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ABSTRACT

N identical sellers, selling an homogeneous product, each choose a price

and an advertisíng policy. óuyers have usual demand functions and search

optimally among sellers. A Symmetric Nash Equilibríum (SNE) is derived and

characterized. If the marginal cost of advertising exceeds a critical level,

then the monopoly price with zero advertising is the unique SNE; otherwise,

there is a mixed-strategy SNE which can be expressed as a price distribution and

an advertising policy conditional on price. Remarkably, as the number of

sellers increases without limit, the SNE converges to the monopoly price and

advertisíng per seller vanishes. On the other hand, the mean price at which

sales occur is less than the monopoly price. Still for some advertising

technologies, total social welfare is declining in the number of sellers.



1. INTRODUCTION.

Economists have long been interested in understanding how markets work with

ímperfect information. Rothschild (1975) pzovided a critical survey, pointing

out tliat most of the literature is concerned with only one side of the market -

such as buyer search from a known distribution of seller prices. A complete

analysis would include optimal buyer and seller behavior simultaneously

determiníng a market equilibriwn. A bothersome result is that if sellers do not

advertise and search is costly, then the unique equilibríum is monopolistic

(Diamond, 1971]. Even with a mass of zero-search-cost buyers, the equilibrium

distribution of prices converges to the monopoly price as the number of sellers

íncreases [Stahl, 1989a]. But surely, it seems, sellers would have an incentive

to advertise lower prices, thereby undermining the monopolistic equilibríum.

In a semínal artícle, Butters (1977) studied how sellers can influence buyer

information by advertising. He demonstrated the existence of equilibrium price

dispersion and actually presented an analytíc solution and comparative statics

results. He presented only a limit model with infinitely many buyers and

sellers, so the influence of the number of buyers and sellers could not be

explored. He also considered only the case of unít demands for buyers, and a

specific advertising technology. On the other hand, Butters did consider both

the case with no buyer search, and the case with a fixed buyer reservation price

search rule.

The first case with no buyer search (buyers not receiving advertisements

purchase nothing) was extended in Stahl (1989b) to encompass any fínite number

of sellers and buyers, a general buyer demand function, and a general

advertising technology. A unique Symmetric Nash Equilíbríum (SNE) was derived

in whích the level of advertísíng was less than the socially optimal level
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except when buyers have unit demand functions (in which case, it ís efficient).

Wíth no buyer search, sellers do not have the alternatíve of simply charging the

monopoly price to the random share of buyers who stop at their store first,

foregoing sales to other buyers. Thus, one force in the direction of monopoly

pricing is absent. Hence, the SNE price distributíon is non-degenerate with no

tendency (as the number of sellers increases) to converge to monopoly prícing;

on the other hand, it does not converge to marginal cost pricing either.

Remarkably, for some advertising technologies, total welfare can decrease as the

number of sellers increases.

The purpose of thís paper is to extend the second case of Butters wíth buyer

search to encompass any finite number of sellers and buyers, a general buyer

demand function, optimal sequentíal buyer search, and a general advertising

technology. We develop a complete game-theoretic solution (in mixed-

strategies), and conduct comparative statics in terms of the advertising

technology and the number of buyers and sellers. An explicit solution is

presented for the special case of lineaz advertising costs.

Our search model, however, díffers substantially from Butters'. He assumed

that buyers who do not receive advertísements distribute themselves among

sellers in the same proportion as the buyers who do receive advertisements.

Butters defends this assumption on two grounds. First, he dismisses the model

we will analyze as "unpalatably complicated". Second, he suggests that "word-

of-mouth" among buyers would result in the uninformed following the pattern of

the informed. In contrast, the search model of this paper ad}ieres to the

traditional optimal search literature despite its complications. Since the

fundamental purpose of our inquiry is to study the effects of informatiori

transmission and acquísition technologies on the strategic outcomes, we shy from
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bold asswnptíons about lenkaí;c of informatíon vla word-of-mouth. Rather, we

suggest that such phenomena are captured Sn our model with an appropriate

interpretation of the parameter that represents adveztising effectiveness.

Our model has a fínite number of sellers and buyers. Sellers offer a

homogeneous product, and have identical technologies. Each seller

simultaneously chooses a price and an advertising level. Buyers have identical

demand functions and positive search costs. Conditional on the advertisements

received and the SNE price distribution, a buyer decides whether simply to buy

from the seller with the lowest advertised price, or to search further. The

optimal buyer search rule is characterized by a reservation price.

A SNE can be characterized by a dístribution of prices and an advertising

polícy conditional on the realization of a seller's own price. The optimal

advertísíng effort i s a decreasing function of the realized price. The upper

bound of the SNE price distribution i s the lessor of the monopoly price and the

buyer's reservation price. The SNE price distributíon i s atomless except

possibly at the upper bound, in which case the advertising effort must be

precisely zero at the upper bound.

!í the marginal advertising costs exceed a critical level, the unique SNE ls

the pure-strategy SNE at the monopoly price with no advertising. However, for

lower marginal advertisíng costs, there i s no pure-strategy SNE, but there is a

mixed-strategy SNE; i.e. there ís price dispersíon.

As the nwnber of sellers increases, the advertising effort per seller

vanishes at all prices, and the SNE price distribution converges to the monopoly

price. Nonetheless, the total industry level of advertisíng remains strictly

posítive, and the distributíon of the prices at which sales actually occur

converges to a non-degenerate distribution bounded above marginal costs with an
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atom at the monopoly price. As in the model without buyer search [Stahl,

1989bJ, for some advertising technologies, total welfare can be decreasing in

the number of sellers. In the special case of unit buyer demand, there is over-

advertising. More generally there can be over- or under-advertising at the SNE.

As the cost of advertising shrinks, the SNE convergea towards marginal-cost

pricing, but as the search cost shrinks, the SNE stays bounded above margínal-

cost pricing. Thus, the two channels of information transmission have different

impacts in that as the comparative advantage shifts Cowards buyez search,

sellers curtail advertising; consequently buyers face higher prices than when

search costs are higher but advertising costs are very low.

The paper is organized as follows. Section 2 presents the basic model and

derives optímal buyer and seller behavior. Section 3 derives the SNE, and

Section 4 presents explicit solutions for linear and quadratic advertising

costs. Section 5 presents results on the asymptotic behavior of the SNE.

Section 6 considers the welfare implications. Finally, Section 7 summarizes the

results and compares them wíth related work. All proofs are relegated to an

Appendíx.

2. THE MODEL.

There are N identical sellers all offering the same homogeneous good. Wíth

identical linear production technologies, there is no loss of generality in

taking marginal costs to be zero. Let p~ denote the price set by seller j.

Alternatively, interpret p~ as net of marginal costs.

Advertising efforts generate a distribution of informed and uninformed

buyers (before any buyer search). Let a~ denote ttie fraction of buyers who



become informed about j's price. Sellers are assumed to have identical

advertising technologies, whích can be represented by a cost function ry(Q,M)

that gives the cost per buyer of informing a fraction a of M buyers. For

example, given the classic urn technology assumed by Butters, we would have

y(a,M) - bin(1-Q)~ln(1 - 1~M), where b is tha cost per advertísement

(hereafter abbreviated "ad").1 Unless explicitly considering the effects of M,

we wlll suppress this argument and write ry(a). We assume that ry(a) is

strictly convex and twíce continuously differentíable with 7'(0) ~ 0- y(D).

There are M identical buyers wíth demand functions D(p). Alternatively,

interpret D(p) as the average demand function wíth idiosyncratic characteristlcs

dístríbuted independen[ly of all other variables. Define the revenue function

R(p) ~ pD(p). We assume that R(p) ís continuously differentiable with a unique

maximum at p, and is strictly increasing for all p ~ p. Further, we assume that

0 5 D(p) t m for all p E[O,p].

