Tilburg University

A Remark on the Number of Trading Posts in Strategic Market Games

Koutsougeras, L.

Publication date:
1999

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Koutsougeras, L. (1999). A Remark on the Number of Trading Posts in Strategic Market Games. (CentER
Discussion Paper; Vol. 1999-04). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1999 4

(1)
 \square

Tilburg University

Center
for
Economic Research

No. 9904

A REMARK ON THE NUMBER OF TRADING POSTS IN STRATEGIC MARKET GAMES

By Leonidas C. Koutsougeras

A Remark on the Number of Trading Posts in Strategic Market Games

Leonidas C. Koutsougeras*
School of Economic Studies, University of Manchester
and
Department of Econometrics, Tilburg University

This draft: January 7, 1999

Abstract

In market games the one to one correspondence between commodity types and trading posts would be justified if it were true that the set of equilibria is not affected by the number of trading posts postulated at the outset of the model. We show that this is not true. We develop an example which features equilibria where a commodity is simultaneously exchanged in two trading posts at different prices, i.e., equilibria where the 'law of one price' fails when the one to one correspondence between commodities and trading posts is abandoned. Thus, we conclude that the set of equilibria in market games depends non-trivially on the number of trading posts. This conclusion further suggests that an explanation of the structure of trading posts is necessary.

Keywords: Trading posts, law of one price. JEL Classification Number: C72

[^0]
1 Introduction

Strategic market games have provided an elegant formulation of imperfectly competitive exchange. The standard setup of these models -see [2] [7] [8]- is based on the concept of trading posts where individuals submit orders for purchases and sales of commodities. An allocation rule then distributes commodities to individuals according to their bids as well as the aggregate offers and bids that reach each post. In this way commodity holdings of individuals depend on the whole profile of bid-offer strategies of all agents in each post.

It is noteworthy that market games feature exactly one post for each commodity ${ }^{1}$. In this way there is a one to one correspondence between commodity types, trading posts and commodity prices. On a closer look the identification of trading posts with commodity types is a hypothesis, which has one important consequence: all individuals wishing to trade a commodity must do so in one (and the same) trading post, i.e., all bids and offers for a commodity are aggregated at a single trading post. Contrast this with a situation where a commodity may be exchanged, say against a numeraire, in more than one posts. In such a case, individuals would have available a richer variety of strategies, that includes buying a commodity in some trading posts and selling it in others. Another conceivable configuration of net trades, is the partition of the set of agents in the economy into subsets trading a commodity in different posts. Thus, we are compelled to question whether or not the set of market game equilibria depends on the structure of trading posts postulated at the outset.

As the reader may have guessed, what we are about to suggest in this paper is the idea of multiple trading posts for commodities. What we have in mind is a model with possibly more than one trading post where each commodity can be traded against a numeraire and prices as well as net trades in different posts are calculated independently from one another. In this case one may end up with a set of equilibria that cannot be captured by the original model. When trade is perfectly competitive this issue does not arise because the structure of net trades is immaterial in a competitive equilibrium, so the market structure is of no consequence for the set of competitive equilibria.

The issue raised here may be viewed as a robustness test of the market game with respect to the structure of trading posts. The key idea is to abandon the one to one correspondence between commodity types and trading posts. If it turned out that the one to one correspondence between prices and commodity types (i.e., the 'law of one price') is valid regardless of the number of trading posts, then we would have a proof that the model with a single trading post per commodity is robust: the structure of trading posts is immaterial. The implication of this would be that the concept of trading posts does not need further elaboration. If it turned out that the contrary is true, i.e., if the 'law of one price' fails, then we are faced with a meaningful extension of the model. Such a conclusion would suggest,

[^1]among other things, that some careful clarification of trading posts is necessary. In either case, the investigation of such an extension seems worthwhile.

In this paper we show by means of an example that, in fact, the imperfectly competitive general equilibrium model is not robust in the above sense. Our example features an equilibrium where a commodity is exchanged against another in two trading posts simultaneously, at different prices. As a conclusion, there is an equilibrium strategy configuration in this example ${ }^{2}$ that cannot be captured by the market game with a single trading post. Moreover, we show that the allocation produced by this equilibrium strategy profile is not even feasible via a single trading post. Surprisingly enough, in this equilibrium the liquidity constraints are not binding. The emergence of unequal prices in equilibrium is due to the imperfectly competitive conditions of exchange: a contemplated effort of an individual to take advantage of the price difference by shifting orders from one post to another involves price effects. Thus, the primary effect of a shift of an infinitesimal order to another post is accompanied by an opposite effect that comes through the change in prices that this shift will produce. The key idea is that this price effect can be detrimental for the benefits of any shift of orders across posts.

