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Abstract

Should an organization hire people with similar backgrounds or with different back-
grounds? We formulate this question within the framework of team theory. The
team manager must fill n jobs and can choose the type of each of the agents she
hires. The type of an agent determines his information structure and his market
wage. We show that if the team’s payoff function is supermodular, then the manager
finds it optimal to hire n agents of the same type. On the other hand, if the payoff
function is submodular, and if two additional assumptions hold, the manager hires
agents of at least two different types. These results do not rely on restrictions on the
way uncertainty is modeled or on the feasible set of agent types.
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1 Introduction

The backgrounds of the people who work in an organization are not exogenously given.
The organization (be it a firm, a government agency, a nonprofit, etc.) chooses whom to
hire. This paper is concerned with one dimension of the hiring policy: the degree of variety
in the backgrounds of the people who are hired.

On this dimension, different organizations can adopt strikingly different policies. Some
organizations pursue a policy of hiring people with homogeneous backgrounds, while other
organizations actively seek a degree of background diversity in their workforce. Perhaps,
the most extreme example of homogeneous organization is the army. In most countries,
officers are trained in a small number of schools under the direct control of the army. After
undergoing a long, common instruction period, they are expected to share an extensive
body of knowledge and a clear code of behavior.!

On the other hand, a familiar example of an organization that favors workforce het-
erogeneity is a university department. It would be surprising to encounter a department
in which all faculty have been educated in the same institution, the way it happens in
the army. Most departments hire from a number of schools and have an explicit policy
not to hire their own Ph.D. graduates altogether. The general feeling in academe is that
too much homogeneity is bad for research. While the army and the department are two
extreme cases, a variety of practices can be observed across firms as well. Some firms
hire people with quite similar profiles, while other firms strive to achieve a high degree of
diversity.

What characteristics of an organization determines its optimal degree of background
homogeneity? Clearly, this is a complex question and one could try to approach it from
several angles. Motivational factors, incentive issues, the need for secrecy all play a role
in this choice. This paper, however, will restrict its attention to one factor: informational
efficiency. Even when examined in isolation, informational efficiency constitutes a highly
complex problem. To formalize it, we use the concepts of team theory (developed by
Marschak and Radner [14]), which can be regarded as a theory of decision making with
multiple decision makers and endogenous information structures.

The problem is modeled as follows. An organization is made of n jobs (n is given ex-
ogenously). The organization manager must hire n agents to fill the jobs. There is a large,
competitive labor supply which comprises agents of several types. The type of an agent

!For a discussion on the value of homogeneity in military organization, see the famous treaty by Von
Clausewitz [6, Book 2, Chapter “Methods and Routines”].



determines his information structure — the most important concept of this paper. The
information structure is the grid through which the agent observes the world. Mathemati-
cally, it is a mapping from the state of the world (a random variable not directly observed)
into a signal available to the agent. For instance, an agent with the type “doctor” has an
information structure which, when confronted with a patient, provides him with a signal
on the patient’s health. The agent’s type of an agent also determines the cost of hiring
that agent. If the manager wants to hire an agent with the type “doctor,” she has to pay
him the market wage for doctors. For each job, the manager can hire any agent available
on the market.

Once agents are hired, the manager instructs them on how to respond to each signal
they may receive.? In other words, the manager endows each agent with a decision function.
Of course, the decision function can vary from agent to agent. When the state of the world
is realized, agents observe their signals through their information structures and choose
their actions through their decision functions. The gross payoff to the organization is a
function of the state of the world and of the actions taken by the agents. The ultimate
goal of the team manager is to choose a type and a decision function for each of the n johs
in order to maximize the expected value of the gross payoff minus the sum of wages paid
to agents. Figure 1 depicts the problem for an organization in which n = 2.

We first assume that the payoff function is anonymous in the agents’ actions. This
means that the total payoff does not depend on the job labels the agents carry but only on
the actions they choose. With a sport analogy, this assumption implies that the number
on a player’s shirt is immaterial in determining the outcome of the player’s actions (true
in basketball; false in soccer because of the goal-keeper’s special status).

With this assumption, we prove the two central results of the paper. First, if the agents’
actions are complements in the payoff function, then the set of optimal solutions contains a
solution in which all agents have the same type. In that case, the organization designer can
restrict her attention to configurations in which she hires only one type of agents. Second, if
two additional assumptions hold (concavity and nonuniqueness of the single-type optima),
we prove that, if the agents’ actions are substitutes in the payoff function, then the set of

2In contrast to most of the recent economic literature on organizations, this paper is not directly
concerned with incentive issues. We assume that there is no moral hazard on the part of agents: if an
agent is given a decision function, he will follow it. However, the present model can be seen as a reduced
form of a model with moral hazard in which non-incentive-compatible decision functions have already been
deleted from the set of feasible decision functions and the relative costs have been incorporated into the
payoff function.
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Figure 1: An Organization with Two Agents

optimal solution contains at least one solution in which at least two types of agents are
hired. Thus, the crucial notion is that of complementarity, which is represented by the
lattice theory concept of supermodular function.?

The intuition behind the two results above is provided by another proposition. Consider
a function the argument of which is a vector of random variables. We show that if the
function is supermodular, then the expected value of the function is higher if the random
variables are perfectly correlated rather than stochastically independent. On the other
hand, if the function is submodular, the expected value is higher if the random variables
are stochastically independent. In the problem at hand, agents do not in general have
perfect information. Thus, they are bound to deviate from the full-information solution. If
their actions are complements, it is optimal for them to deviate in a coordinated manner,
which occurs if their information structures are identical. Thus, hiring agents of the same
type is optimal. An analogous line of reasoning can be followed when the agents’ actions
are substitutes.

As the intuition is general, one would expect the results to hold in a very general
setting. Indeed they do. In this paper, no particular functional form is assumed for the
payoff function. Moreover, the set of possible states of the world and the probability
distribution on it are defined in a general way. Finally, no assumption is made on the set
of agents’ type, on information structures, or on decision functions.