2.1 Suyer Search.

Buyers receive information about seller prices through seller ads and

indívidual search efforts. Each search costs a fixed amount c~ 0.2 Let

lIn ttiis case, o is precisely the probability of receiving an ad. However, ín
the general case, there may be word-of-mouth leakage to the buyers who do not
receive ads, in which case a, which is the total fraction of buyers wlio become
informed (directly and indirectly), could be greater than the probability of
receiving an ad. With thís interpretation, buyers who are "uninformed" are
truly uninformed both directly and indirectly prior to search, so it will be
reasonable to assume that they distribute themselves uniformly among the
sellers, in contrast to Butters' assumption.

z1'lie act of obtaining a price quotation is assumed to be a costly effort
relatíve to the cost of the ultimate purchase transaction which i s assumed to be
zero. Thus, if a buyer receives an ad for a price she wants to accept, there is
no additional transaction cost.
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Fo(p~) denote the posterior probability dístribution of the price charged by

seller j conditional on not having received an ad from seller j. If p~ is the

lowest price observed so far, then the net benefit of an additional search is

P~
H(P~.c~Fo) ~ J D(P)Fo(P)dp - c . (1)

0

We assume perfact recall. It is well-known (e.g. Kohn and Shavel, 1974J that

the optimal search rule is characterized by a stationary reservation price, r,

implicitly defined by

HCr~c.Fo) ~ ~~ (2)

if a root exists; otherwise, we define the reservation price to be ~. Note

that c~ 0 implies r

at one price, say p,

converging weakly to

that for all n~ n',

Buyers search if

through ads or príor

~ 0. For later use, note also that íf Fo is concentrated

then c ~ 0 implies r~ p. Similarly, if Fo,,, is a sequence

a distribution concentrated at )3, then there is an n' such

r~~S.

and only if the lowest price they are aware of (either

search) i s more than r. After search is terminated, a

buyer purchases an amount D(p~) from the lowest priced seller (say j) she has

found. A buyer who has received no ads and sampled no sellers is assumed to

select a seller at random (say k) and purchase an amount D(pk), provided p~ 5

r.3

3We are implicitly assuming that the expected value of a transaction with some
seller is always at least c. For ínstance, the buyer may need to purchase a
number of other commodíties known to be available at competitíve príces from all



7

2.2 Seller Advertlsing and Prícing Deciaions.

A SNE is a triplet (F(~),a(~),re) such that (i) when any subset of N-1

sellers choose prices from the probability diatributlon F(~) and advertising

effort a(p), then the remaining seller has no incentíve to deviate, and (ii) re

is the optimal buyer reservation price given ( F(~),a(~)).

In this section, we take the buyer reservation price r as given, and

consider seller pricing decisions. To be explicit, we denote the price

distribution by F(p;r). Let P denote the maximum price in the support of F(p),

and let B denote the minimum price in the support.~ Ultimately, we will darive

a cortslstent reservntton prlce r~~ that is optímnl for F(p;r~).

Take a random buyer, and let ~p(p~) denote the probability that p~ is the

lowest price known by thís buyer conditional on knowing that j is charging p~.

Let ~ denote the probability that a random buyer is uninformed about the other

N-1 sellers. Consider sellez j's decision about advertising effort a~ at price

p! 5 r. The expected profits per buyer (i.e. total expected profíts divided by

M) can be expressed as

Ex(p~.a~) - R(p~)la~m(p~) t (1-a~)6IN) - 7(a~) . (3)

the sellers, so the expected value of a shopping trip ís aubstantíally larger
than c independent of the separate expected surplus of the advertised item.
Stahl (1989b) considers a model in which unínformed buyers do not enter the
market.

4The support i s the smallest closed set with probability one.
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aEa(p~,o~)Iaa~ - R(P~)IN(P~) -QINI - aylaa~ , and a2Ex(P~.o~)I(au~)2 --

azyl(a~,)z ~ 0. Thus, Ea(p~,a~) is strictly concave in a~, which implies that

there exists a unique functíon a(p~) that maximizea eq(3). The parameters (such

as r) that affect a() will be made explicit later.

Therefore, the strategy space for aellers can be reduced to a price

distribution F(p;r) and a function a(p), vith the interpretation that sellers

randomly choosa a price p~ and then choose e(p~).

I.et A(p~;r) deiiote the probability that a random buyer is informed that

seller j has a price p 5 p~. Given F(p;r) and a(p),

P~
A(p~;r) ~ f u(p)dF(p;r) . (4)

B

It is notationally convenient to define a ~ A(P;r), the expected value of a.

Note that a is also the probability that a random buyer is informed about (say)

seller j. Hence, in eq(3), ~-(1 - a)s'1 : the probability that a random

buyer is uninformed about the N-1 sellers playing F(p;r) and a(p;r). Further,

if F(p;r) contains no atoms at or below p~, then in eq(3), .p(p~) -

[1 - A(P~:r)]s-1.

We will now state a result that is very useful because it leads to an

expression for payoffs that is continuous function.

l.emma 1. If a SNE F(p;r) contains an atom at ~~ 0, then a(p) - 0.

In other words, if F(p;r) contains an atom at any price, then that price will

not be advertised. Intuitively, íf F contains an atom at g 1 0, then a seller

can increase profits by undercutting ~ slightly and advertising the lower price.
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Next, observe that there can be no atom at ~- 0, because then expected

profits would be precisely zero, but since r~ 0, a seller would make a positive

profit at posítíve prices up to r. Coupled with this fact, an immediate

corollary of Lemma 1 is that A(~;r) is continuous over the relevant domain.

Hence, for p~ 5 r, we can rewrite eq(3) as

Ea(p~,a~) - R(p~)Ialll-A(p~~r)1"~1 t (1-a~)(1-a)"-lIN) - 7(~~) . (S)

Two very useful and important result follows. Fírst, SNE expected profits,

Ex~, are strictly posití.ve, because a store charging r~ 0 will always capture a

share of the completely uninformed buyers, and the latter is always positive

because setting a- 1 would generate negatíve profits. Second, the maximum

price in the support of the SNE price distribution ís the lessor of the monopoly

price p and the buyers' reservation price r. Intuitively, prices higher than r

are suboptimal because buyers will always search further. Prices above the

monopoly príce can never be optimal because revenues are declining. If every

seller prices below min(r,p~, then since expected profits, eq(5), are

continuous, a seller can ralse prices slightly without losing any customers,

thereby increasing sales.

Lemma 2. (a) En~ 1 0, and (b) P- min(r,p).

One of the implications of Lemma 2 is that buyers will not engage in any

real search. lf they receive any information, then with probability one the

known prices are at or below their reservation price, so they will simply go to

the lowest priced seller and purchase. If they are completely uninformed, then
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they will pick a aeller at random and purchase sínce the price they find will be

at or below theír raservation príce with probability one.5 In section 3, we

will completely chazacterize the SNE F(p;r) and a(p).

3. DEAIVATION OF SNE.

We first state a number of properties of a SNE. Initially, we wíll take the

buyer reservation price r as exogenously fixed.

Lemma The support of F(p;r) is a connected interval [B,P].

Lemma 4. Thare exists at most one price p' in the support of F(p;z) such that

a(P') - 0.

Lemma 5. If there is an atom in F(p;r), then it must be at P.

In other words, the príce distribution must be atomless below P with

connected eupport; there cannot be multiple price in the support of F(p;r) that

are not advertised; and if there i s an atom at P, then that price will not be

advertised. We next conaider the existence of pura-strategy SNE.

SThis "no-real-search" implication is an artifact of the assumption of
homogeneous search costs. Given one reservation príce for all buyers, sellers
will never choose higher prices, and hence, buyers never find it optimal to
search further. Rob (1985) and Stahl (1988) consider models with heterogeneous
search costs and find real search for low-search-cost buyers, but no search for
a positive mass of hígh-search-cost buyera. Extending the present model to
heterogeneous search costs is left for future study.
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3.1 Pura-Strategy SNE.

Recall that tf there is a pure-strategy at price P, then by eq(1) and (2), r

~ P. It then follows from Lemma 2 that the only possible consístent pure-

strategy príce is the monopoly price p. By Lemma 1, it must be optimal not to

advertise this price, otherwise undercutting would be profitable. Thus, we need

to fínd conditions under which it is not optlmal to advertise gíven every seller

chooses the monopoly príce. Intuitively, for sufficiently high advertising

costs, it will not be optimal to advertise. Then, costly search implies

monopoly prices [Diamond, 1971]. More precisely:

Theorem 1. If ry'(0) ?[(N-1)~N]R(p), then F(p) - 1 and a(p) - 0 ís the unique
consistent SNE; otherwise, there does not exist a pure-strategy SNE.

A pure-strategy SNE exists if and only if the marginal advertising cost is

suffíclently high relative to monopoly revenues; otherwíse, there is no pure-

strategy SNE. In particular, note that if ry'(0) ~ R(p), then p is a pure-

stra[egy SNE for all N? 2. If ry'(0) G R(p)~2, then there does not exist a pure-

strategy SNE for any N? 2. In the interim range, there exists an N' such that

for all N 5 N', there is a unique (puze-strategy) SNE at p, and for all N~ N'

there is no pure-strategy SNE. Thus, entry of sellers appears to reduce the

likelihood of pure monopoly prícing. [We wíll re-examine the effects of seller

entry in Sections 5 and G.]

