residual autocorrelation will
be removed by including the lagged Ays in the model, V, Is restricted to two cholces: V, = |, and V, =
(1 + n)l, - nA, where ne(-1,1) and A Is a tridiagonal matrix with 2's on the diagonal and -1's on the off-
diagonal. In other words, we allow the errors to be uncorrelated (which, only for the normal distribution,
Implies iIndependence) under V, and to exhibit MA(1) behavior under V,. Chol (1990) argues that Ignoring
the MA(1) component of the errors results in a bias In classical estimates of p equal to n(1-p)/(1+n) for
Infinite k which tends to drive results towards the unit root for >0.

Section 3: The Prior Density

A controversy surrounding the use of Bayeslan methods is the role of prior information. Many
researchers use priors that are noninformative or objective in order to avoid the issue (see DeJong and
Whiteman (1991a,b), Koop (1991a) and Phillips (1991)). Koop and Steel (1991) discuss the hazards
Involved in the use of such "objective" priors. Moreover, improper noninformative priors make it impossible
to calculate posterior odds required to test for unit roots (see Section 1). For the reasons noted,
noninformative priors for p are not used in this paper.

An alternative, following Schotman and van Dijk (1991a) and Koop (1991b), Is to introduce explicit
prior Information Into the analysis. Schotman and van Dijk minimize the amount of subjective prior
information by allowing the prior to depend on the data, an approach which violates the likelihood principle
and thus Is avoided here. Koop (1991b) uses natural conjugate priors centered over the unit root
restriction and performs a sensitivity analysis with respect to the prior covariance matrix of the regression
parameters. In this paper a prior Is used which Is uniform in the regression parameters other than p and
inlog(t®). As well as being improper, the prior is noninformative In certain dimensions in that the posterior
Is proportional to the likelihood function. However, before posterior odds can be calculated, the prior
must be made proper In the remaining dimensions by bounding it. A sensitivity analysls can easily be
performed over the choice of bounding region. We formalize these steps Iin the remainder of this section.

The prior density for the parameters of the sampling model can be written as:

P(85,127.1,8,7.5) =P(85,T,n)P(A)P(8)P(7)P(x) (11)
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That Is, we a priori assume the mixing parameters to be independent of each other and of the parameters
in each submodel. Since the mixing parameters are of no Interest to us, we need only specify prior means
whose existence Is assumed (see Chib et al. (1990)). In order to be as noninformative as possible, all
models receive equal prior weight. Specifically, we set

E(\)=1/3; E(8,)=E(8,)=E(v,)=E(v,)=1/2 and E(x)-1/2 for g-1,2.
Full robustness with respect to the choices for gg,(.) and gy(.) Is achleved by assuming (see Oslewalski
and Steel (1990)):
P(O.,r',q)-c,f"P(O,,q).

This assumption Implies a uniform prior for log(r®). Note that c, is a constant which cancels out of the
posterior odds ratio and hence Is irrelevant for our analysis. All that remains is to specify P(6,n):

P(65:1)-P©@yapn)-P@Oy | ap.n)P(apn).

Since the parameters a, and » are not present in all models, we must ensure that P(a,,n) Is proper. For
the sake of convenience we assume that P(ay,n) =P(a,)P(n) =P(d,)P(ds)P(n) and specify:
Pd,) - 1/(A,-A,) on [A,A] and 0 elsewhere
P(dg) - 1/(B,-B,) on [B,B,] and 0 elsewhere (12)
P(n) =-1/2 on (-1,1) and 0 eisewhere .
In practice, [A,,A;] and [B,,B,] are chosen so as to cover the area where the likelihood function is a priori
assumed to be appreciable (see Prior Appendix). Finally, it remains to specify

P@©, | apn) - Play | p.apn)P(e | apn).

Since the parameters a, are present in all models we allow them to have an unbounded uniform prior.

We assume that the parameter of interest, p, Is independent of a, and n. Under the hypothesis
that a unit root Is present (H,) we set p=1. Under the hypothesis that a unit root Is not present we try
two priors for p. Our first choice Is a bounded uniform prior which, for the stationary region (H,), takes
the form:

P(p)—2§ i p e [.55,1.00)
-0 otherwise ,

and for the explosive region (H,):

P(p)-10 ¥ p € (1.00, 1.10]
=0 otherwise.

.
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This type of bounded uniform prior leads to a truncated Student-t posterior for p under V, and for p|n
under V,. Alternatively, an independent Student-t prior for » with identical first two moments® can be
used to yleld a 2-0 poly-t posterior density for p (or p|n) (Dreze (1977)). Note that pseudo-random
drawings to be used in the Monte Carlo integration can easily be made from all these densities (Richard
and Tompa (1980)).

Although the first two posterior moments of p may not be crucially affected by the difference
between priors, Koop et al. (1991) show that results for n-step ahead prediction can differ dramatically.®
That Is, predictive means and variances will exist for any horizon (n) in the case of a bounded uniform
prior; however the Student prior for p allows only for finite predictive means (given ») for n up to
approximately T, and for finite predictive variances K n is less than approximately T/2. In Section 5§ we
introduce a loss function based on predictive variances whose behavior Is expected to differ across priors
if n Is close to T/2. Of course, the fact that moments may not exist will not necessarily show up cleary
here given the inevitable limitations of a Monte Carlo analysis which uses a finite number of replications.

This concludes our development of a prior for the parameters of our sampling model. It is worth
emphasizing that, with four exceptions, p, n, d, and dg, the priors for all our parameters are
noninformative. We believe that the priors we specify for these exceptions will not be considered
unreasonable by other researchers.

