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PERFORMANCE ANALYSIS AND OPTIMIZATION
WITH THE POWER-SERIES ALGORITHM

Ií~ws (J.P.C.) BLnNCt
Tilburg University, The Netherlands

ABSTRACT
The power-series algorithm (PSA) is a tlezible device for computing perfotmattce measures for
systems which can be modeled as multi-queuelmulti-server systerns with a quasi-birth-and-death
structure. An overview of this technique is provided, including a motivation of the principles of
the PSA, the derivation of recursive computation schemes, discussions of efficient implementa-
tion of the PSA, of inethods for improving the convergence of the power series, of the numer-
ical complezity of the PSA, and of the computation of derivatives with respect to system pazam-
eters, and ezamples of application of the PSA.

L INTRODUCTION
The performance analysis and control of many computerlcornmunication systerns lead to the for-
mulation and study of multi-queue models. The stochastic processes underlying these systems are
generally very hard to treat by analytical methods. Therefore, it is important to develop numerical
methods for computing performance measures for such systems. The power-series algorithm (PSA)
is one of the available methods. It requires a Markov representation of the queueing process,
possibly with the aid of some supplementary variables. [t is based on power-series expansions of
the state probabilities in terms of the load of a system for solving (recursively) the global balance
equations satisfied by these probabilities. It is a flexible method which is applicable to a wide class
of multi-queuelmulti-server models, with Markovian Arrival Processes (MAPs) and phase-type
(PH) service time distributions. The PSA is also suitable for optimization purposes, since it allows
the computation of derivatives of performance measures with respect to system parameters and
control variables. For moderately sized systerns, the PSA favourably compares with simulation and
numerical methods based on truncation of the state space. This is rnainly so because the PSA
involves recursive schemes and allows the application of the so-called e-algorithm which improves
the convergence of the power series considerably. Since the memory requirements grow exponen-
tially with the number of queues, the PSA can only produce accurate results for systems with a
limited number of queues. Being an aid for studying the interaction between queues on a reduced
scale and for developing and testing approximations of performance measures for systems of a
larger size is therefore the main contribution of the PSA.
An important class of multi-queue models to which the PSA is applicable consists of polling
models in which several users compete for service by a single server (e.g., a single communication
channel in a computer network). The server switches from one queue to another in order to
provide service. It is a very rich class of models which allows many visit-order rules and service
disciplines, and may involve switch-over times, set-up times, etc.. Other examples of models to
which the PSA can be applied are models with parallel servers, such as coupled-processor models,
load-balancing models ("join the shortest queue" and variants), and parallel-processor models (fork
systems in which jobs split into partial jobs which are to be processed on parallel machines), and
networks of queues in which jobs move from one queue to another for sequential processing.
An s-dimensional state space is required to describe the joint queue-length process for a queueing
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system or network with s queues. For a large class of such systems, this process can be modeled
as a multi-dimensional birth-and~eath process ( BDP), i.e., interarrival and service times are
exponentially distributed and arrivals and departures occur one by one, or as a multi-dimensional
quasi-birth-and-death process ( QBDP), i.e., a BDP to which one or more finite-state supplementa-
ry variables are added to render the queue-length process Markovian. These supplementary
variables can be used, e.g., to model MAPs or PH-distributions, or to indicate the position or the
status of a moving server. Global balance equations can still be formulated for these processes, as
in the one-dimensional case. But local balance equations often do not exist due to the multiple of
paths which may exist between pairs of neighbouring states.
In section 2 the computation scheme of the PSA is derived for the case of BDPs. Section 3 con-
tains discussions on the implementation of the PSA and on the improvement of the convergence of
the power series by means of the e-algorithm. Section 4 concerns the extension of the general
principle of the PSA to QBDPs. The application of the PSA to parallel-server systems is discussed
in section 5. Since the queue-length process in a fork system is not a birth-and-death process
because of the grouped arrivals of partial jobs, the PSA has to be adapted for this model. Section 6
is devoted to the application of the PSA to polling systems. The PSA is eztended to QBDPs with
migration, with application to networks of queues, in section 7. Section 8 deals with the computa-
tion of derivatives of performance measures with respect to parameters of a system. The overview
is concluded by an annotated bibliography on the PSA.
[n order to keep the exposition as simple as possible Poisson arrival streams and exponential
service times will be assumed in all models which will be discussed in some details, except for the
tandem model in section 7. I[ should be kept in mind, however, that all these models can be
generalized wi[h MAPs and PH service time distributions. The increased complexity of the PSA
will be indicated in terms of the number of stages of these processes and distributions. All systems
are assumed to be in steady state, and each queue may contain an unbounded number of jobs.
At the end of this introduction some notations will follow which will be used throughout this
overview. The number of queues in the system will be denoted by s; n-(nt,...,ns) will denote a
vector with non-negative integer entries, i.e., in his, the state space of the joint s-dimensional
stationary queue-length process N-(Nt,...,Ns). The stun of the components of the vector n will be
denoted by ~ n ~, i.e., ~ n ~-nt f... fn,. Further, e~ will denote the unit vector consisting of all zero
components except a component of 1 at the jth position, j-l,...,s, and 0-(0,0,...,0) the empty
state. Finally, !{E} will denote the indicator function of an event or condition E.

2. THE PSA FOR B[RTH-AhD-DEATH PROCESSES
Consider the class of multi-queue systems of which the underlying stochastic queue-length pro-
cesses are multi-dimensional BDPs. Let pa~(n) be the arrival rate to queue j, and d~(n) the
departure rate from queue j, j-1,...,s, in state nEFds. Of course, d~(n)-0 if n~-0, for nEleiS,
j-l,...,s. The parameter p, the load of the system, will be used as variable in power-series ex-
pansions. The relative arrival rates a~(n), nEl~is, j-l,...,s, are assumed to be normalized such that
the system is stable for 05pC 1. [n section 2.1 it will be shown that the stationary state probabil-
ities of a multi-dimensional BDP possess power-series expansions in terms of the load p at p-0,
and that the coefficients of these power-series expansions can be computed recursively. How other
perfotmance measures can be computed will be discussed in section 2.2.

2.1. A RECURSIVE COMPl1TATION SCHEME

Let p(n) denote the probability that the process N is in state nEle15. A state nEP1s is left if either
an arrival occurs at one of the queues or if a service at one of the queues is completed; it is
entered if either an arrival occurs at queue j and the system was in state n-e~ (only if n~? 1) or if
a service is completed at queue j and the system was in state nt ~e1-, j-1,...,s. Hence, the global
balance equations for the flows out of and into state n read: for nE NS,
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s s l s s
p~ aJ(n) t~ dJ(n) I P(n) -P~ aJ(n-e~)1{n~? 1}p(n-e~) f ~ d~(n'e~)P(nte~).

J-~ J-t ) P t J-~

The state probabilities sum to 1. This can be written as

~ ~ P(n) - ~ ~ -.-~ P(n) - 1.
rt~-0 nj-0 m-0 ~n~ -m

(2.1)

(2.2)

First, it will be shown that the following limits exist for all states nE NS:

b(O:n) - !im p-~"~ P(n). (2.3)
p10

if the departure rates are such that not all servers are idle when jobs are present in the system,
i.e., if for each state nE NS, n~0, the following condition holds:

s
~ dJ{n) ~ 0.
j-l

For that purpose,introduce

A(P;m) - ~ ...~ P(n) ~ aJ{n) . D(P:m) - ~ ...~ P(n) ~ d~(n). m -0.1,2,....
Inl'm 1'~ ~n~'m J`t

Summation of equations (2.1) over states nENS with ~n~ -m leads to:

PA(P:0)-D(P:1): PA(P;m)'D(P;m)-PA(P:m-1)'D(P:mtl). m-1.2.....
By induction, balance relations between all states with ~ n ~-m and with ~ n ~-mf l follow:

PA(P;m)-D(P:mtl), m-0.1.2,-.-.