As an extension, we discuss what happens if the payoff function is non-anonymous.

3See for instance Milgrom and Shannon [17]



Clearly, ex ante differences between jobs drive the optimal solution towards heterogeneity.
If two positions are intrinsically different, the team will not hire the same type of worker for
both positions. However, in a specialized model, it is possible to recover a restricted notion
of workforce homogeneity and to find a parallel with the results above. This more limited
model is of applied interest because it captures some crucial characteristics of multinational
organizations. We show that a multinational with positive complementarity tends to staff
offices across the world with workers of the same type, even though different offices will be
affected by independent environments.

In conclusion, based on our results, one can predict that organizations in which agents
actions are complements will have a homogeneous workforce, while organizations in which
actions are substitutes will have a heterogeneous workforce. This prediction appears to be
fulfilled in the extreme examples of the army and the university.

In the case of the army, the success of an operation depends on how well the troops
coordinate. If soldiers behave in contradictory ways there can be disastrous consequences.
As Von Clausewitz [6, p. 153] notes, “A battalion is made up of individuals, the least
important. of whom may chance to delay things or somehow make them go wrong.” The
actions of agents seem to be complementary. Indeed, as our results predict, the army
employs agents with similar backgrounds. Soldiers of the same army receive a highly
homogeneous instruction, so that in combat they will interpret contingencies uniformly
and will respond in a harmonious manner. The value of teaching troops common rules for
the interpretation of contingencies is exalted by Von Clausewitz [6, p. 152]:

Cooking in the enemy camp at unusual times suggests that he is about to
move. The intentional exposure of troops in combat indicates a feint. This
manner of inferring the truth may be called a rule because one deduces the
enemy'’s intentions from a single visible fact connected with them.

If the rule enjoins that one should resume attacking the enemy as soon as
he starts to withdraw his artillery, then a whole course of action is determined
by a single phenomenon which has revealed his entire condition: the fact that
he is ready to give up the fight. While he is doing so, he cannot offer serious
resistance or even avoid action as he could once he is fully on the move.

To the extent that regulations and methods have been drilled into troops as
active principles, theoretical preparation for war is part of its active conduct.
All standing instructions on formations, drill, and field-service are regulations
and methods. Drill instructions are mainly regulations; field manuals, mainly
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methods. The actual conduct of war is based on these things; they are accepted
as given procedures and as such must have their place in the theory of the

conduct of war.

On the other hand, one of the two main activities of universities is research. In search
problems with multiple agents the agents’ actions are typically substitutes. This is because
the expected benefit of an additional agent searching in a certain direction is decreasing
in the number of agents who are already searching in the same direction. Our results
predict that an organization with negative complementarities will hire agents with differnt
backgrounds. This may explain the emphasis departments put on diversity and their
avoidance of internal or highly homogeneous hiring practices.

The plan of the paper is as follows. Section 2 introduces the model. Section 3 reports
the main results. Section 4 provides intuition for the main results based on the idea of error
correlation. Section 5 discusses an extension to non-enonymous payoff functions. Section 6

concludes.

Related Literature As stated above, we adopt the team-theoretical framework. Team
theory was developed in the Sixties by Marschak and Radner [14]. In the Seventies it gave
rise to a literature on the possibility of decentralizing decision-making, such as Groves
and Radner [12] and Arrow and Radner [4]. After more than a decade of limited use —
which coincided with the development of principal-agent theory — team theory has been
experiencing a renewed interest. Several authors have applied it to problems in organization
theory that do not seem to find a satisfactory answer within the principal-agent framework.
Examples are Aoki [1, 2], Crémer [7, 8, 9], Geanakoplos and Milgrom [11], Li [13], Ponssard,
Steinmetz, and Tanguy [18], and Qian, Roland, and Xu [19].

Crémer [8, 9] applies team theory to the problem of workforce homogeneity, which he
labels “shared knowledge.” He considers a team with a quadratic objective function. The
coefficient of the linear term is unknown and represents the state of the world. The state
of the world is a normally distributed random variable. Each agent observes the state of
the world plus a normally distributed disturbance. Crémer considers two cases: (1) the
disturbances are identical across agents (shared knowledge) and (2) the disturbances are
uncorrelated across agents (diversified knowledge).

4This may not apply to fields in which research activity displays strong economies of scale, such as
medicine.



The original contribution of the present paper is to extend Crémer’s problem beyond a
particular formulation. This generalization is of interest in itself, but is especially valuable
because it allows us to identify the sign of complementarities as the main driving force in
the choice between a homogeneous and a heterogenous workforce. This finding appears to
be new in economics and management science.

The assumptions made by Crémer — quadratic payoff function and normally distributed
signals — are common to all the recent team-theoretical literature. Although those assump-
tions are quite restrictive, they are made because they allow for a closed-form solution.
An incidental contribution of the present paper paper is to show that those assumptions
are not needed. We formulate an organizational problem in a general way. Finding a
closed-form solution is impossible and is not attempted. Instead, we apply lattice theory
concepts and we study the set of optimal solution. This is sufficient to answer the question
we are interested in and to generate testable implications. Hopefully, this methodology
can be used to study other questions in organization theory that are still open.®

2 The Model of a Team

Consider a team designer who knows what the activity of the team will be but has not
yet hired agents to carry out the activity. For instance, the team designer could be the
manager of a soccer team at the beginning of the season. The rules of the game and the
team payoff function are given. The number of team members (disregarding substitutes)
is fixed. The only thing the manager needs to do is to hire eleven players from the market
for soccer players and give them a game strategy.

The building blocks of the model are as follows.

Uncertainty The stochastic aspect of the model is captured by the state of the world
z € X. The state of the world is not observed directly. The team designer has prior
distribution ¢ : X — R.

®This paper differs from the industrial organization literature on information sharing in oligopoly (See,
among others, Gal-Or [10] and Vives [21]). Those works examine the incentives of oligopolists to com-
municate to each other the private signals they have received. The choice between sharing or not sharing
information is dictated by strategic consideration. In contrast, there are no strategic considerations in
the present paper. As agents do not have conflicting interests, they always have an incentive to share
information with each other.