Section 4: The Posterior Density

Combining our results from the two previous sections yields our Bayeslan model:

PY.05Tn.0.8,7.x | Yg)=C.T*P(p)P(@o)P(n)P(\)PE)P(1)P(x)
D8PV 10T 0y M) (13)

+(1 -A)?: 12 kP | 85T 0y M)}
- Qe

Using results from Oslewalski and Steel (1990), we Integrate out 7 and the mixing parameters, yielding:

2 We use truncated (at p =1) Student priors for both H, and H, which are constructed in such a way
that their untruncated counterparts mimic the moments of the relevant uniform prior mirrored around
p=1. This ylelds half-Students with a mode at p = 1. Finally, the degrees of freedom parameter is chosen
to be 3 so that this alternative prior has fat talls yet still allows the first two moments to exist.

® The n-step ahead prediction involves moments of p of order n for predictive means and of order
2n for predictive variances.



P(y.6sn |YM)'CzP(P)P(an)P(ﬂ){% V()" 72[d (8 om)] 772+

257 15~ 1 iy oldg @, m)] )
32 32 3 VN ds(Osn

(14)

where ¢, = ¢,I'(T/2)m™/? and definitions (5) and (8) are used.
For the individual models we obtain:

P©wn | YYoMu)~Ci P(oYPIIV /) 2[dy(8om)] ™ an)
and

P©O5 1 VY Msd~Casy PPV, () Tl (@5m)] 2 . e

where C,, and Cg are the integrating constants needed to construct posterior odds (ie. Cy, = P(y|Yg,My)
and Cg,, = P(y|Yg,Msgg)). Althoughthe integrating constants may be calculated directly, it should be noted
that a,, may be integrated out of (15) and (16) analytically using the properties of multivariate Student
distributions. Once a,, is integrated out, the Cy's and Cg's may be calculated using Monte Carlo
integration. One-dimensional integration is required for calculation of C,,; two-dimensional integration
for C,, and Cg,,; and three-dimensional integration for Cg,,. Formally, the posterior density for a;, given
p and n, Is a truncated Student-t over the region given in (12). If this region covers most of the parameter
space where the likelihood function is appreciable, the truncation will not matter. In this case we can
integrate out the full ag vector as a joint Student density, leaving only one and two dimensional integrals
for Cg,, and Cg,, which we calculate using Monte Carlo integration. A check on this approximation Is
to perform the integration with respect to a, numerically by direct simulation with rejection.
The Integrating constant for the sampling model, C = P(y|y,), Is given by:

2 2 2
c- 3 c. T30 (17)
65 =1 g
These Integrating constants can be used to calculate the posterior probabilities of the various submodels.

PMy | y.yg)= Cu/6C

P(M, 1 yyg)=(Cys+Cy2) /6C
P(Mgq 1 y.yg)= Cgq /6C
P(Mg; | y.yg)=(Cg;,+Csz) /6C
P(Mg, | .Y)=(Ca1e*Cs29) /6C.
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The posterior model probabilities may indicate, among other things, whether structural breaks are present
or if errors exhibit MA(1) behavior. Aithough not given here, Inference on the parameters could be obtalned
from weighted averages of (15) and (16) (with a,, possibly Integrated out), where the weights are the
relevant model probabilities.

Under all hypotheses, we use the same general mixture of submodels for the sampling density.
Note, however, that in all cases, the relative posterior weights given to the submodels depend on the
data.

Section 5: Decision Theory

In the previous sections we have described how the posterior probabilities of various hypotheses
can be calculated using Bayesian methods. However, econometricians must frequently make decisions.
For instance, in a pre-testing exercise a decision must frequently be made as to whether a unit root is
present in a series. If present, the series may have to be differenced in a larger VAR model. The Bayesian
paradigm provides a formal framework for making such decisions. To make a decision the researcher
specifies a loss function and chooses the action which minimizes expected loss (see Zellner (1971)). By
focussing on posterior probabilities, previous Bayeslan researchers have implicitly used a very simple
loss function where all losses attached to incorrect decisions are equal. (That is, the loss assoclated with
the choice of a unit root when the series Is stationary Is equal to that assoclated with the assumption
of stationarity when a unit root is present). Classical researchers use a loss function where losses are
asymmetric, viz. where the choice of a level of significance implicitly defines the loss function. Lacking
a measure over the parameter space, classical researchers are forced to look for, say, dominating
strategles (which are rare) or minimax solutions. It Is this lack of formal development and justification
of a loss function which is, in our opinion, a serious weakness of previous Bayesian and classical unit
root studies. This section proposes a loss function which we use to make decisions on whether to accept
or reject the unit root hypothesis.

Our criterion for the evaluation of losses assoclated with incorrect decisions is prediction. This
criterion Is important because the macroeconomic time serles In this study are frequently used for
prediction (eg. to forecast from VAR models or to calculate impulse responses). The cost of assuming
stationarity with such models when the series are really nonstationary may be drastically different from
the converse. Since differences between nonstationary and stationary models are more pronounced for
predictive variances than for predictive means, we base a loss function on predictive variances. Given
that the precision of forecasts Is often a crucial issue we believe this approach to be a sensible one.