(2.4)

(2.5)

(2.6)

(2.7)
It will be clear from (2.2) and (2.7) that the limit (2.3) exists for n-0, and equals 1. Now,
suppose that the limits (2.3) exist for all n with ~n~ ~M for some M?0. Then, because the
coefficients aJ(n) are non-negative, also the following limits exisr

Á(m) -!irn p-m A(P;m), m -0, I,, .,M. (2.8)
p10

A similar argument and equation (2.7) imply that the following limits exist:
D(m) -limp-mD(p;m), m-0,1,.,Mtl.

pl0 (2.9)

Because all state probabilities and all depanure rates are non-negative, assumption ( 2.4) implies
that [he limits (2.3) exist for all n with ~n~ -Mf L By induction it follows that the limits (2.3)
exist for all states nE N5. Next, introduce the functions

9o(n) -P-~"~P(n). (2.10)
Substitution of these functions into the balance equations ( 2.1) leads to the following equations:

s s l s s
p~ aJ{ri) t~ d~(n) 1 9o(n) -~ aJ{n-e~)I{nJ? l}qo(n-e~) tp~ dJ(n~e~)qo(nte~) (2.11)

J-t J't 1-t J-t

Notice the different position of the factor p in the righthand sides of ( 2.1) and ( 2.11). The law of
total probability ( 2.2) can be rewritten as:
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m

~, pm ~ ..~ 4o(n) - 1. (2.12)
m-0 ~n~-m

It has been shown above that the functions qo(n) possess finite limits as p vanishes. The foregoing
equations imply that these limits satisfy:

s s
b(0;0) - 1; ~ d~(n)b(O;n) - ~ a~(n-ej)1{nj?I}b(o;n-ej), ~n~ ? 1.

J-t 1't
Now, subtract the límits at p-0 from the functions qo(n):

9i(n) - 9o(n) - b(~:n), n E NS.
Then, we obtain from ( 2.I l) with ( 2.13) the relations: for nE N',

s s s
p~ a~{n) t~ d~(n)l 9i(n) . p~ a~{n) b(O;n)
l-t 1't J j't

s s
-~ a~(n-ej)1{n~? 1}qt(n-ej) t p~ d~(ntej)Iqt(n.ej) tb(O:ntej)J.

J-~ J't
and from ( 2.12) the relation

(2.13)

(2.14)

(2.15)

ql(0) ' ~ pm ~ ...~ ~41(n)'b(O:n)1 - 0. (2.16)
m-1 ~n~-m

Because the functions qt(n) vanish as p a 0 by (2.14), it follows readily by induction from the
above relations that the limits

b(l;n) - lim p-t ql(n). (2.17)
p~0

exist for all states n E N5. [n a similar way we can successively, for k-2,3,..., define the functions

9k(n) ' 9k-I(n) - pk tb(k-l;n), n E N5, (2.18)
and show that the limits

b(k;n) - lirn p-kqk(n)~ (2.19)
pl0

exist for all states n E NS. By induction it follows that these limits satisfy: for k- 1,2,...,
b(k;0) --~...~ b(k- ~ n ~;n);

IS~n~Sk
(2.20)

and fork-l,2,..., fornENs, n~0,
S s s
~ d~(n) b(k;n) - -~ af(n)b(k-l;n) t~ a~(n-ej)I{nj? l}b(k;n-ej)
J-1 J't J-t (2.21)s

t ~ d~(ntej)b(k-l;n4ej).
i-t

Consequently, we can formally expand the state probabilities as power series in terms of the load
of the system, p:

P(n) - p~n~ ~ pk b(k;n), n E Ns. (2.22)
k-0

The coefficients of these power-series expansions can be recursively computed from (2.13) and
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(2.20), (2.21). Note that assumption (2.4) is necessary to allow the computation of the coefficients
b(k;n) according to this scheme. There is still quite some freedom in the order in which the
coefficients can be computed. One convenient order is: compute b(O;n) recursively for increasing
value of ~ n ~ up to ~ n ~-M for some value of M, then compute b( I;n) recursively for increasing
value of ~ n ~ up to ~ n ~-M- t, and so on, until b(M;0) is reached. Another approach is to com-
pute the coefficients b(k;n) according to increasing values of m-kf ~n~ for m-0,1,.,.,M, where at
each level m the coefficients have to be computed in increasing order of k, for k-0,1,...,m. The
latter approach implies that the coefficients are computed according to increasing power of p.

2.2. COhiP[1TATION OF PERFORMANCE 11~ASiJRFS
For multi-queue systems, the (numerical) infotmation of the individual state probabilities is usually
too complex to be of much interest in itself. Of more interest are sometimes (aggregated) probabil-
ities, such as the probabilities that a queue is empty, or that a queue exceeds some threshold. In
most cases, however, one is interested in the first few moments of the queue length distribution, in
particular, in the mean and the standard deviation of the queue lengths, and possibly in the cor-
relation between the queue lengths. Let g(n) be a function from NS to H2. The expectation of the
random variable g(N) is defined as

E{g(M } - ~ ...~ 8(n)P(n) - ~ ~ ..~ 8(n)P(n). (2.23)
n~-0 nr-0 m-0 ~n~-m

By substituting the power-series expansions (2.22) of the state probabilities into this relation and
by changing the order of summation this expectation can be written as

E{g(M } - ~ Pm~ ...~ 8(n) ~ Pkb(k:n) - ~ pk ~ ~ ...~ 8(n)b(k-m:n).
m-0 ~n~-m k-0 k-0 m-0 ~n~-m

This relation shows that E{g(M} possesses a power-series expansion at p-0 of the form
~

E{g(M } - ~ Pklg(k).
k-0

with coefficients given by

f8(k) - ~...~ 8(n)b(k-Inl:n), k-0,1,....
05~n~sk

(2.24)

(2.25)

(2.26)

By appropriate chooses of g(n) various performance measures can be computed, e.g., 1{n~-i} for
the marginal probability that N~-i, g(n)-nj for the ith moment of N, i-0,1,..., and g(n)-nhn~ for
the cross moment of Nh and N~, h, j-1,...,s. It is more efficient fór obtaining such performance
measures to compute first their coefficients via (2.26) and then to use ( 2.25) than to compute first
the state probabilities via (2.22) and then the perfotmance measures directly from the state prob-
abilities. In the first way, algorithms for accelerating the convergence can be applied directly to
partial sums of the series ( 2.25) and the storage requirement for the coefficients can be reduced,
cf. section 3. For many systems, characteristics of the waiting or response time distributions can
be computed once the joint queue-length distribution has been determined, e.g., by Little's law for
mean waiting or mean reponse [imes. These relations will not be discussed here.

3. ON TI~ IMPLEMENTATION OF THE PSA
This section concerns some more technical issues of the PSA. Section 3.l discusses a modification
of the computation scheme by means of a conformal transformation in order to enlarge the radius
of convergence of the power series. Further improvement of the convergence of these series can
be obtained by applying the e-algorithm; this matter is discussed in section 3.2. Section 3.3 is de-
voted to issues concerning the efficient storage of the coefficients of the power series.
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3.1. ENLARGQVG TFIE RADIUS OF CONVERGENCE OF Tf~ POWER SERIES
Experience has taught us that the power-series ( 2.22) and ( 2.25) usualty do not converge for all
values of p for which a system is stable ( by definition for pc l). One way to overcome this
difficulty is to introduce the following bilinear mapping of the interval [0,1] onto itself,

B-I'~(P)-(i} pp, p-I'~(B)-
1~G-GB~

(3.1)

Any singularity outside the circle ~ p- ~fz ~-~fi may be removed from the unit disk by this
procedure with an appropriate choice of the parameter G. Another computation scheme is then
obtained by introducing, instead of (2.22), the following power-series expansions of the state prob-
abilities as functions of B:

P(n) - B~"~ ~ Bk b~(k;n). (3.2)
k-0

Replacing p by B in the balance equations (2.1) according to (3.1), substituting the above power-
series expansions in B into these equations, and equating coefficients of corresponding powers of B
in the resulting equations leads to the following set of recursive relations: for k-0, n E]e1s,

s s
b~(0;0)-1; ( ltG)~d~(n)b~(O;n)-~a~(n-e~)I{n~?1}b~(O;n-e~), ~n~?1; (3.3)

Í-t J't
for k-1,2,..., for n-0,

bG(k;0) --~..~ b~(k- ~ n ~ ;n).
IS~n~sk

and for nE NS, n~ 0,

(3.4)

s s s
(1 tG)~ d~(n)b~(k;n)-~ {Gd~(n)-a~(n)}b~(k-l;n) t~ a~(n-e~)1{n~? 1}b~(k;n-e7)

i-t i-t i-t (3.5)s
t~ d~(n te~) {(1 {G)b~(k- l;n te~) - G 1{k? 2} b~(k-2;nte~)},
J`t

Relation ( 3.5) mainly differs from ( 2.21) through the occurrence of terms with coefficients of the
fotm b(k-2;nte.), j- 1,.. ,s. An appropriate choice of the parameter G depends on the radii of
convergence of t~e power series. Since the latter usually are not know for models to which the
PSA is applied, a good practical policy is the following. [f only a few terms of the power series
(say, 12-15) will or can be computed, take G-O; otherwise, execute a test-run with G-0 and 5-10
terms, estimate the smallest radius of convergence, and take a value of G such that the power
series are not too strongly divergent for the highest value of the load p for which performance
measures will be evaluated. The power series do not need to be convergent when the E-algorithm,
which will be discussed in the next section, is applied.