3.2 Derivation of Mixed-Strategy SNE.

In the remainder of the paper, unless otherwise stated, we assume ry'(0) ~

((N-1)~N]R(p), so there does not exist a pure-strategy SNE. The first step is
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to deriva an expression for [1-A(p;r)J~'1. It is notationally convenient to

define ap - a(P). A necessary condition of a NE ís that Ea(p,a(p)) be equal to

a constant for all p E [B,PJ. Using eq(S), Ex(P,ap) - R(P)(ap t(1-ap)~N)(1-

a)~"1 - ry(ar), and hence,

r R(P) (1-ar) (1-a(P)) (1-a)r-1
[1-A(P~r)1"-' - L ~-11ap } ~ - J IR(p) N N a(p)

7[a(P)J - 7(ap)
t

R(P)a(P)

(6)

Given a solution for a(p), eq(6) can be used to calculate A(p;r). But before

that, we will use eq(6) to derive a parametric aolution for a(p).

Since Ea(p,a~), eq(5), is strictly concave in a~, the Kuhn-Tucker conditions

ara neceasary and sufficient to characterize the optimal a~:

8Ea(P,a~)~aa~ - R(P)([1-A(P:r)J"-' - C1-a)~-IINI - 7'(a~) - 0,

for interior optima; otharwise, 8Ex(p,0)~8a~ 5 0 lmpliea a~ - 0, and

BE~r(p,l)~8a~ 2 0 implies a~ - 1.

(7)

Substituting eq(6) into eq(7) yields

a~Y~(a~) - 7(a~) - IR(P)Iar t (1-ap)INI -R(P)INI'(1-a)"-1 - 7(aP), (8)

for interior optima. The "corner" conditions translate to: (i) if the right-
hand-side (r.h.s.) of eq(8) i s no less than ry'(1) - ry(1), then a~ - 1 is the
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optimal solution; (ii) if the r.h.s, is non-positive, then a~ - 0 is the optimal

solution. The relevant parameters of eq(8) are P, a, and ap. Using Lemma 2,

(r,a,aP) is a sufficíent set of parameters so eq(8) and the corner conditions

define a unique solution for al which we denote a(p;r,n,ap). We will see

momentarily that there is a one-to-one relationship between a and ap, so (r,ap)

will be a necessary and sufficient set of parameters.

Note that the left-hand side (l.h.s.) of eq(8) as a function of a~ begins at

the origin and íncreases with slope a~ry", while the r.h.s. ís strictly decreasing

í.n p up to p. Hence, for interior solutions, a(~;r,a,aP) is a stríctly

decreasing function. This result is rather íntuitive. Sellers want to

advertise low prices more than high prices because the chance of being the

winner (and hence the payoff to advertising) is greater when they set low

prices.

We will now develop a characterizatíon of the optimal a(p) that will permit

us to eliminate a from the parameter list.

Lemma 6. Eq(7) must hold as a strict equality at p- P:

rN-1

y'(aP) - 1-IR(P)(1-~)s'3 .
N

(9)

Using eq(9) to determine n in terms of aP, denoted a(aP), we can now express

the optimal advertising level as a(p;r,aP) ~ a[p;r,a(aP),aP].

The requirement that eq(9) have a positive solution puts a lower bound on P,

as follows.

Lemma 7. Given ry'(0) ~[(N-1)~N]R(p), a SNE must have P ~ R-1[7'(0)N~(N-1)];

hence, r ~ "r ~ R-1[ry'(0)N~(N-1)].
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It is useful to examine a graphical method of datermining a(~) as presented

in Figure 1. The upward sloping function is ry'(a), and the downward sloping

function is [(N-1)~Id]~R(P)(1-a)s'1, which are the left and right hand sides of

eq(9) respectively. The functions have been drawn under the assumptíon that

7'(0) t[(N-1)~N]R(P) so there is a unique interior intersection point. For any

aP, start on the horizontal axis at a- ay and move vertically to the y'()

functíon; then move horízontally to the other function. The final horizontal

position ís a(ay). It is easy to see that a(~) is strictly decreasing with a

maximum value of ad - a(0). The unique fSxed point of a(~) is denoted aL.

Observe that 0 G ay G aA.

It should be apparent that since a(~;r,ap) is non-increasing, it must be

that aP 5 a(ap). Figure 1 illustrates how this requirement circumscribes the

feasible range for aP. For any ap E(O,ay], as indicated by the dotted lines

ín Fígure 1, a(aP) lies in the interval [a~,aaJ, which is compatíble with a SNE

solution. On the other hand, far any aP ~ aL, a(ap) ~ aP, and hence is not

compatible.

Having a parametric solution a(p;r,ap), we can use eq(6) to define a

parametric solution A(p;r,ap). Next, to determine the lower bound B, note that

we must have A(B;r,ap) - 0, and then solve eq(6) for B Sn terms of a(~;r,ap).

Let aB ~ a(B;r,aP), and define

L(B) ~ R(B) - r(B)~a~ - 0, where

r r 1-ap1 1-as N7'íap)
r(B) - IR(P)IaP t -J - R(B)- ~ t 7(aB) - 7íap) .` N N (N-1)R(P)

(10)

so L(B) - 0 iff A(B;r,aP) - 0. Hence, eq(10) defines has a unique



15

solution B(r,aP) E (O,P).6

We will now derive a parametric solution for the price distribution which

we will denote F(p;r,aP). Differentiating eq(4) with respect to p~, we see that

8A(p~;r,aP)Iap~ - a(p~;r,ap)F'(p~;r,aP), whare F' denotea the probablllty density

function. The easíest way to derive an expression for 8AI2p is to dífferentiate

eq(5) with respect to p~, using the Envelope Theorem to get

8A(P~:r~ap) - R'(Pj). ~all - A(Pi:r.ar)]"-1 t (1-a)7'(ap)I[(N-1)R(P)]

aP~ R(P~) L (N-1)aIl - A(p~:r~ap)]""2

wheze a- a(p~;r,ap). We can see that 2A(p;r,aP)I8p L 0, and hence,

F'(p~;r,aP) - [aA(p~;r,ap)IBp~]Ia(p~;r,ap) Z 0. Integrating:

p~ 8A(P:r,ar)IaP~
F(P~:r,aP) ~ J dp .

B a(P:r.ar)
(12)

Note that by constructíon, F(B;r,aP) - 0 and the density i s non-negative. The
only remaining requirement is the endpoint condition that F(p;r,aP) 5 1.

Theor~m 2. Gíven r z"r, there exists an aP such that F(p;r,ar) and a(p;r,aP)

defined by eqs(6 - 12) are SNE strategies conditional on r.

Thus, we have a method of computing SNE strategies (conditional on buyer

reservatíon price r?"r). Taking aP as a parameter, we first compute a

6To see this, observe from eq(7), assuming a8 ~ 1 that 7'(ag) - R(B)(1-y), where
y~ 7'(aP)II(N-1)R(P)]. Then, r'(B) - R(B)a'(B) - R'(B)(1-aB)y, so L'(B) -
R'(B)[1 t y(1-aB)Iae] - L(B)a'(B)Iae, which is strictly positive for all B
satisfying L(B) - 0. But since L'(B) ~ 0 for all roots of L(), there can be
only one root. If a8 - 1 and eq(7) does not hold as an equality, then L'(B) -
R'(B) 1 0, so again B is unique.
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parametric advertising solution a(p;r,aP). Then, ve use a(p;r,aP) to compute a

parametric price distribution. Next, we adJust aP untíl F(P;r,ap) 5 1 an aP[1

' P(P;z,ap)J - 0.

We turn now to the queation of uniqueness. First observe that there cannot

be two SNE both with atoms at P, because an atom at P requires aP - 0, whlch in

turn defines a unique solution to eq(8), and hence a unique príce dístribution

as well. Whether or not there can be multiple SNE (not more than one with an

atom at P) is an open question. To shed some light on this question, it is

useful to know how a(p;r,ap) depends on ay. Substituting eq(9) into eq(8) and

differentiating with reapect to aP reveals that a(p;r,ap) is strictly increasing

in ap for all aP e(O,a~). Thus, recalling eq(12), the direct effect of

íncreasing ay is to decrease F(p;r,ap). Unfortunately, I have not been able to

prove that the total effect is always negative. For uniqueness, it would

suffice to show that êF(p;r,ap)~3ap G 0 when evaluated at any aP such that

F(p;r,ap) - 1. I suspect that for soma revenue functiona and advertising cost

functions, thare ara multiple SNE. Howevez, there will also be a wide class of

revenue functions for which there will be a unique SNE.

3.3 E:istence of a Consistent SNE.

In section 3.2, we took the buyer reservation price r as exogenously fixed.

Now we want to close the model by finding a consistent r~ such that the seller

price distribution F(p;re) induces r~ as the buyer reservation price.

Conditional on not receiving an ad from a seller, the posterior probability

distribution on that seller's price is
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Fu(P;Y)
~ [1-a(x;r)]dF(x;r) F(p;r) - A(p;r)0

1-a 1-a
(13)

Let Bo ~ inf(p ~ a(p) G 1).7 Then Fo has support [Ba,P] and is skewed towards P

relative to F(p).

