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The economic Iiterature devoted to the Isaue of unlt roota in econom~ tlme serlea hea grown
Immensely since the seminal papers of Dickey and Fuller (1979) and Nelson end Plosser (1982).

Although the maJorlty of the Ilterature assumes a dassk~.al econometric perspedNe, a growing Bayeslan

unR root literature has emerged (see DeJong and Whlteman (1991a,b), Phplips (1991), Sima (19tt8), Koop

(1991a,b), Schotman arxl van DI)k (1991a,b), Wago and Tsuruml (1990), ZNot and Phllllps (1991)). In

many cases, Bayeslan resufts dHfer aubstantlally from thetr dasalcal counterparts.

This paper makes a contribution to thla growing body of f3ayeslan unh root IRerature. It

consklers more general classes of models and methods of drawing inferences than presently exist. The

paper uses models that are mbdurea over varkws aubmodels wRh general elliptk~l distrlbutkxu and

differ In both thelr covariance structure and their treatmeru of stnictural breaks. The resttltkp mbced

model is very 8exible and encompasses a wide varlety of dynamk; structures. In addftkxt, the peper uses

a formal decision theoretlc fmmework based on predldNe varlances ard the conservatNe notbn that

it is worse to underestimate than to overestlmate predictNe variances. This approach accords naturally

with a Bayeslan paradlgm and provkfes an expl~k forum for choosing between stationary, unR root, and

expioslve models.

Section t of the paper Introduces our hypothesis of interest and the methodology we use to test

R. Section 2 discusses the sampling model, Sectkx~ 3 the prkx density, and Section 4 the posterbr

denstty. Section 5 treats the decislon problem whYe Sectkxt 8 applies the methods to the extended

Nelson-Plosser data set. Sectlon 7 condudes.

Sectlon 1: What Are Wa Testing?

Our aim Is to determine whether a unR root Is present, le. to test an exact restrlctlon. One

obvbus way is to calculate posterlor odds comparing the model wtth a unft root imposed agalnst the

unrestrk;ted model. This method requlres that an InformatNe (proper) prkx be placed over p, the

coeff~leru whk:h equals one under a unR root. Koop (1991a,b) calculates posterior odds using

IMormatNe natural conjugate prkxs. Schotman and van DiJk (1991a) use proper priors that requlre less

subJectNe prior Input but at the cost that their prkxs are data-based.

Rather than test explk.itly for a unft root, an aftematlve methodology (DeJong and Whiteman

(1991 a,b) and PhGlips (1991)) Is to calculate the poaterlor probabUity that p Is in some region near one.

This method has the advantage that proper prlont are no longer necessary and thus the anatysis may

be made more 'objectNe'. The disadvantage la that the definftion ot p as 'close to one' Is highly

subJectNe. By way of example, ~nsWer Phplfps (1991) wtwcalculates the probabuity that ~ p ~ x.975 and

~ p I t t. The fomier is hlghly sub)ective whereas the latter fs sultable for testing for nonstatkxtaritlea (le.

unR root or explosNe behavkx) but not for the presence oF a unit root per se. In this peper, we use

proper prkxs on p wh~h sAow us to compute posterior odds tor the exact unft root null.

Furthermore we use a decisfon theoretk: iramework to carry out the unit root tests. The loss
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function used In the decislon analysis is based on predlctNe behavior which can differ cruclally for

stationary (H,: I v I~ 1), unlt root (H,: v-1), and axplosNe (H,: I v I~ 1) models. Hence our decislon

problem Is set up In terms of these three regkms for p.

Sectfon 2: The Likelihood Functfon

Bayeslan methods require the specificatkxt of a Ilkellhood functkxt. PhYlips (1991), for example,

bases his Iikellhood (unction on the fdlowing speclficatkxr.

M-1

Yr' Y'~'vYr-r'~~~Yr-r`~r
tii

(~)

wtth c, I.i.d. N(O,i~,

whAe DeJong and Whiteman (1991a) use a dMferent parameterizatkxi. Slnce anelytir,al resulta cannot

always be obtalned for their perameterizatlon and eoctensive Morrte Carlo Integratkm Is requlred, PhYlips'

parameterizatkxi Is preferred (see PhAlips (1991)).'

We expand the dass of conskiered Ilkellhoods In three knportant dlrectlons: a) By relaxing the

normality assumptkxr b) By relaxing the I.I.d. assumption; and c) By allowing for structural breaks (Perron

(1989), Banerfee, Lumsdaine and Stock (1990) and ZNot and PhAlips (1990)). We let y(where Y- (Y,....~YT)')

have any density within the dass of multNariate elliptical densRl~, thereby covering such denskles as

the muKNarlate normal, muttNariate-t and Pearson type-Ii. Moreover, we allow the covariance matrix to

take the form t''V(q), where V(,)) fa any posltNe defkdte symmetrk; matrbc parameterized by a finite vector

q. Technlques for handling extenslons a) and b) are described In Osiewalskl and Steel (1990) and Chib

et al. (1990).

In this paper, no single model need be selected for Nnal analysis. Several dNferent stnx,tural breflks

and structures for V(p) can be chosen, and a supermodel, which is a flnite mixture of the various

submodels, used. We allow V(q) to have varkws stnictures In the ARMA dass. The motivation behind

the Induslon of a moving average componeru Is discussed in Schwert (1987).

Formalizing the kieas descrlbed In the preceding paragraphs, we begin with the model wfth rw

structural breaks (M„). We mix over m differerrt correlation struciures so that each IndNkiual model Is

labelled M„ (1-1,...,m). For each model M,~ we take:

P(y I 9MT~,~,Yp~.M„J- I r~Vw(v11-'~

9wI(Y-hw(Br.~)'T'Yia' (n) (Y-hw(eN))1
(2)

' In the empirk~l sectkxi we fdlow DeJong and Whheman (1991a,b) and aet k-3.
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where gw(.) Is a nonnegatNe functlon wh~h satisfies (for all I and T),

ruR rgw(uJClu-I'(T~2)n-r~~. (3)

In other words, we assume y has a T-variate elliptical density. Note that (3) Is a necessary and sufficient
condftion tor (2) to be a proper densfty, y~ is the vector o( Initlal observatlons (y,,, ...,y~', and hw(9,~

Is a vector of length T with property:

A-,

~hw(eN)Jr' Nt~iDyr-i~ ~~PYf-r
j-~

Since we assume this function to be Identk,al for ap covarlance structures, we drop the I subscript and
write:

hN(eNI -~Y-1 fX~N

where

i
Y-,'(Yo~Yi,...,Yr-i) ,

r yN ~
XN-Y`t ,...XT ,

X~-(~ ,t,~y,-,,...,0 yf-A.IiI),,r

aN'W,I~,W 1....,~1-1)'- W .Y,~,,

and tlence 9N - (o, oN )'
For future reference we define:

dw(er,~ ~) -(Y-hN(eN))via~ (n) (Y-hN(BN))

(4)

(5)

The model withou[ stnictural breaks ( M,,) Is then glven by the mbRUre of the probabllftles In (2)
over the m covariance structures:

P(y I 9MT~,n,d,Y~,M,J

-~df P(y I 6Mt~,n,Yp,Mw)~
r-,

(8)

where d -(d,,...,d„J' is a vector of mixing parameters with d,ZO and F.d,-1.

We obtain the model with structural breaks (M~ by máing over varkws covariance stnictures
Q-1,...,m) and breakpoints ( q-1,...,T-t). Note thet we use the same coverfence atructures as In the

previous model. Although not necessary, doing so slmpltFles the notatlon such that Vw-Va-Vi for IaJ.