3.2. IM1iPROVLYG TFIE CONVERGENCE OF Tf~ POWER SERIES
Another technique for removing singularities from inside the unit disk is application of the E-algo-
rithm. The E-algorithm aims to accelerate the convergence of slowly convergent sequences or to
determine a value for divergent sequences, cf. (17], [14]. It converts a polynomial into quotients
of two polynomials. The E-algorithm consists of the following recursive scheme:

(m~ (m~l) (m~l) Dn) -t
EK -EK-2 ' IEK-1 EK-I] ,

with initial conditions:

m~- IÍ2 K, K- 1,2,..., (3.6)

m

EZK t- 0, K - 0, l....; E(m) -
0. Ep)-~ CkBk, m - 0,1,...;

k-0
(3.7)
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here, the ck, k-0,1,2,..., stand for coefficients of a series such as defined in (2.22), (2.25) or
(3.2). Only the even sequences {e~K), m-0,1,...}, K-1,2,..., may be sequences which converge
faster to a limit than [he initial sequence. The odd sequences are only intermediate steps in the
calculation scheme. The e-algorithm turns a divergent series into a convergent series if the analytic
continuation of the function defined by the series at B-0 possesses only a finite number of poles as
singularities inside the unit circle ~6~ 51. It transfotms the initial sequence of polynomials into
sequences of quotients of two polynomials. More precisely, e~R-ZK) will be a quotient of a
polynomial of degree m-K over a polynomial of degree K, and

e[m) - etm-2K) I- O(Bm~t ). B-~0. K- 1,2,...,m, m- 1,2,.... (3.8)
I Q ~K

When the heavy traffic behaviour of the moments of the queue length distribution is known
beforehand, the performance of the e-algorithm can be improved by a modification of the initial
values ebm~, cf. [5]. Before application of the e-algorithm the coefficients of the power series are
extrapolated to take into account the pole at p-1 (B-1). It means that we take for first order poles

m
e~m) C Bk t0 -~ k

k-0

Bm~l
m -0.1.2,...,

1 -8 ~
(3.9)

and for second order poles

(m) m k Bm~l em~l

EO -~ ~kB ' ~m- t[~m-~m-I] m-1,2,..., (3.10)
k-p 1 -B (1 -B)2

instead of the last relation of (3.7). The pole at B-1 is preserved in other even sequences produced
by the e-algorithm. It should be noted that not every queue grows without bound as p f 1 in some
systems; modifications (3.9) and (3.10) should only be applied to those moments which do have a
pole at B- t in order to accelerate the convergence, although the modified sequences will converge
to the same limit as [he original sequence if the latter is convergent. For probabilities which are
known to vanish as p t 1(B t 1), the initial sequence of the e-algorithm can be replaced by

m m m k

ep)-~CkBk-Bm~t~Ck-(1-B)~Bk~ci. m-0,1,2..... (3.11)
k-0 k-0 k-0 i-0

It may happen that the power series are so strongly divergent that numerical instabilities occur
when a large number of terms is computed. [n that case, a conformal mapping as discussed in
section 3.1, should be used together with the e-algorithm. Numerical instabilities of the PSA may
also occur, because a large number of coefficients have to be summed to obtain the coefficients of
the state 0, cf. (2.20), and the coefficients of aggregated performance measures, cf. (2.26). This
problem can be impaired by splitting these large summations into smaller partial sums.
The number of terms M of the power-series expansions, and the number of steps K in the e-
algorithm, cf. (3.6), which are needed to reach a certain accuracy, depend on various properties of
the models. Generally, these quantities increase with increasing load, with increasing number of
queues, with increasing coefficient of variation of distributions, and with increasing asymmetry
between the parameters of the various queues. Numerical experience has taught us that application
of the e-algorithm strongly improves the performance of the PSA and that, in some cases, it even
leads to good estimations of heavy traffic limits. For most systems it is very difficult to derive
tight upper bounds on errors for the PSA together with the e-algorithm. The order of magnitude of
the errors usually has to be estimated from differences in performance measures computed on the
basis of M and of M-I,M-2,... temrns of their power-series expansions. Further, exact relations
between performance measures, such as pseudo-conservation laws for polling systems, have
proven helpful in estimating the order of magnitude of errors.

3.3. ON TI~ LtiiPLE~NTATION OF THE PSA
For most models, limi[ations on storage capacity for the coefficients of the power-series expan-
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sions are more important restrictions on the applicability of the PSA than limitations on computing
time. The evaluation of power-series expansions up to the Mth power of p(or B, cf. (3. O) requires
the computation of

MtstlBS(~ - s 4 1 1 (3.12)

coefficients b(k;n), namely those with kt ~n~ 5M. The coJmplexity of the computation of a single
coefficient b(k;n) depends on the structure of the model, in panicular on the number of non-zero
transition rates. In order to make an efficient use of the available memory space we map the multi-
dimensional region of lattice points (k,n) with kf ~ n ~ 5M onto the set of integers {0,...,8, (M) -1 }
by means of the one-to-one mapping,

(k'~n~'sl t ~n~k (stj-1l ~~ I s-~`~~in~l (3.13)
stl i-1n~.1 I s-J'1C(k;n) - l J Il 11 Il JJ-Z

This mapping has the property that points (k-l;n), (k;n-e~1.), (k-l;nfe~), (k-2;nfe~), j-1,...,s,
all have a lower value than the point (k;n), k-0,1,..., nElVs. Another mapping with this property
has been discussed in [5], but the latter mapping has some disadvantages in more complicated
models. The above procedure enlarges the number of terms of the power-series expansions which
can be computed with a given storage capacity at the costs of increased computation time needed
for the de[ermination of the location of the coefficients in the array in which they are stored. A
further reduction of storage requirement can be realized when only a limited number of perform-
ance measures have to be evaluated. In most cases, one is not interested in all individual state
probabilities. Then, the coefficients of the power-series expansions of the important performance
measures can be aggregated during the execution of the PSA, cf. (2.26), and stored in separate
(relatively small) arrays, while the coefficients of the state probabilities can be deleted as soon as
they are not needed anymore in further computations. This approach reduces storage requirement
for calculating M tetms of the power-series expansions from BS(M) to DS(M), where DS(M) is the
largest distance ( in terms of [he mapping C(k;n), cf. (3.13~) between coefficients occuring in a
single equation of (2.21) or (3.5), cf. [Sj,

DS(~- (~4s1, if G-O. D,(~- r`Ntsl t(Mts1 2l, if G10. (3.14)

Notice that the PSAI consiJders a parametrized set of slystemsJ witllh the sameJl service rates and with
the same proportions between their arrival rates, i.e., with arrival rates ~~-p(i~ where p varies
between 0 and 1. Hence, the fact that the PSA adds a dimension ( of the power-series expansions)
to the state space NS is compensated for by the fact that once the coefficients of the power-series
have been computed, performance measures can be determined with relatively little effort for
various values of the load p. Moreover, by deleting coefFcients which are not needed anymore in
further iterations the storage requirement is reduced to the original dimension.

4. GENERALIZATIONS OF 7'F~ PSA
The concept of the PSA is generalized to QBDPs in section 4.1. Other generalizations of the PSA
are briefly indicated in section 4.2.

4.1. TF~ PSA FOR QUASI-B[RTH-AND-DEATH PROCESSES
[n this section the PSA will be generalized to the class of multi-queue systems of which the under-
lying stochastic queue-length processes are multi-dimensional QBDPs. The finite supplementary
space will be denoted by V and the supplementary variable by F. Let, in state n E NS and phase
~E V, pa~(n,~,,y) be the arrival rate to queue j causing a transition to phase ,G, d~(n,~,~) the
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departure rate from queue j causing a transition to phase tG, and u(n,~,~) the phase-transition rateto phase ~, for j-l,...,s, ~E V. Again, d~(n,rb,,~)-0 if nj-0, for nENs, j-1,...,s, m,tGEV. Letp(n,m) denote the probability that the process (N,Fj is in state (n,~). The global balance equationsfor the flows out of and into state ( n,~) read: for nE NS, ~E V,

~ I~[va~(n.~,~G) td~(n.~,~G)] tu(n,~.d) I P(n,~) -~ u(n.~G,~)P(n,t~)vEV 1~-1 J ~yEVS (4.1)
t ~ ~ [pa~(n-ej.~G,~)!{nj? 1 }p(n-e~.~G) td~(ntej,~G.rti)P(n'e~.~G)].