In order to keep things in perspective, the failure of the law of one price that we advocate here should not be confused with the appearance of inconsistent prices in [1]. In that model the authors study a market game with a trading post (and a corresponding price) for each pair of commodities and conclude that the exchange prices between a triple of goods may be inconsistent. Here we discuss the possibility of different prices for a commodity traded in different posts against each other. In order to highlight the difference, the extension of the model in [1] (or Shapley's window model for that matter) that captures the issue at hand, would be to add more trading posts for some pair of commodities.

Upon departure from the context of a single post per commodity the number of posts becomes ambiguous, because any number would be just as arbitrary. Ideally, we would like trading posts to somehow arise endogenously. However, as the purpose of this paper is to justify the introduction of multiple posts rather than suggest a specific number, we focus on a minimal model with two commodities which can be exchanged for one another in two posts.

We apply our extension to a model suggested in [7]. However, similar extensions are conceivable in other species of market games as well ${ }^{3}$. The next section introduces a bare bones model that captures the issue at hand. In section three we develop an example that establishes the possibility of multiple prices for a commodity. Finally, some discussion and concluding remarks follow in sections four and five.

[^2]
2 The model

We present here a multiple posts version of the model in [7]. Let $H=\{K, L, M\}$ be a set of agents. There are two commodity types in the economy and the consumption set of each agent is identified with \Re_{+}^{2}. Each individual $h \in H$ is characterized by an initial endowment $e_{h} \in \Re_{++}^{2}$ and a C^{2}, strictly concave and strictly monotonic utility function $u_{h}: \Re_{+}^{2} \rightarrow \Re$. We postulate two trading posts labeled r and s. Each consumer can offer (b_{h}^{r}, b_{h}^{s}) units of commodity 1 and/or offer $\left(q_{h}^{r}, q_{h}^{s}\right)$ units of commodity 2 in the two posts. The strategy set of each agent $h \in H$ is thus $S_{h}=\left\{\left(b_{h}^{r}, b_{h}^{s}, q_{h}^{r}, q_{h}^{s}\right) \in \Re_{+}^{4}: b_{h}^{r}+b_{h}^{s} \leq e_{h}^{1}, q_{h}^{r}+q_{h}^{s} \leq e_{h}^{2}\right\}$. For a given a strategy profile, define for each $j=r, s: B^{j}=\sum_{h \in H} b_{h}^{j}, Q^{j}=\sum_{h \in H} q_{h}^{j}$, $B_{-h}^{j}=\sum_{k \neq h} b_{k}^{j}$ and $Q_{-h}^{j}=\sum_{k \neq h} q_{k}^{j}$. Transactions in each trading post clear through the price $p^{j}=B^{j} / Q^{j}$. Each $h \in H$ receives $x_{h}^{1}=e_{h}^{1}+q_{h}^{r} \cdot p^{r}+q_{h}^{s} \cdot p^{s}-b_{h}^{r}-b_{h}^{s}$ units of commodity 1 and $x_{h}^{2}=e_{h}^{2}-q_{h}^{r}-q_{h}^{s}+b_{h}^{r} / p^{r}+b_{h}^{s} / p^{s}$ units of commodity 2 , where divisions over zero are taken to equal zero. Consumers are viewed as solving the following problem:

$$
\begin{array}{ll}
& \max _{\left(b_{h}, q_{h}\right) \in S_{h}} u\left(x_{h}\right) \\
\text { s.t }: & x_{h}^{1}=e_{h}^{1}+q_{h}^{r} \cdot \frac{B^{r}}{Q^{r}}+q_{h}^{s} \cdot \frac{B^{s}}{Q^{s}}-b_{h}^{r}-b_{h}^{s} \tag{1}\\
& x_{h}^{2}=e_{h}^{2}-q_{h}^{r}-q_{h}^{s}+b_{h}^{r} \cdot \frac{Q^{r}}{B^{r}}+b_{h}^{s} \cdot \frac{Q^{s}}{B^{s}}
\end{array}
$$