Moreover, we conceptually allow for the structural breaks to occur at any point in our sampie. Two types

of structural breaks, level breaks and trend breaks, can occur at anytime q z 1,...,T-1. Perron (1989) argues
tor the presence of a level break In 1929 and a trend break In 1973 for moet U.S. mecroeconomic time

series. To reduce the burden of computation only the latter two breaks are Included in the empirk~i

analysis aithough the general notation is retained throughout this section.
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Me Is a mlxture over models wRh dlfterern structural breakpolnts and covarlance structures (M~.

Note that each of these submodels has the Ilkellhood functlon:

P(y I 8a,~,~,Y~y.My~- I t-~r(o)I z

9y,((Y-hy,(es))~i'(~) (Y-hs„(Bs)Il

where ga,(.) satisfies (3) for aA j, q and T, and

hyo(es)'hs,íes)-PY-t'XrPM~Xa,ap'PY-, ~Xsvas.

We deflne X~ - (X~,....X~)'

and X~ - (DU(q)„ DT(q)~',

where DU(q), z t M t~q and 0 otherwlse Qevel break)

and DT(q), - t-q If t~q and 0 otherwlse (trend break)

Furthermore ao - (d~,de)' and hence

X~-(X„ X~ and a5-(aN apY.

(7)

I n this setup 9, - (p ae)' -(p a„' aó)' -(B„' ap)' and the structural break models have two parameters more

than those lacking structural breaks. In our emplrk~l setup we restrlct d~ to zero for 1973 and take dB

to be zero for 1929, leaving just one parameter In ap for each of the structural break models. For future

reference we deflne

dy,Íes,n)-(Y-h~(e~)~ Yi ~(~)(Y-h,,(Bs)).

7he overall model (M~, mbced over structural breaks and c~varlance structures, Is:

P(y I Ba,~,q.7,K.Yp,Ms)
r-,

-~ 7~~ K o P(Y I ev~,7,Yp,My,)
~.i ai

(9)

where y -(ry,,...,ry„j' and K-(K,,...,KT-,)' are mixlrtg parameters with yi, wo t 0 v J, q and ï7~ - F.~c,

- 1.

model

Flnally, we mlx over the no-structural-break and structural-break models to obtaln the sampling

P(y I 6a~~~~~a,d,7~K,Yq)-a~d~ P(Y ~ eMT',o,Yq.Mw)
i.,

r-,

'(t -a)~ 71~ K 4 P~ I eS,~,n,Yp~,M~
~-1 p-t

(10)
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withOsas 1.

To summarize: ( 10) Is the overall samplirg model to be used In thls paper. It mbces over two

models, one wkh and one wkhout structurei breaks. We welght the model wkh no structural breeks over
covariance structures (see (6)) and the model wkh stnictural breaks over covariance structures and

structural breaks (see (9)). Each of the mT submodels In (10) can have a different type d elliptical density.

Not only do our Iikelihoods allow tor nomial, Cauchy and Student-t denskies, but for denskies wkh
truncated tails (eg. Pearson type-II denskles) as well.

It remalns to specHy the choices for Vi(q). Sktce most, H not all the residual autocorrelatk~rt wlil

be removed by Induding the lagged ey,s In the model, V~ Is restr~ted to two cho~es: V, ~ IT and V, -

(1 t n~l, - qA, where q c(-1,1) ard A Is a trkllagonal matrix wkh 2's on the dlagonal and -1's on the off-

diagonal. In other words, we allow the errors to be urtcorrelated (whlch, only for the nomial dlstribution,

Implles Independence) under V, and to exhibk MA(1) behavlor under V,. Chd ( 1990) argues that Ignoring

the MA(1) component of the errors resuks in a blas in dassical estlmates of p equal to q(1-p)~(1 tq) for

Infinke k wh~h tends to drNe resuks towarcls the unlt root for q~0.

Section 3: The Prior Density

A controversy surrounding the use of liayeslan methods Is the rde of prkx informatkm. Many

researchers use prbrs that are noninformative or obJectNe in order toavokf the issue (see DeJong and

Whiteman (1991a,b), Koop (1991a) and PhNlips (1991)). Koop and Steel (t991) discuss the hazards

irndved In the use d such'objectNe' prbrs. Moreover, improper rwnlntormatNe prbrs make k Imposslble

to calculate posterior odds requlred to test for unk roots (see Sectlon 1). For the reasons noted,

noninformative prfors for p are not used in this paper.

An altemative, fdlowing Sctwtmen and van Dyk (1991 a) and Koop (1991 b), Is to Introduce expl~k

prkx Infonnatkxi Into the analysls. Schotman arxl van Dijk minimize the amount d sub)ectNe prbr

information by allowing the prkx to depend on the data, an approach which vk~lates the Iikelihood principle

arxi thus Is avokied here. Koop (1991b) uses natutal con)ugate priors centered over the unk root

restrk:tlon and pertwms a senskivity artalysis wkh respect to the prlor covariance matrhC of the regression

parameters. In this paper a prior Is used which Is uniform In the regresskxi parameters other than p and

In log(i~. As well as being Improper, the prkx is nonktFonnative In certaln dimensions in that the posterior

is proportfonal to the Ifkelihood function. However, before posterkx odds can be calculated, the prkx

must be made proper In the remaining dlmenskms by bounding k. A senskNky analysls can sesUy be

periormed over the chofce of bounding region. We fomialize these steps In the remainder ot thls section.

The prior densky for the parameters d[he sampling model can be written as:

P(es,t',~,a,b,7.K)-P(es.t~,n)P(a)P(ó)P(7)P(K) (11)
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That Is, we a priorl assume the mbcing parameters tobe Independent deach other and dtheperameters

in each submodel. Since the mbcirtg parameters ared no krteragt to us, we need only spectfy prkx means

whose existence Is assumed (aee Chib et al. (19BO)). In order to be as noninformative as posslble, all

modeis receive equal prior welqht. Specifically, we set

E(a)-1~9; E(ó,)-E(á~-E(y,l-E(y~-1~2 and E(Rd-1~2 for q-1,2.

Full robustness with respect to the cholces for g~(.) and gw(.) is achleved by assuming (see Osiewalaki

and Steel (t990)):

P(ea.t:,~t)-c,T ~(ea,~).

This assumptbn Implles a uniform prior for log(r~. Nde that c, Is a con.atant wh~h cancels out d the

posterlor odds ratio and hence Is irrelevant for our analysis. All that remains Is to specffy P(98,q):

P(es,~)-P(ernarn9)-P(Br I amn)P(ao,rl)-

Since the parameters ao and q are not present in all models, we must ensure that P(ao,q) Is proper. For

the sake d convenlence we assume that P(ao,~)~P(aaP(p)-P(dM)P(ds)P(q) and speclfy:

P(dN) - 1~(,4z-A,) on [A,~) and 0 elsewhere
P(dB) - 1l(B,-B,) on [B,,B,] and o elsewhere
P(n) - 1l2 on (-1.1) and 0 elsewhere .

(12)

in practtce, [A„A,] and [B„B,] are ctwsen so as to cover the area where the likelihood function Is a priori

assumed to be appreciable (see Prlor Appendfx). Finally, It remalns to speclty

P(A„ I ao,q) - P(aN I P.aa~)P(P I ao.4)-

Since the parameters a„ are present in all models we allow them to have an unbounded un'rform prkx.