~LEVj-I
The state probabilities sum to I. This can be written as

~

~ ~ .~ ~ P(n,~) - L (4.2)
m-() ~nl-m ~EV

In a similar way as in section 2 it can be shown that the state probabilities possess power-seriesexpansions in terms of the load p: for nE NS, rbE V,

P(n,~) - v~"~ ~ vkb(k:n.~). (4.3)
k-0

Substituting these power-series expansions into the global balance equations (4.1) and equatingcoefficients of corresponding powers of p leads to: for k-0,1,2,..., for nE NS, ~E V,

~ ~~ d~{n.m,~G)'u(n,~,~G)~ b(k:n,~) - ~ u(n,~G,m)b(k:n,~G)
~GEV j-1 ~GEV

s

t ~ ~[aj(n-e~,tG,~)!{nj?1}b(k;n-e~,~)-a~(n,~,~)!{k?1}b(k-l;n,~)
~GEV j-l

(4.4)

t dj(n tej,,G,~)I{k? 1} b(k- l;n te~,,G)].
These equations allow the computation of the sets of coefficients {b(k;n,~), ~EV} for vectors(k;n) with n~ 0 in order of increasing value of C(k;n), cf. (3.13), if for each n E NS, n~ 0, thereis at least one ~pE V with, cf. (2.4),

~ ~ dj(n.~p,~G) ~ 0. (4.5)
j-l ~EV

and if the set of transition rates {u(n,~,,G), ~,,~E V} is such that from any rbl E V for which (4.5)does not hold there is a path to a rboE V for which ( 4.5) does hold. Then, the coefficients{b(k;n,~), ~pEV} can be computed from (4.4), possibly by solving a set of at most ~V~ linearequations. That the state probabilities sum to 1 implies the following relations for n-0:
~ b(0;0,~) - l, ~ b(k:0.~) - - ~ .. ~ ~ b(k- I n I :n,~). k - 1,2,.... (4.6)~EV ~EV 1 5 ~n~ Sk ~EV

For QBDPs there does not need to be a unique empty state. The equations (4.4) become for n-0:for k-0,1,2,..., for ~E V,
~ u(0,~,~)b(k;0,~) - ~ u(n,~G,~)b(k;0,~)
~GEV ~GEV

S (4.7)
t!{k?1} ~ ~ [d~{e~,~,~)b(k-l;e~,~)-a~{O,rb,,~)b(k-I;O,~)].

~EVj-1
For fixed k, k-0,1,2,..., this is a dependent set of equations. Replacing one of these equations by
(4.6) yields an independent set of equations if the Markov chain with transition probabilities
u(0,~,,y), ~,,~EV, is irreducible. [f one of the foregoing conditions is not satisfied then the order
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in which the coefficients of the power-series expansions are computed has to be modified. This
rather technical issue will not elaborated upon. The reader is referred to [13] for an example of
how the PSA can be modified if one of these conditions is not satisfied. The complexity of the
PSA mainly depends on the number of stations s and on the size of the supplementary space V. If
coefficients of the power-series expansions (4.3) are computed up to the Mth power of p, then the
number of coefficients to be computed is at most BS(M) x ~ V~ . For some states nE 1015, the supple-
mentary space may be smaller than ~ V~ , e.g., for the state n-0 if part of the supplementary space
is used to describe PH service time distributions.

4.2. OTFtER GENERALIZATIONS OF TIIE PSA
Further generalizations of the PSA are possible to QBDPs with migration and with finite buffer
sizes, and to Markovian models with batch arrivals. An example of a QBDP with migration is the
tandem queueing system to be discussed in section 7.1. Finite buffers can be incorporated into the
models by taking al(n,~,~)-0 for rp,~E V and for all nE Imis with nÍ?LÍ, LÍ being the the buffer
size for queue j, j-1,.. ,s. However, if all queues have finite capacity then the system is stable for
all values of the offered load p, and this requires modification of the confotTrtal mapping (3.l) and
other aspects of the implementation of the PSA. It is still an open question if or under which cir-
cumstances the PSA in conjunction with the e-algorithm is more efficient than solving the finite set
of global balance equations for such systems directly. Admission of batch arrivals disturbs the
birth-and-dea[h structure, and thereby property (2.22). An example of a system with multiple
arrivals is discussed in section 5.3; see further [16].

5. P.ARALLEL-SERVER SYSTEMS
The PSA will be applied ín this section to models with several queues in parallel, and with a
server assigned to each queue. The coupled-processor systems in section 5.1 and the load-
balancing systems in section 5.2 are examples of BDPs. The fork systems in section 5.3 have
multiple arrivals. It turns out that the leading terms in the power-series expansions of the state
probabilities are different from those for BDPs. This leads to a different, but recursive, computa-
tion scheme for the coefficients of the power-series expansions.

5.1. COUPLED PROCESSOR SYSTEAIS

This section deals with a system consisting of s parallel servers ( processors), each with its own
yueue. At queue j, jobs arrive according to a Puisson process with intensity )`j-pa1., j- I,...,s. Jobs
arriving at queue j require an amount of service which is exponentially distrtbuted with parameter
p, j-1,...,s. The service rate at queue j depends on the state of the system: it is equal to rl(n) if
[~e system is in state n, j-1,...,s. The stationary state probabilities p(n) satisfy the following set of
global balance equations: for nE 1QI5,

s s l s s
~ ~ '~ Ir r(n) J p(n) - ~ ~ p(n-e.) t ~ k r(n~e ) p(n'e ) (5.1)

Í Í l 1 ! J J l l'
1't 1't 1't Í-t

Further, the law of total probability ( 2.2) holds. The queue-length process is an s-dimensional
BDP and, hence, the PSA can be applied directly, as in section 2.1. The only condition for the
standard application of the PSA is that, cf. (2.4),

s
~ rÍ(n) 1 0, if n~ 0, n E NS. (5.2)
J-t

If this condition which is not necessary for stability is not fulfilled, the computation scheme of the
PSA has to be modified. This technical issue will not be discussed here. Finally, if the model is
generalized with a MAP with AÍ states at processor j and a PH service requirement distribution
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with ~YJ stages for jobs at processor j, j-1,...,s, then the size of the supplementary space becomes
s s

~V~ -~ ghx~ ~yÍ. (5.3)
h-1 j-1

5.2. LOAD-BALANC~IG SYSfEMS
Consider a system consisting of s parallel servers, each with a queue. There is one Poisson arrival
streazn with rate ~-pa. Jobs are routed to onc of the queues upon arrival. The service rate of
server j is uÍ, j-1,...s. The balance equations for the state probabilitiesp(n) read: for nE NS,

s s s
J~t ~ ~j~{nÍ~O} p(n) - ~ ~yJ(n-e~)P(n-e~)!{nÍ~O} . ~ ~Íp(nte~); (5.4)

l-t 1-t J-t

here, yÍ(n) stands for the probability that an arriving job joins queue j when the system is in state
n upon its arrival, nENs, j-1,...,s. Further, the law of total probability (2.2) holds. For general
allocation functions y~(n) the queue-length process is a BDP so that it is possible to use the power-
series expansions (2.22). If this function is such that yJ{n)-0 if n~ ~ min{n;; i-1,...,s}, i.e., if
every arriving job chooses one the shortest queues, then many coefficients b(k;n) in ( 2.22) vanish.
For this case, the following power-series expansions hold for the state probabilities:

p(n) - p[I"1 ~ pk b(k;n); l(n) - s max { nj } - Jl {i ; n; c max { nj }}, n E NS. (5.5)
k-0 J'1, s j-1, ,s

Notice that 1(n)?~n~ for all nENs, while l(n)-~n~ iff mar{n~;i-1,...,s}-min{n~;i-1,...,s}51.
By using (5.5) it is possible to handle systems with much more queues than it is possible to do
without this property, especially if all service rates are equal and the allocation function yJ(n) is
symmetrical, and if also this symmetry is used to reduce the number of coefficients to be com-
puted and stored. The number of coefficients to be computed if coefficients of the power-series ex-
pansions are computed up to the Mth power of p, is given in [10] for the asymmetrical as well as
[he symmetrical case. If the model is generalized with a MAP with 6 states and PH service time
distributions, with ~Yj stages for service at queue j, j- 1,...,s, then the size of the supplementary
space becomes

s
~V~-Ax~~Yj.