First, observe that for r? p, P- p, so F(p;~) is independent of r? p;

hence, H[p,c,Fo(~;r)] is constant for r~ p. Consequently, if H[p,c,Fo(~.p)] 5

0, then there exísts a consístent buyer reservation price r~ z p. This will

occur, for example, if c is sutficiently high. On the other hand, íf

H[p,c,Fa(~.p)] ~ 0, then a consistent reservation price (if one exists) must lie

in the open interval (O,p).

Second, observe that the buyer reservation price enters the seller SNE

strategy choices only via the term R[min(r,p)]. Recalling that R() is

continuously differentiable, if there were a unique conditíonal SNE for every r,

then the existence of a consistent r~ would be almost trivial. However, we must

take account of the possibílity that the SNE asserted by Theorem 2 may depend

discontinuously on r.

Theorem 3. There exists a fully consistent SNE. That is, there exists a

parameter cr~ and a buyer reservation príce r~ that ís consistent with

F(p;r~,c}') of Theorem 2.

The proof uses a fixed poínt argument to find a P~ and op simultaneously such

that H[P~,c,Fo(~;P~,op)] 5 0 and Fo(P~;P~,a4) 5 1, with strict inequalíties

7Given stríctly convex advertísing costs, i t is clear from Figure 1 that Bo G P,
since aP G a G 1.
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implying that P~ - p and c~ - 0 respectivaly. Hence, there exists a consístent

reservatíon price r~ ? P~.

4, ERPLICIT SOLIITIONS FOR SPECIAL CASES.

4.1 Linear Advertiaing Costs.

While strict convexity of advertising costs ry(a) played a crucial role ín

the above derivation of the mixed-strategy SNE, we can derive a unique SNE for

the case when ry(a) is linear. Accordingly, ín this subsectíon we assume that

ry(a) - 7'a, for some 0 G ry' G [(N-1)~N]R(p). Eq(7) now produces a knife-edge:

there i s some price p~ such that if p~ c p~, then a~ - 1, and if p~ ~ p~, then

a~ - 0. But since by Lemma 5, P is the only price such that a(P;r) - 0, we must

have a(p;r) - 1 for all p G P. Then, from eq(13), Fo(p) - 0 for all p G P, so

by eq(1) and Lemma 2, we must have P- p, the monopoly price.

If there were no atom at p, then a- 1, which would be inconsistent with
eq(9). Hence, there must be an atom at p, and eq(9) determines a- 1-
(Nry'~[(N-1)R(p)j)llcx-i~. Since a(p;r) - 1 for all p G p, (1-a) i s also the
mass of the atom at p. Then, expected profits are Ea(p,0) - R(p)(1-n)N'1~N.

Since a- 1 for p G p, A(p;r) - F(p;r); hence, Ex(p,l) - R(p)[1 -F(p;r)]N-I -

y'. Setting Es(p,l) - Ex(p,0) and solving for F(p;r) yíelds

Nry' i~cx-ii
F(p;r) - 1 -

(N-1)R(p)
(14)

Observe that lim F(p;r) - a, as required. The lower bound B is determined byc~P
setting F(B;r) - 0, which yields B- R-1(N7'~(N-1)].

Sellers choose the monopoly price, p, with positive probability and do not
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advertise that price (because the net marginal benefits to advertising are

zero). In the event that all sellers choose p, all the buyers are uninformed

and simply dístribute themselves uninformly over the sellers. In all other

events, some seller chooses a lower price and all buyers are fully informed

about these lower prices, so only the lowest-priced seller has customers. A

sellcr must trade-off the likelitiood of being the lowest-priced seller and

gettíng all the business with the likelihood of all sellers choosing p and

sharing the business. The price distribution, eq(14), equates the expected

profits of these alternatives.

Note that as 7' increases toward [(N-1)~N]R(p), the lower bound B converges

to p, and the mass of the atom at p converges to 1. Thus, the price

distribution converges pointwise to the degenerate distribution at the monopoly

price, which is the unique solution for all ry' ?[(N-1)~N]R(p), Conversely, as

ry' ti 0, the lower bound B converges to 0, the mass of the atom at p converges to

0, and F(p) converges to 1 for all p~ B. Thus, the príce distribution

converges weakly to the degenerate distribution at 0[i.e. Bertrand pricing].

4.2 Quadratic Advertising Costs.
Suppose y(a) - 7'a t ry"a2~2, for posi[ive constants ry' and ry". We can

derive a closed form expression for the optimal advertising policy:

r r 1-aP R(P) 2N(1''t7"ar) 27'ap ~t
a(P:ae) ~ IR(P)1ae } -~ - ~` - (aP)2 (15)

L ` N N 1(N-1)R(P)ry'~ - ry"

subject to a(p;aP) e[0,1]. We then seek a ap such that F(P;r,aP) 5 1 and aP~[1-

F(P:r.ar)] - 0.

The behavior of the SNE a(p) is illustrated in Figure 2. The example
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assumes search cost sufficiently high so P- p, linear demand D(p) - 1-p, N-

10, and ry' - 0.01. For sufficiently small 7", the SNE has an atom at P and ap -

0. The SNE advertising level has a(p) - 1 for low prices and sharply declínea

towards zero for príces near P. As ry" y 0, the range of fully advertised prices

(a - 1) increases to ~B,P); i.e. the advertiaing solution converges to that for

linear advertísing costs. As 7" increases, advertising is curtailed on more and

more prices; i.e. a(p) rotates downward and counterclockwise. For sufficiently

high ry", aP ~ 0, and as 7" increases further, a(p) declines towards zero.

Figure 3 displays several SNE price density functions for this example. As

ry" -~ 0, the lowest price B declines towards 0.0112, and eventually an atom forms

at li whlch íncreascs ín mass towards 0.2925. Thc límit as ry" y 0 is the SNE for

the linear advertising case presented above. Notice that for 7" 5 0.01, the

density is "il-shaped"; thus, a seller is more likely to charge a high price or

a low "sale" price, when advertisíng costs do not increase too sharply.

5. ASYMPTOTIC BEHAVIOR.

We are interested in how the qualitative behavior of a consistent SNE is

affected by the number of buyers and sellers, advertising costs and search

costs.

Assuming that ry(a,M) and 8ry(a,M)~8a increase monotonically to limits ry(~,m)

and y'(a,m), the limit set of SNE is completely characterized by the limit

marginal advertísing costs ry'(a,m). From Figure 1, it is apparent that both a~

and aH decrease, which suggests that ap and hence a(p;r) decrease.

Unfortunately, due to the potential non-uniquenass of the SNE, we cannot derive

any general comparative statics about the price distríbution, other than that a
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well-defined limit distribution exísts.

5.3 The Effeet of the Number of Sellers.

We will prove the remarkable result that the príce distributíon converges to

the monopoly price as N y~. It is easiest to see thia result for the case of

linear advertisíng costs. Following this, we will derive this result for the

general case. Recalling from Theorem 1, that pure monopoly prícing ia the

unique SNE when 7'(0) ? R(p), we will focus exclusívely on the remaining case

when 7'(0) G R(p).

From eq(14), given línear advertiaing coata ry' ~ O,S as N y , F(p;r) ti 0 for

all p G P, and the mass at P approaches unity. While B declines monotonically

to R-1(7'~R(P)], the SNE price distribution converges to the degenerate

distribution with unit mass at P. But then recalling the remarks of Section

2.1, there exists an N' such that for all N 1 N', r 1 P, so by Lemma 2, P- p.

In other words, the upper bound of the price distribution híts the monopoly

price for suffíciently many (finite) sellera, and becomes more concentrated at

the monopoly price as the number of sellers increases without bound.9

To develop this result for the case of strictly comex advertisíng costs, we

proceed with a number of lemmas. Note that while there may be multiple SNE for

various values of N, the results apply to any SNE, so we will be showing not

just that some SNE converges to monopoly pricing, but that all SNE converge to

BThat ry'(0) is strictly positive is crucial to our asymptotic results. It can
be easily seen from eq(14) why y' - 0 ís a síngular case.

9A curious non-monotonic behavior is exhibited when R(p)~2 G ry' C R(p). For
example, suppose y- 0.75~R(p). By Theorem 1, pure monopoly pricing is the
unique SNE for N- 2,3 and 4. Then for all N z 5, there is no pure-strategy SNE,
meaning that the mean price is less than p. However, as N y m, the mixed-
strategy SNE converges back to the monopoly price.
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monopoly pricing.

Lemma 8. As N~ m, a and aP convarge to 0, (1-a)"'1 ti ry'(0)~R(P), and Na y

ln[R(P)~ry'(0)].