We essume that the parameter d Interest, p, la Independent d ao and q. Under the hypdhesis

that a unft root is present (H~ we set p-1. Urder the hypothesis that a unR root Is not present we try

two priors for p. Our Flrst chok~ Is a bourtded unrtorrn prior wh~h, for the atatlonary repkxt (H,), takes

the form:

P(P)-29 If p e (.55,1.00)

-0 otherwise ,

and for the explosive region (H~:

P(P)-10 N p e(1.00, 1.10]
-0 ottterwtse.
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This type of bounded uniform prkx leads to a truncated Student-t posterlor for p under V, and for p ~ q

under Vx. AltematNely, an Independent Student-t prkx for p wRh Identir.al first two momentsx can be

used to yleld a 2-0 pdy-t posterior density for p(or p ~ 7) (Dreze (1977)). Note that pseudo-random

drawings to be used in the Monte Cado Integration can easUy be made from all these densRies (Richard

and Tompa (19f30)).

Although the first two posterior moments of p may rwt be cruclally aHected by the difference

between priors, Koop er al. (199t ) show that results for n-atep ahead pred~tbn can dt(fer dramatically.'

That Is, predbtNe means and variances wIU exist for any horizon (n) In the case of a bounded unMorm

prior; however the Student prior for p atlows oNy for flnfte predlctNe means (given q) for n up to

approxlmately T, and for finfte predlctive verlancea If n Is less than approximately T~2. In Sectlon 5 we

Introduce a loss functlon based on predlctNe variances whosebefiavior Is expected to dHfer across prbrs

H n Is dose to T~2. t~t course, the tad that moments may not exist will not necessarlly show up dearly

here gNen the inevitable limitatbns of a Monte Carlo analysis whksh uses a finRe number oF repl~atlons.

This concludes our development of aprkx tor the parameters of our sampiing model. It Is worth

emphasizing that, wfth four exceptions, p, q, dM and dp, the priors for all our parameters are

raninformatlve. We believe that the prkxs we aped(y for these exceptlons will not be considered

unreasonable by other researchers.

Section 4: The Posterior Density

Combining our results from the two prevkxls sectbns ylelds our Bayeslan model:

P(y.9S.~,7,a,ó.7,R I Y~)-c~T-xP(p)P(a~P(7)P(a)P(ó)P(7)P(K)
x

{a~óP(v I eMT~.7,Yp,.M'.)
~.i

x x

'(t-a)~ 71~K~(yI 8,,~,7J'~,M~}
~., o.,

(13)

Using resuKs from Oslewalski and Steel (1990), we kNegrate out tx and the mtxing parameters, yielding:

x We use truncated (at p-1) Student priors for both H, and H, which are constructed In such a way
that their untruncated counterparts mimlc the moments of the relevant uniform prfor mirtored around
p- t. This ylelds half-Students wfth a mode at p-1. Flnally, the degrees of freedom parameter Is chosen
to be 3 so that thls alternatlve prkx haa fat taBs yet ~tW ellows the first two moments to exist.

' The n-step ahead prediction Irndves moments of p of order n for pred~tNe means and of order
2n for pred~tNe variances.



P(Y,95.7 ~ Yp~)-c,P(p)P(ao)P(~){ 3 IY~(7)r'~~Jdw(eM7))-T~2~

3,~ 2~ 2 IV~(o)r'nldsa(es.~)1-'~2}

where c2 z c,I'(T~2)rCT~~ and deflnkbns (5) and (8) ere used.
For the IndNidual models we obtaln:

,
P(eM~ iY,Yp,M,,,)-CN P(p)P(7)iYi(7~ ~(dw(eM7))-'n

and
,

P(es.9 i Y,Ya,My~-Cy;, P(P)P(7)iY~(o)I ~Id~v(Bs,n))-'~: .

(14)

(15)

(18)

where C,~ and C~ are the integrating constants needed to constnrct posterior odds (ie. Cw - P(y ~ yR,M„J

andC~ - P(y ~ y~,M~). Although the integrating constants may be calculated directly, k should be noted

that a„ may be integrated out of (15) and (16) analyt~ally using the properties of mukNariate Student

distributlons. Once a„ is integrated out, the C~,'s and C~'s may be calculated using Monte Car1o

integration. One-d(mensional kttegration Is requlred for calculatlon of C,,,; twotllmensfonal Integration

for C~ and Ce,o; and threeáimenslonal integration for C~. Formally, the posterbr density for ap, given

p and q, is a truncated StudeM-t over the region gNen in (12). If this region covers most of the parameter

space where the likelihood functk~n is appreciable, the truncatkxt will not matter. In this case we can

integrate out the full a9 vector as a Joint Student densky, Ieaving only one and two dimensional integrals

tor Cs,a and C~ which we caiculate using Monte Cario krtegretion. A check on this approximatkxt Is

to pertorm the integration wkh respect to ap numerically by dkect slmulatkxt wkh re)sdkxt.

The IMegrating constant for the sampling model, C- P(y ~ y~), Is given by:

C-s(,L Cwa IL L CyY'

These Integrating constants can be used to calculate the posterior probabAftles ot the various submodels.

P(Mw iY,Y~y)- Cw~6C

P(MN I Y,Y~yI-(CN7tCN7),~

P(M~ I y,y~)- C,~ ~6C

P(My I Y,Yq)-(Cy,~Cy~)~~

P(Msa I Y.Yq)-(Caia`C~~6C.
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The posterkx model probabllRies may Indlcate, among other things, whether structural breaks are present

or H errors exhibR MA(t ) behavlor. ARhough not given here, Inference on the parameters could be obtalned

from weighted averages of (15) and (16) (with a„ posslbly Integrated out), where the welghts are the

relevant model probabllitles.

Under all hypotheses, we use the same general mfxture of submodels for the sampling densiry.

Note, however, that in all cases, the relatNe posterior weights gNen to the submodels depend on the

data.

Sectlon 5: Decision Theory

In the previous sectiona we have described how the posterkx probabAitles of various hypotheses

can be calculated using Bayeslan methods. fiowever, econometricians must frequently make decisions.

For instance, in a pre-testing exercise a decision must hequently be made as to whether a unft root is

present in a series. If present, the series may have to be differenced in a larger VAR model. The Bayeslan

paradigm provides a formal framework for makitig such deciskxts. To make a deciskxt the researcher

specifies a loss function and chooses the actkxt whk:h minimizes expeded loss (see Zellner (1971)). By

focussing on posterior probabYfties, prevbus Bayeslan researchers have impl~itly used a very simple

loss function where all losses attached to Incon-ect decisions are equal. (fhat is, the loss assoclated with

the cholce of a unR root when the series Is statkxtary is equal to that associated with the assumption

of stationarlty when a unit root Is preseM). qassk~l resaerdters use a loas functlon where losses are

asymmetr~, vlz. where the cho~e of a level of slgniflcance Impllcftly deflnes the loss function. Lacking

a measure over the parameter space, dasslcal researchers arv forced to look for, say, dominating

strategies (which are rare) or minimax sdutlons. It Is this lack of fomtal development and justlficatkxi

of a loss functkxt which is, in our opinion, a serlous weakness of previous Bayesian and dassical unit

root studies. This sedion proposes a loss functlon whidt we use to make decisions on whether to accept

or reJect the unR root hypothesis.

Our crfterion for the evaluation of losses associated wfth Incorrect declsions is predictlon. This

criterlon Is ImpoRant because the macroeconom~ tkne serles In this study are frequently used for

prediction (eg. to forecast from VAR models or to calculate impulse responses). The cost oí assuming

stationarity with such models when the serles are reelly ranstatkxtary may be drastically different from

the converse. Since differencea between nonstatkxtary and stationary models are more proraunced for

predfcttve vartances than for predk:tive means, we tiese a loss functk~tt on pred~tNe varlartces. GNen

that the precision of forecasts Is often a crucial Issue we belleve this approach to be a sensible otte.

