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Abstract

We consider a model of a two player repeated game with “satisficing” players who choose
actions based on their experience in past plays. A player learns adaptively by increasing
probability weight on a recently chosen action if it realized a payoff above an aspiration
level, and decreasing it otherwise. Aspirations in turn are required to be consistent with
the long run average payoffs induced by this process. Our equilibrium notion incorporates
stability under small “trembles” by players. It is shown that (i) non-Nash behavior may
result in the long run, (ii) players can generally attain individually rational pure action
Pareto efficient payoffs, (iii) multiple long run equilibria arise in some contexts, hence initial
conditions may matter, (iv) inefficient mixed strategy payoffs cannot generally be achieved,
and (V) in specific games such as coordination games and the Prisoners’ Dilemma the set of
long run equilibria can be narrowed down substantially.

1 Introduction

We consider a model of “satisficing” behaviour by two players engaged in a repeated
game.? An action is deemed “satisfactory” if its current payoff exceeds some aspi-
ration level held by the player. Each player is assumed to adapt his strategy from
one iteration to the next by increasing the probability weight on a recently chosen

!An earlier version of this paper was written while the second author was visiting the Center
for Economic Research, Tilburg University in October 1991. We would like to thank Kenneth
Arrow, Eric van Damme, Curtis Eaton, Chris Harris, Matt Jackson, Charlie Kahn, Roger Myerson,
Rafael Rob, Avner Shaked, Vernon Smith, Jeroen Swinkels, Fernando Vega Redondo and Jorgen
Weibull for useful comments and discussions. The paper has also benefitted from presentations
at Tilburg, Illinois, Northwestern, Delhi School of Ec ics, Studi um Ger: , the 1993
Berkeley Decentralization Conference, and the Tenth World Congress of the International Economic
Association, Moscow.

?For discussion of the notion of “satisficing” in relation to traditional economic models of rational
choice, see Simon (1955, 1957, 1959) and March and Simon (1958). It also played an important
role in the evolutionary theory of Winter (1971) and Nelson and Winter (1982). A recent axiomatic
theory with similar features appears in the work of Gilboa and Schmeidler (1992).




action if it was satisfactory, and decreasing it otherwise. Morever, aspirations levels
are themselves endogenous: they must be consistent with long run average payoffs.
Finally, long run outcomes are required to be stable with respect to “small trembles”
that correspond to occasional lapses of memory, or replacement of players by new
ones.

This model extends theories of learning formulated by mathematical psycholo-
gists in the 1950s, especially Estes (1954) and Bush and Mosteller (1955). Such
theories are supported by a substantial amount of experimental evidence® Our
model embeds a similar learning process in a two player repeated game, where the
players revise their strategies following every interaction.

In a sense, the interaction pattern studied in this paper is a polar opposite to
the random matching context considered by most of the literature on evolution and
learning. In most evolutionary models, pairs of players are selected randomly from
a “large” population to play the given game once, and are thereafter returned to
the population. In learning models, each player is assumed to interact with many
varying opponents with a fixed strategy, modifying his strategy thereafter based on
the cumulative experience. In both classes of models, the “fitness” of a given strategy
at any stage of the game depends on its average payoff, achieved against the rest of
the population.* In such a context, a strategy revision by any single player evokes
no response from the other players, as it does not appreciably affect their average
payoffs. In contrast, the strategy revisions of a given player in our model generate
substantial feedback effects by affecting the other player’s payoffs, thereby inducing
the latter to also revise his strategy subsequently.

The combination of aspiration-based learning with repeated interaction between
a small number of players in our model gives rise to several distinctive features:

1. The process may converge to a pure strategy limit which is not a Nash equi-
librium of the one-shot game. This is due to the inter-player feedback effects
that do not allow players to sustain payoff gains from unilateral deviations for
any appreciable length of time.’

2. Players frequently learn to “cooperate”, as the feedback effects turn out to
resemble the outcome of “trigger strategies”. Indeed, any individually rational,
Pareto efficient pure strategy outcome can constitute a stable long-run outcome.

3. Since individual learning is dependent on players’ aspiration levels, which are
determined endogenously, there may be multiple long run equilibrium outcomes
associated with different aspiration levels. Hence initial conditions can matter,
even in the presence of small amounts of random “trembles” or “mutations”.

4. Nevertheless, the set of long run equilibrium outcomes is relatively small, espe-
cially in contrast to Folk-Theorem-type results. For instance, mixed strategy

3See, for instance, Bush and Mosteller (1955); Suppes and Atkinson (1960); Selten and Stoecker
(1985); Mookherjee and Sopher (1992); and Roth and Erev (1993).

“For a useful discussion of these models, see Binmore and Samuelson (1993).

®For further discussion, see Section 2.



outcomes that are Pareto dominated by some pure strategy outcome generally
do not constitute long run equilibria. In coordination games, or the Prison-
ers’ Dilemma, the set of long run equilibria can be narrowed down to a small
number; for some parameter values the long run equilibrium is unique.

The following Section provides a more detailed overview of our model, and dis-
cusses the relation to existing literature. Section 3 presents the formal model, and
Section 4 establishes a benchmark result concerning long run outcomes induced by
given aspiration levels when players do not tremble. Section 5 presents some general
results for equilibrium outcomes that are robust to trembles, while Section 6 dis-
cusses predictions generated for a coordination game and the Prisoners’ Dilemma.
Section 7 concludes.

2 Overview of Our Model

We first provide an informal discussion of the learning rule used by players in our
model. The state of any player at any stage t is represented by a probability vector
over his set of pure actions. One may interpret these probabilities as representing
a player’s relative inclination to select different actions: in the spirit of stochastic
choice theory, this presumes the presence of other unmodelled determinants of a
player’s actual choices. A player’s state is updated in the following manner: if the
payoff realized from the action chosen at t exceeds an aspiration level, the weight on
that action is increased at the following stage, with compensating adjustment in the
weights on other available actions. Conversely, if the achieved payoff at ¢ falls short
of the aspiration level, then other actions will be tried with positive probability at
the following iteration: this is, of course, consistent with a reduction in the weight on
the previously chosen action. As defined, we allow for the possibility that a player’s
state will remain unchanged if the achieved payoff exactly equals the aspiration level.

The aspiration level, and therefore the learning rule of each player is assumed
to be fixed throughout the duration of the game. Psychological evidence suggests,
however, that aspiration levels themselves adapt to experience.® Nevertheless, as-
pirations adapt “more slowly” to experience than do actual strategies.” There are
various ways of modelling the exact process by which aspirations adapt to expe-
rience. For instance, one might set the aspiration level at any stage equal to the
time average of payoffs achieved in past plays, or more generally, to some convex
combination of such payoffs. Alternatively, each player (or overlapping generations
of players) could be involved in a succession of repeated games, where each consti-
tutent repeated game is played with a given aspiration level that is modified from
one repeated game (or generation) to the next based on the intervening payoffs.