For the simple AR(1) model, with intercept and trend*, the predictive variance for forecasting
n periods ahead is given by Koop et al. (1991):

* Formally speaking, using this model corresponds to conditioning on ¢ and a,, In our more general
model and assuming uncorrelated errors.
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V"U’r.n | Y-.V(o)-P-ll-ﬁ-")""g pﬂ ’ (‘8)

when we condition on all the parameters; and by the more complicated formula (for T>4):

2n-+) (19)

SSE n1 z’
Vi . I ’. -P)'_r'
@Yr.n | Vo) (};p 7(1‘ x>
when we Integrate out y, g and 7 using the noninformative priors given Iin Section 3. In (19) we use
r(1,}) =6i] +3(T-1) (I+]) + 2T°-3T + 1and SSE , = (y-py.,) M(y-pY.,) Where Mis the identity matrix minusthe usual
projection matrix on the intercept and trend. To ensure computational tractability, we do not fully
marginalize the varlance with respect to p. Rather, we replace the powers of p in (18) and (19) by thelr
expected values (ie. we replace p' with E(p!) which we calculate using Monte Carlo Integration).®
To develop the loss function we first define:

~
92,(P)=Y p¥ | H, (20)
=0
and

gr2p)=gis(p) + ) 2 i+ | H, 1)

T(T' -0\

where H,: p<1 (stationary model)
H,: p=1 (unit root model)
Hy: p>1 (explosive model).
For each H, we can use the marginal posterior density of p to calculate

»~1
Ean’,(p)-ag o¥ | Ky

where we have already mixed over the different models In the likelihood function using the relevant
posterior probabllities. Eg/, ,(p) Is calculated in the same fashlon. Our loss function takes the form:

I34-max(1,Eg,Ap)EgAp)) +3 max(1,EgAp)Egake))-(1+8),

3 If we had fully marginalized with respect to p, an additional term would have been added to the
predictive variances under H, and H,. Therefore, predictive variances for the trend-stationary and explosive
models are slightly underestimated relative to the unit root model.
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where =1 or 2; H, Is the hypothesis chosen; H, Is the "correct” hypothesis; and &, which Is greater than
or equal to 1, reflects our aversion to underestimating the predictive variance.® For each decision, d,
we compute the expected loss:

17X Ids PH, | YY),
and choose d for which the loss Is minimal for a given forecast horizon, n.

The expression in (20) refers to that part of the varlance due to sampling uncertainty that differs
cruclally across the three regions for p.” Note that this quantity Is bounded as n grows for H,, Is linear
in n for H,, and grows exponentially for H,. Thus as n becomes moderately large, it displays very different
characteristics for these three regions. The loss function based on g, , differs from that based on ¢/, ,
in its treatment of parameter uncertainty about u, 8 and 7. For both loss functions the random nature
of p is only partlally taken into account. We know that by not marginalizing fully with respect to p, we
favor H, if §>1, since predictive variances under H, and H, are underestimated.

Note that It is crucial to consider multi-period predictions since they bring out the differences
in predictive behavior between stationary, unit root, and explosive models (see Chow (1974) for some
specific problems when n>1).

The parameter & plays an important role in our loss function. If § = 1, the loss function is symmetric
In the sense that underestimating and overestimating the predictive variance are equally costly. For values
of & greater than one underestimating the predictive variance (and giving a researcher excessive
confidence In her forecasts) is more costly than overestimating the predictive varlance. The loss function
is normalized such that losses are zero for correct decisions but are: i) equal to the variance ratio (which
is bigger than one) if the chosen model has a bigger variance than the "correct” model (le. if we
overestimate the predictive variance); and Ii) equal to & times the inverse of the variance ratio if the chosen
model has a smaller variance than the "correct” model (le. the predictive variance is underestimated).

At short horizons the losses do not differ much across models (unless & is very large) and the
model is chosen largely on the basis of its posterior probability. indeed when n=1 all losses are zero
by definition. At long forecast horizons, the differences In predictive variances between stationary and
nonstationary models grow large; and assuming &> 1, nonstationary models grow concomitantly more
attractive. So if there Is any chance that the correct model Is nonstationary, our loss function will choose
it at some forecast horizon (ie. the cost of incorrectly choosing the stationary model and seriously
underestimating the predictive variance will eventually dominate at some forecast horizon). Under both
loss functions, H, will be chosen if n goes to infinity (holding & constant), while H, will be chosen if &
goes to infinity (holding n constant). Since the decision taken depends crucially on the choice of n and

® For computational ease, we assume that SSE, approximately cancels out in our loss function.

7 In classical analyses, the MSE of a forecast will also have the same analytical form if parameter
uncertainty is not taken Into account.
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&, we do a sensitivity analysis over these two parameters.

The decision theory approach is based on the assumption that researchers are interested in
choosing a particular region for p since they may wish, for instance, to difference the data. However,
In cases where such a pretest strategy Is not required, we suggest basing predictions on a mixture over
regions for p weighted with the relevant posterior probabilities.

Section 6: Empirical Results

This section presents evidence on the existence of a unit root in the Nelson-Plosser series. The
data used are extended to cover the period until 1988 (see Data Appendix). Tables 1 and 2 present
posterior means and standard deviations for p and  under H, and H,, while Table 3 presents evidence
on the presence of structural breaks and moving average errors. Table 4 contains the posterior
probabilities of H,, H, and H,, and Tables 5 and 6 summarize the results of the decision analysis. Posterior
odds are calculated for testing the various hypotheses with respect to p by using the sampling model
weighted over all the submodels. Although our primary focus Is on the unit root hypothesis, two subsidiary
questions are simultaneously addressed: (1) Is there evidence of one or more structural breaks in our
economic time series? (2) Is there evidence of MA(1) behavior in the error terms?

Since parameter estimates are only slightly relevant to the Issues we address in this paper, we
discuss results only briefly. Note first that Tables 1 and 2 support the conclusions of Chol (1990): Omitting
the MA(1) component of the error term does Indeed tend to drive estimates of p towards one in a manner
consistent with the asymptotic bias derived by Chol. Table 3 contains the probability that an MA(1) error
term Is present as well as the AR(3) component already allowed for in our specification. For many series
this probability is very high and for no series is it small enough to be ignored. Thus Chol's results are
more than Just theoretically interesting. The inclusion of a moving average error term would appear to
be an important part of any specification. A second point worth noting about Tables 1 and 2 is that
posterior means and standard deviations alone should not be used to infer the probability of a hypothesis.
For example, Table 4 indicates that a high probability exists that the real wage series contains a unit root
but the nominal wage does not. This cannot be ascertained simply by examining the posterior means
and standard deviations in Tables 1 and 2, a point which exemplifies the hazards of using highest posterior
density intervals for testing purposes.