i-t
(5.6)

5.3. Foxx srsTt:;~ts
Fork systems are models for parallel computing devices. The system consists of s parallel proces-
sors, each with its own queue. There is one arrival stream of jobs. Jobs split upon arrival.
Suppose for simplicity that every job sends a subjob to each queue. Let ~-pa denote the arrival
rate, and let ~j be the service rate of processorj, j- 1,...s. The queue-length process of this model
is a Markov process, but not a birth-and-death process, because an arrival leads to a transition in
each component of the state space. The arrival process is a special kind of batch arrival process.
The balance equations for the state probabilitiesp(n) read: for nE NS,

(~ t~~ÍI{nj 10} l p(n) - 1`p(n-e)!{vj nÍ ? 1} t ~ pjp(nte~).
l J-t J Í`t

(5.7)

here, e-(1,1,...,1) denotes the s-dimensional unit vector. Further, the law of total probability (2.2)
holds. For these systems, the following power-series expansions for the state probabilities hold:

P(n) -pt(") ~ Pkb(k:n): !(n) - ntax {nÍ}, n E NS. (5.8)
k-0 j-l, ,s
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Notice that 1(n-e)-1(n)-l and that 1(nte~)-1(n)fl if n~-1(n) and 1(nfe~)-1(n) if n~Gl(n), for
nENs, j-l,...,s. Hence, substituting (5.8) into (5.7) and equating coefficients of corresponding
powers of p leads to:

~ ~a~l{nJ~O}b(k;n) - ab(k;n-e)I{vj n~? l} -al{k? l}b(k-l;n)
J't

s s
t ~ ~~1{n~Gl(n)}b(k;nte~) t ~ ~~1{k? 1, n~-1(n)}b(k-I;nte~).
l-1 l`t

The fact that the state probabilities sum to l implies the following relations

b(0;0) - l, b(k;0) --~...~ b(k-[(n);n), k-1,2,....
I 5l(n) 5k

(5.9)

(5.10)

The order of calculation has to be chosen such that ccefficients b(k;nfe~) for j with n~Gl(n) are
computed before b(k;n), cf. (5.9). This means that for fixed k and 1(n), coefficients b(k;n) have to
be computed first for the vector n with n~-1(n) for all j, j-1,...,s, and then successively for
vectors n with min{n;;i-1,...,s}-1(n)-1,!(n)-2,...,0. In this way, the coefficients b(k;n) can be
recursively compu[ed in order of increasing value of m-ktl(n), and for fixed m in order of in-
creasing value of k. The number of states nE N' with 1(n)-m for some m is equal to (m-f- l)-`-mf.
[f coefficients of the power-series expansions ( 5.8) are computed up to the Mth power of p, then
the number of coefficients to be computed is

M M. t
BS(~ - ~ (M tl-m)~(rntl)S-msl - ~ ms. (S.ll)

m-0 m-l
The coefficients of the power-series expansions of moments of the joint queue-length distribution
can be computed in a similar way as in (2.26), but with ~ n ~ replaced by 1(n). If the model is gen-
eralized with a MAP with A states and PH service time distributions with ~Y~ stages for service at
processor j, j- 1,...,s, then the size of the supplementary space is given by (5.6).

6. MULrt-t2uEUE sYS~nfs wtTx swrrctmvG sFrsvF.xs
An important class of models to which the PSA is applicable is the class of polling models. Polling
systems are systems with several stations, each generating a stream of jobs or messages, and one
or more servers which are not devoted to a specific class of jobs, but which alternately serve jobs
from one of the stations. Usually, the times needed to switch service from one station to another
are non-negligible. Polling systems form a very rich class of queueing systems due to the many
priority or visit rules and service disciplines that they allow. Important areas for application of
these models are computer-communication systems, in which several stations share a single com-
munication channel and compete for access to this channel, e.g., local area networks. Section 6.1
contains a general introduction of the PSA for polling systems, the sections 6.2 and 6.3 are con-
cerned with specific polling models.

6.1. 1~~ PSA FOR VARIOUS POLLING STRATEGIES
The service strategies for polling systems can often be divided into three parts, which can be
chosen independently of each other: a rule for the order in which the server visits the queues; rules
for the number of services per visit to the various queues; and a rule for the behaviour of the
server when the system is empty.
Examples of order-of-visit rules are: polling in a fixed periodic order (cyclic: 1,2,...s,1,2,...; star:
1,2,1,3,...,1,s,1,2,1,...; scanning: 1,2,...,s-I,s,s-1,...,2,1,2,...; or according to some general finite
polling table); random or Markovian polling: the next queue to be visited is determined by a ran-
dom mechanism which may depend on the current position of the server (Markovian polling) or
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not (random polling); polling according to fixed priorities attributed to the queues; or polling
according to a dynamic (state-dependent) rule such as priority for the longest queue, priority for
the queue with the most expected work, elevator-type polling, i.e., in principle as scanning above,
but skipping queues which are empty, or a greedy strategy, choosing the closest non-empty queue.
The choice of the order-of-visit rule will depend on the availability of information about the pres-
ence of jobs at the various stations. Further, this choice may depend on the configuration of the
system, i.e., on whether or not direct connections between pairs of stations in the network exist,
and on the distances between the stations, in terms of inean switching times. The PSA can handle
all these rules, but in each case a supplementary variable is needed to indicate the position of the
server. For the case of periodic polling this variable has to indicate the current entry of the table,
for all other cases it has to indicate the station which is being visited by the server.
Examples of number-of-services rules are: exhaustive service (the server remains serving until a
queue becomes empty); limited service (a fixed number of jobs is served, at most); Bernoulli serv-
ice (after each service another service may be started with a fixed probability); gated-type service
(only jobs present in a queue at the instant at which the server arrives at that queue are eligible for
service); time-limited service (during a time interval of fixed length new services may start). The
number-of-services rules may be different for the various queues or visits. The PSA can be applied
to systems with Bernoulli service, including exhaustive and l-limited service as special cases,
without additional supplementary space. For general limited service an additional supplementary
variable is needed to keep track of the number of services completed during the current visit.
Time-limited service can only be approzimated by Erlang distributed timers, and requires a
supplementary variable to keep track of the stage of the timer. Gated-type disciplines cannot be
modeled as s-dimensional QBDP, because they require an unbounded supplementary space, but
they can be modeled as (sf 1)-dimensional QBDP, where the additional queue contains the jobs
which are eligible for service during the current visit.
Examples of empty-system rules are: the server keeps on switching according to the order-of-visit
rule; the server remains at the last served queue; the server goes to a state of rest; the server goes
to a specific queue (e.g., the queue with the highest arrival rate), or to one from a specific set of
queues. The choice of the empty-system rule will also depend on the availability of information.
The first rule requires only local information, the other rules require information from all stations.
The PSA can be applied to systems in which the server keeps on switching or in which the server
goes to one specific queue or state of rest in a straightforward manner. If the server may rest at
several queues, then the computation scheme has to be modified, cf. [13].
In the next sections the PSA will be discussed in more detail for some specific polling strategies.
The following notations will be used. A polling system will consist of s queues and a single
server. Jobs arrive at queue j according to a Poisson process with rate ~~-Xa~, j-1,...,s. The sum
of the arrival processes at the various queues is a Poisson process with rate A-XA-x Ei a~.
Service cimes of jobs arriving at queue j are assumed to be exponentially distributed with rate ~~,
j-1,...,s. The load offered at queue j is p~-J~~l~~, j-l,...,s, and the total offered load to the system
is p-E~ p~. The number-of-service rules are limited service, i.e., during a visit of the server to
queue j at most K~ jobs will be server; if this number has been reached or queue j has been
emptied, the server chooses the next queue according to the order-of-visit rule (j-1,...,s). The
times which the server needs for switching from queue i to queue j are assumed to be exponential-
ly distributed with rates v~~, i,j-1,...,s. Two supplementary variables will be used to render the
queue-length process into a QBDP. The supplementary variable H will indicate the position of the
server, i.e., the queue to which the server is switching or to which the server is attending, and Z
will indicate the status of the server-, more specifically, Z- -i, i-1,...,s, indicates that the server
is switching from queue i(to queue H) and Z-K, K-1,...,Ky, indicates that the server is perform-
ing the Kth service during the current visit to queue H. If it is not necessary to keep track of the
queue from which the server is switching, then Z-0 will indicate the mere fact that the server is
switching. The state probabilities of the QBDP (N,H,Z) will be denoted by p(n,h,K). In general,
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the condition for stability of a polling system depends besides on p also on the service strategy and
the switching time distributions. Therefore, the PSA for polling systems will be based on power-
series expansions of the state probabilities as functions of [he occupancy X of the system: for
nENs, h-1,,..,s. K--s....,Kh,

m
P(n,h,K) - X~"~ ~ X~b(k:n,h,K); (6.1)

k-o
here, the occupance X is defined in such a way that the system is stable for 0 5X G l. It is also
possible to work with power-series expansions as functions of the offered load p, but then the
conformal mapping ( 3.1) and the modifications (3.9), (3.10), ( 3.11) of the initial sequence of the
e-algorithm have to adapted.