Payoff A team is composed of n slots and its payoff depends on the decisions taken by
the agents who occupy the slots and on the state of the world. The payoff function is given
by

w(ay,...,an,) (1)

where a; € A represents the action taken by the agent who occupies slot i (whom we will
call Agent ¢ whenever doing so will not generate confusion between jobs and agents). A is
an ordered set. No assumption is made on the form of w except the following:

Assumption 1 (Anonymity) Forallz € X,
(@55 5 5 Bay T) =« » =@ sz05.- 5 B Z) (2)
for any rearrangement of the action indices.

Assumption 1 is an anonymity condition. In our sport analogy, the assumption has
a simple meaning. Before players are hired and the game strategy is decided, the team
consists of n slots. Each slot is just a t-shirt with a number on it. Then, n players with
different characteristics are hired, and each is given a t-shirt. The anonymity condition
says that when a player takes an action, the number on his t-shirt is immaterial. This is
true in basketball (the rules are independent of the players’ numbers) but false in soccer
(if a player touches the ball with his hands, it matters whether he wears number 1 — the
goalkeeper’s number — or another number). Thus, Assumption 1 excludes that there are
exogenously specified roles for team members. Of course, specialization can occur ex-post. if
the team players have different background or if they are given different decision functions.
For instance, in basketball it is common to hire people with different abilities and to assign
them different roles.® Of course, in the case of soccer, if we assume that the characteristics
of the goalkeeper are given, we could restrict our attention to the other ten players and
restore the anonymity assumption.

Types and Information Structures So far the team has been described as a payoff
function with n slots to fill. Let us now model how the team designer can fill these slots.
There exists a pool of agents available for hire. Agents differ according to their type 6 € ©.

In a business environment, a clear violation of Assumption 1 occurs when workers are physically
separated. An example is represented by a decentralized sales force. If the action of the agent in the
“Amsterdam” slot is switched with the action of the agent in the “Shanghai” slot, the team’s payoff will
in general change. This case is studied, in a more limited framework, in Section 5.



For each 6 there are a large number of agents available for hire. Each agent of type 6 has
an information structure 7y : A — Y. The assumption that ¥ does not depend on 6 is
without loss of generality.” The set of possible information structures is denoted by M.
Thus there exists a one-to-one correspondence between © and H.

If the state of the world is z, an agent of type 0 receives a signal

y = np(z)

The function 7 induces a partition Py on the set X. This corresponds to the standard
definition of information structure (see Marschak and Radner [14, p. 48-49]).%

Let us introduce the following notation: 6; represents the type of the agent that is hired
to fill slot 7. Let y; denote the signal of the agent who fills slot 7. Then

v = g (z)

Yn = Ton (2)

forall z € X.

Cost To hire an agent of type 6, the team must pay a wage cg. Without loss of generality
we can disregard any cost which is unrelated to the agent types. Hence, the team’s total
cost is

C(gh'--yon) = ZCO.

Decision Functions The team tells each agent how to behave given the signal he has
received. The agent in slot 7 is instructed to follow decision function ; : Y — A. The

decision function must be taken from a set of feasible decision functions denoted with A.

"Suppose that Yj denotes the set of possible signals received by an agent of type 6. We just need to let
Y = Ugeo Yo-

8Notice that X can be augmented to accomodate noisy information structures. For instance, suppose
that X = R™*! and = = (A, €y,...,€,). Assume that the random variables ey, ..., €, do not enter the
payoff function directly. Y =R. © = {1,...,m}. Let

ne=A+¢€

Then, the set of feasible information structures is the same as in Crémer [8, 9] and other team-theoretical
models. The signal of an agent is the true state plus a disturbance: this disturbance is assumed to be
identical across agents of the same type and uncorrelated otherwise.



It is a list of instructions such as “if you receive signal y, then you should take action a.”
Of course, the manager chooses the decision function for slot i after she has chosen the
type of the agent that fills slot 7. Thus, the choice of the decision function can depend on
the agent type.

Therefore, slot i is filled with an agent of type 6; who is instructed to behave according
to «;. Thus, the actions of the n agents are determined as follows:

a ai[ng, (2)]

an = an[ne,(z)]

Two remarks are in order. First, we have assumed that the act of choosing an action
has no cost. However, suppose that some actions are more costly than others. Such a
situation could be accomodated by incorporating those action costs into the payoff function
w. Therefore, there is no loss of generality in assuming that all actions have the same cost
and that that cost is zero. Second, we have not considered the problem of moral hazard.
Suppose that agents find some actions more costly than others, but that neither the cost
incurred nor the action taken can be contracted upon. According to the nature of the
information asymmetry between the designer and the agents, some actions will not be
feasible and other actions are feasible only if the designer leaves a rent to the agents.
These two problems can be taken care of by deleting the unfeasible elements from the set
of feasible decision functions and by incorporating the informational rent into w or ¢;. Thus,
the present model can be seen as a reduced form of a more general model which includes
moral hazard. However, as our conclusion only depend on informational considerations,
we choose to focus on the reduced form.

No Communication We have made the implicit assumption that agents cannot com-
municate with each other between the time they receive their signals and the time they
choose their actions. If they could communicate, then the decision function of agent i
would not depend only on y; but also on the messages he receives from the other agents.
As complete communication is in general not feasible, this model can be interpreted as
a reduced form of a model in which everything that could have been communicated has
already been communicated.

To summarize, the givens of the team designer problem are: a set of states of the
world (X), the prior distribution (¢), the payoff function (w), a set of actions (A), a set

9



of information structures (M), a set of agent types (0), a set of decision functions (.A),
and the wage function (c). The team must select, for each slot i, an agent type 6; and his
decision function «;. This makes a total of 2n choices (which we will refer to as the team’s
configuration). The goal of the team designer is to maximize the expected payoff less the
wages paid:

E{won(n,(x)), .-, (0, (2)), 2]} — Z

max
{6:€0,ai€ 4}, .