An equilibrium is defined simply as a Nash equilibrium in bid-offer strategies. An equilibrium of the market game is termed interior if each agent is solving (1) in the interior of S_{h}. For such equilibria we have the following elementary facts:
Fact 2.1 In an interior equilibrium, the prices in the two trading posts s and r, must satisfy the following (non-arbitrage) condition:

$$
\begin{equation*}
\left(p^{s}\right)^{2}=\frac{B_{-h}^{s}}{Q_{-h}^{s}} \cdot \frac{Q_{-h}^{r}}{B_{-h}^{r}} \cdot\left(p^{r}\right)^{2}, \quad \forall h \in H \tag{2}
\end{equation*}
$$

Proof:
The first order conditions of (1) at an interior equilibrium are:

$$
\begin{align*}
-\frac{Q_{-h}^{r}}{Q^{r}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{1}}+\frac{B_{-h}^{r} Q^{r}}{\left(B^{r}\right)^{2}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} & =0 \tag{3}\\
-\frac{Q_{-h}^{s}}{Q^{s}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{1}}+\frac{B_{-h}^{s} Q^{s}}{\left(B^{s}\right)^{2}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} & =0 \tag{4}\\
\frac{B^{r} Q_{-h}^{r}}{\left(Q^{r}\right)^{2}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{1}}-\frac{B_{-h}^{r}}{B^{r}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} & =0 \tag{5}\\
\frac{B^{s} Q_{-h}^{s}}{\left(Q^{s}\right)^{2}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{1}}-\frac{B_{-h}^{s}}{B^{s}} \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} & =0 \tag{6}
\end{align*}
$$

Notice that (5) and (6) are the same as (3) and (4) respectively. Furthermore, the system of (3) and (4) can be written in matrix form as:

$$
\left(\begin{array}{cc}
-\frac{Q_{-h}^{r}}{Q^{r}} & \frac{B_{-h}^{r} Q^{r}}{\left(B^{r}\right)^{2}} \\
-\frac{Q_{-h}^{2}}{Q^{2}} & \frac{B_{-h}^{2} Q^{0}}{\left(B^{r}\right)^{2}}
\end{array}\right) \cdot\binom{\frac{\partial u_{h}^{h}}{\partial x_{h}}}{\frac{\partial u_{h}}{\partial x_{h}^{2}}}=\binom{0}{0}
$$

Thus a solution exists if and only if:

$$
\left|\begin{array}{cc}
-\frac{Q_{-h}^{r}}{Q^{r}} & \frac{B_{-h}^{r} Q^{r}}{\left(B^{r}\right)^{2}} \\
-\frac{Q_{-h}^{2}}{Q^{r}} & \frac{B_{-h}^{s} Q^{s}}{\left(B^{0}\right)^{2}}
\end{array}\right|=0
$$

which implies that (2) is satisfied
Fact 2.2 Under the assumptions made on preferences the sufficient second order conditions of (1) are always satisfied at an interior equilibrium.

Proof:

From equations (3)-(6) it is obvious that the rank of the matrix of second order derivatives of the objective function in (1) is equal to 2. Define:

$$
A=\frac{\partial^{2} u_{h}}{\left(\partial x_{h}^{1}\right)^{2}}-2 \cdot \frac{\partial^{2} u_{h}}{\partial x_{h}^{1} \partial x_{h}^{2}} \cdot \frac{B_{-h}^{s}}{Q_{-h}^{s}} \cdot \frac{\left(B^{s}\right)^{2}}{\left(Q^{s}\right)^{2}}+\frac{\partial^{2} u_{h}}{\left(\partial x_{h}^{2}\right)^{2}} \cdot\left(\frac{B_{-h}^{s}}{Q_{-h}^{s}} \cdot \frac{\left(B^{s}\right)^{2}}{\left(Q^{s}\right)^{2}}\right)^{2}
$$