6.2. SYSTEhLS WITF1 CYCLIC POLLITIG STRATEGIFS
This section is devoted to polling systems with limited service in which the order-of-visit rule is
cyclic polling and in which the server continues to move along the queues when the system is
empty. The condition fur stability of these cyclic polling systetns reads:

x -v'd~ max {~j~Kj} c 1; (6.2)
J-1, s

here, S~ is the mean total switch-over time during one cycle of the server along the queues. For the
case of cyclic polling it is not necessary to keep track of the queue from which the server is
switching (this is queue j-1 if the server is switching to queue j, j-1,..,s; read here and below
queue s for queue 0). Therefore, it is sufficient to have Z-0 indicate that the server is switching.
The switching rate from queue j-1 to queue j will be denoted by vj, j-1,...,s. There is no unique
empty state in this system, because the server continues to switch when the system is empty. The
balance equations for the state probabilities p(n,h,K) are: for nE NS, h-0,...,s-1,

[A'vk. tlP(n,h t l,0) -~~j!{nj ? 1} p(n-ej,h t 1,0)
j-1

Kh
{ vh!{nh-0}p(n,h,0) ~uti~ 1{K-KhVnh-O}p(nteti,h,K);

K-t
and for nENs, h-1,...,s, nh? 1, K-1,...,Kh,

[A f ~h]p(n,h,K) - ~ ~j!{nj ? 1 }p(n - e~ ,h,K)
i-t

(6.3)

(6.4)
t vhf{K- I} p(n,h,0) t~.h!{K? 2}p(n teti,h,K-1)~

and further it holds by the law of total probability that
m m s Kh

~ ,.. ~ ~ ~ p(n.h.K) - 1. (6.5)
n~-0 ni-0 h-1 K-0

It should be noted that p(n,h,K)-0 if nh-0, for all nENs, K- 1,...,Kh, h-1,...,s. Substituting the
power-series expansions ( 6.l) into the balance equations ( 6.3) and ( 6.4) and equating the coeffi-
cients of corresponding powers of X in the resulting equations leads to the following set of equa-
tions for the coefficients in (6.1): for k-0,1,2,..., for nE NS, h-0,...,s-1,

s
vh,tb(k;n,ht1,0) - ~ aj!{nj? 1}b(k;n-el,htl,0) -AI{k? 1}b(k-1;n,ht1,0)

j't
Kh

t vhI{nh-0}b(k;n,h,0) tlah!{k? I} ~ 1{K-KhVnh-O}b(k-l;nteti,h,K);

(6.6)
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and fork-0,1,2,..., fornEPls, h-l....,s, nti?1, K- 1,...,Kh,

s
p~b(k;n,h,K) - ~ a~l{n~? l}b(k;n-e~,h,K) -A!{k? 1}b(k-l;n,h,K)

i-t (6.7)
t vh~{K- l} b(k;n,h,0) ~~hl{K z 2, k? 1} b(k- I;n teti,h,K- l).

It is readily verified that the set of equations ( 6.6) and ( 6.7) expresses coefficients b(k;n,h,K) in
terms of coefficients of lower order with respect to the mapping ( 3.13), or of the same order but
with lower value of K, K-0,1,...,Kh, with the exception of the tetm b(k;n,h,0) in (6.6). The latter
term oNy plays a role when nh-0 for some h, h-1,...,s. However, if n~0, the set of coefficients
b(k;n,h,0), for k and n fixed, can still be recursively computed by starting at a value h-j with
n~ 10 and by proceeding the computations of the coefficients b(k;n,h,0) then sequentially for
h-jtl,...s-I,O,...,j-l. Hence, the only states which require further attention are those with
n-0 and K-O. The equations ( 6.6) read for these states: for k-0,1,2,..., h-0,...,s- l,

Kh
vh,tb(k;0,ht1,0)-vhb(k;0,h,0)tl{k?1} (~h~ b(k-1;eh,h,K)-Ab(k-1;O,htl,0)I ; (6.8)

It is readily seen, that these sets of equations are dependent for each k, k-0,1,2,.... Substituting
the power-series expansions ( 6.l) into ( 6.5) and equating the coefficients of corresponding powers
of X in the resulting equation leads to the following equations:

S s s Kh
~ b(O;O,h,O)-1; ~ b(k;0,h,0)--~...~ ~ ~ b(k-~n~;n,h,K), k-1,2,.... (6.9)
h-t h-1 IS~n~5kh-1 K-0

For each k, k-0,1,2,..., equation (6.9) and s-1 equations of (6.8) form together a set of s linear
equations by which the s coefficients b(k;0,h,0), h- 1,...,s, are uniquely determined.
If the model is generalized with a MAP with A~` sta[es at station j, a PH service time distribution
with ~Y~ stages for jobs at station j, and a PH swi[ch-over time distribution with nf stages for
switches from station j- l to station j, j- 1,...,s, then the size of the supplementary space becomes

s s s

Ivl-tjehX ~nj`~K~~Y~I.
h-t J't J`t J

(6.10)

Systems with general periodic polling orders can be treated in a similar way as above, cf. [9). It is
rather straightforward to extend the PSA for cyclic-polling systems (as well as for polling systems
with other order-of-visit rules) to systems with set-up times at the beginning of each visit to a
station, cf. [1). In particular, the sets of equations for the empty states remain similarly as above.

6.3. SYSTEMS WITH RANDOM POLLNIG STRATEG~S
This section is devoted to polling systems with Iimited service in which the order-of-visit rule is
Markovian polling and in which the server continues to move along the queues when the system is
empty. The probability that the server will switch to queue j after completion of a visit to queue i
will be denoted by r~~, i, j-1,...,s; these probabilities should be such that each queue is positive re-
current. The condition for stability of Markovian polling systems is

X-p tbQ nta,r {I`~l(yjK~)} G 1; (6.11)1't.. .s
here, ba is the mean of an arbitrary switch-over time, and {y~,j-1,...,s} is the stationary distribu-
tion of the Markov chain with transition probabilities {r,J, i,j-1,...,s}. The balance equations for
the state probabilities p(n,h,K) of the QBDP ( N,H,~ are, for nE his, h,K-1,...,s,

K-t
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s s
[A'vKn1P(n,h,-K) - ~ ),j!{nj? 1}p(n-el,h,-K) t ~ vjKrKh!{nK-O}P(n,K. J)

l-1 Í'1K,
' ~KrKn ~ I{i-KKVnK-O}p(n'eK,K,i):

~-t
and for n E N 5, h-1,... ,s, nn ? 1, K-1, .,Kn,

[At~n]p(n,h,K) - ~ 1`jl{nj?1}p(n-ej,h,K) ~~ vjhl{K-1}p(n,h, f)
j-t J't

t ~n!{K~2}p(nteh,h,K-l).
Further, it holds by the law of total probability that

~ ~ s ( s Kh
~.. ~~ I~ P(n,h, y) '~ P(n. h,K)1 - 1.

n~-0 ns-0 h-l lj-l K-1 J

(6.12)

(6.13)

(6.14)

As in section 6.2, p(n,h,K)-0 if nh-0, for all nE Ns, K-1,...,Kh, h-1,...,s. Further, p(n,h,-~)-0
if rjh-0, for all nENs, j,h-1,...,s. Substituting the power-series expansions (6.1) into the balance
equations ( 6.12) and ( 6.13) and equating the coefficients of corresponding powers of X in the
resulting equations leads to the following set of equations: for k-0,1,2,..., for nE NS, h,K-1,...,s,

s
vKnb(k;n,h, - K) - ~ aj!{nj ? I } b(k;n -el,h, -K) - AI{k? 1 } b(k- l;n,h, -K)