For the simple AR(1) model, with intercept and trerá', the predictive variance for forecasting

n periods ahead Is given by Koop et el. (1991):

' Forrnally speaking, using thls model corresponds to conditloning on ~ and ao In our more general
model and assuming uncorrelated errora.
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n-,

V~RYT.n ~ Y.YRy,P.M.B.t~'~-:F. PL .wo

when we condRion on all the parameters; and by the more complbated fonnuia (for T~4):

~.E n-1 2 n n
V~YT.n ~ YYpI.P)-4(~. Py ' ~7q-1)~~ Kf~AP~~~) (19)

when we integrate out N, ~ and r2 using the nonlydomtatNe priors gNen In Sectkxt 3. In (19) we use

r(I,j) ~61jt3(T-1) (i t j) f 2T2-3T t 1 and SSEo s (y-py.,)'M(y-py-,) where M is the Identirymatrix minusthe usual

projection matrix on the intercept and trend. To ensure computational tractability, we do not fully

marginalize the varlance wfth respect to p. Rather, we replace the powers of p In (18) and (19) by thelr

expected values (le. we replace p~ wlth E(p~) which we calculate using Monte Carlo Integratlon).'

To develop the loss functlon we first deflne:

n-1

Dnt(P)'~ PL I Hj
E.o

and

DnR(P)~8át(P) a ~~-')~~r(~nPSn-F~~ H~

where H,: p ~ 1 (statkxtary model)

Hz: p -1 (unit root model)

H,: p ~ 1 (explosNe model).

For each Hi, we can use the marginal posterlor densky of p to calculate

n-1
EDát(P)'QF, D~ I H~YYp~.

Fo

l2~)

where we have already mixed over the different models In the Iikelihood function using the relevant

posterlor probabllftles. Eg',,,,(p) Is calculated In the 9ame fashbn. Our loss tunctlon takea the form:

t'd,-max(~.EDnÁP)IEBn~P))tb ntax(1.Eyn`u(PuEDn.d~P))-(i.b).

' If we had fully marginalized with respect to p, an addRbnal term wouki have been added to the
predlctNe variances under H, and H,. Therefore, predictNevariances forthe trend-stationary and explosfve
models are slightly underestimated relatfve to the unft root model.



where I~ 1 or 2; H, Is the hypothesis chosen; H~ Is the 'correct' hypdhesis; and d, whid~ is preater than

or equal to 1, reflects our aversion to underestlmatirq the predk;tNe variance.' For each decislon, d,

we compute the expected loss:

~-~ ~~ P(H. I Y.Ypt).

and choose d for which the loss Is m(nlmal for a gNen forecast horizon, n.

The expressbn In (20) refers to that part d the varlance due to sampling uncertainty that differs

cruclally across the three regkxre for p.' Note that tf~ls quar~tlty Is bounded as n prowa for H„ Is Ilnear

In n for Hr and grows exporterttlaily for H,. Thus as n becomea moderately large, It displays very dHterent

characteristics for these three regions. The losa furtation based on q~,~, dNfers from that based on g~„~

in fts treatment of parameter uncertafrny about N, p and r'. For both loas functions the random nature

of p is only partlally taken into account. We know that by not marginalizing fully wfth respect to p, we

favor H, rt ó ~ 1, since predictNe variances under H, and H, are underestlmated.

Note that á is cruclal to conskier muftl-perkxi pred~tions since they bring out the dffferences

In predictNe behavkx between statkxiary, unft root, and explosNe models (see Chow (1974) for some

specific prd~lems when n~ 1).

The parameter d plays an Important rde In our kus function. If d - 1, the k~ss function Is symmetric

In the sense thet underestimatinq and overestimatlnp the predkKNe varlence are equally costly. For values

of d greater than one underestimating the predlctNe variance (and gNing a researcher excesslve

confkience In her forecasts) is more cosUy than overestimating the predictNe varlance. The loss function

is nonnalized such that losses are zero for correct dedsbrw twt are: I) equa! to the varlance ratlo (whlch

is bigger than one) H the chosen model has a bigger varlance than the 'correcC model (le. if we

overestimate the predictive variartce); and ii) equal to d tknes the Inverse d the varfance ratlo if the chosen

model has a smailer varlance than the 'corred' model ( fe. the pred~tNe variance is underestimated).

At short horizons the losses do not differ much acrosa models (urdess d is very large) and the

model b chosen largely on the basis of Rs posterior probabpiry. Indeed when n: t all losses are zero

by deflnftton. At long forecast horizons, the dHferences In predk.tNe variencea between statkxiary ard

nonstatkmary models grow large; and assuminp d ~ 1, nonstatkx~ary models grow concomftanUy more

attractNe. So ff there is any chence that the corred model Is nortstatkxiary, our loss functbn w01 choose

R at some forecast horizon ( le. the cost d Incorrectly choosing the stationary model and seriously

underestimating the predictNe variance wYl ever~tually dominate at some foreqst horizon). Under both

loss fundkxis, H, wBl be chosen M n goes to kdktity (holdirq d constant), wnYe H, wul be dwsert M d

goes to kdinity ( hdding n constant). Sirtce the decislon taken depends cnx~elly on the choice of n and

' For computatkxial aese, we assume that SSE, approximetely cancels out In our loss functfon.

' In dassical analyses, the MSE of a forecaat wll also heve the same anafyt~al form If parameter
uncertalnry Is n~ taken Into accour~t.
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b, we do a senskNfry analysfs over these two parameters.

The decislon theory approach is based on the assumptbn that researchers are Interested In

choosing a particular region for p since they may wlaFt, for Instance, to difference the data. However,

In cases where such a pretest strategy Is not required, we suggest basing predlctlons on a mlxture over

regions for p weighted wkh the relevaM poaterlor probebllkies.

Section 6: Empiricai ResuKs

This sedlon presents evidence on the existence of a unk root in the Nelson-Plosser series. The

data used are axtended to cover the period untY t9B8 (see Data Appendbc). Tables 1 and 2 present

posterior means and standard deviations for p and q under H, and H,, whAe Table 3 presents evidence

on the presence of structural breaks and moving average errors. Table 4 contalns the posterlor

probabAkles ofH„ H, and H,, and TaWes 5 and 6 aummarize the results of the declslon analysis. Posterkx

odds are calculated for testing the varbus hypotheses wkh respect to p by using the sampling model

weighted over all the submodels. Akhough our primary focus Is on the unk root hypothesis, two subsidiary

questlons are simuitaneously addressed: (1) Is there eviderx:e of one or more structural braaks in our

economlc time series? (2) Is there evidence of MA(i) behavior In the error terms?

Since parameter estimates are only sllghtly relevant to the issues we address in thls paper, we

discuss results onty brieHy. Note Flrst that Tables 1 and 2 support the condusions of Choi (1990): Omkting

the MA(1) component of the error term does Indeed tend to drive estlmates of p towards one In a manner

consistent wkh the asymptot~ bias derNed by Chol. Table 3 contalns the probabAity that an MA(1) error

term Is present as well as the AR(3) component already allowed for In our speciflcatkxi. For many serles

this probabUky is very high and for no series is k small enough to be ignored. Thus Choi's results are

more than Just theoretically Interestfng. The Induskm of a moving average error term wouki appear to

be an important part of any specificatkui. A second polnt worth noting about Tables 1 and 2 Is that

posterior means end standard deviations alone ahouki rat be used to Infer the probability of a hypothesis.