With respect to structural breaks in Table 3, note that, although our results are consistent with
Perron’s contention that a level break occurred In 1929 in many macroeconomic time series, we find
virtually no evidence for the presence of a trend break In 1973 for any of the series.® As Perron (1989)
notes, models with structural breaks tend to yield less evidence of a unit root.

We do not discuss Table 4 in detall but we do use the results to calculate the expected losses

® perron Indicates that models with a 1973 trend break are more relevant for post-war quarterly data
sets than the long annual data sets used here.
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required for our declsion analysis. For our purposes It Is sufficlent to note that results show that trend-
stationarity (H,) Is the most probable hypothesis for most of the serles (notable exceptions are the CPI
and velocity); however, without a formal loss function it would be rash to rule out the unit root model
at this time.

It is worth emphasizing that our loss function has two key propertles. First, as long as & Is greater
than one, It is better to overestimate than to underestimate predictive varlances. This property tends to
favor H, over H, and H, over H, and H,. Indeed as & goes to Infinity (holding n constant) H, will always
be chosen. Second, there is a tendency In our loss function to favor H,. H, lies between H, and H, such
that a researcher will, loosely speaking, never go too far wrong in choosing H,. (Potential losses would
be very large if, say, H, were chosen when H, was the "correct” model). In fact, as n goes to infinity
(holding & constant) H, will always be chosen.® These two properties account for most of the findings
in Tables 5 and 6, which present the model chosen for different values of n and &.'° With the exception
of the CPI and velocity series and, to a lesser extent, the GNP deflator and real wage series, H, is the
model chosen (so long as & or n is not large). However, clear scope exists for choosing nonstationarity
If underestimating predictive variances is felt to be a serious problem. If § = 100 a researcher would almost
never select the trend-stationary model. There appears to be less sensitivity of our loss function with
respect to n. If we restrict attention to short- or medium-term forecasts (eg. n<10), only a few cases exist
where different values of n yield different conclusions. A typical example Is real GNP, where, unless the
researcher Is interested In forecasting four or more decades Into the future, the trend-stationary model
Is chosen for =1 or 10. Only if =100 (a strong penalty for underestimating predictive variances) Is the
unit root model selected. Overall, we conclude that there is strong evidence in favor of trend-stationarity
for virtually all the series analyzed Iin this paper (especially as the conditional results given in this paper
are biased In favor of H,); however, as we show, researchers with different loss functions may make
different inferences.

It is interesting to note that our results for §=10 correspond closely to those given in Phillips
(1991, reply) who uses the Phillips-Ploberger posterior odds test on the same data. The chief difference
is that Phillips finds the nominal wage series to contain a unit root, whereas we only match this finding
if nis very large or & = 100. Note, however, that Phillips'results are obtained by using an improper Jeffreys'
prior for p, whereas we use a formal decision theoretic approach based on a strong aversion to
underestimating predictive variances. Researchers who do not wish to include such an aversion in their
analysis will tend to choose trend-stationarity more often.

° It Is worth emphasizing that our failure to fully marginalize with respect to p favors the unit root
hypothesis.

' Table 5 and 6 correspond to our two loss functions. Because their results are very similar their
different treatment of parameter uncertainty in the predictive variance may not be too important for the
purposes of our analysis for finite n. As n goes to infinity these differences may become Important (see
Koop et al. (1991)).



15

A final Issue worth discussing Is the sensitivity of our results to various priors. As described In
Section 4, we use two different priors for p: a half-Student and a bounded uniform prior. The first and
second moments of the half-Student prior are chosen so as to match the uniform prior (see footnote 2).
The differences between the two priors occur in third and higher moments. Tables 1 and 2 indicate that
posterior first and second moments do not differ much across the two priors. The remalning tables,
however, indicate somewhat larger differences. This is especially true of Tables 5 and 6, where in some
cases, the two very similar priors yield different conclusions (eg. Nominal GNP for §=10 or the GNP
deflator for =1 or 10)."" Our decision analysis depends upon high order moments of p and our priors
differ in these high moments. Recall that, while all moments exist for our bounded uniform prior, none
beyond 2 exist for our half-Student prior. Aithough Bayesians who use informative priors typically do not
worry about third or higher prior moments, our analysls suggests that care should be taken In eliciting
such prior moments when a decision analysis which Involves high order moments is carried out. The
effect of prior moments on the existence of predictive varlances for multi-period forecasting is formally
analyzed In Koop et al. (1991).

"' As described in Section 3, predictive variances exist only for n less than approximately T/2, a fact
which is ignored in Tables 5 and 6 where results are occaslonally reported for n>T/2.
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(Standard deviations in parentheses)

Uniform Student
Prior p Prior p
No MA MA MA No MA MA MA
P P n P P n

Real GNP nb | 0.8134 0.7462 0.44186 0.8291 0.7836 0.3483
(.0570) (.0889) (:3377) (.0594) (.0894) (.3705)

Ib 0.7409 0.6941 0.3815 0.7669 0.7242 0.3484

(.0681) (.0829) (.2880) (.0689) (.0999) (.3127)

tb | 0.8127 0.7338 0.5178 0.8288 0.7732 0.4372

(.0562) (.0862) (.2943) (.0547) (.0877) (.3365)

Nominal nb | 0.9411 0.9031 0.6737 0.9434 0.9025 0.7512
GNP (.0296) (.0448) (.1683) (.0287) (.0485) (.1290)
Ib 0.7777 0.7555 0.3228 0.7991 0.7862 0.3168