From Lemma 8, we see that while the average effort of advertising per seller

a vanishes as N ti~, the aggregate average effort Na does not. Moreover, the

probability that a typical buyer ís totally uninformed, ( 1-a)"-1, remains

bounded below 1, given ry'(0)~R(P) G(N-1)~N.

Lemma 9. As N-~ m, a(p) ti 0, but Na(p) y m for all p G P.

In other words, the advertising effort per seller shrinks to zero for all

prices, but slowly enough so the aggregate advertising effort increases without

bound for all p C P. Note that this result does not imply that expected

advertising expenditures increase without bound, because expected advertising

expenditures per seller are Ey ~,~y[a(p)]dF(p), which clearly depend not only on

a(p) but also on F(p). Indeed, given Lemma 9, to keep E7 bounded, it must be

that F(p) has less and less probability mass at p G P. This conclusion is

formalized in the Theorem 5 below, whose proof uses a different insight. But

first it is useful to present one last Lemma concerning the distribution of

received príces.

Lemma 0. As N y m, [1 - A(p)]"'i ~ y'(0)~R(p) and A(p) ~ 0 for all p.

In other words, the probability that a typical buyer will be ínformed thaL
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seller j has a price p~ 5 p, A(p), convergee to zero as N~ m, On the other

hand, because the aggregate advertísing affort does not vanish, the probability

that p~ ís the lowest price of the other N-1 sellers about whom a typical buyer

is informed, [1 - A(p~)J"'1, i s bounded above zero.

Finally, we come to our main results concerning the effect of seller entry
on the SNE mixed-strategies.

Theorem 4. As N -~ m, F(p) ~ 0 for all p G P, and B~ R-1[ry'(0)].

Thus, we see that the SNE príce distribution converges to the degenerate

distribution with all mass at one price P. The next question concerns the

effect of N on this príce P and the mass at P.

Theorem 5. There i s an N' such that for all N~ N', there is a unique SNE, P-

p, and F(P~ ~ 0.

Thus, Theorem 5 together with Theorem 4, establishes that the SNE converges

to pure monopoly prícing as the number of sellers increases wíthout bound.

Indeed, once entry exceeds some fínite level, there is an atom in the price

dístribution at the monopoly price, and the mass of that atom increases to 1 as

N~m.

The reason for this remarkable result is that sellers always have the option

of being content with their captíve shaze of buyers who are totally uninformed:

asymptotically, a mass of y'(0)~R(p) buyera. On the other hand, competing for

buyers requires expenditures for advertising and a cut in príce, and these

efforts are rewarded only if the seller has the lowest príce ín the information
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set of a typical buyer,l0

This result seems counterintuitive if one focuses on the limit as N y~:

monopoly pricing with no advertísing. Surely (you might say) advertísing a

price just below the monopoly price would be profitable. Indeed, the limit
strategiea are not equilibrium atrategies for tha model with N- m. It appears

that [as in Stahl (1988)] there does not exist a SNE for the limit model with N

-~. However, Theorems 4 and 5 are about tha asymptotíc behavior of the model

with a large but finite number of sellers. To understand better how the limit

model and the large-but-finite model differ, we can extract more ínsights from

the foregoing Lemmas.

First, let's examine the advertising effort. From Lemma 8, we observe that

the average effort of advertisíng per seller c vanishes as N y m. Expected

advertising expenditures per seller are Ery ~ fry[a(p)JdF(p). Using Lemma 9, E7

vaníshes as N~ . Thus, average advertising effort and expenditures shrink

towards zero with seller entry. On the other hand, by Lemma 8, the aggregate

average effort Na i s bounded above zero. Similarly, total industry advertising

expenditures NE7 - Na7'(0), which, by Lemma 8, converges to ry'(0)ln[R(p)~y'(0)]

~ 0. Because of thís aggregate advertising effort, the probability that a buyer

is completely uninformed, ( 1-a)", converges to ry'(0)~R(p) e(0,1), despite the

fact that a y 0. Thus, there is always some posítive mass of unínformed

buyers, an a positive mass of (partially) informed buyers.

lOThe model of Stahi (1989a) is símilar under the interpretation that the
proportion of zero-search-cost types is like having a group that has received
ads from every seller and treating advertísing as a prior decision. The result
was that the SNE price distribution converged to monopoly pricing because the
rewards for price competition declined with seller entry. Now with endogenous
advertísing which turns out to be more intense at lower prices, the forces that
drove the former result are even stronger: competition is too fierce, so sellers
opt for their captive market share instead.
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Given that there is always a positive mass of informed buyers, it does not

follow that by slightly undercutting tha monopoly price a seller can gain a

discrete increase in sales. The seller must still be the lowest-priced aellar

among those about whom the buyer is informed. The probabllity that p~ is the

lowest price among tha sellers about whom a typical buyer is informed ia [1 -

A(p~))a-1, which, by Lemma 10 converges to ry'(0)~R(p~). Thus, the margínal

revenue gained is approximately ry'(0), while the direct margínal advertising

cost is y'(0), so the net direct marginal benefit of additional advertiaing p~ ~

p is zero. But then we must also take account of the foregone profits from the

mass of uninformed buyers, so the total net marginal benefit from more

advertising at low prices is non-positive. Thus, we sea that even though F(p)

may be arbitraríly close to the degenerate distribution at p, and even though

the advertising effort per seller is arbltrarily small, it does not follow that

selecting and advertising a price below p would be profitabla. Hopefully this

discussion makes Theorems 4 and S more understandable.

We can also deduce the effect of entry on SNE profits. Expected profits per

seller are Ea~ ~ Ex(P,or) - RCP)laP t(1-aP)~Nl(1-o)"-1 - 7(op) -[~rry~(Qe) -

y(aP)] t 7'(ap)~(N-1). Then, by Theorem 5, there i s an N' such that for all N~

N', aP - 0, so Ea~ - 7'(0)~(N-1). Therefore, Ea~ y 0, as N y m. On the other

hand, total industry profits, NEa~, converge to ry'(0) 1 0.

5.2 Multiplicativa Changas in Advertising Costs.

To examine the effects of advertising costs, we consider multiplícative

changes in the advertising cost function ry(a,M). Fíx some rya(o) and let 7(a) ~

aryo(o) for a ~ 0.
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Theorem 6. As a y 0, a y 1, B y 0, and F(p;r~) y 1 for all p~ 0.

In other worda, advertising saturates the market and the price distribution

weakly converges to the degenerate distribution at p- 0(the Bertrand outcome).

Note that by eq(1), r 1 0, so there is a positive lower bound on P. Since a y

1, it follows that aD y 1, but, when ryo(1) - m, aa approaches 1 at a rate slow

enough so aryo(aB) y 0.

As marginal advertising costs increase, eventually ry'(0) t[(N-1)~N]R(p), so

by Theorem 1, the SNE converges to pure monopoly pricing. In general, the SNE

lies between the Bertrand outcome and the monopoly outcome.

5.3 The Effect o! Search Costs.

It is Snteresting to ask how the SNE behaves as the buyer search costs

become arbitrarily small, and to compare these results wíth the case of very low

advertising costs. Recall that without advertising [Diamond, 1971], the unique

equílibrium is monopoly-pricing, so there is a sharp discontinuity at c- 0.

Wíth advertising, we will see that there i s atill a discontinuity, albeit of

smaller magnitude.

Theorem 7. As c y 0, (a) B and P converge to "r - R'1(ry'(0)(N-1)~NJ, and (b)

a(P) y 0.

In other worda, the SNE price distribution convergea strongly to a single atom

at "r G p.ll This follows directly from eq(1). Then, from Figure 1 we can see

11Note that this limit is not an equilibrium of the model with c- 0, since
clearly marginal-cost pricíng i s the unique equilibrium when c- 0. Further,
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that advertising vanishes.

Ttiis result stands in sharp contrast to Theorem 4: that marginal-cost

pricing prevails as advertising costs diminish. We see that as the comparative

advantage ín information transmission switches from sellers to buyers, sellers

drastically curtail their advertising efforts.

6. WELFARE EFFECTS.

A crucial factor in determining welfare effects is the cumulative

probability distribution of the price at which buyers purchase. First, the

probability distribution of the lowest known price is just 1-[1-A(p)]". But

there is a probability of (1-a)" that a buyer will be uninformed, in which case

the buyer faces Fo(p). Letting G(p) denote the total cumulative distribution of

the price at which buyers purchase,

G(p) - 1 - [1-A(p)]" } (1-0)" Fo(P) (16)

At the upper bound P, G(P) - 1-(1-a)"[1 - Fo(P)], which is identically 1,

since Fo(P) - 1. But note that if F has an atom at P, there is also an atom in

G() at P of mass ( 1-a)" Fo[Pj.