For example, Table 4lndicates that a high probabUky exleta that the real wage series contains a unit root

but the nominal wage does not. This cannot be ascertalned simply by examining the posterior means

and standard deviations in Tables 1 and 2, apdnt whk:h exempirties the hazards of using highest poaterkx

densky intervals for testing purposes.

Wkh respect to structural breaks in Table 3, rate that, aRhough our results are consisterrt wkh

Perron's contentbn that a level break occurred In 19~9 In many macroecorwrnic tlme serles, we find

virtually no evidence for the presence of a trend break In 1973 for any of the series.' As Perron (t989)

notes, models wkh structural breaks tend to yieki less evldence of a unk root.

We do not discuss Table 4 In detaA but we do use the resuks to calculate the expected losses

' Perron Indicates that models wkh a 1973 trend break are mae relevant for post-war quarterly data
sets than the long annual data sets used here.
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requlred for our declslon analysis. For our purposes k b suff~kint to note that resulta show thet trend-

stationarity (H,) Is the most probable hypothesla for most o( the serles (notable exceptkxts are the CPI

and velocity); however, without a fomial loss function k would be rash to rule out the unR root model

at this tlme.

It is worth emphasizing that our loss functlon has two key propertles. First, as long as ó is greater

than one, It Is better to overestlmate than to underestimate predktNe varlances. This property tends to

favor H, over H, and H, over Hz and H,. Indeed as ó goes to Inflnity (holding n constant) H, wlll always

be chosen. Second, there is a tendency In our loss funcclon to favor Hr H, Iies between H, and H, such

that a researcher wAl, loosely speaking, never go too far wrong in dioosing H,. (Poterttial losses would

be very large M, say, H, were ctwsen when H, was the 'corred' model). In fact, as n goes to IMiniry

(hdding ó constant) H2 will always be chosen.' These two propertfes account for most o( the flrdings

In Tables 5 and 6, which present the model chosen for different values of n and ó." Wkh the exception

of the CPI and velocity series and, to a lesser extertt, the GNP deflator and real wage series, H, Is the

model chosen (so long as ó or n is not large). However, dear scope exists for choosing nonstatlonarlty

If underestimating predictNe variances fs feit to be a serbus problem. If ó-100 a researcher would almost

never select the trend-statkxtary modei. There appears to be less sensitNity of our loss function wRh

respect to n. If we restrict attentlon to short- or medium-term forecasts (eg. n ~ 10), only a few cases exlst

where dNferent values of n yleld different conduskxis. A rypk~l example Is real GNP, where, urdess the

researcher Is Interested In forecasting four or more decades Into the future, the trend-statlonary model

Is chosen foró-1 or 10. Only H 6-100 (a strong penatty for underestlmating predictive varlances) Is the

unit root model selected. Overall, we condude that there fs strong evidence In favor of trend-stationarity

for virtually all the series analyzed In thls paper (especlaily as the condftkxiel results gNen In this paper

are blased In favor of Hz); however, as we ehow, researchers with different loss functions may meke

different inferences.

It is krteresting to note that our resufts for ó a 10 correspond dosely to ttase gNen In PhNllps

(1991, repiy) who uses the Phillips-Ploberger posterlor odds test on the same data. The chlet dflference

is that Phillips finds the nominai wage series to contaln a unit root, whereas we only match this finding

if n is very large or ó-100. Note, however, that PhGlips'resuRs are obtalned by using an improper Jeffreys'

prior for p, whereas we use a formal decision theoretic approach based on a strong aversfon to

underestimating predictive variances. Researchera who do not wish to include such an aversion in their

analysis will tend to choose trend-stationarity more often.

` It is worth emphasizing that our fatlure to fully marginallze wfth respect to p favors the unk root
hypothesis.

'" Table 5 and 6 correspond to our two loss functions. Because thelr results are very slmllar thefr
different treatment of parameter uncertainty in the predictNe variance may not be too important for the
purposes of our analysis for flnfte n. As n goes to ktflrtity these differences may qecome Important (sse
Koop et al. ( 1991)).
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A flnal Issue worth dlscussing Is the senaltNlty oF our results to various priors. Ae descrlbed In

Sectkm 4, we use two differeM priors for p: a haM-Student and a txwnded unHorm prbr. The flrat and

second moments of the halfStudent prior are chosen soas to match the uniform prkx (see footnote 2).

The differences between the two prbrs occur In thkd and hlgher moments. Tables 1 and 2 indk~te that

postedor flrst and second moments do not differ much across the two priors. The remaining tables,

however, Indk;ate somewhet larger dffferences. Thls la eapeclally true of Tables 5 and 6, where In some

cases, the two very similar priors yleld different conduskx~s (eg. Nominai GNP for d s 10 or the GNP

deflator for d~ 1 or 10)." Our decisbn analysls depends upon high order moments of p and our prkxs

dHfer in these high moments. Recall that, whYe all momenta exlet for our bounded uniform prbr, rwne

beyond 2 exlst tor our half-Student prkx. Although Beyesians who use InformetNe priora typk~lly do not

worry about third or higher prkx moments, our anelysis suggests thet care ahould be taken in elk.ltlrp

such prior moments when a decislon analysls whlch krvoNea high order moments Is carrled out. The

effect d prkx moments on the exlstence of predlctNe variances for multi-period forecasting Is formally

analyzed In Koop et al. (1991).

" As described in Section 3, predictNe varlances exlst only for n less than approximately T~2, a fact
whlch is Ignored In Tables 5 and 6 where resuRs are occaskmally reported for n~T~2.
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UnMorm Student
Prior p Prior p

No MA MA MA No MA MA MA
v v n v a n

Real GNP nb 0.8134 0.7462 0.4418 0.8291 0.7836 0.3483
(.0570) (.0889) (.33Tn (.0594) (.0894) (.3705)

Ib 0.7409 0.6941 0.3815 0.7669 0.7242 0.3484
(.0681) (.0829) (.2880) (.0689) (.0999) (.3127)

tb 0.8127 0.7338 0.5178 0.8288 0.7732 0.4372
(.0562) (.0862) (.2943) (.0547) (.0877) (.3365)

Nominal nb 0.9411 0.9031 0.8737 0.9434 0.9025 0.7512
GNP (.0296) (.0448) (.1683) (.0287) (.0485) (.1290)

Ib 0.7777 0.7555 0.3228 0.7991 0.7862 0.3168
(.0630) (.0783) (.2410) (.0834) (.0760) (.2612)

tb 0.9209 0.8514 0.7782 0.9251 0.8728 0.7744
(.0371) (.0659) (.1206) (.0355) (.0625) (.1182)

Real per nb 0.8032 0.7363 0.4321 0.8201 0.7782 0.3303
cap. GNP (.0579) (.0889) (.3407) (.0577) (.0914) (.3838)

Ib 0.7564 0.7022 0.4263 0.7813 0.7345 0.3753
(.0671) (.0845) (.2970) (.0688) (.0984) (.3260)

tb 0.8032 0.7256 0.5152 0.8205 0.7636 0.4365
(.0583) (.0866) (.3004) (.0579) (.0918) (.3383)

Ind. Prod. nb 0.8256 0.7826 0.3843 0.8392 0.7985 0.3003
(.0523) (.0859) (.3072) (.0515) (.0832) (.3356)