In this paper we do not model the dynamics of aspiration levels, i.e., the evolution
of the learning rules themselves. Instead, we explore long run equilibrium notions

5See Simon (1959).
"Throughout this paper, we use the terms “strategy” and “action” interchangeably: there is no
notion of strategy here in the sense of a history-dependent policy.



where aspiration levels equal long run average payoffs associated with the learning
process induced by these aspirations. In other words, we focus on how players learn
to play a game with fixed aspirations, which in turn have a “self-fulfilling” property.
This may be viewed as a useful first step in a more complete theory of learning,
which would allow for changing aspirations in the course of the game, and might
also specify how players revise their learning rules. One may view our equilibrium
notion as characterizing the stationary points of such a model.

Despite the endogeneity of aspiration levels, there is scope for considerable mul-
tiplicity of equilibria. In particular, any pure action vector can be rationalized as an
equilibrium associated with aspirations equal to the corresponding payoffs: if initial
aspirations exactly equal these payoffs, neither player might be motivated to move
away from these strategies. It therefore makes sense to require long run equilibria
to be stable with respect to small random perturbations, or trembles, of the state of
either player. Two different stability notions are studied. An equilibrium with nearly
consistent aspirations (ENCA) is a distribution D* over different (mixed) actions
of players which is a limit distribution of the stochastic learning process induced
by certain aspiration levels, satisfying two conditions: (a) the aspiration of each
player equals his expected payoffs under D*; and (b) D* is the limit of a sequence
of ergodic distributions DV generated by a sequence of learning processes with the
same aspirations, but vanishingly small trembles. The qualification “nearly” comes
from the fact that aspirations need not equal limit expected payoffs under the trem-
bled processes, equality only being demanded as trembles vanish. A stronger notion
of stability is embodied in the notion of an equilibrium with consistent aspirations
(ECA), addresses exactly this point. Under an ECA, the limit aspirations must also
be a limit of aspirations along the trembled processes, and these trembled aspirations
must equal expected payoffs too.?

The “satisficing” model of strategy learning can be contrasted to “myopic best-
response” models studied in recent literature, such as “fictitious play” or related
models studied by Robinson (1951), Shapley (1964), Fudenberg and Kreps (1988),
Canning (1989, 1991), Jordan (1991), Milgrom and Roberts (1991), Krishna (1992),
Kandori, Mailath and Rob (1993) and Young (1993) among others. The difference
between the two approaches has been discussed by Selten (1991), under the heading
of “stimulus learning” and “belief learning” respectively. In the latter, each player
observes the past moves of other players, forms beliefs about their strategies in the
next iteration of the game, and then selects a best response. This approach requires
players to (i) know their own payoff function, (ii) form beliefs about opponents’
choices at the next iteration based on choices observed in the past, and (iii) calculate
an optimal response. It therefore presumes that players are able to articulate a model
of their environment, to collect and process information about the choices made

®Yet stronger would be a requirement of stability against all possible sequences of experimen-
tation, rather than one particular sequence, analogous to the distinction between the notion of
strategic stability of Kohlberg-Mertens (1986) and of trembling-hand-perfect equilibrium of Selten
(1975). The characterization theorems of Section 5 would continue to hold for such a notion, but
the existence of such equilibria cannot be guaranteed generally.



by others; compute expected payoffs corresponding to different actions available,
and select a maximizing response.® The “stimulus learning” approach on the other
hand applies to players ignorant of payoff functions and of opponents’ past choices.
It does not require them to solve maximization problems. The two approaches
therefore presume different levels of bounded rationality, characterized by different
limits on information gathering or cognitive abilities.’® Ultimately, of course, the
relative appropriateness of different models (e.g., “belief learning” versus “stimulus
learning”) is an empirical matter, on which experiments ought to throw some useful
light.!!

Even within the class of “satisficing” hypotheses, different modeling alternatives
arise. For instance, obtaining a payoff above aspiration may leave the current strat-
egy unaltered, while a payoff below aspiration may trigger a different strategy. Or a
player could keep track of past time average payoffs associated with different strate-
gies chosen previously, and allocate weight based on these average scores, as in the
single agent model of Arthur (1993). This would imply that players would learn
“less” with greater experience. Each of these variations would induce a different
dynamic. The particular formulation adopted in this paper is based on the Bush-
Mosteller hypothesis which has received considerable support in the experimental
psychology literature. It does not presume, however, that this particular formula-
tion is intrinsically better than the others on either a priori or experimental grounds.
In our view, exploring the sensitivity of our results to variations in the specification
of satisficing behavior is an important task for future research.

The importance of the “matching” framework also warrants emphasis. In con-
junction with the satisficing hypothesis, it is essential to many of our results. Re-
peated interaction between a few players generates significant feedbacks in their
strategy revisions. This is illustrated by our observation that stable long run out-
comes need not be Nash equilibria of the one-shot game. Indeed, feedback effects
operate in a manner that resembles “punishments” imposed on unilateral deviations
in repeated games.

Consider, for example, the Prisoners Dilemma. It turns out that mutual co-

?However, some of these “best response” dynamic models are consistent with “less rational”
behavior, such as imitation of successful strategies in the context of random matching of pairs from
a large population, as discussed by Kandori, Mailath and Rob (1993). Useful results can also be
obtained for specific games such as supermodular games on the basis of weak assumptions concerning
belief formation processes, as in Milgrom and Roberts (1991).

°See Simon (1955, 1959) and Selten (1978, 1991) for interesting discussions of different degrees
of “bounded rationality”.

"Selten and Stoecker (1986) describe an experiment on the finitely repeated Prisoners’ Dilemma,
in which the nature of play is predicted rather well by a parsimonious model of the Bush-Mosteller
variety. In constant-sum two player repeated game experiments, Mookherjee and Sopher (1992,
1993) find that stimulus learning satisfactorily fits the pattern of play when players are not informed
of the payoff matrix or opponents’ choices. When players are fully informed, however, then fictitious
play or similar hypotheses describe the pattern of play better if the game is sufficiently “complex”
(measured by the number of pure strategies available to each player), but not otherwise. Roth
and Erev (1993) discuss the usefulness of Bush-Mosteller-type models in explaining the results of
experiments with different two stage sequential games.



operation is always an ECA (and therefore ENCA) outcome, despite the fact that
mutual defection is a dominant strategy equilibrium in the one shot game. What
prevents the cooperators from “learning” the payoff advantage to defection? Start
with aspirations near the cooperative payoff. Suppose that player 1 experiments
with defection at stage t. Since player 2 continues to cooperate, player 1 obtains a
payoff higher than his aspiration, thereby making him even more inclined to deviate
at t+ 1. Player 2 however ended up with a payoff below at t: this also makes 2 more
inclined to defect at ¢ + 1, though for entirely different reasons. Suppose, then, that
both defect at t + 1. Then both players receive below aspiration payoffs at t + 1, thus
tending to motivate both to return to cooperation at t + 2. Thus, once the players
arrive at a state where both defect with substantial probability, both will indeed de-
fect simultaneously, beginning the process of a simultaneous return to cooperation.
Hence, the mutual cooperation outcome is stable with respect to periodic random
switches to defection by either player. Morever, the observed pattern of play will
resemble that of sophisticated players using “trigger strategies”.