In the remainder of the paper, we assume that the team problem has at least one

solution.

3 General Results

3.1 Defining Complementarities

To represent complementarities, we adapt the general definition of supermodular and sub-
modular [unctions to the problem at hand (See for instance Milgrom and Shannon [17]):

Definition 1 The payoff function w is supermodular in the agents’ actions if, for any two
vectors (@y,...,a,) € A" and (ay,...,a,) € A" and for all z € X, the following holds

w(@y,...,an, ) + w(a,...,an,)

< wlmin(ay, @), ..., min(an, an), 2] + wlmax(a, @), .. ., max(@n,, ), zJ.

Conversely, w is submodular in the agents’ actions if, given any two vectors (ai, ..., a,) €
A" and (ay,...,a,) € A", for all z € X, the following holds

w(@y, ..., an, ) +w(a,...,a4,,T)

> wlmin(ay, @), . .., min(an, @,), ] + w(max(a,, a,), . . . ,max(a,, a,), z.

How does supermodularity relate to the notion of complementarity based on cross-
derivatives? The latter definition is applicable only if the function is twice-differentiable.
Topkis [20, Th. 3.2] shows that, if a function is twice-differentiable, then the function
is supermodular if and only if the second-order cross derivatives are all nonnegative (in
the present case: §%w/8a;0a; > 0 for i # j), while the function is submodular if and
only if the cross derivatives are all nonpositive. Thus, supermodularity is a generalization
of the traditional notion of complementarity. Its use derives from the fact that in many

10



problems the second-order cross derivative is not well-defined (for instance, because the
agent’s action is a discrete variable).

The following result (proven in the appendix) will be used repeatedly in the paper.

Lemma 1 Given an ordered set A and a vector a = (ay,...,a,) € A", define P(a) as
the set of all vectors obtained by permuting elements of a. Consider f : A™ — R. If f is
supermodular (submodular), then

EUD DU (WS Y S SR S

(P1,--Pn)EP(a) i=1..,n

Consider a function, the arguments of which are all defined on the same ordered set.
Take a particular vector of arguments. If the function is supermodular, then the average
value of the function for all possible permutations of the vector is smaller or equal to
the average value of the function of vectors in which all elements are equal to one of the
arguments of the initial vector. The converse holds if the function is submodular.

The following is immediate:?

Corollary 1 Suppose f is such that is symmetric, that is, f(ay,...,a,) = -+ = f(an,...,a;)
for any rearrangement of the vector a. If f is supermodular (submodular), then

o) €25 ¥ . a)

=10

3.2 Sufficient Condition for the Optimality of Workforce Homo-
geneity
It is now possible to state the main result of this paper. Provided that the team’s problem

has at least one optimal solution and provided that Assumption 1 holds, we have the
following:

Proposition 1 If w is supermodular in the agents’ actions, then the set of solutions to

the team designer problem contains at least one configuration in which 6, = ... =6,.

“Corollary 1 has been proven in a direct way by Meyer and Mookherjee [15, Proposition 1]. To the
best of my knowledge, Lemma 1 ~ which is of independent interest — is new. The Corollary is sufficient to
prove the results in Sections 3.2 and 3.3. The Lemma is needed for Sections 4 and 5.

11



Proof Suppose w is supermodular in the agents’ actions. We will prove that, for any
configuration in which not all agents have the same type, we can find a configuration
which gives a greater or equal expected payoff and in which all agents have the same type.

Consider a feasible choice of types, denoted with 6,,...,6,, and a feasible choice of
decision functions, denoted with a;(-),...,a,(-). Notice that

w[al(ngl (I))) e 1an(n9n(z))vz]

is supermodular in a, (7, (z)), ..., an(ne,(z)) for all z € X. By Corollary 1 and Assump-
tion 1, we have that, for all z € X,

~{wlan (0, (2)), - 1 (0, (2)),
Fouot ‘-U[an(ﬂa,.(l))v wiseite vaﬂ(nﬂn(z))vz]}
2 W[al(’?ol (1‘)), ey a'n(n&.(z))»z]

Take expectations over the set of possible states and add the total cost of wages on
both sides

% E{w[al 7)01 ))v "’al(nsx I]} +'anl
Ao +E{W[an 7]6,.(1))1'“ a,,(ngn( ) I]}+'"C9n)

EE{“"[Q’I 7)91( ))v~-,0n(718.. }+ZC9

Then for at least one of the types, say 6y,

E{w{ak("9k (.’E)), (779k ) Z‘]} F ncak
Z E{w[al("&(z))"--ran 779.. z]}+ZCGx

Thus, for any feasible choice of types and of decision functions, there exists a feasible
choice of types and decision functions in which 6, = ... = 6,, who does at least as well.
Then, if the set of solutions to the team designer problem is not empty, as we have as-
sumed, it must contain a solution in which 6, = ... =0,

The intuition behind Proposition 1 is that if the payoff function is supermodular then
the team is better off if agents commit correlated errors rather than uncorrelated errors.
We will explore this theme in Section 4.1°

19Suppose instead that the payoff function is strictly supermodular, that is, that ‘<’ replaces ‘<’ in the
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Proposition 1 says that, among all the possible solutions to the team’s problem, there
is at least one in which all agents have the same type. It does not compute which, among
all the solutions of that kind, is the optimal one. However, a proposition like 1 greatly
simplifies the task of designing an optimal organizational structure. The organization
designer can, without loss of generality, focus on solutions in which all agents have the
same type. For example, if there are 20 agents and 4 information structures, the number
of possible configurations — counting symmetric structures only once — is 8855. However, by
applying Proposition 1, the organization designer knows that the number of configurations
she needs to check is just 4.