Ib 0.7498 0.6952 0.3530 0.7743 0.7244 0.3181
(.0678) (.0811) (.2401) (.0666) (.0984) (.2620)

tb 0.8149 0.7386 0.4430 0.8296 0.7731 0.3819
(.0536) (.0847) (.2833) (.0538) (.0849) (.2976)

Employ- nb 0.8637 0.8024 0.4442 0.8734 0.8273 0.4160
ment (.0473) (.0747) (.2357) (.0458) (.0694) (.2253)

Ib 0.7982 0.7300 0.4209 0.8150 0.7599 0.3953
(.0563) (.0767) (.1916) (.0555) (.0773) (.1954)

tb 0.8578 0.7866 0.4873 0.8879 0.8148 0.4525
(.0484) (.0774) (.2190) (.0471) (.0739) (.2260)

Unempl. nb 0.7454 0.6586 0.5935 0.7747 0.6644 0.6001
Rate (.0736) (.0748) (.1303) (.0750) (.1117) (.1242)

Ib 0.7144 0.6523 0.5866 0.7459 0.6412 0.5912
(.0764) (.0740) (.1244) (.0824) (.1170) (.1278)

tb 0.7378 0.6587 0.5922 0.7682 0.6542 0.6055
(.0758) (.0739) (.1362) (.0770) (.1140) (.1275)

GNP De- nb 0.9634 0.9474 0.4973 0.9640 0.9468 0.5646
flator (.0189) (.0294) (.3127) (.0188) (.0294) (.2417)

Ib 0.9166 0.8843 0.5462 0.9194 0.8909 0.5313
(.0289) (.0423) (.2314) (.0285) (.0396) (.2400)

tb 0.9321 0.8942 0.6154 0.9347 0.9095 0.4408
(.0300) (.0477) (.2196) (.0295) (.0427) (.3704)
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T~ble 1(continued): Posterkx Means for n and n under H, (Standard devlatbns In parentheses)

UnHonn Student
Prkx p Prlor p

No MA MA MA No MA MA MA
P P 9 P P 7

CPI nb 0.9886 0.9804 0.8531 0.9887 0.9808 0.6286
(.oon) (.o13a) (.14a6) (.oo7e) (.o12s) (.1ss5)

Ib 0.9888 0.9804 0.6539 0.9888 0.9838 0.468t
(.0077) (.0134) (.1474) (.0077) (.0099) (.3427)

tb 0.9820 0.9679 0.6682 0.9820 0.9694 0.fi412
(.0114) (.0120) (.1456) (.0115) (.0198) (.1718)

Wages nb 0.9373 0.9053 0.5068 0.9393 0.9032 0.5165
(.0279) (.0459) (.3128) (.0273) (.0487) (.3155)

Ib 0.7999 0.7818 0.2137 0.8120 0.7822 0.2225
(.0471) (.0593) (.2292) (.0472) (.0596) (.2338)

tb 0.9212 0.8725 0.6076 0.9247 0.8723 0.5960
(.0345) (.0596) (.2479) (.0332) (.0591) (.2659)

Real nb 0.9280 0.8818 0.6506 0.9322 0.9038 0.5466
Wages (.0395) (.0659) (.2152) (.0377) (.0560) (.2737)

Ib 0.9276 0.8751 0.7391 0.9324 0.8867 0.7954
(.0397) (.0672) (.2381) (.0377) (.0614) (.1909)

tb 0.8112 0.7159 0.6047 0.8316 0.7668 0.4624
(.0574) (.0807) (.2278) (.0502) (.0886) (.3292)

Money nb 0.9402 0.9070 0.5721 0.9415 0.9123 0.5534
Stock (.0233) (.0380) (.1882) (.0229) (.0357) (.2060)

Ib 0.8807 0.8454 0.4773 0.8848 0.8550 0.4623
(.0318) (.0446) (.2041) (.0316) (.0432) (.2158)

tb 0.9187 0.8726 0.5924 0.9210 0.8811 0.5700
(.0270) (.0440) (.1789) (.0269) (.0424) (.2008)

Veloclty nb 0.9629 0.9395 0.5648 0.9635 0.9437 0.5481
(.0212) (.0356) (.3094) (.0207) (.0341) (.3220)

Ib 0.9635 0.9383 0.6035 0.9642 0.9418 0.5976
(.0209) (.0360) (.2607) (.0206) (.0342) (.2668)

tb 0.9580 0.9289 0.6083 0.9594 0.9329 0.6248
(.0253) (.0431) (.2823) (.0246) (.0412) (.2509)

Bond Yield nb 0.9466 0.9195 0.4860 0.9488 0.9277 0.4560
(.0299) (.0466) (.1987) (.0289) (.0427) (.2314)

Ib 0.8931 0.8386 0.5518 0.9003 0.8583 0.5355
(.0441) (.0674) (.2024) (.0430) (.0638) (.2088)

[b 0.9449 0.9152 0.4917 0.9501 0.9283 0.4897
(.0410) (.0647) (.2198) (.0380) (.0538) (.2005)

Stock Pri- nb 0.9297 0.8991 0.3569 0.9329 0.9080 0.3339
ces (.0333) (.0527) (.3018) (.0320) (.0493) (.3032)

Ib 0.9135 0.8829 0.3322 0.9175 0.8932 0.3152
(.0351) (.0512) (.2367~ (.0346) (.0480) (.2333)

tb 0.9069 0.8581 0.4342 0.9120 0.8751 0.3934
(.0378) (.0619) (.2663) (.0362) (.0579) (.2811)

n z no rea , - ev rea , t - re ea .
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Table 2: Posterior Means for a and n under H, (Standard devlations in parentheses)

Un'rform Student
Prior p Prior p

No MA MA MA No MA MA MA
P P 9 P P 9

Real GNP nb 1.0167 1.0285 0.429Q 1.0134 1.0155 0.3609
(.0155) (.0292) (.4019) (.0126) (.0143) (.4043)

Ib 1.0189 1.0266 0.6854 1.0153 1.0184 0.4962
(.0175) (.0227) (.2331) (.0144) (.0168) (.4123)

tb 1.0172 1.0219 0.4la41 1.0136 1.0172 0.4811
(.0159) (.0191) (.3357) (.0125) (.0162) (.3491)

Nominal nb 1.0138 1.0196 0.5850 1.0117 1.0155 0.5143
GNP (.0124) (.0177) (.2637) (.0105) (.0138) (.3284)

Ib 1.0186 1.0260 0.6703 1.0144 1.0180 0.5999
(.0174) (.0221) (.2414) (.0136) (.0183) (.3356)

tb 1.0158 1.0225 0.6064 1.0129 1.0181 0.6181
(.0142) (.0200) (.2720) (.0177) (.0153) (.2546)

Real per nb 1.0174 1.0230 0.4118 1.0135 1.0159 0.3805
cap. GNP (.0163) (.0217) (.3828) (.0126) (.0151) (.4010)

Ib 1.0193 1.0241 0.5183 1.0152 1.0184 0.5182
(.0181) (.0201) (.4057) (.0138) (.0163) (.3998)

tb 1.0177 1.0230 0.5088 1.0138 1.0169 0.4824
(.0166) (.0202) (.3344) (.0128) (.0154) (.3488)

Ind. Prod. nb 1.0150 1.0184 0.2981 1.0125 1.0140 0.2737
(.0142) (.0178) (.3381) (.0115) (.0132) (.3477)

Ib 1.0179 1.0215 0.3533 1.0141 1.0159 0.3517
(.0169) (.0195) (.4593) (.0131) (.0139) (.4285)

tb 1.0153 1.0193 0.3767 1.0124 1.0143 0.3615
(.0144) (.0183i (.3064) (.0117) (.0127) (.3066)