1-tS Kh (6.15)
t~ vjKrKhl{nK-O}b(k;n,K, ~)~~KrKh!{k?1}~ I{i-KKVnK-O}b(k-1;nteti,K,i);
i-1 ~-1

and for k-0,1,2,..., for nE NS, h- 1,...,s, nn? I, K- 1,...,Kh,
s

~nb(k;n,h,K) - ~ aj!{nj? 1 }b(k;n-e~,h,K) - AI{k? 1}b(k-1;n,h,K)
~-1 (6.16)s

t~vjhl{K-l}b(k;n,h, j)t~n!{K~2,k?l}b(k-1;nteh,h,K-1).
j-1

As in section 6.2, the set of equations ( 6.15) and (6.16) expresses coefficients b(k:n,h,K) in terms
of coefficients of lower order with respect to the mapping ( 3.I3), or of the same order but with
lower value of K, K--s,...,-I,1,..,,Kn, with the exception of the terms 6(k;n,h,-~) in (6.15). [n
contrast with the cyclic polling system, sets of linear equations may have to be solved for the
present model also for states n~0, with size depending on the denseness of the transition matrix
{r~j, i, j- I,...,s}, but at most equal to z2(n); here, z(n) stands for the number of zero components
of a state n. For n-0 the set of equations (6.15) is dependent, and has to be supplemented by an
equation stemming from (6.14), cf section 6.2: for k-0 respectively k-1,2,...,

s s
~ ~ b(O;O,h, j) - 1, (6.17)
h-1j-1

s s s s Kh
~~ b(k;0, h. Í)--~..~ L~ b(k- I n I,n, h, 1) ' ~ b(k- ~ n ~;n h K)1 (6.18)
h-1j-1 15~n~5kh-l j-1 a-l J

Then, for each k, k-0,1,2,..., a set of at most sZ independent linear equations is obtained for the
same number of non-vanishing coefficients b(k;0,h,-~), j,h-1,...,s. If the model is generalized
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with a MAP with Aj states at station j, a PH service time dis[ribution with ~Yj stages for jobs at
station j, and a PH switch-over time distribution with n;j stages for switches from station i to
station j, i, j -1,...,s, then the size of the supplementary space is given by

~V~ -~ Ahx (~ ~ I{r;j~0}R;jt~ Kj~Yjl.
h-1 l i-l j-l j-1 J

(6.19)

7. NETWORKS WITH JOB TRANSITIONS

This section is devoted [o open networks of queueing centres or stations in which the servers have
been allocated permanently to one of the centres, and in which jobs may circulate through the
network from centre to centre before they ultimately leave the network. The queue-length process
for such a network is a(Q)BDP with migration. !t will be shown that straightforward extension of
the PSA to such processes leads to recursive computation schemes if migration occurs in one
direction only. Section 7.1 deals with the extension of the PSA to tandem queueing systems,
section 7.2 contains a discussion on more general networks.

7.1. 1~IE PSA FOR TANDEM Q[JEUEING SYSTEMS
The system consists of s single server centres in series. The queue-length process of the model
with a Poisson arrival process and exponential service time distributions has a product form
solution. To avoid discussion of this trivial model it is assumed that jobs arrive to the system at
queue 1 according to a MAP. This MAP is defined as follows. It is governed by a Markov process
with 6 stages. The transition rate from stage w is pn~,, and when the process leaves stage w it gces
to stage ~ with probability ~~„y, while an atrival is generated with probability g~,~,, w,[G-1,...,A. It
is assumed that the service times at centre j are exponentially distributed with rate Pj, j-1,...,s.
The state probabilities p(n,rb) of the process (N,~), where ~ indicates the actual stage of the MAP.
satisfy the following global balance equations: for nE N5, ~-1,...,A,

s
pn~ t~ ~j~{

Í'~ e s t (7.1)

tp~ n~l~~Gm(1-g~Gm)P(n,~G) tuSP(n'es,~) t~ uj!{nj.i?1}P(nte~-ej.t.~).
d't J`~

Further, the law of total probability holds. But a stronger property holds for models with MAPs
which s[ems from the autonomy of the MAPs. For the present model this implies that

~ ... ~ P(n,w) - v~, w - 1,...,A; (7.2)
n~-0 ni-0

here, v~ is the stationary probability that the MAP is in stage w, w-1,...,A; i.e., these probabilities
are the solution of the set of equations

e e
~ v~,ny,~y~w-v~~l~. w-1....,6; ~ v~-1. (7.3)
~-t ~,-t

Substitution of power-series expansions (4.3) into (7.1) yields: for k-0,1,2,..., nE NS, ~-1,...,A,
s 6

~~jl{nj? 1}b(k;n,~)- ~ n~,~~mg~,ml{n~? 1}b(k;n-et,~) t!{k? 1}[N,Sb(k-l;ntes,rb)
i-~ ~4-t (7.4)

e s-1
t~ q~~~~(1-g~m)b(k-l;n,~)-pmb(k-l;n,rb)]t~~j!{nj,t?1}b(k;nte~-ej~l,m).

~-t J't

From (7.2) it follows in a similar way that for w-1,...,A,

e
} p(n.~)-p~ n~G~~mg~m!{nt?1}p(n-et,~G)

t~-~
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b(O;O.w) - vW: b(k;0,w) --~.~ b(k- ~ n ~:n,w). for k - 1,2,....
i5~n~5k

(7.5)

Because C(k;ntej-e~tt)cC(k;n), cf. (3.13), for all nEP15 with nj~t?l, for j-1,...,s-1,
k-0,1,2,.., the set of equations (7.4), (7.5) allows recursive computation of the coefficients
b(k;n,w), w-1, .. ,t3, in order of increasing value of C(k;n). [f the model is generalized with PH
service time distributions with ~Y stages for service at centre j, j-1,...,s, then the size of the
supplementary space is given by (~.6).

7.2. THE PSA FOR NETWORKS OF QL'EL'ES

In more general networks, arrivals from outside the network may occur at each centre. Suppose
that when the service of a job has been completed at centre i, this job leaves the network with
probability r~o and moves to centre j with probability r,j, i, j-1,...,s. Because for k-0,1,2,...,
C(k;nfe~-e~)cC(k;n), cf. (3.13), for all nEhls with n;?l, for i-jfl,...s, j-1,...,s-1, the re-
cursive scheme for the tandem queueing model can readily be extended to acyclic networks, i.e.,
to networks with r~1 -0 for j-1,...,i, i- 1,...,s, with a MAP at each centre and with PH service
time distributions. It a network is not acyclic then standard application of the PSA dces not lead to
a recursive computation scheme, but requires the solution of sets of linear equations of which the
size increases strongly with s and ~n~.

8. OPTIMIZATION A,~tD SENSITIViTY ANALYS(S WITH TI~ PSA
For optimization of a performance measure with respect to real-valued parameters of a system it is
useful to be able to compute derivatives of the performartce measure as function of these param-
eters. Then, op[imization techniques as the conjugate gradient method can be used to determine
op[imal values of these parameters with respect to some objective function. Computation of deriva-
tives may also be useful to study the sensitivity of performance measures for changes in system
parameters. The method of extension of the PSA towards the computation of derivatives is dis-
cussed in section 8.l for cyclic polling systems with Bernoulli service. Other possible applications
of this extension are indicated in section 8.2.

8.1. DERrvATIYFS wrrfl THE PSA
The computation of derivatives with the PSA is illustrated in this section for the case of polling
systems with Bernoulli schedules in which the order-of-visit rule is cyclic polling and in which the
server continues to move along the queues when the system is empty, cf. section 6.2. A Bernoulli
schedule is a vector of s probabilities ( qt,...,qs) which are used as follows. When the server arrives
at a queue, at least one job is served, unless this queue is empty ( in which case the server directly
proceeds to the next queue). After the completion of a service at queue j the server starts serving
another job at this queue with probability qj if queue j has not yet been emptied; otherwise, the
server proceeds to the next queue ( j-1,...,s). Special cases are I-limited ( qj-0) and exhaustive
service (q -1). The notations are further the same as in section 6.2. The system is stable if (6.2)
holds wit~ Kj replaced by II(l-qj), j-1,...,s. For this model, Z-0 indicates that the server is
switching, and Z-1 that the server is serving. The balance equations for the state probabilities
p(n,h,K) of the process ( N,H,Z) are: for nE IQIs, h-0,...s-1,

s
[A 4 v~,l)p(n,h ~I,O) -~ l`jl{nj? 1}p(n-e~,ht l,0) t vhl{n~-0} p(n,h,0)

J't
t ~h[1 -qh~{nti?1}1P(n'eti,h.l):

and for nE 1~15, h-1,...,s, nh? 1,
s

[At~h]p(n,h,l) -~ ajl{nj? 1}p(n-e~.h.l) t vhP(n,h,0) t~hqdP(n'ey.h,l).
j-l

(8.1)

(8.2)
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Further, the law of total probability holds, cf. (6.5), with Kh-1, h-1,...,s. As in section 6.2,
p(n,h,l)-0 if nti-0, for all nEP15, h-l,..,s. The equations for the coefficients of the power-
series expansions ( 6.l) are: for k-0,1,2, ., for nE PIS, h-0,...,s-1,

vh,tb(k;n,ht1,0) -~ a~!{n~? 1}b(k;n-e~,ht1,0) t vtil{nh-0}b(k;n,h,0)
J't

~!{k? 1}{~h [ I- qh!{nh c 1}] b(k - l;n teh,h, l)-Ab(k- l;n,h t 1,0)};
and fork-0,1,2,..., fornENs, h-1,...,s, nh?1,

s
~hb(k;n,h,l) - ~ a~!{n~? I}b(k;n - el,h,l) t vhb(k;n,h,0)

1`t

(8.3)

(8.4)
t I{k? t}{~.hqtib(k-l;nteh,h, t) -Ab(k-l;n,h, l)}.