(.0630) (.0763) (.2410) (.0834) (.0760) (.2612)

tb 0.9209 0.8514 0.7762 0.9251 0.8728 0.7744

(.0371) (.0659) (.1206) (.0355) (.0625) (.1182)

Real per nb | 0.8032 0.7363 0.4321 0.8201 0.7782 0.3303
cap. GNP (.0579) (.0889) (-3407) (.0577) (.0914) (.3838)
Ib 0.7564 0.7022 0.4263 0.7813 0.7345 0.3753

(.0671) (.0845) (.2970) (.0688) (.0984) (.3260)

tb | 0.8032 0.7256 0.5152 0.8205 0.7636 0.4365

(.0583) (.0866) (.3004) (.0579) (.0918) (-3383)

Ind. Prod. nb | 0.8256 0.7626 0.3843 0.8392 0.7985 0.3003
(.0523) (.0859) (.3072) (.0515) (.0832) (.3356)

Ib 0.7498 0.6952 0.3530 0.7743 0.7244 0.3181

(.0678) (.0811) (.2401) (.0666) (.0984) (.2620)

tb | 0.8149 0.7386 0.4430 0.8296 0.7731 0.3819

(.0536) (.0847) (.2833) (.0538) (.0849) (.2976)

Employ- nb | 0.8637 0.8024 0.4442 0.8734 0.8273 0.4160
ment (.0473) (.0747) (.2357) (.0458) (.0694) (.2253)
Ib 0.7982 0.7300 0.4209 0.8150 0.7599 0.3953

(.0563) (.0767) (.1916) (.0555) (.0773) (.1954)

tb | 0.8578 0.7866 0.4873 0.8879 0.8148 0.4525

(.0484) (.0774) (.2190) (.0471) (.0739) (.2260)

Unempl. nb | 0.7454 0.6586 0.5935 0.7747 0.6644 0.6001
Rate (.0736) (.0748) (.1303) (.0750) (1117) (.1242)
Ib 0.7144 0.6523 0.5866 0.7459 0.6412 0.5912

(.0764) (.0740) (.1244) (.0824) (.1170) (.1278)

tb 0.7378 0.6587 0.5922 0.7682 0.6542 0.6055

(.0758) (.0739) (.1362) (.0770) (.1140) (.1275)

GNP De- nb | 0.9634 0.9474 0.4973 0.9640 0.9468 0.5646
flator (.0189) (.0294) (:3127) (.0188) (.0294) (.2417)
Ib 0.9166 0.8843 0.5462 0.9194 0.8909 0.5313

(.0289) (.0423) (:2314) (.0285) (.0396) (-2400)

tb | 0.9321 0.8942 0.6154 0.9347 0.9095 0.4408

(.0300) (.0477) (.2196) (.0295) (.0427) (.3704)
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Table 1 (continued): Posterior Means for o and n under H, (Standard deviations in parentheses)
Uniform Student
Prior p Prior o
No MA MA MA No MA MA MA
P P n P P n
CPI nb | 0.9886 0.9804 0.6531 0.9887 0.9808 0.6286

(.0077) (0134) (.1406) (.0078) (.0129) (.1665)
Ib | 0.9888 0.9804 0.6539 0.9888 0.9838 0.4881
(.0077) (.0134) (.1474) (.0077) (.0099) (3427)
tb | 0.9820 0.9679 0.6582 0.9820 0.9694 0.6412
(0114) (.0120) (.1456) (.0115) (.0198) (1718)

Wages nb | 0.9373 0.9053 0.5068 0.9393 0.9032 0.5165
(.0279) (.0459) (.3128) (.0273) (.0487) (.3155)
Ib | 0.7999 0.7818 0.2137 0.8120 0.7822 0.2225
(.0471) (.0593) (.2292) (.0472) (.0596) (.2338)
tb | 0.9212 0.8725 0.6076 0.9247 0.8723 0.5960
(.0345) (.0596) (.2479) (.0332) (.0591) (.2659)

Real nb | 0.9280 0.8818 0.6506 0.8322 0.9038 0.5466
Wages (.0385) (.0659) (.2152) (.0377) (.0560) (.2737)
Ib | 0.9276 0.8751 0.7391 0.9324 0.8867 0.7954

(.0397) (.0672) (.2361) (.0377) (.0614) (.1909)
tb | 0.8112 0.7159 0.6047 0.8316 0.7668 0.4624
(.0574) (.0807) (.2278) (.0502) (.0886) (.3292)

Money nb | 0.9402 0.9070 0.5721 0.9415 0.9123 0.5534
Stock (.0233) (.0380) (.1882) (.0229) (.0357) (.2060)
b | 0.8807 0.8454 0.4773 0.8848 0.8550 0.4623

(.0318) (.0446) (.2041) (.0316) (.0432) (-2158)

tb | 0.9187 0.8726 0.5924 0.9210 0.8811 0.5700

(.0270) (.0440) (.1789) (.0269) (.0424) (.2008)

Velocity nb | 0.9629 0.9395 0.5648 0.9635 0.9437 0.5481

(.0212) (.0356) (-3094) (.0207) (.0341) (.3220)
Ib | 0.9635 0.9383 0.6035 0.9642 0.9418 0.5976
(.0209) (.0360) (.2607) (.0206) (.0342) (.2668)
tb | 0.9580 0.9289 0.6083 0.9594 0.9329 0.6248
(.0253) (.0431) (.2823) (.0246) (.0412) (.2509)