Of particular interest is the behavior of G(p) as N y m. From Lemma 8 and

Theorem 5, the last term of eq(16) converges to zero for all p G P. From eq(6)

and Lemma 10, [1-A(p)]" ~ 7'(0)~R(p), which is strictly less than 1 for all p e

this result holds if and only if advertising costs are strictly convex, sínce as
shown in Section 4.1, with linear advertising costs, P- p, independent of c.
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(B,PJ. Hence, C(p) converges to a distribution with an atom of mass y'(0)~R(P)

at the upper bound. Indeed, from Theorem 6, there exísts an N' such thac for

all N~ N', F() and hence G() have atoms at P.

The appropziate welfare measures are consumer surplus, producer surplus, and

total surplus. I.et CS(P) ~~ D(p)dp. Then, we can expresa expected consumer

surplus as

ECS ~ CS(P) t ~ D(p)G(p)dp . (17)

Expected producer surplus is just aggregate profits NEx. Expected total

surplus can be expressed as

ETS ~ CS(P) t R(P) - Js PD~(P)G(P)dP - NJe 7Im(P)]dF(P) - (18)

We can see that anything that causes G(p) to inczease (in the sense of

stochastlc dominance) will unambiguously increase ECS. Nowever, except for a

very special case, the effects on NEx and ETS are far from obvious.

Consider the special case of unit demand for prices less than or equal to

p, and zero demand otherwise. Then, slnce D' - 0, G(p) is irrelevant to ETS.

In fact, it is immediate from eq(18) that the social optimum is a zero level of

advertising. The price merely allocates the maximum total surplus between

buyers and sellers. Therefore, we can conclude that there is over-advertísing

in tha SNE in the special case of unit demands. It is also clear that the

demands could be perturbed slightly so D'(p) t 0, and still preserve the over-

advertisíng conclusíon.
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To derive more definite welfare results, we turn to the case of linear

advertísing costs. The solutíon for the finite case with linear advertising

costs was derived in section 4.1. Recall that there is an atom in the SNE prica

dlstribution F() at P of mass f-(1-a)"-1 -(Nry'~[(N-1)R(P)))1~~"'1~ at P.

First, consider entry of sellers. A key factor is how the mass at P in G()

behaves. This mass is equal to (1-a)" -(Nry'~[(N-1)R(P)j)"~~"-1~. We should

like to know whether this atom is increasing or decreasing in mass as a function

of N. It is atraightforward to verify that (1-a)" is increasíng in N for all N

Z 2 if ry'~R(P) 5 1~2e a 0.184. In othar words, if the marginal advertising

costs are small in comparison to monopoly revenues per buyer, then seller entry

makes it more likely that buyers will be uninformed. Consequently, some buyers

may be made worse off.

For example, if D(p) - 1-p, and ry' S.0125, then ECS, NEx and ETS are

monotonícally decreasing and total industry advertising expenditures, NEry, are

increasing in N for all N t 2. For y' -.125, NEx, ECS and ETS are decreasing

while NE7 ís increasing for all N z 2. For intermediate ranges of ry', NEx, ETS

and -NEry are decreasing, while ECS first increases and then decreases in N. In

othez words, while buyers can sometimes benefit from entry, advertising

expenditures typically increase more than enough to offset the buyers' benefits,

resulting in a decline in social welfare.

Second, consider multiplicative changes in advertising costs. I[ ís obvious

that the mass is increasing in advertising costs, ry'. Indeed, sínce F()

collapses to the degenerate distribution at p for sufficiently large ry', G()

also collapses to the monopoly price. Thus, for all p G P, G(p) ís decreasing,

so ECS is also decreasing. Total profits, NEx - R(P)f""1 - Nry'~(N-1), so total

profits are increasing with ry'. Total advertising costs NJry[a(p)jdF - Nry'(1-f).
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Using the expressíon for f and differentiating with respect to 7', we find that

total advertising costs are íncreasing (decreasing) as y'~R(P) G(~) (1 - 1~N)"

G l~e.

To study the welfare effects of search costs, we nead to subtract c from

ECS. Then, we can write d[ECS - c]~dc -~ D(p)[8G(p)~8c]dp - 1. Trivially,

when advertising costs are linear, since the SNE is independent of c, buyers are

unambiguously better off with lower search costa. The conclusion is not so

immediate when advertising costs are strictly convex. From Theorem 4, we know

that the SNE concentrates mass at "r and a y 0. Hence for c- 0, from eq(16),

8G~8c - 2Fo~8c, and from eq(1), ~ D(p)[8Fo~8c] - 1 G 0. Thus, buyers benefít

from reductions in search costs when search costs are already very low. On the

other hand, ECS-c is not necessarily monotonic in c. Indeed, the effect of

advertising cutbacks and a risíng lower bound on prices (B) can result in buyers

being worse off after an exogenous reduction in search costs.

7. CONCLUSIONS.

We have studied a model of seller pric!ng behavior in which buyers can

become informed through seller advertising and direct search. Thus, the amount

of information buyers have is an endogenous phenomena. Our representation of

advertísing is very general and can encompass word-of-mouth and other leakage

effects beyond simple broadcasting of ads. We completely characterízed the

Symmetric Nash Equílibría.

If the marginal advertising cost is too high, then the monopoly price with

zero advertising is the unique SNE; otherwise, there is a mixed-strategy SNE

which can be expressed as a príce distribution and an advertising policy
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conditional on price. The price distribution has a connected support, and is

atomless below the highest price in the support. There can be an atom at the

highest príce in tho support, in which case, it is optimal to refraín fzom

advertisíng that price. The advertising effort is decreasing in pzica, so lower

prices are advertised more intensively than higher pricea.

As advertising costs become negligible, the SNE price distribution converges

to tt~e Bertrand price, and as advertising costs increase, the SNE príce

dístribution converges to the monopoly price. On the other hand, as search

costs become negligible, the SNE price distribution converges to a price higher

than marginal production costs. Thus, the two information channels have

dífferent effects on the outcome.

The comparative statics on the effect of the number of sellers is most

interesting. There ís a finíte number N' such that if there are more sellers

than N', then there is an atom at the monopoly price. As the number of sellers

increases without bound, advertising per seller vanishes and the SNE price

distribution converges to the monopoly price.

To analyze the welfare effects, we derived the distribution of the price at

which sales actually occur. This distribution is considerably skewed towarda

lower prices sínce it is a high order statistic. In particular, as the number

of sellers increases without bound, this diatribution converges to a non-

degenerate distribution with a mean less than the monopoly price; on the other

hand, the límit distribution has an atom at the monopoly price. We presented

examples for a variety of demand functiona and linear advertising costs in which

welfare declined with entry of sellers.

The question of the efficiency of the SNE advertising effort is difficult to

fully analyze. In the case of constant demand, there clearly is over-
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advertísing. For other demand functions, there can be either over- or under-

advertising.l2

Comparing this paper with Stahl (1989a), both find that prícing becomes more

monopolistic with entry, and both find that welfare can decrease with entry.

Thus, allowing sellers to advertise does not lnduce more competitive prícíng.

As the number of sellers increases, a positive proportíon of the buyers remain

unínformed, so the asymptotics are similar.l3

These results stand in sharp contrast to Cournot models (e.g. MasColell,

1982] and to Bertrand models with and without capacity constraints [e.g. Allen

and Hellwig, 1986] which find that prices become more competitive as the number

of firms increases. The crucial ingredient in the model of this paper is costly

buyer search. We know from Díamond (1971), that costly buyer search can lead Co

monopoly pricing. However, in our model we have neutralízed the force of that

argument by íntroducing informed consumers (exogenously as in Stahl, 1989a, or

endogenously via advertising as in this paper). Indeed, gíven a finite number

of sellers and advertising costs not too high, the Nash Equilibrium always

12Grossman and Shapiro (1984) examine a Butters-type advertísing model wíth
differentiated products and also find the possibility of over-advertising. They
do not, however, examine the effects of seller entry since they focus
exclusively on a continuum model.