In the random matching framework, such an outcome could not survive in the
long run: a deviation by a single player will not have an appreciable impact on
the “fitness” of any other strategy in the population, and therefore not evoke any
feedback effect. The initial benefits of the deviation are then not “undone” by the
reactions of other players, and the player can sustain the benefits of the unilateral
deviation. Consequently, the fitness of the deviating strategy will be enhanced, at
the eventual expense of other strategies in the population.

Finally, we discuss the relation of our approach to the evolutionary theory of
Winter (1971) and Nelson and Winter (1982). In a model of selection among dif-
ferent production activities (as well as their scale of operation), they explore the
implications of production choice rules that adapt choices to current profitability:
profitable activities are expanded, losing activities are contracted and activities that
just break even retain their current size. (In our framework, this corresponds to a
Bush-Mosteller adaptive rule combined with an aspiration level of zero profits.) In
the presence of “innovating remnants”, which introduces a certain amount of ran-
dom “trembles”, they show that the process converges to a competitive equilibrium
(where firms earn their aspiration profit levels of zero). Our approach is similar
in that different players adapt without explicitly coordinating with one another and
without devoting any cognitive effort to predicting the choices of others and choosing
appropriate responses to such predictions.

3 The Model with Fixed Aspirations

There are two players A and B, with finite action sets A and B. A typical pure
strategy will be denoted by a € A, b € B. Let C = A X B; a pure strategy profile is
then a pair ¢ = (a,b) € C. Player A has a payoff function f : C — IR and B has a
payoff function g : C — IR.

A mized strategy for A (resp. B) is an element a (resp. B) of A(A) (resp.
A(B)), where A(X) denotes the set of all probability measures on a set X. Clearly,



A(A) and A(B) are finite dimensional unit simplices. Let v = (a, 3) denote a mized
strategy profile. Then « is a product probability on C. Let S be the space of all such
mixed strategy profiles: § = A(A) x A(B). Finally, the aspiration levels of A and
B are denoted by numbers F' and G respectively.

3.1 Adaptive Learning Rules

For A, let a be an ongoing strategy, a an action chosen, and f a payoff received from
choosing a. An adaptive learning rule maps this information (and the aspiration
level for A) into a new mixed strategy L*(a,a, f, F) in .A. A similar definition holds
for the learning rule LB used by player B. We thus allow for the possibility that
a player may wish to “hedge” between different actions, or may not be sufficiently
inclined on the basis of past experience to select one action deterministically. The
experience from playing any particular round causes a player to adjust the probability
weights on different actions, but not necessarily switch actions altogether. Specific
restrictions on such adjustments will be introduced in Section 4.

Where there is no confusion, we will denote by o', #’, at41, Bit+1, etc. the mixed
strategies “in the next period” induced by the learning rule.

3.2 Learning with Trembles

We will permit players to occasionally “start over” again, in a sense to be made
precise below. Several well known interpretations of this postulate are possible:
players occasionally forget the past, they experiment, they err, they die and are
replaced by others with the same payoffs and aspirations but no knowledge of the
past, and so on. We will use the term “trembles” to refer to these occasional changes.

Specifically, we assume that at each date, with some (independent) probability,
each player restarts the learning process by choosing, according to some exogenously
given measure, a mixed strategy from the set of all mixed strategies. This forms the
starting point of a fresh learning process.

To precisely define the trembling process, and for ease of later exposition, we
describe (for individual A) the order in which events unfold. At any date, A is
equipped with a particular mixed strategy a. This strategy has presumably been
built up via adaptive learning (and/or trembles) in the past. At the current date,
this strategy a is used to choose a particular action, and a payoff f is received, based
also on the action simultaneously chosen by the other player.

At this stage, the learning rule L4 moves A to a new mixed strategy. However,
A might not use the learning rule. With a small exogenous probability €, player
A might “tremble”, or “start all over again”. In this event, A selects a new mixed
strategy according to some exogenously given measure v4 over the space A(A) of all
his mixed strategies. So that any mixed strategy may be the outcome of the tremble,
we assume that v4 has full support on A(A). In any case, the player will possess a
new mixed strategy o' at the start of the next period, and the same story repeats
itself there onwards. We shall essentially be interested in the case where the tremble
probability € becomes vanishingly small, as will become clear below.



3.3 The Adaptive Learning Process

Our model describes a Markov process on the state space S. Recall that S is the set
of all mixed strategy profiles v in A x B. Give S the Borel o-algebra. Fix aspirations
(F,G), learning rules (L#, L), and tremble probability ¢ (assumed common for both
players, without any essential loss of generality). For each mixed strategy profile v in
S, a transition probability P(y,.; F,G,¢) can be defined as follows. Given v = (a, 8),
the pure action outcome ¢ = (a,b) is realized with probability

p(7,¢) = a(a)f(b) (1)
This outcome causes individual A to pass to a new mixed strategy over his actions.
The passage occurs either via adaptive learning (i.e. using the rule L4(e, a, f(c), F),
absent any tremble), or via a tremble (whence a new mixed strategy is selected ac-
cording to the “tremble measure” v4 on his mixed strategies). A similar description
applies to individual B.
So if £4(.;€) and LB(.;¢) denote the resulting measure on A and B’s mixed
strategies in the following period, we have (where §a and 63 denote the degenerate
measures concentrated at mixed strategies o and 3 respectively):

LA(a,a, f(c), Fy€) (1-€)6LA(a,a, f(c), F) + ev?

£B(B,b,9(c),G,e) = (1-€)6LB(B,b,9(c),G) + ev® (2)
and outcome c therefore induces the product measure
Q7,6 F,G,€) = L4(asa, f(c), Fy€) x L5(B,b,9(c), G, €) (©)

on the state space S. We may combine (1) and (3) to yield a transition probability
as

P(7,5'F,G,e) =Y p(1,¢)Q(7,¢; F,G,€)(S") (4)
ceC
for any Borel subset S’ of the state space S. This transition probability is parametrized
by the aspiration levels F,G and the tremble probability e.

Start with any initial measure pg on §. Then given a pair of aspiration levels
and a tremble probability, the transition probability described above determines a
sequence {u} of probability measures on S. For convenience of exposition, we shall
hereafter use the terms measure and distribution interchangeably.

3.4 A Preliminary Result

We use standard arguments to establish that when players tremble with strictly
positive probability, then for any initial distribution pg over the set of mixed strategy
profiles, the resulting sequence of distributions converges in a strong sense (and at a
geometric rate) to a unique limit distribution. In other words, the long run outcome
of the process is well defined, given any pair of aspiration levels and a positive tremble
probability.