Notice that $A<0$. Furthermore, given (2)-(4), we have that the determinants of the principal minors of the matrix of second order derivatives of the utility function are:

$$
\begin{gather*}
\left|H_{1}\right|=\frac{\partial^{2} u_{h}}{\left(\partial b_{h}^{r}\right)^{2}}=\left(\frac{Q_{-h}^{r}}{Q^{r}}\right)^{2} \cdot A-2 \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} \cdot \frac{B_{-h}^{r} Q^{r}}{\left(B^{r}\right)^{3}}<0 \tag{7}\\
\left|H_{2}\right|=\frac{\partial^{2} u_{h}}{\left(\partial b_{h}^{r}\right)^{2}} \cdot \frac{\partial^{2} u_{h}}{\left(\partial b_{h}^{s}\right)^{2}}-\left(\frac{\partial^{2} u_{h}}{\partial b_{h}^{r} b_{h}^{s}}\right)^{2} \\
=\left|\begin{array}{cc}
\left(\frac{Q_{-h}^{-h}}{Q^{r}}\right)^{2} \cdot A-2 \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} \cdot \frac{B_{-h}^{r} Q^{r}}{\left(B^{r}\right)^{3}} & \frac{Q_{-h}^{r} Q_{-h}^{s}}{Q^{r} Q^{s}} \cdot A \\
\frac{Q_{-h}^{r} Q_{-h}^{s}}{Q^{r} Q^{s}} \cdot A & \left(\frac{Q_{-h}^{s}}{Q^{s}}\right)^{2} \cdot A-2 \cdot \frac{\partial u_{h}}{\partial x_{h}^{2}} \cdot \frac{B_{-h}^{s} Q^{s}}{\left(B^{s}\right)^{3}}
\end{array}\right|>0 \tag{8}
\end{gather*}
$$

$\left|H_{3}\right|=\left|H_{4}\right|=0$.
Thus, at any point where the first order conditions are satisfied the matrix of second order derivatives of the objective function is negative semidefinite

The crucial observation is that, according to the above facts, unequal prices may occur in equilibrium in as much as it is algebraicly possible to find a strategy profile so that:

$$
\frac{B_{-K}^{s}}{Q_{-K}^{s}} \cdot \frac{Q_{-K}^{r}}{B_{-K}^{r}}=\frac{B_{-L}^{s}}{Q_{-L}^{s}} \cdot \frac{Q_{-L}^{r}}{B_{-L}^{r}}=\frac{B_{-M}^{s}}{Q_{-M}^{s}} \cdot \frac{Q_{-M}^{r}}{B_{-M}^{r}} \neq 1
$$

This observation has inspired the example that follows in the next section.

3 Equilibria with multiple prices

3.1 An Example

The example that follows features an equilibrium with two distinct positive prices for a commodity. This establishes the failure of the 'law of one price' when one allows for multiple trading posts. In constructing our example we proceed as follows: we construct a profile of strategies that satisfies (2) and then look for endowments and utility functions for which this profile of strategies is indeed a Nash equilibrium. To this end, consider the following profile of strategies:

$$
\begin{aligned}
\left(b_{K}^{r}, b_{L}^{r}, b_{M}^{r}\right) & =\left(\left(\frac{10}{9}\right)^{2} \cdot \frac{5}{9},\left(\frac{10}{9}\right)^{2} \cdot \frac{3}{9},\left(\frac{10}{9}\right)^{2} \cdot \frac{1}{9}\right) \\
\left(b_{K}^{s}, b_{L}^{s}, b_{M}^{s}\right) & =\left(\frac{7}{9}, \frac{1}{9}, \frac{2}{9}\right) \\
\left(q_{K}^{r}, q_{L}^{r}, q_{M}^{r}\right) & =(1,3,1) \\
\left(q_{K}^{s}, q_{L}^{s}, q_{M}^{s}\right) & =(2,2,1)
\end{aligned}
$$

In this way we have:

$$
p^{r}=\left(\frac{10}{9}\right)^{2} \cdot \frac{1}{5} \text { and } p^{s}=\frac{2}{9} \text { so that } \frac{p^{r}}{p^{s}}=\frac{10}{9} \neq 1
$$

Remark 3.1 It is worthwhile noticing that the aggregate quantities submitted to each post are equal: $Q^{r}=5=Q^{s}$.