Bond Yield | nb | 0.9466 | 0.9195 0.4860 0.9488 0.9277 0.4560
(0299) | (.0466) (.1987) (.0289) (.0427) (2314)
b | 0.8931 0.8386 0.5516 0.9003 0.8583 0.5355
(0441) | (0674) (.2024) (.0430) (.0638) (:2088)

tb | 0.9449 0.9152 0.4917 0.9501 0.9283 0.4897

(.0410) (.0647) (.2198) (.0380) (.0538) (.2005)

Stock Pri- | nb | 0.9297 0.8991 0.3569 0.9329 0.9080 0.3339
ces (.0333) (.0527) (.3018) (.0320) (.0493) (.3032)

b | 09135 0.8829 0.3322 09175 0.8932 0.3152
(.0351) (0512) (:2367) (.0346) (.0480) (.2333)
tb | 0.9069 0.8581 0.4342 0.9120 0.8751 0.3934
(0378) | (.0619) (.2663) (.0362) (.0579) (2811)

nb = no break, Ib = level break, tb = trend break.
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Hl ns fi (Standard deviations in parentheses)
Uniform Student
Prior p Prior p
No MA MA MA No MA MA MA
P P n P P n

Real GNP nb | 1.0167 1.0285 0.4292 1.0134 1.0155 0.3609
(.0155) (.0292) (.4019) (.0126) (.0143) (.4043)

Ib 1.0189 1.0266 0.6654 1.0153 1.0184 0.4962

(.0175) (.0227) (.2331) (0144) (.0168) (.4123)

tb 1.0172 1.0219 0.4941 1.0136 1.0172 0.4811

(.0159) (.0191) (.3357) (.0125) (.0162) (.3491)

Nominal nb | 1.0138 1.0196 0.5850 1.0117 1.0155 0.5143
GNP (.0124) (0177) (.2637) (.0105) (.0138) (.3284)
Ib 1.0186 1.0260 0.6703 1.0144 1.0180 0.5999

(.0174) (.0221) (.2414) (.0136) (.0163) (.3356)

tb 1.0158 1.0225 0.6064 1.0129 1.0181 0.6181

(.0142) (.0200) (-2720) (0177) (.0153) (.2546)

Real per nb | 1.0174 1.0230 0.4118 1.0135 1.0159 0.3805
cap. GNP (.0163) (.0217) (.3828) (.0126) (.0151) (.4010)
Ib 1.0193 1.0241 0.5183 1.0152 1.0184 0.5182

(0181) (.0201) (.4057) (.0138) (.0163) (.3998)
tb | 1.0177 1.0230 0.5088 1.0138 1.0169 0.4824
(.0166) (.0202) (:3344) (0128) (.0154) (.3488)

Ind. Prod. | nb | 1.0150 1.0184 0.2981 1.0125 1.0140 0.2737
(0142) (0178) (:3381) (0115) (.0132) (.3477)

b | 1.0179 1.0215 0.3533 1.0141 1.0159 0.3517

(.0169) (0195) (.4593) (0131) (.0139) (.4285)

tb | 1.0153 1.0193 0.3767 1.0124 1.0143 0.3615

(0144) (.0183) (:3064) (0117) (0127) (.3066)

Employ- nb | 1.0150 1.0192 0.3709 1.0128 1.0151 0.3713
ment (0141) (0176) (:2335) (0115) (0147) (.2287)
b | 1.0156 1.0199 0.4118 1.0127 1.0150 0.4007

(0152) (.0187) (2173) (0117) (.0135) (.2260)

tb | 1.0154 1.0193 0.4164 1.0123 1.0153 0.4163

(0144) (.0180) (2198) (0115) (0134) (.2069)

Unempl. nb | 1.0211 1.0272 0.5908 1.0161 1.0192 0.5823
Rate (.0189) (.0228) (.1231) (0149) (0172) (.1394)

Ib | 1.0226 1.0287 0.6006 1.0166 1.0203 0.6018
(.0205) (.0241) (.1287) (0153) (0198) (-1285)
tb | 1.0218 1.0256 0.5998 1.0165 1.0188 0.5942
(.0198) (0213) (.1306) (.0156) (0164) (.1286)

GNP De- nb | 1.0091 1.0138 0.5207 1.0083 1.0116 0.5074

flator (.0082) (.0136) (.3016) (.0075) (.0108) (.:3097)
b | 1.0096 1.0131 0.5662 1.0087 1.0110 0.5730

(.0089) (.0125) (.2805) (.0079) (.0103) (.2737)

tb | 1.0120 1.0175 0.5726 1.0105 1.0137 0.5647

(.0110) (.0153) (.2737) (.0095) (.0120) (.2793)
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inder H, (Standard deviations in parentheses)

Uniform Student
Prior p Prior p
No MA MA MA No MA MA MA
14 P n P P n
CPI nb | 1.0067 1.0095 0.5818 1.0065 1.0075 0.3119
(.0055) (.0083) (.1977) (.0053) (.0071) (.4508)
Ib 1.0069 1.0103 0.6316 1.0065 1.0081 0.3985

(00s6) | (00ss) | (1626) | (0os4) | (oo74) | (4384)
tb 1.0081 1.0119 0.6430 1.0078 1.0097 0.4469
(0069) | (o105) | (14e6) | (ooss) | (ooss) | (3e90)

Wages nb | 1.0111 1.0153 0.4781 1.0122 1.0126 0.4522
(.0104) (0144) (.3230) (.0109) (0118) (.3378)

b | 1.0125 1.0184 0.5453 1.0112 1.0143 0.5508

(0123) (.0169) (3167) (.0103) (.0138) (.3138)

tb | 1.0132 1.0189 0.5277 1.0120 1.0147 0.5181

(0124) (0171) (.3007) (0111) (0133) (:3045)

Real nb | 1.0207 1.0258 0.4960 1.0159 1.0188 0.4289
Wages (0181) (0221) (3116) (0139) (0174) (.3881)
b | 1.0204 1.0293 0.8209 1.0161 1.0209 0.7014