THEOREM 3.1 For each pair of aspiration levels F,G and every tremble probability
€ > 0, there exists a unique invariant measure u(F, G, ¢€) such that for each initial po
on S, u; converges to u(F,G,¢€) ast — oo. Convergence occurs (geometrically) in the
total variation norm (on S) and therefore also in the topology of weak convergence
on §.

Proof. For ease of notation, drop the explicit dependence on (F,G,¢€) and let P(.,.)
denote the transition probability, with PN(.,.) its N-step extension. Using Theorem
11.12 of Stokey and Lucas [1989], it suffices to show that the following condition is
met:

Condition M: There ezist € > 0 and an integer N > 1 such that for every Borel
subset S' of S, either PN(7,8") > € for ally € S, or PN(y,5\ §') > € for all
Y€S.

Condition M is readily verified in the present context. Let ¢ = €2/2, where € is
the tremble probability. Let N equal 1. Observe from (2) and (3) that for any y € §,
any outcome ¢ € C and any Borel subset §’ of §, Q(7,¢)(S") > €?v(S’), where v is
simply the product measure v4 x v®. Consequently, by (4),

P(y,8") > €v(§")

for all ¥ and S’. Note that max{v(S5’),»(S\ ')} > 1/2. It follows, then, that for
each Borel set §’, either P(y,S’) > €2/2 for all v, or P(7,5\ §') > €2/2 for all 4.
This verifies Condition M, and completes the proof. | ]

4 Consistent Aspirations

So far we have described a situation where aspirations are not permitted to vary.
It is possible to drop this restriction in different ways. A minimal requirement for
a model of endogenous aspirations is that in the long run, aspirations should not
be out of line with the average payoffs accumulated from experience. Otherwise
one would expect players to modify their aspiration levels. Theorem 3.1 ensures
that with positive trembles, the long run distribution over mixed strategy profiles is
uniquely defined, and well-known ergodicity arguments imply that the time averages
of payoffs are equal to the expected payoffs in the long run distribution. Hence it is
natural to impose the requirement that aspiration levels equal the expected payoffs
under the limit distributions (of the processes induced by those aspiration levels).

An equilibrium with consistent aspirations (ECA) is a probability distribution u*
over S and associated aspirations F* and G* with the property that there exist
sequences of strictly positive tremble probabilities ¢, — 0, aspirations (F%,G%) and
probability distributions ug over S such that

(1) px is the limit distribution under (Fg,Gk,¢€x) and (Fk,Gy) equals the expected
payoffs (of A and B respectively) under the distribution .

(2) px converges (weakly) to p* and (Fi,Gj) converges to (F*,G*) as ex — 0.
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Why do we complicate an otherwise natural definition by invoking a sequence of
(vanishing) trembles? The reason for this is straightforward: without trembles, any
pure strategy pair might trivially be achieved as the long-run outcome of a game
where players’ average payoffs equal their aspiration levels. To elaborate, if players
start with aspirations that equal the payoff from a pure action pair, and from a
state where they play this pure action pair with probability one, then they might
have no reason to alter their state thereafter, and will earn payoffs that equal their
aspirations in every stage.!? They may thus be “stuck” with actions that generate
vastly inferior payoffs compared to other feasible strategies. Such outcomes would
not be stable under small trembles, whence superior strategies would eventually be
discovered and adopted.

Our equilibrium notion thus requires a pattern of long run behavior induced by
aspirations which satisfy not only the consistency requirement that these aspirations
equal the resulting average payoffs, but also impose stability with respect to small
tremble probabilities.

As we have recognized in the preceding section, it is possible to demand more
from a theory of endogenous aspirations. In particular, one might require that aspira-
tions be continually modified as the game proceeds. Our model does not incorporate
these more sophisticated notions. Observe, however, that even in this case, one
would “ultimately” ask for equality of aspirations with long-run rewards. If these
converge, our equilibrium notion may be viewed as describing the steady states of
such extended models.

Under the following continuity assumption on learning rules, an ECA always
exists. (From now on, we adopt the convention of stating all assumptions for player
A, but take it that their obvious analogues hold for B as well.)

(A1l: continuity in aspirations and initial state) For each action a and payoff f,
the mized strategy induced by the adaptive learning rule L4(e, a, f, F) is continuous
in (a, F).

THEOREM 4.1 Under (A1), an equilibrium with consistent aspirations ezists.

Proof of Theorem 4.1. We shall use the following lemma, which we state sepa-
rately for use in proving other results.

LEMMA 4.1 Under (A1), the limit measure is continuous (in the weak topology) in
(F,G,¢) for all (F,G) € IR? and all € > 0. In addition, suppose that (Fr,Gn,€n) —
(F,G,0). Then every limit point of p(Fn,Gn,€n) is an invariant measure for the
adaptive learning process with € = 0.

Proof. First we note, using (1)-(4) and (Al), that the transition probability
P(7, ., F,G,¢) defined in (4) in continuous in (7, F,G,¢) for all v € S, (F,G) € R?,
and € € [0,1]. The details of this verification are standard and therefore omitted.

2This observation is, indeed, consistent with the assumptions that we shall place on learning
rules; see below.
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The first part of the lemma now follows from Theorem 12.13 in Stokey and Lucas
[1989]. For the proof of the second part, all conditions of that theorem barring con-
dition (c) continue to be met (at € = 0, a unique limit measure is not guaranteed).
Nevertheless, if the last four sentences of their proof are omitted, the remainder
suffice exactly for a proof of the second part of our lemma. ]

To continue the proof of the theorem, consider a compact rectangle K in IR?
such that (f(c),g(c)) € K for all ¢ € C. Note that for each 7y € §, the functions
f(7) = Zeee fle)r(c) and §(7) = X ec 9(¢)7(c) are continuous in 7 (in the Euclidean
topology), with image in the bounded set K.

For each p on §, define () = [ f(7)du(7) and G(u) = [ §(y)du(v). These are
the expected payoffs to A and B respectively under the probability x on S. By the
observation in the previous paragraph, F(u) and G(u) are continuous on A(S) (in
the topology of weak convergence), and assume values in K.

So, by the continuity properties established above, for given ¢ > 0, the map
(F,G) — p(F,G,e) — (ﬁ'(p(F,G,c)),G(p(F, G, e))) is continuous from K to K (in
the Euclidean topology). By Brouwer’s fixed point theorem, there exists a probability
measure p*(¢) and aspirations (F*(€), G*(¢)) such that

F*(e) = F(u(e)), ¢"() = Gu*(e)) ©)

and
u*(€) = p(F*(€),G"(¢), €). (6)

To complete the proof, take any sequence € — 0 and the corresponding sequence
(F*(ex), G*(€k), €x) given by (5) and (6). Since S is compact, A(S) is compact in
the weak topology, this sequence has a convergent subsequence, whose limit must be
an ECA. u

We close this section by considering a weaker notion of consistency in aspirations.