We now turn to look for endowments and utility functions that validate the above profile as a Nash equilibrium. We begin by specifying endowments as follows:

$$
\begin{aligned}
\left(e_{K}^{1}, e_{K}^{2}\right) & =\left(\frac{55}{18} \cdot\left(\frac{10}{9}\right)^{2}, \frac{85}{18}\right) \\
\left(e_{L}^{1}, e_{L}^{2}\right) & =\left(\frac{13}{12} \cdot\left(\frac{10}{9}\right)^{2}, \frac{41}{6}\right) \\
\left(e_{M}^{1}, e_{M}^{2}\right) & =\left(8-\frac{4}{45}\left(\frac{10}{9}\right)^{2}, \frac{40}{9}\right)
\end{aligned}
$$

Remark 3.2 Observe that for this specification of endowments the liquidity constraints are non-binding for the proposed strategy profile.

In this way, for the profile of strategies under consideration the allocation of commodities across agents turns out as follows:

$$
\begin{aligned}
\left(x_{K}^{1}, x_{K}^{2}\right) & =(3,8) \\
\left(x_{L}^{1}, x_{L}^{2}\right) & =(2,4) \\
\left(x_{M}^{1}, x_{M}^{2}\right) & =(8,4)
\end{aligned}
$$

We now look for utility functions that will serve our purpose. We should find a utility function (C^{2}, strictly concave, monotonic) for each individual, such that equation (3) is satisfied when evaluated at the proposed profile. In view of the fact that the strategy profile in question satisfies (2) by construction, equations (4)-(6) will automatically be satisfied. Moreover, by virtue of fact 2.2 this will suffice to ensure that the proposed profile is indeed a Nash equilibrium one. Thus, we look for a solution to the following equations:

$$
\begin{align*}
\frac{\partial u_{K}}{\partial x_{K}^{1}}(3,8) & =\frac{9}{4} \cdot \frac{\partial u_{K}}{\partial x_{K}^{2}}(3,8) \tag{9}\\
\frac{\partial u_{L}}{\partial x_{L}^{1}}(2,4) & =\frac{27}{4} \cdot \frac{\partial u_{L}}{\partial x_{L}^{2}}(2,4) \tag{10}\\
\frac{\partial u_{M}}{\partial x_{M}^{1}}(8,4) & =\frac{9}{2} \cdot \frac{\partial u_{M}}{\partial x_{M}^{2}}(8,4) \tag{11}
\end{align*}
$$

If we look for a solution in the class of functions: $u_{h}\left(x_{h}^{1}, x_{h}^{2}\right)=\left(x_{h}^{1}\right)^{a_{h}} \cdot\left(x_{h}^{2}\right)^{1-a_{h}}$ for $h=K, L, M$, we find that equations (9)-(11) are satisfied for $a_{K}=27 / 59$, $a_{L}=27 / 35$ and $a_{M}=9 / 10$.
Remark 3.3 The constructive process that we followed makes it clear that our example is robust with respect to the choices of utility functions and endowments.

Finally, we show that the equilibrium allocation calculated above can not be achieved in the single trading post model. Let $z_{h}^{i}=x_{h}^{i}-e_{h}^{i}$ where $i=1,2$ and $h=K, L, M$ be the net trades of each agent. Notice that the net trades which are achievable with a single trading post, must satisfy $z_{h}^{1}=-p \cdot z_{h}^{2}$ for some clearing price p. In other words in order to be feasible in the single trading post model, a collection of pairs of (nonzero) net trades must satisfy:

$$
\frac{z_{K}^{1}}{z_{K}^{2}}=\frac{z_{L}^{1}}{z_{L}^{2}}=\frac{z_{M}^{1}}{z_{M}^{2}}
$$

It can be readily checked that the net trades in the equilibrium allocation calculated above do not satisfy this set of equations, so it can not be achieved via a single trading post.