The following example illustrates the use of Proposition 1:

Example 1 (A Product Made of Two Components): Consider a firm made of two
divisions. Agent 1 is the manager of Division 1 and Agent 2 is the manager of Division 2.
The final product of the firm is obtained by assembling a component produced by Division
1 and a component produced by Division 2. Agent 1 decides a,, the quantity produced
by Division 1, and Agent 2 decides a,, the quantity produced by Division 2. Because each
product needs both components, the number of items produced is min(ay,a;). The firm
faces an inelastic demand curve. It can sell up to z products at a unit price p. If it produces
more than z products, the excess will be unsold. Therefore, the number of products sold
is the minimum between the number of products produced and the number of products
demanded: min(a;,ap,z). Demand depends on the state of the world represented by the
real random variable z with a given probability distribution p(z). The unit cost is the
same for both components: k (let us assume that k£ < 0.5p). The payoff function of the
firm is
w(ay, as,r) = pmin(ay, a, z) — k(a; + as) (3)
The structure of the problem suggests that the agents’ actions are complements. Indeed,
it can be verified that the payoff function (3) is supermodular in a; and a; for all z (See
the Appendix for a formal verification). Therefore, we can apply Proposition 1: the set of
optimal solutions contains at least one solution in which the type of the agent in slot 1 is
the same as the type of the agent in slot 2. This result is independent of the distribution
of z and of the feasible set of types.

definition of supermodular function given in Section 4. Then, it is easy to see that, for any solution in

which 8; = ... = 6,, does not hold, it is almost always possible to find at least one solution in which
#) = ... = 6, and which yields a strictly higher expected payoff. Then, the set of optimal solutions will
generically contain only configurations in which 6; = ... = #6,,.
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3.3 Sufficient Condition for the Optimality of Workforce Hetero-
geneity

This subsection presents a partial parallel of Proposition 1 for workforce heterogeneity.
Two additional assumptions are necessary. First,

Assumption 2 (Concavity of the Payoff Function) The set A is convez and the pay-

off function w is concave in ay,as, ..., ay.

Assumption 2 does two important things. First, by assuming that the action space is
convex, it avoids the possibility that agents have to coordinate on an asymmetric solution
because the symmetric solution is not feasible. Second, by assuming the concavity of the
payoff function, it guarantees that the team is risk-averse. A risk-loving manager may want
to hire homogeneous agents in order to coordinate on riskier actions.

The second additional assumption excludes situations in which one type of worker is
superior to all other types:

Definition 2 A one-type optimum is a solution to
o X B{lai (e (2),..., 03 (2)), 2]} = n6°
daf li=1,..n
Assumption 3 (Nonuniqueness of One-Type Optima) There ezist two distinct val-
ues 0% and 0** and two sets of decision functions {a}}iz1, . and {of*}icy, . such that
(0%, {a; }iz1,. n) and 0**,{a;*}iz1,..n) are both one-type optima.

Assumption 3 considers a restricted problem. Suppose the team can only hire agents
of one type: which type of agents would it hire? The assumption requires that there are
at least two optimal types. Without this assumption, it could be the case that a type of
agent is strictly ‘better’ than the others. This would imply that workforce homogeneity is
optimal in a trivial way. On the contrary, in reality, the labor supply is heterogeneous and,
for any given profile, it comprises several types of workers, none of which clearly dominates
the other.!!

Of course, Assumptions 2 and 3 do not imply that heterogeneity is the optimal solution.
In particular, if the payoff function is strictly supermodular, then all optimal configurations
still require full homogeneity, as predicted by Proposition 1.

With Assumptions 1 through 3, the following holds:

"For instance, if a department wants to hire a faculty, it can choose from graduates of various graduate
schools. There will be several schools with similar rankings. However, within the set of schools in the same
ranking, there may be large differences in terms of focus or style.
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Proposition 2 If w is submodular, then the set of optimal solutions contains at least one
solution in which it is not true that 6, = ... = 6,.

To illustrate the scope of Proposition 2, consider the following:

Example 2 (A Search Problem): Consider a team of two researchers: 1 and 2. There
are two possible fields of research: Left and Right. Only one of the fields is promising,
but the researchers do not know which. Let z be a random variable which can assume
the values 0 and 1 with equal probability. If z = 0, Left is promising. If z = 1, Right is
promising. Each agent works for a unitary amount of time. The agent in slot 7 chooses
a; € [0,1], which represents the percentage of his work time that he devotes to searching
Left. The percentage of time that he devotes to searching Right is given by 1 — a;.
Within a research field, there are decreasing returns to scale. For instance, assume that
the probability of success is proportional to the square root of the total research time spent
in that field. If the research is successful, the team receives a payoff of Q. The team’s

payoff can be written as:

w(ay, az,y) =Q2@+Q(l—z)% )

where the denominator /2 is used to normalize the probabilities.

Suppose that there are two types of reseachers: those educated in university A (denoted
with 64) and those educated in university B (denoted with 64). Both types observe y with
some error, but the errors are uncorrelated across types. Let the state of the world be
x = (y,€a,€p), where €4 and ep are independently uniformly distributed on [0,1]. For

#=A,B,
z if €5 >
7)9(2)={ i
1-2 ife>p

where p € (0.5, 1] denotes the precision of the signal.

It is easy to check that the function in (4) is submodular in @, and a;. Moreover, As-
sumptions 2 and 3 hold as well. Therefore, by Proposition 2, the search problem described
here always has an optimal solution in which one agent is of type A and the other is of
type B.

Search problems typically entail submodular payoff functions. The more one agent
searches in a direction, the more the other agents should search in other directions. Of
course, the team can always order the agents to spread equally on all possible directions.

15



However, this decision function is clearly not optimal because it does not take into account
the agents’ signals. The best thing the team designer can do is to hire agents who receive
uncorrelated signals, so that agents can spread on different directions without renouncing

their signals.? d

4 Error Coordination

This section does not directly refer to the central theme of the paper. However, it illustrates
a property of supermodular and submodular functions that is useful in interpreting the
results of this paper. Consider a function of random variables. Suppose the random
variables can be either perfectly codependent or mutually independent. This section proves
that, if the function is supermodular, the expected value of the function is higher when
the variables are perfectly codependent, while, if the function is submodular, it is higher
when the variables are mutually independent. In the light of this result, we can provide
some intuition on the results presented in Section 3.