The notion of an ECA is demanding in that it requires exact equality between
expected payoffs and aspiration levels for small trembles. In this respect it resembles
Selten’s (1975) notion of trembling hand perfect equilibrium, which approximates a
pattern of behavior that is an ezact Nash equilibrium for small trembles. This feature
often complicates the computation and characterization of equilibria. We therefore
present a notion of equilibrium that is slightly weaker than an ECA, wherein for
sufficiently small trembles, aspiration levels should be arbitrarily near (instead of
exactly equal to) the expected payoffs of a limit distribution of the Markov process
induced by these aspirations.
An equilibrium with nearly consistent aspirations (ENCA) is a probability distribu-
tion pu* over § and associated aspiration levels F* and G* with the property that

there exist sequences of strictly positive tremble probabilities ¢, — 0, aspirations
(Fk,Gg) and probability distributions ui over S such that

(1) pg is the limit distribution under (F, Gk, €k).
(2) pr converges (weakly) to p* and (Fk,Gyx) converges to (F*,G*) as ¢x — 0.
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(3) (F*,G*) is the expected payoff vector under the measure u*.

It can easily be verified that given the continuity property (A1), this is equivalent
to requiring that the limit aspirations (F*,G*) along with the tremble sequence
{€x} induce a Markov process with limit distribution u(F*,G*,€;) which converges
to u*, and such that the corresponding sequence of expected payoffs converges to
(F*,G*). The difference from ECA therefore lies in the property that the sequence
of distributions i is permitted to be induced by the limit aspirations, which are
close but not exactly equal to the expected payoffs under p.

It is evident from the definition that an ECA is also an ENCA, so Theorem 4.1
also ensures the existence of an ENCA. Indeed, under the continuity assumption
(A1), one might argue that there is no need to worry excessively about aspirations
exactly equalling long run average payoffs.

5 Preliminary Analysis: Tremble-Free Learning

It will be useful to start our analysis by considering the case where there are no
trembles and aspirations are fixed. The properties of the learning process in this
case will serve as stepping stones to the later analysis. Further, these results are of
interest in their own right for a specific class of games, where the payoffs for each
player can occupy only two possible values.!3

We start by introducing some assumptions on learning rules which will be main-
tained throughout the paper. Roughly speaking, these assumptions embody the idea
that actions that do well relative to aspirations are given more weight, and actions
that do not are not exclusively adopted, as the player must shift some weight to
other actions.

A player is said to receive a nonzero feedback (at some outcome) if the resulting
payoff for that player differs from his aspiration level.

Fix outcome ¢ = (a,b). If player A’s payoff exceeds his aspiration level F, the
action a is said to generate positive direct feedback (PDF) under ¢ and all other
actions a’ # a are said to generate negative indirect feedback (NIF) under c. In the
opposite case where A’s payoff is less than his aspiration level, the above are replaced
by the corresponding notions of negative direct feedback (NDF) and positive indirect
feedback (PIF).

Of course, similar definitions apply to player B.

(A2: adaptation to positive direct feedbacks) If an action receives PDF, it
must be played with positive probability in the following period, and the probability
weight on it at the nezxt stage must increase at least at some positive geometric rate.
Formally, suppose a is played with payoff f, which ezceeds the aspiration level F.

13Guch contexts have been considered in the psychology literature dealing with stimulus reinforce-
ment learning. The reason is that for such games the nature of the stimulus from any outcome
is defined independently of a notion of an aspiration level, since obtaining the higher payoff must
constitute a success, and the lower payoff a failure.
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Then there exists k € (0,1), possibly depending on (f, F), such that 0 < a'(a) >
a(a)k for every @ € A(A) (and every action a € A).

Note that (A2) and (A.l)together imply that in the case of PDF, a must be
played in the following period with a probability bounded away from zero in a,
though this lower bound may depend on the realized payoff f or the aspiration level
F‘“

We now introduce the remaining assumptions.

(A3: adaptation to negative feedbacks) If an action receives NDF, all other
actions are played nezt period with positive probability.

(A4: adaptation to other indirect feedbacks) If an action receives one PIF
followed by one NIF, then it is played with positive probability in the next period.

(A5: slow adaptation) If an action is selected with at least the average probability
per action in any period, then it must be selected with positive probability in the
following two periods.

Using the same argument as in the case of (A2), assumption (A3) implies (in
conjunction with (A1)) that the weight on any action receiving a NIF in the previous
period is bounded away from zero. The bound is uniform over all ongoing strategies
and actions, though it may depend on the achieved payoff and the aspiration level.!®

Assumption (A4) “gives an unplayed action a chance” when it could have been
played as the result of an earlier PIF (just as in (A3)) but wasn’t, because a third
action was played instead. The assumption requires that even if this third action
receives PDF, the unplayed action must still be chosen with positive probability in
the period after. As in the case of (A3), this probability is bounded away from zero,
given (A1), with the bound being uniform with respect to the action in question
or the ongoing strategy. Finally, (A5) requires that a single unfavorable experience
with a currently “not unfavored” action does not cause its weight to fall below some
positive bound in the following two periods. We reiterate that these probabilities
may vary with the size of the feedbacks involved, though uniformity in the going
mixed strategies is required.

Finally, we note that the Bush-Mosteller (1955) model of learning satisfies all
these assumptions.!®

4 This follows from the fact that for fixed (f, F,a), a minimum of a’(a) with respect to choice of
over the compact set A(A) must be attained at some a*, and (A2) ensures that this lower bound is
strictly positive. After all, the assumption applies to every contingency where a is played, including
those in which a(a) = 0.

5Formally, fix f, and F with f < F. Suppose that a is played and receives payoff f. Then there
exists = € (0,1), possibly depending on (f, F), such that for all @ € A(A), a’ is played next period
(under L*(a, a, f, F)) with probability at least , for every action a’ # a.

'%In the case of two actions, this model requires the current probability weight on an action to be
replaced by a convex combination of the current weight, and one or zero, according as the action
received a positive or negative feedback. The relative weight on the current probability can depend
on the action chosen and the exact payoff realized. As long as this weight is always between zero
and one, the reader can verify that all of the above assumptions are satisfied.
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The main result of this section concerns the long run outcome of the game when
the two players use learning rules satisfying properties (A1)-(A5), and the tremble
probability is zero. We will need the following definitions. For given aspirations
(F,G), define an outcome ¢ to be mutually favourable (MF) if both players earn
payoffs that strictly exceed their aspiration levels: (f(c),g(c)) > (F,G). Next, for
player A, define an action a to be uniformly good (for A) and bad (for B) (UGB) if
choice of a results in a payoff for A which always exceeds player A’s aspirations and
a payoff for B which always falls short of B’s aspirations, no matter what action b is
chosen by B: (f(a,b),—g(a,b)) > (F,—G) for all b € B. A parallel definition holds
for UGB actions for player B.

Say that there is an infinite run on some action vector if that action vector is
played in every period barring at most a finite number of initial periods.