3.2 Discussion of the example

For sure, the type of equilibria demonstrated in the example above, validate our suspicion that the structure of trading posts matters. On the other hand such equilibria seem odd, because they assign different values to the same commodity, according to which trading post it is traded. In the absence of some friction, conventional wisdom would suggest that if prices were unequal then an individual would find it profitable to shift purchases (sales) from a more (less) expensive post to a less (more) expensive one. In this way prices in the two posts would
change accordingly so that in equilibrium prices would be equal. However, in an imperfectly competitive setup this conventional wisdom fails! The reason is that in the imperfectly competitive context, shifts of orders across posts involve a 'price effect'. In this way infinitesimal 'shifts' of bids and offers across posts may change prices in a way that they are unfavorable to a consumer. Indeed prices do change in the 'right' direction to close the gap but, as the movement of prices is simultaneous, the relative magnitude of those changes may be such that it renders unfavorable a shift of bids (offers) from a more (less) expensive post towards a less (more) expensive one. The intuition of the example can be easily grasped in this way: if an agent reallocated some of the bid in the expensive post to the cheaper one, the price in the expensive post would fall and at the same time the price in the cheaper one would rise. In this way a higher price would have to be paid not only for the marginal unit but for all the units purchased from the cheaper post. Thus, the direct effect of shifting a part the bid is followed by an adverse indirect effect due to the price change. If this price effect is severe enough the net effect can be unfavorable. It is the absence of this price effect that validates the preceding argument in the competitive case. Finally, it is worthwhile mentioning that unlike the results in [1], the appearance of such equilibria here is not due to liquidity constraints.

4 Conclusion

We hope that the arguments in this paper have convinced the reader that the structure of trading posts in market games is essential. In view of this, the central message of this paper is that the concept of trading posts needs further clarification. The Arrow-Debreu description of an economy, being directed to the study of competitive equilibria where market institutions are irrelevant, does not suggest any particular structure of trading posts, so it is hard to decide how many posts should be allowed at the outset. Ultimately, a model where trading posts evolve, rather than being postulated, would resolve the issues raised here. Apparently, this will require some new insight as one would have to model more primitive concepts that would spark some life into trading posts. In lack of such an insight we propose a model with an infinite number of posts per commodity. In this way the number of (active) trading posts would probably vary across equilibria, but such a framework would certainly capture the equilibria of all possible configurations of trading posts.

On the other hand the possibility of a 'price distribution' for a commodity, as opposed to one price per commodity, seems interesting for a number of reasons. For one, it demonstrates that the lack of perfect competition can endogenously explain price disparities across markets or equilibrium with arbitrage. An immediate conclusion that can be drawn from our example is that the law of one price entails perfectly competitive conditions of exchange. Furthermore, it adds a new dimension to the asymptotic convergence to competitive equilibria: in order to
obtain equivalence with competitive equilibria via a model with multiple posts per commodity, it would be necessary that possible disparities of commodity prices in different trading posts tend to zero. Finally, given the possibility of equilibria with non-uniform prices for commodities, the introduction of multiple trading posts for commodities seems to provide an attractive context for the use of Nash equilibrium refinements.

References

[1] Amir, R., S. Sahi, M. Shubik and S. Yao (1990), A Strategic Market Game with Complete Markets, Journal of Economic Theory, 51, 126-143.
[2] Dubey, P. and M. Shubik (1978) A Theory of Money and Financial Institutions. The Non-cooperative Equilibria of a Closed Economy with Market Supply and Bidding Strategies, Journal of Economic Theory, 17, 1-20.
[3] Koutsougeras, L.C. (1997), Market Games with Multiple Trading Posts I: some remarks, University of Manchester discussion paper No 9727 , revised version Tilburg May (1998).
[4] Peck, J., K. Shell and S. Spear (1992) The Market Game: Existence and Structure of Equilibrium, Journal of Mathematical Economics, 21, 271-299.
[5] Postlewaite, A. and D. Schmeidler (1978) Approximate Efficiency of NonWalrasian Nash Equilibria, Econometrica, 46, 127-135.
[6] Sahi, S. and S. Yao (1989) The Non-cooperative Equilibria of a Trading Economy with Complete Markets and Consistent Prices, Journal of Mathematical Economics, 18, 325-346.
[7] Shapley, L.S. and M. Shubik (1975) Trade Using One Commodity as a Means of Payment, Journal of Political Economy, 85, 937-968.
[8] Shubik, M. (1972) Commodity Money, Oligopoly, Credit and Bankruptcy in a General Equilibrium Model, Western Economic Journal, 10, 24-38.