Consider two random vectors:

yl = (yl:y?:"' vyn.)
y” = (30,0, Yo)

where yo, Y1, Y2, - -+, Yn are identically distributed, mutually independent random variables.
13

Consider a function f : ®* — R. The following can be proven.
Proposition 3 If f is supermodular, then E[f(yP)] > E[f(y')], while if f is submodular,
then E[f(y°)] < E[f(y")]-

If a function is supermodular, then the expected value is higher in the case of corre-
lated errors than in the case of uncorrelated errors. The opposite holds if the function is
submodular. Although Proposition 3 is not used to prove Propositions 1 and 2, it provides
intuition for those results.

Suppose the agents of an organization are bound to commit errors. The y’s can be
interpreted as the actions of the agents. The actions are random because the agent’s signal

2For a discussion of the role of uncorrelated information in search problems, see also Bassan and Scarsini
[5]. They consider a class of multi-agent search problems and demonstrate the value of heterogeneity based
on the idea of experimentation externalities.

3Proposition 3 was conjectured by Milgrom and Roberts [16]. The proof is in the Appendix.
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has a random disturbance. Assume that the organization designer cannot reduce the
entity of errors, but can choose whether the errors are perfectly codependent or mutually
independent. If the team payoff function is supermodular, the organization designer will
want the errors to be perfectly codependent. . Workforce homogeneity is a device to make the
errors perfectly codependent. On the other hand, if the team payoff function is submodular,
the organization designer will want the errors to be mutually independent and heterogeneity
is a device to make errors mutually independent.

5 Non-anonymous Payoff Functions

In the main part of this paper we assumed that the team payoff function is anonymous,
that is, it does not matter which agent takes which action, but only which actions are
taken. Anonymity actually implies two restrictions: (i) the payoff function is symmetric
in the agents’ actions; (ii) the interaction between the state of the world and the action is
symmetric across agents.

Restriction (i) is essential to our results. If the payoff function is asymmetric in the
agents’ actions, it means that slots are a priori differentiated. Then, it is clear that the
team will want to hire people with differentiated backgrounds. Thus, relaxing (i) will push
the team toward diversity. This is, however, hardly surprising. If jobs are heterogeneous
from the start, a homogeneous solution is unlikely to be optimal.

On the other hand, restriction (ii) is not essential to our results. This section relaxes
(ii) and considers local states of the world. Suppose that the state of the world is z =
(21, 22,€4,€p) with z; € R and ¢; € R. However, €4 and ep do not enter the payoff function
directly, so that

w(a1,az,z) = w(ay, ag, 21, 22)
For i = 1,2, 2 represents the local state of the world for Agent i. We assume that w is
twice continuously differentiable and concave. w has the following symmetry property:

w(ay, az, 21, 22) = w(ag, a1, 22, 21) (5)

Condition (5) implies restriction (i). If agents swapped both their local states and their
actions, the payoff would not change. However (5) does not satisfy (ii). If the agents
swapped their actions only the team payoff would in general change. Thus, anonymity is
violated.
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The local state of the world of one agent interacts with the action taken by that agent
but. not with the action taken by the other agent. This fact is represented by the following
assumption

0a:0z; | =0 ifi#j ©)

8w { >0 ifi=j

Moreover, it is assumed that z; and z, are identically and independently distributed.
The set, of possible agent types is © = {A, B}. If the agent in slot 7 has type 6, he

observes

yi=m(z) =2+ €

Agents of the same type have the same disturbance (This, of course, does not mean they
receive the same signal, because they face two different local states of the world). Agents
of different types have different disturbances which are assumed to be uncorrelated. We
assume that €4 and ep are identically and independently distributed.

Thus, the team designer has two options: 6, = 8 or 0, # 6,. Moreover, she must give
a decision function a;(-) to Agent 1 and a decision function as(-) to Agent 2.

Proposition 4 If w is supermodular in ay and a,, then the set of optimal solutions con-
tains a configuration in which 6y = 6. If w is submodular in a, and a,, then the set of
optimal solutions contains a configuration in which 6; # 0.

Proof of Proposition 4: Given the concavity and differentiablity of w, and given that
agents have information structures 7, and 7, the necessary and sufficient condition for the
optimality of a;(y;) is person-by-person optimality (see Marschak and Radner [14, p. 157]:

o By [w(en (1), ol (y2)), 21, 22031] = 0 Yy € R
3 ey [w(en[m ()], @a(y2), 21, 220y2) = 0 V2 € R

Because of the strict concavity of w, a;(-) and as(-) are unique. Thus, the symmetry of
the problem implies that, for all y € R, o1 (y) = aa2(y) = a(y).

Claim: If 6, # 05, then a(-) is nondecreasing.

Proof of the Claim: Without loss of generality, let §; = A. Let us restrict our attention

on the first of the two person-by-person optimality conditions, which can be rewritten as

5}

B_alESA,zg.ca[w(a] (v1), a2[n2(z2 + €B)], 41 — €4, 22|1n] =0
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for all y; € R. Because €4, 22, and ep are stochastically independent, and by switching
operators, the person-by-person optimality condition becomes
0
a_alEfAEnEfﬂ[w(al(yl)v az[ma(22 + €B)], y1 — €a, 22l11] = 0 (7

The fact that w is supermodular in a; and z; implies that %w(al(yl), az[na(z2+€p)], y1 —
€4, 22|y1 is nondecreasing in ;. Therefore, the left-hand side of (7) is nondecreasing in
and o (y,) must be nondecreasing in y;. The proof goes through in a similar way for the
second person-by-person optimality condition.