Employ- nb 1.0150 1.0192 0.3709 1.0128 1.0151 0.3713
ment (.0141) (.0176) (.2335) (.0115) (.0147) (.2287)

Ib 1.0156 1.0199 0.4118 1.0127 1.0150 0.4007

(.0152) (.0187) (.2173) (.0117) (.0135) (.2260)
tb 1.0154 1.0193 0.4164 1.0123 1.0153 0.4163

(.0144) (.O1B0) (.2198) (.0115) (.0134) (.2069)

Unempl. nb 1.0211 1.0272 0.5908 1.0161 1.0192 0.5823
Rate (.0189) (.0228) (.1231) (.0149) (.0172) (.1394)

Ib 1.0226 1.0287 0.6006 1.0166 1.0203 0.6018
(.0205) (.0241) (.1287) (.0153) (.0198) (.1285)

tb 1.0218 1.0256 0.5998 1.0165 1.0188 0.5942
(.0198) (.0213) (.1306) (.0156) (.0164) (.1286)

GNP De- nb 1.0091 1.0138 0.5207 1.0083 1.0116 0.5074
flator (.0082) (.0136) (.3016) (.0075) (.0108) (.3097)

Ib 1.0096 1.0131 0.5662 1.0087 1.0110 0.5730
(.OOli9) (.0125) (.2805) (.0079) (.0103) (.2737)

tb 1.0120 1.0175 0.5726 1.0105 1.0137 0.5647
(.Ot 10) (.0153) (.2737) (.0095) (.0120) (.2793)
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Table 2(contlnued): Posterior Means for n and n under H, (Standard devlatkxis in parerrtheses)

Unfform Student
Prior p Prior p

No MA MA MA No MA MA MA
v v n v v n

CPI nb 1.0087 1.0095 0.5818 1.0065 1.0075 0.3119
(.0055) (.0083) (.1977) (.0053) (.0071) (.4508)

Ib 1.0069 1.0103 0.6316 1.0065 1.0081 0.3985
(.0056) (.0085) (.1626) (.0054) (.0074) (.4384)

tb 1.008t 1.0119 0.8430 1.0078 1.0097 0.4469
(.0069) (.0105) (.1466) (.0065) (.0088) (.3990)

Wages nb 1.0111 1.0153 0.4781 1.0122 1.0126 0.4522
(.0104) (.0144) (.3230) (.0109) (.0118) (.3378)

Ib 1.0125 1.0184 0.5453 1.0112 1.0143 0.5508
(.0123) (.0169) (.3167) (.0103) (.0138) (.3138)

tb 1.0132 1.0189 0.5277 1.0120 1.0147 0.5181
(.0124) (.0171) (.3097) (.0111) (.0133) (.3045)

Real nb 1.0207 1.0258 0.4960 1.0159 1.0188 0.4289
Wages (.0181) (.0221) (.3116) (.0139) (.0174) (.3881)

Ib 1.0204 1.0293 0.8208 1.0161 1.0209 0.7014
(.0178) (.0229) (.1540) (.0143) (.0188) (.3332)

tb 1.0171 1.0237 0.5541 1.0137 1.0173 0.5212
(.0162) (.0205) (.3000) (.0127) (.0165) (.3473)

Money nb 1.0082 1.0116 0.5326 1.0078 1.0102 0.5142
Stock (.0077) (.0108) (.2143) (.0070) (.0095) (.2366)

Ib 1.0085 1.0123 0.5477 1.0079 1.0107 0.5431
(.0082) (.0120) (.2010) (.0074) (.0100) (.2059)

tb 1.0087 1.0124 0.5525 1.0079 1.0106 0.5504
(.0081) (.0120) (.2007) (.0073) (.0098) (.1982)

Velocfty nb 1.0120 1.0170 0.5176 1.0106 1.0137 0.4942
(.0104) (.0157) (.3398) (.0091) (.0120) (.3588)

Ib 1.0122 1.0177 0.5781 1.0109 1.0144 0.5535
(.0107) (.0160) (.2870) (.0093) (.0129) (.3158)

tb 1.0156 1.0230 0.5782 1.0132 1.0167 0.5696
(.0135) (.0209) (.3058) (.0113) (.0150) (.2953)

Bond Yield nb 1.0163 1.0224 0.4531 1.0136 1.0222 0.4531
(.0143) (.0191) (.2135) (.0120) (.0196) (.2173)

Ib 1.0162 1.0209 0.4942 1.0134 1.0217 0.4966
(.0151) (.0187) (.2095) (.0120) (.0196) (.2062)

tb 1.0401 1.0423 0.4346 1.0255 1.0314 0.4362
(.0267) (.0274) (.1976) (.0188) (.0275) (.2063)

Stock Pri- nb 1.0141 1.0164 0.2389 1.0120 1.0130 0.2203
ces (.0130) (.0155) (.3432) (.0108) (.0116) (.3461)

Ib 1.0130 1.0159 0.2940 1.Oi10 1.0133 0.2846
(.0121) (.0150) (.2713) (.0102) (.0133) (.2722)

tb 1.0137 1.0168 0.3215 1.0115 1.0135 0.3092
(.0126) (.0157) (.3071) (.O t p6) (.0122) (.3099)

nb - no break, Ib - level break, tb - trenci breek.
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Table 3: Posterior Probabilities of Elements In Mixtures

Unlform Student
Prkx for p Prlor for p

l.evel Trend Movkq Level Trend Movkig
Break Break Average Break Break Average

Real GNP 0.0614 1.2E-5 0.5856 0.1556 3.6E~ 0.4977

Nominai 0.6639 2.9E-5 0.4740 0.8489 4.5E-5 0.4146
GNP
Real per 0.1728 2.3E-5 0.5719 0.1391 2.0E-5 0.4991
cap. GNP

Industrlal 0.2449 0.0001 0.5211 0.1tí~l.ó 9.8E-5 0.4829
Production

Employ- 0.4488 1.0E-5 0.7137 0.3626 1.1E-5 0.6454
ment

Unempl. 0.4447 4.9E~ 0.9930 0.4102 4.8E-4 0.9857
Rate

GNP De- 0.2676 1.4E-4 0.5892 0.3034 1.7E-4 0.5950
eator
CPI 0.0438 5.7E~i 0.4718 0.0461 5.9E-5 0.5148

Wages 0.9453 2.4Eó 0.3240 0.9427 5.3E~
.~

0.2960

Real 0.1428 O.IX)33 0.5554 0.1252 0.0085 0.5773
Wages

Money 0.5586 1.2E-4 0.7550 0.5194 1.3E-4 0.7399
Stock

Veloclty 0.01t)8 0.0002 0.7345 0.0108 0.0002 0.7341

Bond Yieid 0.7527 0.0125 0.7763 0.9180 0.0070 0.7661

Stock 0.2838 0.0018 0.4587 0.2935 0.0018 0.4485
Pr~es
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Table 4: Posterlor Probabilitles oi Realons for n