13Recently, Robert and Stahl (1991) consider a similar model except that (i)
each buyer demands one unit up to a choke price of v~ 0, and (ii) the search
cost ís a transportation cost and not a cost of obtaining a price quotation
(such as a telephona call). The effect of entry in theír model also leads to
more monopallstic seller pricing, but the limit is not monopoly pricing. Unlike
the present model with zero transportation costs and positive price quotatíon
costs, when transportation costs are positive but obtaining price quotatíons is
costless (above the transportation cost), there is a gap (of size c) in the
support of the price distríbution and no seller advertises a price above r-c.
This forces more competitive pricing and keeps the average price bounded below
the monopoly price. Robert (1989) analyzed a similar model to Robert and Stahl,
except he assumed that initial marginal advertising costs 7'(0) - 0. Also, he
did not characterize the asymptotic behavior of the SNE price distríbution, and
he díd not study the impact of entry on total surplus.
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exhibits price dispersion. What Ss remarkable is that as the number of sellers
íncreases, pricing becomes asymptotícally monopolistic. By analyzing the
asymptotic behavior in some detail, we have learned that advertising per seller
is curtailed wíth seller entry because the net margínal benafits to advertlsing

efforts shrink to zero. At the same time, aggregate industry-wide advertising
stays bounded above zero, which reinforces the shrinking benefita to advertisíng
by an individual seller, because that seller gains nothing unless he is the
lowest-priced seller about whom a typical buyer i s informed. In other words,

our model demonstrates how a aeemingly more competitive environment (i.e. more

sellers) can actually lead to less competitive behavíor because the incentíves

for competitive pricing is significantly lessened by the larger number of

competitors.

It is also insightful to compare these results with results from repeated
games in which monopoly prícing can be maintained as a dynamic Nash Equilibriwn

wíth, for example, trigger strategies [e.g. Friedman, 1986]. Essentially, the

threat of reversion to competitive behavior i s used to deter firms from

deviating from tacit collusion. Our result has some of this flavor (ín that the

"heat" of competition acts to deter competitive advertísing and pricing), but
there are more important differencea. First, a grim trigger strategy supporting

collusion can succeed in deterring all competitive instincts. However, in our

model, only individual competitive behavior is deterred; the aggregate level of

advertising remains positive, the lower bound on the price distribution

declines, and the distribution of "sales prices" remains dispersed. Second, the

repeated game equilibrium can support joint profit maximization of the sellers,

whereas in our model the sellers (in aggregate) "waste" money on advertising.

Thírd, tacit collusion ín a repeated game aeems less realistic with a very large
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number of firms (because of practical detection problems), but it is the large

number case of our model that has near monopoly pricing. Thus, the forces

leading to monopolistic pricing in our model are very different from the forces

in a repeated game setting.
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APPENDIX

Ptoof of Lemma 1.

If there is an atom in F(p;r), there ia a chance that two or more sellers

may be charging the lowest price. In that event, we assume that the buyer

randomizes between the low-príced sellera with each having an equal chance of

being chosen. For example, if there is an atom of mass f~ 0 at price ~, and

Sf a buyer is informed about a príce p 5 r from K sellers while the information

about all the other sellers is that their prices aze higher than JS, then each of

the K sellers have a 1~K change of selling to that buyer. The probabilíty of

this event is [a(g)fJY ~[1 - A()S;r)]"'i. Thus, in eq(3)

N-1 (N-1)!
rV(17) - E [a(p)f)x'[1 - A(P:r)J"-'-r . (Al)

K-0 (N-1-K)!(Ktl)I

Suppose F(p;r) has an atom of mass f 1 0 at ~. Let a~ - a(~;r), and

consider p~ - j3-c for c ~ 0. Then, lim~~o `p(pi) -[1 - A(j5;r) t a(js;r)fJ"'1 -

N-1 (N-1)I
E fa(P:r)f1`'[1 - A(~:r)J"-1-x . (A2)

K-0 (N-1-K)!K!

Hence, using eq(3) and (A1-2), lím~yo [Ea(p~,ai) - Ea(j3,ai)] -

N-1 (N-1)!K
R(1~)a(~:r)~ E fa(13:r)f1L'[1 - A(P:r)1"-'-r ~

K-0 (N-1-K)!(Ktl)1

which is strlctly positive if a(~S;r) ~ 0, implyíng that undercutting ~ is

profitable: a contzadiction. Therefore, íf f~ 0, then a(~S;r) - 0. Q.E.D.
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Proof of Lemma 2.

(a) If a- 1 for all p 5 P, then we have classic Bertrand price competition

so F is concentrated at 0, implying that Ex --7(1) G 0. Sínce this cannot be

part of a SNE, we must have a ~ 1, in which case Ex(r,0) - R(r)(1-a)"'1~N ~ 0.

Therefore, Ex~ ~ 0.

(b)(1) If P 1 r, then a sale could occur at P only if all other sellers

have pk - P, and market share would be fM'1~N, where f is the atom at P. But

since P ~ r, all buyers will have searched all sellers and be fully informed.

Therefore, a deviation to P-e for some c~ 0 will capture the whole market.

Civen Ex~ ~ 0, this is a profitable deviation. Hence, we must have f- 0, and

Ex(P,a) 5 0, which is inconsistent with (a). Therefore, P 5 r.

(2) Suppose p G P 5 r. In this case, for p~ e(p,P), sales revenues are

decreasing and market share is decreasing in p, so p~ - p dominates P, a

contradiction. Therefore, F 5 min(r,p).

(3) Suppose P G min(r,p1. Then, for p~ E(P,min(r,p)), Ex(p~,a~j -

R(p~)[a~ t(1-n~)~N](1-a)"-1 - ry(a~), whích is increasing in p~ - a

contradiction. Therefore, P- min(r,p). Q.E.D.

Proof of Lemma 3.

Suppose to the contrary that there exists an open interval (p',p") C[B,P]

that ís not contained in the support of F(p;r). Observe that A(p;r) will be

constant on this open interval, so

Ex(p~.Q~) - R(p~){ay[1-A(p~~r)]"-' t (1-aj)(1-a)"-1rNl - 7(a~) ,

which ís increasing in p~, so p' cannot be in the support. Hence, we can extend

the open interval in the direction of B, leading to the conclusíon that B is not

in the support - a contradiction. Q.E.D.
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Proof of Lemma 4.

Suppose to the contrary that there exists two prices p' G p" 5 p, both in

the support of F(p;r) such that a(p') - 0- a(p"). But then Ea(p',0) - R(p')(1-

c)a-1~N t R(p")(1-a)M-1~N - Ea(p",0), a contradiction. Q.E.D.

Proof of Lemma 5.

Suppose there exists an atom at p' G P. By Lemma 1, a(p') - 0, and by Lemma

4, there can be no atom at P. Sínce a(P) must be chosen optimally, it follows

that Ea(P,a(P)) z R(P)(1-a)M'1~N, which in turn is strictly greater than

R(p')(1-a)s-1~N - Ex(p',O), which contradicts the optimality of p'. Q.E.D.

Proof of Lemma 6.

From Lemma 4, a(p) ~ 0 for all p t P, so the l.h.s, of eq(7) must be non-

negative for all p G P. Suppose the l.h.s. of eq(7) is negative at p- P and aP

- 0. Then since ry() ís strictly convex and the l.h.s. of eq(7) is contínuous in

p and a~, it follows that a(p) - 0 for some interval below P, which contradicts

Lemma 4. Therefore, 8Ex(p,a~)~8a~ ? 0 for all p E[B,P]. Next, suppose the

l.h.s, of eq(7) is strictly positive at P. Then, a(P) - 1, and by eq(9), a(p)

- 1 for all p e[B,P], ímplying that a- 1. But then using eq(7), 8Ea(P,1)~8a~

--y(1) G 0, a contradiction. [Also, Ex(P,1) --ry(1) t 0.] Q.E.D.

Proof of Lemma 7.

Note that if ry'(0) ~((N-1)~N]R(P), then eq(9) cannot be satisfied, so

there i s no solution for a(p) that i s compatible with a SNE. If ry'(0) -((N-

1)~N]R(P), then i t must be that ó- 0, in which case Ea(~,0) is strictly

inczeasíng up to p; hence P - p, which violates the premíse that ry'(0) G((N-
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1)~N]R(p). Therefore, a SNE must have 7 '(0) ~[(N-1)~N]R(P). The constraint on

r then follows from Lemma 2. Q.E.D.

Proof of Theorem 1.

(a) Given a pure-stzategy SNE at price P, then by eq(1), r ~ P, so by Lemma

2 we must have P- min(r,p) - p. Moreover, by Lemma 1, a(p;r) - 0, and, by

e9(4). a - A(P;r) - 0. Hence, EaíP~~a~) - R(P~)la~ t(1-a~)~N) - 7(a~). Then

BEx~Bp~ - R'(p~)~a~ t(1-a~)~N), whích is increasíng up to p. Further, óEx~Ba~ -

[(N-1)~NJR(p) - ry'(a~). Hence, a(p;r) - 0 is optímal iff 7'(0) ?[(N-1)~N]R(p).

(b) Suppose ry'(0) ?[(N-1)~N]R(P) and there exists a strictly mixed-

strategy SNE. By Lemma 3, the support i s a connected interval [B,pJ. Hence,

first-order conditions must hold at p. Differentiating eq(5) with respect to a~

and evaluating at p yields: ((N-1)~N]R(p)(1-a)N-1 - ry'[a(p;r)] t ry'(0), which

violates the premise unless a- 0- a(p;r). But then, BEx~ap~ - R'(pj)(ai t

(1-a~)~N), which is increasing up to p. Thus, contradicting the supposition

that B C p. Q.E.D.