We will prove that, for any configuration with 6, # 6, there exists a configuration with
6, = 6, which yields a greater or equal expected payoff. Thus, suppose, without loss of
generality, that 6, = A and 6, = B. Let us define

w(ea, egla(-), 21, 22) = w(a(z + €a), (22 + €5, 21, 22)

Given any a(-), 21, and 27, by the fact that a(-) is nondecreasing, the supermodularity of w
implies that @ is supermodular in €4 and eg (notice however that % need not be symmetric
in €4 and €p — a departure from the main part of this paper).

By Proposition 3
Ee,enlh(€a, €pla(), 21, 22)] < Eeyeq(W(en, €al(), 21, 22)]
implying
Ee,eplw(a(z +€a), (22 + €B), 21, 22)] < B, [w(a(zy + €a), (22 + €4), 21, 22))
Take expectations on z; and z; on both sides
E:[w(a(z1 + €4),a(22 + €B), 21, 22)] < Ez[w(a(z) + €4), (22 + €4), 21, 22)]

which proves that a configuration with §; = #, = A dominates a configuration with §, = A
and 6; = B.
If w is submodular, the proof goes through in a similar fashion.

Proposition 4 is an application of Proposition 3. If the payoff function is supermod-
ular, the team wants agents to commit correlated errors, while, if the payoff function is
submodular, it is better if agents commit uncorrelated errors.
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The model developed in this section captures some stylized features of multinational
organizations. Offices in different countries are subjected to different business environments
(local states). In the extreme case, local states are uncorrelated across countries. The local
managers can be of the same type or of different types. For instance, the type could be
the educational background of managers. The educational background is imperfect in the
sense that it allows only for imperfect observations of reality. In particular, it may induces
systematic deviations from the true value (e.g. engineers are more conservative than MBA
holders). Then, the question is whether the firm wants these deviations to be correlated or
uncorrelated across countries. As we have shown, if the firm’s objective is supermodular
in the action taken by local manager, then the firm benefits from having managers with

the same background.

6 Conclusion

We have considered the problem of a team designer. The designer has n vacant slots and
must decide if she wants to fill them with agents of the same type or with heterogeneous
agents. The type of an agent determines the agent’s information structure, which provides
him with a signal on the state of the world. The designer can instruct the agent on what
action to take conditional on the signal he has received. This paper has established a
general connection between complementarities across agents and the opportunity of hiring
agents with similar characteristics. If the payoff function is supermodular, agents should
belong to the same type. If the payoff function is submodular, agents should be of different
types.

While the analysis presented here has been purely theoretical, its main ideas can be
applied to important organizational issues. This paper predicts that the workforce homo-
geneity of a company is determined by the type of interaction between its agents. Therefore,
activities for which good fit between various units is the first concern will have a homo-
geneous workforce in order to maximize coordination. On the other hand, activities that
revolve around exploitation of new opportunities will have a more heterogeneous workforce
in order to maximize the chance of developing successful innovations.

Perhaps the most limiting assumption of this paper is that agents cannot communi-
cate with each other between the time they observe their signals and the time they take
their actions. Of course, if there is an exogenous level of communication, the present

model can easily be extended to apply to the that part of information which has not been
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communicated. However, the real challenge is to let communication be endogenous. Ar-
row (3, p. 56-59] noted that each organization develops its code — a set of channels of
intra-organizational communication. How organizations develop their codes is a problem
which is central to real organizations but has not yet been studies in economic theory.
Future research might use a model similar to the present one to study coding.

7 Appendix: Proofs

Proof of Lemma 1 Suppose that S is an ordered set and that ¢ : S™ — R is super-
modular. Then, it is immediate from the definition of supermodularity that, for any t € S
and w € S,

m —1 times m — 1 times m times m times

qlt, T w) +aw, £t ) <q@ o)+ D)

Consider now ¢ : S"*™ — R and assume that § is supermodular in all its arguments. Then,
for any vector (2y,...,2) € S, any t € S, and any w € S,

m — 1 times Was
§(z1,... 2t 0, ..., 0)+§(21,...,z2,w, t,...,t)
m times m times
o et N, ” P —
Cl o T TR S TR S TR 1) (8)

If we apply (8) to the problem at hand, we have that for any k = 2,3,...,n and for
any (pl)‘ ok vp’c) € Ak1

n —k+1 times n—k+1 times
o — e N
f(ply'“ypk-Zapk—li Pky -+« Pk )+f(p11"'1pk—2)pkﬂpk—la--'7pk—l)
n—k+ 2 times n—k+ 2 times
e e N
S f(pry--sPr-2, Py P8 )+ fP1y- - P2, Pk—1, - - - Pr-1) (9)

Let Pk(a) = {(plv‘ LR 1pk)l(p1|“ '1pﬂ) € P(a)} Let ﬁk = (plv' "1pk)‘ By (9)7

n—k+1 times n —k+1 times
P N e e
>, [y P20ty Brr-oaBi ) FBrooees P20k Bits - 2B
PrEPk(a)
n—k+ 2 times n—k+ 2 times
e N, e e
< > U@repr2, Proab )+ FPry- o P2, Prots - s PRoY)) (10)
Pk€Pi(a)
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However, it is easy to see that

n—k+1 times
e N,
Z f(Ph~~-aPk—2yPk—l» Pky -+ Pk )
Pr€ Py (a)
n—k+ 1 times

__
= Y fpiseces ProtyDhs Ptz ooy Pict)
PkEPy(a)

and

n—k+ 2 times
Ny,
E f(P17~-~yPk—2, DPky- -+, Dk )
Px€P(a)
n — k + 2 times
s Np—
= Z f(ply---ypk—Z»pk—lwnyPk—l)
PkEPk(a)

so that (10) becomes:

n—k+ 1 times
—N—
Z f(ply"'ypk—lr Dky-- Pk )
Pr€Pi(a)
n —k+ 2 times

—
S z f(plv'"1pk—21pk—lv-"1pk—l)
Pr€EPi(a)

(11)

Notice, however, that now p, does not appear in the right-hand side of (11). Thus, for any