No.	Author(s)	Title		
9852	F. Klaassen	Improving GARCH volatility forecasts		
9853	F.J.G.M. Klaassen and	On the independence and identical distribution of points in tennis		
	J.R. Magnus		\quad	Accountability of central banks: Aspects and quantification
:---	:---			

No. Author(s)
9871 U. Hege
9872 L. Broersma and J.C. van Ours Job searchers, job matches and the elasticity of matching
9873 M. Burda, W. Güth, Employment duration and resistance to wage reductions: G. Kirchsteiger and H. Uhlig

9874 J. Fidrmuc and J. Horváth

9875 P. Borm, D. Vermeulen and M. Voorneveld

Title
Bank dept and publicly traded debt in repeated oligopolies

Experimental evidence
Stability of Monetary unions: lessons from the break-up of Czechoslovakia

The structure of the set of equilibria for two person multicriteria games

9876 J. Timmer, P. Borm and J. Suijs Linear transformation of products: games and economies
9877 T. Lensberg and E. van der A cross-cultural study of reciprocity, trust and altruism Heijden in a gift exchange experiment

9878 S.R. Mohan and A.J.J. Talman Refinement of solutions to the linear complementarity problem
9879 J.J. Inman and M. Zeelenberg "Wow, I could've had a V8!": The role of regret in consumer choice

9880 A. Konovalov
Core equivalence in economies with satiation
9881 R.M.W.J. Beetsma and A.L. Bovenberg

9882 A. de Jong and R. van Dijk
Determinants of leverage and agency problems
An empirical analysis of incremental capital structure decisions under managerial entrenchment
S. Schalk

A model distinguishing production and consumption bundles
S. Eijffinger, E. Schaling and The term structure of interest rates and inflation forecast W. Verhagen targeting
U. Glunk and C.P.M. Wilderom High performance on multiple domains: Operationalizing the stakeholder approach to evaluate organizations
B. van der Genugten

A weakened form of fictituous play in two-person zero-sum games
A.S. Kalwij

Household wealth, female labor force participation and fertility decisions

Ageing and Pension reform in a small open economy: The role of savings incentives

No. Author(s)

9891 R.T. Frambach, J. Prabhu and T.M.M. Verhallen

Title

The influence of business strategy on market orientation and new product activity

9892 H. Houba and G. van Lomwel
Counter intuitive results in a simple model of wage negotiations
9893 T.H.A. Bijmolt and R.G.M. Pieters

9894 E. van Damme and J.W. Weibull
A. Prat and A. Rustichini Sequential common agency

9896 J.H. Abbring, G.J. van den Berg Displaced workers in the United States and the Netherlands P.A. Gautier, A.G.C. van Lomwel and J.C. van Ours

9897 G.J. van den Berg, A.G.C. van Unemployment dynamics and age Lomwel and J.C. van Ours

9898 J. Fidrmuc

9899 R. Pieters, H. Baumgartner, J. Vermunt and T. Bijmolt

98100 A.L. Bovenberg and B.J. Heijdra

98101 F. Verboven

98102 O.J. Boxma, J.W. Cohen and Q. Deng

98103 S.C.W. Eijffinger, M. Hocberichts and E. Schaling

98104 G.J. van den Berg, P.A. Gautier, J.C. van Ours and G. Ridder

98105 Th. ten Raa and P. Mohnen

98106 M.P. Montero Garcia

98107 F. Palomino and A. Prat

98108 F. Palomino and A. Prat

98109 M. Wedel and T.H.A. Bijmolt

Political support for reforms: economics of voting in transition countries

Importance, cohesion, and structural equivalence in the evolving citation network of the international journal of research in marketing

Environmental abatement and intergenerational distribution

Gasoline or diesel? Inferring implicit interest rates from aggregate automobile purchasing data

Heavy-traffic analysis of the $M / G / 1$ queue with priority classes

A theory of central bank accountability

Worker turnover at the firm level and crowding out of lower educated workers

Sources of productivity growth: technology, terms of trade, and preference shifts

A bargaining game with coalition formation
Dynamic incentives in the money management tournament

Risk taking and optimal contracts for money managers
Mixed tree and spatial representation of dissimilarity judgments