The law of total probability leads to relations similar to (6.9), with Kh-1, h-1,...,s. Next, con-
sider derivatives of the state probabilities with respect to the Bernoulli parameters. It can be shown
that these derivatives possess power-series expansions of the form: for nEhls, r,h-1,...,s, K-0,1,

a
P(n,h.x)-X~n~ ~ z'~b,(k:n,h.K): ó,(k:n.h,K)- ab(k;n,h.K), k-0,1.2,.... (8.5)

a~lr k-0 a~lr
Taking derivatives of both sides of equations (8.1) and (8.2), substituting power-series expansions
(8.5) and equating corresponding powers of X, or taking derivatives directly in relations (8.3) and
(8.4), leads to the following set of equations: for r-1,...,s, k-0,1,2,..., for nE l~is, h-0,...,s- l,

s
vh,tb,(k;n,htl,0) - ~ a~!{n~? 1}b,(k;n-e~,hf1,0) t vh!{nh-0}b,(k;n,h,0)

i-t
t !{k? l} {~h[l -qhI{nh? 1 }]b,(k-l;nteti,h, l)

- ~y!{r-h,nti z 1}b(k-l;n teh,h, l) -Ab,(k-1;n,htl,0)};
and for r-1,...,s, k-0,1,2,..., for nE lel', h-1,...,s, nh? 1,

s
~yb,(k;n,h,l) - ~ a~!{n~? 1}b,(k;n-el,h,l) t vhb,(k;n,h,0)

J't
t I{k? 1} {lahqhb,(k-l;nteF,h, l) t~hl{r-h}b(k-l;nteti,h,l) -Ab,(k-l;n,h,l)}.

The law of total probability leads in a similar way to: for r- 1,...,s,
S s s t

~ó,(O;O,h,O)-0; ~b,(k;0,h,0)--~...~ ~~b,(k-~n~;n,h,K), k-1,2,....
h-1 h-l 15 ~n~ 5kh-l .-0

(8.6)

(8.7)

(8.8)

By means of ( 8.6), (8.7) and ( 8.8) the coefficients b,(k;n,h,K) can be computed recursively, but
only in conjunction with the coefficients b(k;n,h,K). Derivatives of other performance measures
with respect to the Bernoulli parameters can be computed by taking term by term derivatives in
relations ( 2.25) and (2.26). It is readily verified that b,(O;n,h,K)-0 for all nElmlS, h-1,...s,
K-0,1, and r-1, .,s. By this property, the evaluation of power-series expansions of the state
probabilities and their derivatives with respect to d Bernoulli parameters up to the Mth power of X
requires the computation of B, d(M) x ~ V ~ coefficients, with

Bs.e(~ -( M;s } 1 1 . d I M's 1. (8.9)
l s~l J l stl J

m

The above computation scheme is readily extended to the computation of second order derivatives
but the latter require still more additional storage space.
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8.2. OPfthtIZAT10N WITH GRADIENT f1~THODS
Derivatives of performance measures with respect to Bernoulli service parameters can be computed
for polling systems with arbitrary order-of-visit tvles. Alternatively, derivatives with respect to the
(mean) time limit can be computed for polling systems with time-limited service. For systems with
Markovian polling, cf. section 6.3, also derivatives with respect to routing probabilities can be
determined. Other examples of models which lend themselves to optimization with respect to real-
valued parameters are Ioad-balancing systems (routing probabilities) and tandem qu-ueing systems
(service rates at subsequent stations). When using the PSA together with an optimi7ation procedure
it is often a good strategy for reducing computation time to start the search with a moderate
number of terms of the power-series expansions, and then to improve the approzimated optimtun
by using more terms. Generally, the evaluation of power-series expansions of the state probabil-
ities and their derivatives with respect to d parameters up to the Mth power of p or X requires the
computation of BS a(MJ x ~ V ~ coefficients, with

Bs.d(M) - (d. l) M}S' 1 (8.10)S{, ~.
9. ANNOTATED BIBLIOGRAPIiY ON TEiE POWER-SERIES ALGORITtfl11
The basic idea of using power-series expansions of state probabilities as function of the load of a
system to solve the global balance equations stems from Keane. About a decade ago, Keane and
his co-workers did some preliminary studies conceming state probabilities for ezponential coupled-
processor and shortest-queue models. Their results were presented at a 1985 workshop at Delft
University of Technology, The Netherlands. In [2J the concept of the PSA has been eztended with
a first order eztrapolation of the coefficients of the power-series expansions of the moments of a
queue-length distribution, cf. (3.9), (3.10), and applied to exponential shortest-queue models.
General conditions for application of the PSA to birth-and-death models are derived in [3].
Coupled-processor models in which the total number of jobs in the system behaves as in an M1M11
queue are considered in [15]; for these very special models it has been proven that the state
probabilities are regular functions of the load on the interval (O,l), and it has been experimentally
found that their power-series expansions converge inside the unit circle. The latter property does
not hold for most other models. Two coupled processors with general service speeds and phase-
type service requirement distributions are considered in [4]; moreover, a second order extrapola-
tion for the computation of moments is proposed in this paper. The application of the PSA has
been extended to exponential cyclic-polling systems with zero switching times and Betnoulli
schedules as service disciplines in [5]. This paper also introduces the combination of the e-
algorithm with the PSA. Further, it proposes a linear ordering of the state space which leads to
efficient implementation of the PSA. In [6] it has been described how the PSA can also be used in
a symbolic manner to derive light-traffic asymptotes for performance measures; further, this report
contains a study of the differences and resemblances of Bernoulli schedules and limited-service
disciplines for cyclic-polling systems. The PSA has been extended to exponential cyclic-polling
systems with non-zero switching times in [7]. This concerns the first model which does not possess
a unique empty state. Computations with the PSA are compared with simulations in [7] and [8J. It
has turned out that (pseudo)conservation laws for mean waiting times are much better fulfilled by
computations with the PSA than by estimations obtained by simulations of comparable duration as
required by the PSA. The review paper [9J discusses the PSA in its generality for QBDPs, and in
details for periodic-polling systems with Bernoulli schedules and with Coxian distributed service
and switching times; moreover, it discusses the applicability and complexity of the PSA for polling
systems with other visit rules and service disciplines. In [1] the PSA has been extended to cyclic-
polling systems with switch-over and switch-in times. The special property (5.5) has been ex-
ploited in [10] to obtain numerical results with the PSA for exponential shortest-queue models with
much more queues than the number that can be handled for models without this property. The
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problem of optimizing a cost function with respect to the Bernoulli schedules has been addressed in
[I1] and [12] for cyclic-polling systems. In [I1] several properties of the optimal schedules have
been found using the PSA together with the conjugate gradient method; the gradients of the cost
function are determined on the basis of finite differences. The extension of the PSA towards the
computation of derivatives of performance measures with respect to parameters of the system has
been discussed in [12]. Cyclic-polling systems in which the server rests at one or more specific
queues when the system is empty are considered in [l3]; application of the PSA to such models
requires a slight modification of the order in which coefficients of the power-series expansions are
computed. In all above mentioned studies Poisson arrival processes are assumed. Generalization of
the concept of the PSA to models with Batch Markovian Arrival Processes (BMAP) is the goal of
[16]. The stationary distribution of the underlying Markov process of the BMAP is needed to
determine the coefficients of the power-series expansions of the empty-state probabilities. Batch
arrivals require an adaptation of the computation scheme similar to that for the fork system, cf.
section 5.3. The discussions of the PSA for networks of queues and for fork systems have not
been published previously.
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