(P1,- -, Pe-1) € Pe_1(a), the summation contains n—k+1 identical elements corresponding

to the possible values of py. Hence, (11) becomes

n—k+1 times

Y . <
Z f(pl)"'ypk—lv Dy -y Pk )
PrEPk(a)
n—k+2 times

——
< (m=k+1) Y f(pr,--,Pk—2, D015 PA2)
Pr-1€Px—1(a)

By applying (12) recursively, we have

Z f(ph o »Pn—z,Pn—th)

Pn€Pn(a)

S 1ss Z f(p1=~--1pn—-2vpn—lvpn—l)
Pr—1€Pn—1(a)
n —k+ 1 times
< 1420 (n—k) Z F@1y Pty Dsy---4PE )

Pk€EPi(a)

(12)



n times

(n=1)! Z fEn o) (13)

P1EP(a)

Notice that the left-hand side of (13) is equal to

f(plv e 1pﬂ)
(p1,-.-,pn)EP(a)
and that
n times
Y fla,...,a)= Y f@r,...m)
i=1;0m PL1EP(a)

Hence, (13) becomes

f(pl»---rpﬂ)g (Tl—l)' Z f(aiy~--yai)

(p1,....pn)EP(a) i=lon

By dividing both sides of (7) by n!, the proposition is proven for f supermodular. If f is
suhmodular, the proof goes through in the same fashion with switched inequality signs.

Verification That the Payoff Function in Eq. (3) Is Supermodular Consider any
two vectors of strategies (a},a}) and (af,aj). By Definition 1, we have to prove that, for
all z,
w[min(a}, af), min(a3, a3), z] + w[max(a}, af), max(ay, a3), 2] (14)
> w(a), a5, z) +w(af, a3, 7)
Assume without loss of generality that af > a}. If also aj > a}, then (14) holds as an
equality. Hence, suppose that a4 < a). Then, (14) becomes

min(ay, aj, z) + min(a}, a3, z) > min(a}, ), z) + min(a}, aj, z) (15)

Given that af > a and aj < aj, without loss of generality, we can assume that af > a}, (if
it happens that a] < aj, we can switch the suffixes ’ and ” and also switch the indexes 1
and 2). There are three possible cases:

" ’ " ’
a; 2 ay 2 a; 2 a;

4
a12a2>a1>a2

" ’ ’ "
a; 2 a; 2a; 2 a
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For all three cases it is easy to verify that (15) holds. Therefore, the payoff function in
Eq. (3) is supermodular.

To prove Proposition 2 the following is useful
Lemma 2 Under Assumption 2, the set of one-type optima includes a solution in which

a(y)=...=a(y)

Lemma 2 refers to the problem in which agents are artificially restricted to be of the
same type. In that case, convexity of the action space and concavity of the payoff function
are together a sufficient condition to have an optimal solution in which agents all agents

have the same decision function.

Proof of Lemma 2 Suppose all agents have the same type 6 and therefore are endowed
with the same information structure 7(-). For all y € Y, the team chooses a rule of action

which maximizes

glar(v), -, an(y)] = E{wlay, ..., an, z]In(z) = y} (16)

Suppose w is symmetric and concave in a. Because the expectation is a linear operator,
also g is symmetric and concave in a.

Assume the rule of action a* = (a}, a3, -+, a) is a maximum of g(a,y). By symmetry,
all reorderings of a* are maxima, too. If we define

n * n * n *
&= ( i=1 % 2im1 G i=1 a‘i)

’ ey

n n n

then, by concavity of g, we get g(a*,y) > g(a*,y). This holds for all possible signals .
Moreover, a* is a symmetric rule of action. Then, if there exists an optimal rule of action
- as has been assumed throughout this paper — then there also exists a symmetric optimal

rule of action.

Proof of Proposition 2 By Assumption 3, there exist distinct types 6’ and 6" with
associated information strcutures 7y (-) = 7/(-) and g (-) = n”(+) such that

(¢',0") € argmax,, 4,9, s,w[01 (18, (), - .., 0 (s, (2)), 2] — co, — co,

Suppose that o is the optimal rule of action associated to 1’ and o” is the optimal rule
of action associated to 7”. By Lemma 2, for ¢’ there exists an optimal set of decision
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functions a}(-) = = a,(-) = &/(-) and for @' there exists an optimal set of decision
functions af(:) = --- = ali(-) = a”(-). Suppose w is submodular. For simplicity, let
¢(n') = co and ¢(n") = cgv. Then, by Corollary 1,

k agents n—k agents

w{a [ @), (@], " [1" @), ..., " [n" ()]} = [ke(n’) + (n — k)e(n")]

n agents

> Xo(@H @), W@}~ kela)

n agents

E = ?W{a”[n"(m)]v o[ (@)]} = (n = K)e(n)

for all z € X and for any k = 1,2,...,n. Take expectations and recall that n" and n” yield
the same expected net profit. Then, for k=1,2,...,n -1,

k agfnts n—k agents
Ew{a[n(@),...,&/[n'@)],a" " @), ., a"[n"(@)]}) = [ke(n') + (n = k)e(n")]
n agents
>

E{wle[1' ()], ..o [n (@)]]} - ne(n)

n agents
Ewld["(z)), ..., a"[n" ()] - ne(n")
It follows that diversified knowledge is optimal.

Proof of Proposition 3 Suppose f is supermodular. Because the y’s are identically
distributed, the expected value of f is invariant to permutations of the y’s:

E[f(yh"'vyﬂ)]=”'=E[f(yﬂ1'

and, obviously,

"7y1)]

E[f(yiavyi)]zE[f(y011y0)] fori = 1,2,...,71

If f is supermodular, its expected value is supermodular as well. Consider the arithmetic
average of all the possible permutation of the y’s. By Lemma 1,
Tty w5)€P@) S Wirr - 1 Yin)

N[P(y)] < (2):—;[!(:‘/1,~~)y1)+f(y2,...’y2)+...+f(ym ’y")]
implying

E[f(yla o »yn)] < E[f(yOY B 1y0)]
Elf(y") < E[f ("))

and conversely when f is submodular.
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