No.	Author(s)	Title
98110	A. Rustichini	Sophisticated Players and Sophisticated Agents
98111	E. Droste, M. Kosfeld and M. Voorneveld	A Myopic adjustment process leading to best-reply matching
98112	J.C. Engwerda	On the scalar feedback Nash equilibria in the infinite horizon LQ-game
98113	J.C. Engwerda, B. van Aarle and J.E.J. Plasmans	Fiscal policy interaction in the EMU
98114	K.J.M. Huisman and P.M. Kort	Strategic investment in technological innovations
98115	A. Cukierman and Y. Spiegel	When do representative and direct democracies lead to similar policy choices?
98116	A. Cukierman and F. Lippi	Central bank independence, centralization of wage bargaining, inflation and unemployment -theory and some evidence
98117	E.G.A. Gaury, J.P.C. Kleijnen and H . Pierreval	Customized pull systems for single-product flow lines
98118	P.J.J. Herings, G. van der Laan and D. Talman	Price-quantity adjustment in a Keynesian economy
98119	R. Nahuis	The dynamics of a general purpose technology in a research and assimilation model
98120	C. Dustmann and A. van Soest	Language fluency and earnings: estimation with misclassified language indicators
98121	C.P.M. Wilderom and P.T. van den Berg	A test of the leadership-culture-performance model within a large, Dutch financial organization
98122	M. Koster	Multi-service serial cost sharing: an incompatibility with smoothness
98123	A. Prat	Campaign spending with office-seeking politicians, rational voters, and multiple lobbies
98124	G. González-Rivera and F.C. Drost	Efficiency comparisons of maximum likelihood-based Estimators in GARCH models
98125	H.L.F. de Groot	The determination and development of sectoral structure
98126	S. Huck and M. Kosfeld	Local control: An educational model of private enforcement of public rules
98127	M. Lubyova and J.C. van Ours	Effects of active labor market programs on the transition rate from unemployment into regular jobs in the Slovak Republic
98128	L. Rigotti	Imprecise beliefs in a principal agent model

No.	Author(s)	Title
98129	F. Palomino, L. Rigotti and A. Rustichini	Skill, strategy and passion: an empirical analysis of soccer
98130	J. Franks, C. Mayer and L. Renneboog	Who disciplines bad management?
98131	M. Goergen and L. Renneboog	Strong managers and passive institutional investors in the UK: stylized facts
98132	F.A. de Roon and Th.E. Nijman	Testing for mean-variance spanning: A survey
98133	A.C. Meijdam	Taxes, growth and welfare in an endogenous growth model with overlapping generations
98134	A. Scott and H. Uhlig	Fickle investors: An impediment to growth?
98135	L.W.G. Strijbosch, R.M.J. Heuts and E.H.M. van der Schoot	Improved spare parts inventory management: A case study
98136	E. Schaling	The nonlinear Phillips curve and inflation forecast targeting symmetric versus asymmetric monetary policy rules
98137	T. van Ypersele	Coordination of capital taxation among a large number of asymmetric countries
98138	H. Gruber and F. Verboven	The diffusion of mobile telecommunications services in the European Union
98139	F. Verboven	Price discrimination and tax incidence - Evidence from gasoline and diesel cars
98140	H.G. Bloemen	A model of labour supply with job offer restrictions
98141	S.J. Koopman, N. Shephard and J.A. Doornik	Statistical algorithms for models in state space using SsfPack 2.2
98142	J. Durbin and S.J. Koopman	Time series analysis of non-gaussian observations based on state space models from both classical and Bayesian perspectives
9901	H. Pan and T. ten Raa	Competitive pressures on income distribution in China
9902	A. Possajennikov	Optimality of imitative behavior in Cournot oligopoly
9903	R.G.M. Pieters and M. Zeelenberg	Wasting a window of opportunity: Anticipated and experiencesregret in intention-behavior consistency
9904	L.C. Koutsougeras	A remark on the number of trading posts in strategic market games

Warandelaan 2
P.O. Box 90153

5000 LE Tilburg
The Netherlands
phone +31134663050
fax +31134663066
e-mail center@kub.nl
www center.kub.nl

[^0]: *The financial support of TMR no ERB4001GT965374 Grant of the European Community is gratefully acknowledged. I would like to thank E. van Damme, F. Germano, P. Madden, J-F. Mertens and H. Polemarchakis for useful discussions. Special thanks are also extended to D. Talman for carefully reading a draft of this paper. I am responsible for any shortcomings.

[^1]: ${ }^{1}$ or one post for each pair of commodities as in [1] or Shapley's window model which is analyzed in [6].

[^2]: ${ }^{2}$ The robustness of our example will be evident in the sequel.
 ${ }^{3}$ For a similar extension of the model appearing in [5] and in [4], the reader is directed to [3].