(0178) (.0229) (.1540) (.0143) (0188) (:3332)

tb | 1.0171 1.0237 0.5541 1.0137 1.0173 0.5212

(0162) (.0205) (.3000) (0127) (.0165) (:3473)

Money nb | 1.0082 1.0116 0.5326 1.0078 1.0102 0.5142
Stock (.0077) (0108) (.2143) (.0070) (.0095) (.2366)
b | 1.0085 1.0123 0.5477 1.0079 1.0107 0.5431

(.0082) (.0120) (.2010) (.0074) (.0100) (-2059)
tb | 1.0087 1.0124 0.5525 1.0079 1.0106 0.5504
(.0081) (.0120) (.2007) (.0073) (.0098) (.1982)

Velocity nb | 1.0120 1.0170 0.5176 1.0106 1.0137 0.4942
(0104) | (0157) (:3398) (.0091) (0120) (.3588)
Ib 1.0122 1.0177 0.5781 1.0109 1.0144 0.5535

(0107) (.0160) (.2870) (.0093) (.0129) (.:3158)
tb | 1.0156 1.0230 0.5782 1.0132 1.0167 0.5696
(0135) (.0209) (.3056) (0113) (.0150) (.2953)

Bond Yield | nb | 1.0163 1.0224 | 0.4531 1.0136 1.0222 0.4531
(0143) | (0191) (2135) (0120) (.0196) (2173)
b | 1.0162 1.0209 0.4942 1.0134 1.0217 0.4966
(0151) | (0187) (.2095) (.0120) (.0196) (-2062)
tb | 1.0401 1.0423 0.4346 1.0255 1.0314 0.4362
(.0267) (0274) (.1976) (.0188) (.0275) (.2063)

Stock Pri- | nb | 1.0141 1.0164 0.2389 1.0120 1.0130 0.2203
ces (.0130) (0155) (.3432) (.0108) (0116) (.3461)
b | 1.0130 1.0159 0.2940 1.0110 1.0133 0.2846
(0121) | (0150) (2713) (.0102) (0133) (2722)
tb | 1.0137 1.0168 0.3215 1.0115 1.0135 0.3092
(0126) (0157) (3071) (.0106) (0122) (.3099)

nb = no break, b = level break, tb = trend k.



Uniform Student
Prior for p Prior for p

Level Trend Moving Level Trend Moving

Break Break Average Break Break Average
Real GNP 0.0614 1.2E-5 0.5856 0.1556 3.6E-5 0.4977
Nominal 0.6639 2.9E-5 0.4740 0.8489 4.5E-5 0.4146
GNP
Real per 0.1728 2.3E-5 0.5718 0.1391 2.0E-5 0.4991
cap. GNP
Industrial 0.2449 0.0001 0.5211 0.1636 9.6E-5 0.4829
Production
Employ- 0.4488 1.0E-5 0.7137 0.3626 1.1E5 0.6454
ment
Unempl. 0.4447 4.9E4 0.9930 0.4102 4.8E-4 0.9857
Rate
GNP De- 0.2676 1.4E4 0.5892 0.3034 1.7E4 0.5950
flator
CPI 0.0438 5.7E5 0.4718 0.0461 5.9E-5 0.5148
Wages 0.9453 24E6 0.3240 0.9427 5.3E6 0.2960

N

Real 0.1428 0.0033 0.5554 0.1252 0.0085 0.5773
Wages
Money 0.5586 1.2E4 0.7550 0.5194 1.3E4 0.7399
Stock
Velocity 0.0108 0.0002 0.7345 0.0108 0.0002 0.7341
Bond Yield 0.7527 0.0125 0.7763 0.9180 0.0070 0.7661
Stock 0.2838 0.0018 0.4587 0.2835 0.0018 0.4485

Prices
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Table 4: Posterior Probabilities of Regions for o
Uniform Student
Prior for p Prior for p

H,: p<1 H,: p=1 H,: p>1 H,: p<1 H,: p=1 Hy: p>1
Real GNP 0.9824 0.0147 0.0029 0.9816 0.0133 0.0051
Nominal 0.8275 0.1371 0.0354 0.9232 0.0476 0.0292
GNP
Real per 0.9883 0.0094 0.0023 0.9852 0.0099 0.0049
cap. GNP
Industrial 0.9869 0.0108 0.0023 0.9863 0.0099 0.0039
Production
Employ- 0.9678 0.0263 0.0059 0.9657 0.0242 0.0101
ment
Unempl. 0.9968 0.0023 0.0009 0.9905 0.0059 0.0036
Rate
GNP De- 0.4940 0.4339 0.0722 0.6107 0.2896 0.0997
flator
CPI 0.0789 0.8087 0.1124 0.1376 0.6192 0.2432
Wages 0.9794 0.0176 0.0030 0.9803 0.0162 0.0035
Real 0.4355 0.4198 0.1447 0.5515 0.2720 0.1765
Wages
Money 0.9097 0.0789 0.0011 0.9360 0.0495 0.0145
Stock
Velocity 0.3198 0.5650 0.1152 0.4389 0.4141 0.1470
Bond Yield 0.7057 0.2315 0.0627 0.8790 0.0746 0.0464
Stock 0.6114 0.3243 0.0643 0.7131 0.2068 0.0801
Prices