THEOREM 5.1 Fiz aspirations (F,G). Suppose that (A1)-(A5) hold, that neither
player trembles with positive probability, that each player receives nonzero feedback
from every outcome, and that there ezists at least one MF action profile, or an action
that is UGB for some player.

Then from every initial measure on S, there must (almost surely) be an infinite
run on a MF action pair, or on a UGB action by some player.

Proof: Denote by £ the event that from the current date onward, some MF pair or
some UGB action (for some player) is played forever, after the passage of at most
4 periods. It will suffice to prove that there exists € > 0 such that for every initial
pon S, the probability of the event £ (conditional on y) is at least €, where € is
independent of p. For then the event £ must occur with probability one after some
finite date, and this will establish the theorem.

Let 6 > 0 be the lower bound on the weight on an action which receives a PDF at
the previous stage, as given by (A2) in conjunction with (A1). For given aspirations,
this may depend on the achieved payoff level. But since there are only finitely many
payoff levels, a positive lower bound on the weight can be constructed uniformly
in the achieved payoff level also. Morever, without loss of generality, this bound
applies to both players. Let S* be the set of all states 7 = (a,3) such that either
a(a)B(b) > 62 for some MF (a,b), or a(a) > é for some UGB action a for A, or
B(b) > é for some UGB action b for B.

We prove the theorem in two steps. In the first step, we claim:

LEMMA 5.1 There ezists n € (0,1) such that starting from any initial distribution
u on S, the conditional probability of the state entering S* in at most four periods
is at least 1.

Proof of Lemma 5.1: We need the following notation. Recall that by (A3) (in
conjunction with (A1)) that there is a lower bound 7 > 0 on the probability assigned
to any action receiving a PIF at the previous stage. Just as for (A2), we can make
this bound independent of payoffs as there are only finitely many of them. Likewise,
we can find ¢ and @ both positive such that for any initial state ¥ € S, and for either
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player: (i) any action which receives a PIF in the first period, followed by a NIF, it
will be played with probability at least ¢ in the subsequent period; (ii) any action
played with at least average probability will be played in any of the subsequent two
periods with at least probability 6.

Finally define n = ﬁwg[as%qu. Note that n > 0.

Consider any initial measure g on §. If u(S*) > 7, there is nothing to prove.
Otherwise p(S5*) < 7. In this case, observe that some action pair (a,b) is chosen
with at least average probability.

Case 1. For some player (say A) there is a uniformly good (UG) action a*.

Consider an initial state v, and an action pair ¢ = (a,b) such that c is selected
with probability at least riyrir. If @ is UGB there is nothing to prove; so suppose
that a is not UGB. Consi(]Zr[ first the case where a = a*, i.e., it is UG but not UGB.
This implies that there exists b* such that (a*,b*) is MF. If b = b* as well, we are
in §* already. So suppose that b receives NDF under c¢. Then b* will be played
in the following period with probability at least w, while a = a* will be played
with probability at least 6, as it received PDF in the current period. Hence with
probability at least ﬁ”{ﬂ&r, (a*,b*) will be played in the following period, so that
we shall be in S™.

So now consider the case where a # a*. If a is UG also, then since it is not
UGB, a similar argument as above will establish the result. So we suppose that a is
not UG. If a gets a NDF in ¢, then at the following period a* will be selected with
probability at least m; thereafter use the argument of the preceding paragragh to
infer that in at least two periods we shall be in §* with probability at least 7. On
the other hand if a gets PDF under ¢, there are two possibilities: ¢ is MF, in which
case there is nothing to prove, and a gets PDF while b gets NDF under ¢. Then a
will be played in the following period with probability at least §. Morever, since a is
not UG, there exists b’ # b such that a receives NDF when ¥ is played. Then (a,b’)
will be played in the following period with probability at least ﬁ-[ L §m. Conditional
on this event, the period after that a* will be played with probabx{iB;’y at least 7, and
we shall be in §* within four periods with probability at least 7, again using the
argument of the previous paragraph.

Case II. There ezxists no UG action for either player, but there does ezxist an MF
pair ¢* = (a*,b*). Let ¢ = (a,b) be played with probability at least ]é-[ in
the current period. If ¢ is MF there is nothing to prove. This leaves the flﬂowing
possible subcases.

Subcase 2a: Both players receive NDF under c¢. Use the notation t for the current
period. If @ # a*, b # b*, then clearly ¢* will be played at ¢t + 1 with probability
at least 72. If on the other hand a = a*, b # b*, then a will be played again at
t 4+ 1 with probability at least @ by virtue of (A5). Morever b* will be played with
probability at least w at ¢t + 1. Consequently c¢* shall be played with probability at
least ]iﬂ%[h' >natt+ 1.

Subcase 2b: One player (say, A) gets a PDF, and the other player gets an NDF
under c. If for some b* # b, (a,b*) is MF, then this will be played at ¢ + 1 with
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probability at least Ii']]%]‘s" > 1. So suppose for the rest of this subcase that (a,b)
is not MF for any b.

Since a is not UG, there must exist b’ # b such that A gets NDF when B plays &'.
Morever, (a,b’) will be played at t + 1 with probability at least ﬁ”—éltﬁr. Following
this event, there are two possibilities to consider:

(i) Suppose that Player B gets NDF under (a,b’). If a # a* and b’ # b*, then c*
will be played at ¢+ 2 with (conditional) probability at least 72. On the other hand,
if a # a”, b’ = b*, note that a* receives a PIF at t + 1 when (a,b’) is played. Then
at t + 2, (a,b) is played with (conditional) probability at least f, since b’ # b, and
a was being played with at least average probability at ¢t + 1 as it received a PDF at
t. Then a* gets a NIF at ¢ + 2, while b gets a NDF. At ¢ + 3 then, ¢* = (a*,5*) will
be played with conditional probability at least ¢, and so we shall enter S* in three
steps with probability at least ﬁ-”%[69¢7r3 > 1.

(ii) Suppose that Player B receives PDF when (a,b’) is played at ¢ + 1, following
play of (a,b) at t. Recall that this sequence of play arises with probability at least
w87 Recall, too, that a # a*, since we are in the situation where (a,b) is not
MF for any b.

Here there are three further subcases to consider:

(a) b" = b*. Here a* is played at t + 2 with (conditional) probability at least =,
and b’ = b* with (conditional) probability at least §. So the MF outcome results in
period t + 2 with probability at least ﬁ”ﬁﬁr"'.

(b) b* # b, b* # ¥'. In this case b* obtained a PIF at t, and a NIF at ¢t + 1. So it
is played at t 4+ 2 with probability at least ¢, whilst a* is played with probability at
least 7. So c* is played at t 4+ 2 with probability at least ﬁ-”ﬁ&r’qb.