UnHorm
Prkx for p

Student
Prkx for p

H,: p~1 Hz: p-1 H~: p~t H,: p~1 H:: p-1 H~: p~1

Real GNP 0.9824 0.0147 0.0029 0.9816 0.0133 0.0051

Nominai
GNP

0.8275 0.1371 0.0354 0.9232 0.0476 0.0292

Real per
cap. GNP

0.9883 0.0094 0.0023 0.9852 0.0099 0.0049

Industrial
Production

0.9869 0.0108 0.0023 0.9863 0.0099 0.0039

Employ-
ment

0.9678 0.0263 0.0059 0.9657 0.0242 0.0101

Unempl.
Rate

0.9968 0.0023 0.0009 0.9905 0.0059 0.0036

GNP De-
flator

0.4940 0.4339 0.0722 0.6107 0.2896 0.0997

CPI 0.0789 0.8087 0.1124 0.1376 0.6192 0.2432

Wages 0.9794 0.0176 0.0030 0.9803 0.0162 0.0035

Real
Wages

0.4355 0.4198 0.1447 0.5515 0.2720 0.1765

Money
Stock

0.9097 0.0789 0.0011 0.9360 0.0495 0.0145

Velocity 0.3198 0.5650 0.1152 0.4389 0.4141 0.1470

Bond Yleld 0.7057 0.2315 0.0627 0.8790 0.0746 0.0464

Stock
Prbes

0.6114 0.3243 0.0643 0.7131 0.2068 0.0801
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Table 5: Results of Conditional Decis(on Analvsis Usinq,Ja"~' (n-2,..,100)

Unlform Student
Prkx for p Prkx for p

b-1 ó-10 ó-100 d-1 b310 á-100

Real GNP nc60: H, nc45: H, Hz nc76: H, nc60: H, Hz
else: H2 else: Hz else: Hz elae: H2

Nominal n~55: H, Hz nc15: H, nc63: H, n~14: H, nc10: H,
GNP eise: H2 else: H, else: H, else: Hz else: Hz

Real per nc73: H, nc56: H, Hz nc77: H, nc60: H, Hz
cap. GNP else: HZ else: Hz else: H, else: FLr

Ind. Prod. nc76: H, nc60: H, Hy nc80: H, nc87: H, H,
else: H, else: H, else: Hz else: Hz

Employ- nc72: H, nc52: H, H, nc57: H, nc44: H, Hp
ment else: Hz else: Hz else: Hz else: H,

Unempl. n~73: H, nc58: H, nc36: H, n~59: H, nc47: H, n~7: H,
Rate else: Hz else: H2 else: H7 else: H2 else: H, slse: Hz

GNP De- H~ Hz H, nc58: H, nc4: H, H,
flator else: Hz else: H2

CPI H, H, H, H, H, H,

Wages nc91: H, nc70: H, Fiz nc76: H, nc63: H, H,
slse: Hz else: H, slse: H, else: H,

Real Hz nc14: H, H, nc21: H, nc21: H, H,
Wages else: H2 else: Hz else: Hz

Money nc95: H, nc6: H, nc3: H, nc95: H, nc59: H, ncó: H,
Stock else: HZ else: H, else: HII else: Hz else: Hz else: H,

Velocity Hz nc16: H, H, H, nc67: H, H,
else: Hz else: HZ

Bond Yleld n~43: H, Hz nc48: H, nc41: H, H, nc29: H,
else: Hz else: H, else: Hz else: Hz

StoCk Pri- n~46: H, Hz nct35: H, nc53: H, H, H,
ces else: Hz else: H2 else: H,
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TaWe 6: ResuRs of Decision Analvsis Usina I.~ ( n~2,..,t00)

Unfform Student
Prkx for p Prkx for p

ó-1 ó-t0 óz100 ó ~1 ó-10 ó~100

Real GNP nc67: H, nc49: H, Hz nc83: H, nc67: H, Hz
slse: H2 else: Hz else: H2 else: H2

Nominal nc62: H, Hz nc13: H, nc70: H, nc25: H, nc10: H,
GNP else: Hz else: Hz else: H, else: Hz else: H,

Real per nc81: H, nc62: H, H~ nc85: H, nc67: H, Hz
cap. GNP else: Hz else: H, else: H, else: Hz

Ind. Prod. nc82: H, n~65: H, Hi nc85: H, nc72: H, H2
else: Hz else: HZ else: H, 91se: Hz

Employ- nc80: H, nc57: H, H, nc68: H, nc56: H, nc7: H,
ment else: H2 else: Hz else: Hz else: H2 slse: Hz

Unempl. nc60: H, nc63: H, nc41: H, nc62: H, nc49: H, Hz
Rate else: Hz else: HZ else: Hz else: Hz else: H2

GNP De- HZ H, H, nc64: H, nc4: H, H,
flator else: H, else: HZ

CPI Hs H, H, Hp H, H,

Wages H, nc78: H, Ht nc83: H, n~69: H, Hz
else: H, else: Hs else: Hz

Real Hz n~13: H, H, nc16: H, nc20: H, H,
Wages else: H, else: Hz else: Hz

Money H, ncó: H, nc3: H, H, nc65: H, nc5: H,
Stock else: HZ else: Hz else: H, else: H2

Velocity Hz n c 15: H, H, Hz n c 26: H, H,
else: H, else: HZ

Bond Yield nc47: H, Hz nc33: H, nc44: H, H, nc23: H,
else: HZ else: Hz else: Hz else: HZ

Stock Pri- n~50: H, H, nc58: H, nc56: H, HQ nc71: H,
ces el,e H., else: Hz else: H, 61se: H~
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Section 7: Conclusions

The paper develops a fomial declsion theoretic approach to testing for unit roots which InvoNes

the use of a loss function based on pred~tNe var~rx~e. It also etdends the dass d Iikellhood functbns

In the Bayeslan unit root Ifterature by using a IIkelRaoci function wh~h isa mb4ure over submodels whk:h

dfffer in covarlance structure and in the treatment of structural breaks. Each of the IndNidual Iikelihoods

mixed into the overall likellhood functkm belongs to the dass of general elllptk~l densRles.

Our empirical results indirate that a hlgh posterfor probabtlity of trend-statlonarRy exists for most

of the econom~ time series. However, N there Is a high coat to underestlmating predictNe varlances, our

decision analysis indicates that trend-stationarity Is not necessar9y the preferred cholce.
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Data Appendix

The data used In this paper are that of Neison and Plosser (1982) updated to 1988 by Herman van
Dijk. Primary data sources are listed in Schotman and van Dljk (1991 b). All data are annual U.S. data
We take natural lops of all series except for the bond yield. The fourteen series are:

1) Real GNP (1909-1988).
2) Nominal GNP (1909-1988).
3) Real per capne GNP (1909-1988).
4) Industrlal productlon (1860-1988).
5) Employment (1890-1988).
6) Unemployment rate (1890-1988).
7) GNP d~lator (1889-1988).
8) Consumer Price Index (1860-1988).
9) Nominal wages (1900-1988).
10) Real waqes (1900-1988).
11) Money stock (1889-1988).
1z) velocny (18ss-teea).
13) Bond yield (1900-1988).
14) Common siock prices (1871-1988).
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Prior Appendix

The Appendix discusses the selection of the bounded uniform prlors for d and dp In (12). We use
symmetric prkxs for all cases (A, a-A, and B, s-Bz) ard set A,- S,yr, and B,.SIICyTy~~T t 1. Since a level
break d 1096 Is deemed to be hlghly unlikely, we set S,-.10 for all serles except the bond yleld and
unemploymerrt rate (for these serles ~, -.4~. ip Is more dNFlcuit to ellcit. Looking at (yTy~~T t t, we set
Szs.t for real GNP, wages, employment, Industrlal productkxi, money stock, and GNP per capita; S,z.2
for rwminal GNP; f,-.4 for the Gonsumer Pr~e Index end the GNP deflator; S,-1 for real wages, veloclty,
unemployment and common stock prk.es; end S~-4 tor the txxid yleld. For no serles Is the posterkx
mean close to any of these boundarles.
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