&~ (n=2,..,100)
Uniform Student
Prior for p Prior for p
§=1 §=10 §=100 =1 §=10 5=100
Real GNP | n<60: H, n<45: H, H, n<76: H, n<60: H, H,
else: H, else: H, else: H, else: H,
Nominal n<55: H, H, n<i5: H n<63: H, n<14: H, n<10: H,
GNP else: H, else: H, else: H, else: H, else: H.
Real per n<73: H, n<56: H, H, n<77: H, n<60: H, H,
cap. GNP | else: H, else: H, else: H, else: H,
Ind. Prod. n<76: H, n<60: H, M n<80: H, n<67: H, H,
else: H, else: H, else: H, else: H,
Employ- n<72: H, n<52: H, H, n<57: H, n<44: H, H,
ment else: H, else: H, else: H, else: H,
Unempl. n<73: H, n<58: H, n<38: H, n<59: H, n<47: H, n<7: H,
Rate else: H, else: H, else: H, else: H, else: H, else: H,
GNP De- H, H, H, n<58: H, n<4: H, H,
fiator else: H, else: H,
CPI H, H, H, H, H, H,
Wages n<91: H, n<70: H, H, n<76: H, n<63: H, H,
elsa: H, else: H, else: H, else: H,
Real H, n<14: H, H,y n<21: H, n<21: H, H,
Wages else: H, else: H, else: H,
Money n<9s: H, n<6: H, n<3: H, n<g5: H, n<59: H, n<6: H,
Stock else: H, else: H, else: H, else: H, else: H, else: H,
Velocity H, n<16: H,y H, H, n<67: Hy H,
else: H, else: H,
Bond Yield | n<43: H, H, n<46: H, n<4i: H, H, n<29: H,
else: H, else: H, else: H, else: H,
Stock Pri- | n<46: H, H, n<85: H, n<53: H, H, H,
ces else: H, else: H, else: H,
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Table 6: Results of Decision Analysis Using 1" (n=2...,100)

Uniform Student
Prior for p Prior for p
&=1 8=10 5=100 §=1 §=10 §=100
Real GNP | n<67: H, n<49: H, H, n<83: H, n<67: H, H,
else: H, else: H, else: H, else: H,
Nominal n<62: H, H; n<i3: H, n<70: H, n<25: H, n<10: H,
GNP else: H, else: H, else: H, else: H, else: H,
Real per n<81: H, n<62: H, H; n<85: H, n<67: H, H,
cap. GNP | else: H, else: H, else: H, else: H,
Ind. Prod. | n<82: H, n<65: H, H, n<8gs: H, n<72: H, H,
else: H, else: H, else: H, else: H,
Employ- n<80: H, n<57: H, H, n<68: H, n<56: H, n<7: H,
ment else: H, else: H, else: H, else: H, else: H,
Unempl. n<80: H, n<63: H, n<41: H, n<62: H, n<49: H, H,
Rate else: H, else: H, else: H, else: H, else: H,
GNP De- H, H, H, n<64: H, n<4: H, H,
flator else: H, else: H,
CPI H, Hy H, H, H, H,
Wages H, n<78: H, H, n<83: H, n<69: H, H,
else: H, else: H, else: H,
Real H, n<i3: H, H, n<16: H, n<20: H, H,
Wages else: H, else: H, else: H,
Money H, n<6: H, n<3: H, H, n<e65: H, n<5: H;
Stock else: H, else: H, else: H, else: H,
Velocity H, n<15: H, H, H, n<26: H,; H,
else: H, else: H,
Bond Yield | n<47: H, H, n<33: H, n<44: H, H, n<23: H,
else: H, else: H, else: H, else: H,
Stock Pri- | n<50: H, H, n<58: H, n<56: H, H, n<71: Hy
ces else: H, else: H, else: H, else: H,
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Section 7: Conclusions

The paper develops a formal decision theoretic approach to testing for unit roots which involves
the use of a loss function based on predictive variances. It also extends the class of likelihood functions
in the Bayesian unit root literature by using a likelihood function which is a mixture over submodels which
differ in covariance structure and in the treatment of structural breaks. Each of the individual likelihoods
mixed Into the overall likelihood function belongs to the class of general elliptical densities.

Our empirical results indicate that a high posterior probability of trend-stationarity exists for most
of the economic time series. However, if there Is a high cost to underestimating predictive variances, our
decision analysis indicates that trend-stationarity Is not necessarlly the preferred choice.



Data Appendix

The data used in this paper are that of Nelson and Plosser (1982) updated to 1988 by Herman van
Dijk. Primary data sources are listed in Schotman and van Dijk (1991b). All data are annual U.S. data.
We take natural logs of all series except for the bond yield. The fourteen series are:

1) Real GNP (1909-1988).

2) Nominal GNP (1909-1988).

3) Real per capita GNP (1909-1988).
4) Industrial production (1860-1988).
5) Employment (1890-1988).

6) Unemployment rate (1890-1988).
7) GNP deflator (1889-1988).

8) Consumer Price Index (1860-1988).
9) Nominal wages (1900-1988).

10) Real wages (1900-1988).

11) Money stock (1889-1988).

12) Velocity (1869-1988).

13) Bond yield (1900-1988).

14) Common stock prices (1871-1988).



Prior Appendix

The Appendix discusses the selection of the bounded uniform priors for d, and d, in (12). We use
symmetric priors for all cases (A, =-A, and B, =-B,) and set A, =¢,y,, and B,= ¢ ,(y;-y,) /T + 1. Since a level
break of 10% Is deemed to be highly unlikely, we set {,=.10 for all serles except the bond yleld and
unemployment rate (for these serles ¢,=.4). ¢, Is more difficult to elicit. Looking at (y;-y,) /T +1, we set
¢,=.1for real GNP, wages, employment, industrial production, money stock, and GNP per caplta; {,=.2
for nominal GNP; ¢ ,= .4 for the Consumer Price Index and the GNP deflator; ¢, =1 for real wages, velocity,
unemployment and common stock prices; and ¢,=4 for the bond yleld. For no series Is the posterior
mean close to any of these boundaries.
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