(c) b* = b. In this case, note that by virtue of (A5), b* is selected at t + 2 with
probability at least §. Morever, since a # a* receives a NDF at ¢t + 1, a* is played
at t + 2 with probability at least . Hence c* is played at ¢ + 2 with probability at
least ﬁ-”%-lérzo. This concludes the proof of the Lemma. [ ]

We now turn to the second main step of the proof. Fix any MF pair or a UGB
action for some player. We will denote by II(y) the probability that starting from
an initial state v, the model generates an infinite run of the chosen pair (or action).
Denote by p(7y) the probability that the MF pair (or UGB action) is realized once.
For example, if v = (a,8) and (a,b) is MF, then p(y) = a(a)B(b).

We claim that there exists M € (0,00) such that

1(y) > p(m)™ (7
for all y € §.

Let IT*(y) denote the probability of a run of length t (of the desired MF pair or
UGB action). It is obvious that II*(y) > II**!(y) for each 7, and that II(y) is just
the pointwise limit of ITI*(y). It will therefore suffice to establish that there exists
M € (0,00) such that

I'(7) > p(7)M (8)
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for all v € S and positive integers t.

Recall the definition of the rate of growth of weight on an action receiving a PDF,
which may depend on the achieved payoff and the aspiration level: for player A let
this be denoted k*(f, F) (and its counterpart k®(g,G)) for player B). Let k be the
maximum value of all k(f(c), F) (if f(¢) > F) and all k(g(c),G) (if g(c) > G). By
the conditions of the theorem, k is well defined and strictly between zero and one.
Let M equal (1 — k)~!. Note that M > 1, so that

' (7) = p(7) > p(r)M.

Now proceed by induction. Suppose that at time ¢, II*(§) > p(§)M for all ¥ € S.
Letting 7’ denote the state following v and the occurrence of the chosen outcome,
observe that

()
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where the first inequality is just the induction hypothesis, the second follows from
applying (A2).

This completes the verification of the claim.

Finally, combining with Lemma 5.1, we obtain the property described in the first
paragraph of the proof. Define € = 7é6?. Then from every initial 4 on §, the
conditional probability of the event £ occuring is at least e. Therefore £ must occur
with probability one, and the proof is complete. [ ]

Note that if a game has no UGB actions, but it does have a MF outcome for
given aspirations, then this theorem implies that play must eventually involve the
selection of pure strategies by either player. In other words, limiting play must be
degenerate. In the case where a UGB action is present, this is also true for at least
one player: e.g. following repeated selection of a pure strategy corresponding to
an UGB action by player A, player B will not be “satisfied” with any action, and
may therefore be unable to settle down to a pure strategy. Note, however, that in
the presence of multiple MF/UGB outcomes, the theorem merely says that infinite
repetition of one of these is eventually inevitable, but it does not say which one will
be selected.!”

The theorem has particular implications for games with 0 — 1 payoffs, where a
payoff of 1 corresponds to a PDF for the chosen action, and a payoff of 0 to an
NDF. Essentially, the notion of an aspiration is irrelevant in this context, since the
notion of success or failure is unambiguous. In such a game, an MF strategy pair
is one where both players earn a payoff of 1. A UGB strategy for a player is one

In fact, starting from any initial state involving completely mixed strategies for both players,
any given MF or UGB outcome will arise with positive probability.
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in which that player earns 1 and the other player earns 0, regardless of the latter’s
strategy; in particular it must be a dominant strategy for the former. Hence, the
theorem implies that if these exist, then there must be convergence either to a pure
strategy Nash equilibrium, or to the selection of a dominant strategy by at least one
player. If there are no UGB strategies in the game, but MF pairs exist, then we
obtain convergence to a pure strategy Nash equilibrium for both players.

What about 0— 1 games without MF or UGB strategies? In such games, play will
typically converge to a pattern of behavior where non-Nash strategies are selected
with positive probability. In fact, even dominated strategies may survive in the
long run.!® This can happen because dominant strategies may occasionally generate
failures, depending on what the other player happens to choose. This will induce
players to perpetually experiment with other, possibly dominated, strategies.

6 Cooperation under ECA and ENCA: Some General
Results

In this section we examine the extent of cooperation that can arise in an ECA or
ENCA. Our first result pertains to symmetric games, defined as games in which
both players have the same set of pure strategies (A = B), the same payoff functions
(f(a,b) = g(b,a) for any outcome (a,b) € C), the same learning rules (L4 = L?)
and the same trembles (v4 = vB).

The feasible payoff set of a game is the convex hull of the set of pure strategy
payoff vectors of the game.

THEOREM 6.1 Assume (A1)-(A5). Consider a symmetric game and let (x*,n™)

be a symmetric Pareto efficient pure action payoff. Suppose that (x*,7*) Pareto-
dominates some other other feasible payoff vector. Then there ezists an ECA (p*, F*,G*)
such that (F*,G*) = (x*,7*) and p* assigns probability one to the pure strategy pro-
files generating (7*,x*), i.e. both players earn a payoff of =* for sure.

Proof. Denote by 7 the (common) expected payoff to each player when both players
tremble. Then since trembles have full support, the assumptions of the theorem
imply that (7,7) must be Pareto dominated by (7*,7*), i.e. ¥ < 7*.

Fix a half-open interval in IRy of the form Z = [#,7*) with the properties that
(a) # > 7, and (b) for each = € Z, there is no outcome ¢ with either f(¢) = = or
g(c) = w. As there are only a finite number of distinct payoffs, such an interval must
exist.

Consider symmetric aspirations of the form (F, F'). We claim that if F' € Z, then
(i) there is no UGB action for any player, and (ii) (7*,7*) is the only MF payoff. Part
(i) of the claim follows from symmetry. If a is UGB for A, then a must also be UGB
for B. But then at (a,a), both players must receive more than their aspirations, a
contradiction to the assumption that a is UGB for A. To verify part (ii), note that

'8Examples of these may be found in earlier versions of this paper, and are available on request.
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if there is another MF payoff vector relative to (F, F'), then by construction of the
set Z, both players must be getting a payoff at least as high as 7*. So another MF
payoff must Pareto dominate (7*,7*), contradicting the premise that the latter is
Pareto efficient.

By Theorem 3.1, there exists a unique limit distribution p*(F, F, €) for each F € T
and tremble probability e. Because the game is symmetric, because aspirations are
symmetric, and because u*(F, F,¢) is unique, p*(F, F,¢) must also be symmetric.

Since (7*,7*) is the only MF payoff, we see by Theorem 5.1 that the only invariant
measure for the system with € = 0 is a measure which places probability one on pure
strategy profiles that generate (7*,7*). By Lemma 4.1, u*(Fy, F,,€,) converges to
precisely this measure for any sequence (F,, Fy,€,) — (F, F,0).

Let e(F,¢) be the (common) expected payoff generated by p*(F, F,¢). The obser-
vations in the previous paragraph and the definition of # imply that e(F,1) = 7 and
lim,.oe(F,e) = n*, for each F € 7. Lemma 4.1 implies that e(F,.) is continuous;
hence, by the intermediate value theorem, for any F € Z, there exists ¢ > 0 such
that e(Fye) = F.