Proof of Theorem 2.

First, consider the case with r~ R"1[ry'(0)N~(N-1)]. The discussíon

following eq(9) and Figure 1 established that ap E[O,a~J. Since aL G 1, by

eq(9), a(p;r,ap) ~ ap for all p G P. Observíng that a(a~) - a~, if aP - a~,

then a(p;r,a~) ~ a(ay) for all p G P. Hence, F' ~ A'~a(a~), and integrating:

F(p;r,aL) G A(p;r,aL)~a(aL) - 1. Therefore, there must be an atom at P. But

by Lemma 1, ap must be zero, which it is not. Therefore, aP - ay is not a SNE

solution, and F(p;r,a~) G 1. By continuity of F(P;r,~), there exists an c~ 0,

such that ap E(aL-c,at) is also not a solution and F(p;r,aP) G 1. As aP
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decreases from at towards zero, íf there is an aP E(O,at) such that F(p;r,aP) -

1, then that oP defines a SNE. If no such aP exists, then aP - 0 defines the

SNE with an atom at P, consístent with Lemma 4.

Second consider the case with r- R'1[y'(0)N~(N-1)]. If P- p, which

exceeds r, then the argument above appliea. Suppose P- r. Then, from eq(9)

it must be that aP - a- 0. But from I.emma 4, a(p) ~ 0 for all p G P, which

implies that F(p) - 0 for all p G P; that 1s, B- P. Also, from eq(6), [1 -

A(p;r,0)]s-1 - ry'(0)(1~R(p) t 1~[N-1)R(P)J) L Nry'(0)~[(N-1)R(P)] - 1, where the

strict inequality applies for all p G P, which implies that B- P. Hence, in

this case eqs(7 - 14) uniquely generate a pure-strategy SNE at R-1[7'(0)N~(N-

1)). [Of course, the given r is not consistent when c~ 0, but we are not

imposing consistency in this theorem.J Q,E.D.

Proof of Theorem 3.

Because of the potential non-uniqueness of the aP in Theorem 2, we will fínd

a consistent c~ and r~ símultaneously. Let P' ~ R-r(7'(0)N~(N-1)], and take

ry'(0) f[(N-1)~N]R(p), so P' G p, and no pure-strategy SNE exists. Consider the

following mappings:

(i) P„ - min(P.maxlP',P~-i - H[Po-i,c,Fo(':P„-l,ap,,,-1)])1, and

(ii) aP„ - mín(maxlar„-1 t Fo(';Pa-l,áP,,,.l) - 1,0).aL(P~-1).

[From the definition of at, it depends only on R(P).] Each mapping is

contínuous from a compact convex set into itself: [P',p] and [0,1] respectively.

Therefore, by Brower's Fíxed Point Theorem there exists a fixed point (P~,op~.

(a) Note from (i) that if H[P~,c,Fo(~;P~,op)] ~ 0, then P~ - P'; but by Theorem

2, op - 0 and Fo(~;P~,rv~) has all mass concentrated at P', so

H[O,c,Fo(~;O,a~)J --c, a contradiction. Thus, we have H[P~,c,Fo(~;P~,ce~)] 5 0
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and P~ 7 P'; and observe that if H[P~,c,Fo(~;P~,a~)] c 0, then P~ - p. (b)

Note from (11) that if Fo(P~;P~,qP) 1 1, then c~ - aL(P~) ~ 0; but thís

contradicts the fact that F(P~;P~,aL) t 1[from the proof of Theorem 2]. Thus,

we have Fo(P~;P~,op) 5 1; and obsarve that if Fo(P~;P~,c~) ~ 1, then og - 0 as

required. If P~ t p, so H(P~,c,Fo(~;P~,op)] - 0, then r~ - P~ is a consistent

buyer reservation price. If H[P~,c,Fo(~;P~,qP)] G 0, then the consistent buyer

reservation price r~ exceeds P~ - p, and that is consistent. Q.E.D.

Proof of Lemma 8. That a and aP converge to 0 can be easily seen from Figure 1

or eq(9). Then, using eq(9), (1-a)s-1 y ry'(0)~R(P). Observe that for

sufficiently large N, (1-a)s-i is arbitrarily close to exp~-Na). Q.E.D.

Proof of Lemma 9.

That o(p) y 0 follows because by Lemma 8 the right-hand-side of eq(8)

converges to zero. For the second assertion, note from eq(8) that for a- 0,

ry"o2 ~[1 - R(P)~R(p)]ry'(0)~[NR(P)] for p~ P. Therefore, Na(p) y~. Q.E.D.

Proof of Lemma 10.

(a) Referring to eq(6), it will suffice to show that the right-hand side

converges to 7'(O)~R(p) ~ 0. By Lemma 9, a(p) y 0, so for sufficiently large

N, we can write ry(a) - ary'(0). Thus, the second term on the r.h.s. of eq(6) is

approximately [(o - ap)ry'(0)]~[R(p)a]. In the first term, we first use eq(9)

to substitute for (1-a)~-3, and then usíng Lemma 9, all the terms converge to

zero as N y m except for one which asymptotically approaches (ap~a)~ry'(0)~R(p).

Hence, together the r.h.s. of eq(6) asymptotically approaches y'(0)~R(p) ~0 as

claímed.
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(b) Next observe that if there i s a scalar A~ 0 such that A(p) ? A for all

N, then [1 - A(p)Jp'1 will converge to zero, a contradiction. Q.E.D.

Proof of Theorem 4.

By definition, a-,~s a(p)dF(p). Now multiply both sídes by N. From

Lemma 8, the left-hand side converges to in[R(P)~ry'(0)]. Given Lemma 8, if

F(p) does not converge to zero for some p G P, then the right-hand side diverges

to m, a contradiction. For the second assertion, use Lemmas 6 and 8 in eq(10)

to get that in the limit R(B) - y'(0). Q.E.D.

Proof of Theorem 5.

(a) Using Theorem 4 and eq(1), it follows that H(r,c,Fo) -~ -c as N y .

There[oro, there is an N' such thnt for all N ~ N', H(r,c,Fo) C 0 for nll r E

[O,P], so the reservation price r~ ~ P. Then, by I.emma 2, P- p.

(b) By Theorem 4, B 2 R"1[7'(0)J, so R'~R Ss finite for all p E(B,P].

Referring to eq(12), we sae that first term in () is (1-A)~(N-1). Given Lemmas

6 and 8, the second term in () asymptotically approaches (1-a)~[(N-1)Za].

Recalling that F'(p) -[3A~8p]~a, it follows that F' asymptotically approaches

[R~(p)IR(p)]' (Natl-a)~(Na)2, which by Lemma 9 converges to zero for all p t P.

Therefore, Js- F'(p)dp y 0, as N ~ m, implyíng that F(P) 1 0 for sufficíently

large N. It follows from Lemma 5 and eq(9) that oP - 0, and hence, there is a

unique SNE for sufficiently large N. Q.E.D.

Proof of Theorem 6.

As a ti 0, Figure 1 reveals that both at and aa converge to one, so ~~ 1

and 7'(aP) y 0. Since a 5 1- F(P), it follows that F(PI y 0. Using eq(9) in
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eq(8), the a's can be eliminated by division, so the solution a(p;r,aP) is

independent of a. Next, using eq(9) in eq(6), as a~ 0, the right-hand-side of

eq(6) becomes arbitrarily close to zero; hence, A(p;r,ap) becomes arbítrarily

close to 1 for all p, implying that 8A(p;r,aP)~8p is arbitrarily close to zero

for all p~ B. Consequcntly, using eq(13-14) and the fact [hat FIP) ~ 0, for

any aP and any p 1 B, 1-F(p;r,ap) is arbitraríly close to zero. Further, from

eq(10), one can see that B y 0. Therefore, F(p;r,aP) y 1 for all p~ 0. Q.E.D.

Proof of Theorem 7.

(a) By Lemma 7, P?"r. Suppose P y P' ~~. If there ís no atom at P',

then clearly B y B' G P'; if there is an atom at P', then ap~ - 0, so by eq(10)

and the hypothesis that P' 1 i, we have B ti B' G P'. Given 7() is strictly

convex, it follows that Bó G P'; hence, H(P',Fa) - Já, D(p)Fp(p)dp ~ 0, which

implies that r G P', a contradiction. Therefore, P y i. Using eq(8-9), it can

be shown that B y r.

(b) From Figure 1, it is clear that ap and a~ 0, since P y"r. Q.E.D.
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