Take a sequence F), in T converging to 7*. Then there exists an asssociated
sequence €, > 0 satisfying e(Fy,€,) = F,. Take a subsequence ¢,, converging to €*,
say. We then have by Lemma 4.1: limg e(Fy,,€,,) = e(7*,€*). But this limit must
also be equal to 7* by construction. Hence e(r*,€*) = n*. This implies that €* > 0,
since otherwise (7*,7*) must be in the interior of the feasible payoff set. We can
then select the subsequence of aspirations (Fy,, Fy,,), and strictly positive tremble
probabilities €,, converging to (7*,7*) and 0 respectively, to establish the result. m

A number of well-known games satisfy the conditions of this theorem: e.g. the
Prisoners’ Dilemma, symmetric coordination games with multiple Nash equilibria,
as well as symmetric Cournot duopolies. It implies, for instance, the existence of an
ECA in the Prisoners’ Dilemma in which both players cooperate with probability
one, and of an ECA in a symmetric coordination game in which players success-
fully coordinate on the Pareto-optimal Nash equilibrium. It implies that symmetric
Cournot duopolists can achieve collusive outcomes without any explicit coordination
and with decision-making processes involving modest degrees of rationality, as long
as they have appropriate self-justifying aspirations.

The idea behind this result is the following. If players aspire to cooperative payoff
levels (strictly speaking, slightly less than these levels, to allow for infrequent trem-
bles and deviations), then the cooperative outcome is the only mutually favourable
one. Since the game is symmetric and so are aspirations, neither player can have
a UGB strategy. Theorem 5.1 thus ensures that when players do not tremble at
all, there is a unique limiting outcome where they must eventually cooperate all the
time. Hence this must also be approximately true when players tremble slightly, so
they must end up with average payoffs which are indeed close to the cooperative
level, thereby justifying their initial aspirations.!®

'*By the assumptions of the theorem, achieved payoffs for both players will indeed be strictly less
than the cooperative payoff when there are slight trembles.
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Nevertheless, the proof is somewhat complicated by the requirement that aspi-
rations and average payoffs must be ezactly equal for small trembles, i.e., by the
need to verify the existence of a sequence of fixed points in the neighbourhood of
zero trembles. This is where the symmetry assumption was useful. Without this as-
sumption, we establish below an analogous result by weakening the solution concept
to ENCA. Whether such a weakening is necessary remains an open question.

THEOREM 6.2 Assume (A1)-(AS5).Suppose that (a,b) is a Pareto efficient pure strat-
egy pair with associated payoff vector (F*,G*) that gives each player higher than his
mazmin payoff. Then there ezists an ENCA in which players attain (F*,G*) with
probability one.

Proof. For sufficiently small v > 0, the set B of payoffs (f,g) satisfying F* — v <
f < F* and G* — v < g < G* has the property that for any aspiration vector in
B, (F*,G*) is the unique MF outcome, while there are no UGB actions for either
player (since both players get more than their maxmin payoff at (F*,G*)).

Take a sequence of aspiration vectors (F”,G") in B converging to (F*,G*). For
each r, select a sequence of positive trembles ¢™* converging to zero. Theorem 3.1
ensures that for each r, the corresponding sequence of limit distributions u™ is well
defined. Since S is compact, this has a weakly convergent subsequence. Without
loss of generality, restrict attention to this subsequence hereafter. When there are
no trembles, Theorem 5.1 tells us that the long run payoff is unique and given
by (F*,G*). It follows that for each r, the sequence of long run average payoffs
(Fre,G™) generated under the trembled process converges to (F*,G*).

Construct the sequence u" = u"r, ¢" = €"". Then € — 0 and u" converges weakly
to a distribution concentrated on the payoff (F*, G*). Combining with the aspiration
sequence (F7,G"), we obtain an ENCA with the required property. [ ]

The idea behind the proof is similar to that of the preceding theorem: if both
players have aspirations slightly lower than the desired cooperative payoffs, then
cooperation is the unique MF outcome, and must therefore be the sole limiting out-
come, absent any trembles. Hence if the sequence of trembles converges to zero, the
corresponding sequence of average payoffs must converge to the cooperative payoff
vector. So an arbitrary sequence of aspiration levels converging to the cooperative
payoff from “below” generates a corresponding sequence of induced average payoffs
which also converges to the same payoff.

The preceding theorems justify the idea that cooperative outcomes are compati-
ble with a long run equilibrium when players employ adaptive learning rules driven
by self-justifying aspirations. The next obvious question pertains to the possibility
of inefficient outcomes. The next result rules out the possibility of a large set of
inefficient non-pure-strategy payoff outcomes.

THEOREM 6.3 Assume (A1)—(A5). Consider any payoff vector (F*,G*) in the
feasible payoff set of a game which gives neither player a pure strategy payoff, and
is strictly Pareto-dominated by some pure strategy payoff vector. Then there cannot
be an ENCA resulting in average payoffs (F*,G").



21

Proof. If there exists an ENCA with aspirations (F*,G*), there must exist: (i) a
distribution g~ on § such that (F*,G") is the expected payoff vector under pu*, (ii)
a sequence of aspirations (F™,G") — (F*,G*), and a sequence of positive trembles
€" — 0, which generate (iii) a sequence of limiting distributions " converging weakly
to u. Hence Lemma 4.1 implies that p* is an invariant distribution for aspirations
(F*,G*) and zero trembles.

Consider the set of invariant distributions on S induced by aspirations (F*,G*)
and zero trembles. Since (F'*,G*) is Pareto dominated by a pure strategy pair, there
exists at least one MF outcome relative to these aspirations. Since neither player
receives a pure strategy payoff in (F*,G*), feedback effects are always non-zero in
the game with aspirations fixed at (F*,G*). Morever, given any set of aspirations,
there can be at most one player who has a UGB strategy, by definition. Without
loss of generality, let this be player A. Every invariant distribution corresponding
to aspirations (F*,G*) and zero trembles must then mix the different MF and UGB
outcomes relative to these aspirations, by virtue of Theorem 5.1. It follows that in
every such invariant distribution, player A must obtain an average payoff strictly
exceeding F™*. This contradicts the conclusion of the previous paragraph. [ ]

In the case of a Prisoners’ Dilemma, this result rules out (almost) all inefficient
payoffs except that of mutual-defection, as well as a range of asymmetric payoffs
where one player gets more than the mutual-cooperation payoff while the other
player obtains less (see Figure 1).

Insert Figure 1

In the case of a game with common payoffs, i.e., where both players obtain equal
payoffs in every outcome, the theorem rules out all mixed strategy payoffs. Hence,
in a game of this kind, only a finite number of payoff vectors are sustainable as
an ENCA, i.e., only pure strategy payoffs. This contrasts sharply with the “large”
number of outcomes sustainable as Nash or subgame perfect equilibria, as manifested
in the well-known Folk Theorems.

The question still remains: could an ECA or ENCA result in a Pareto-inefficient
outcome? The preceding theorem suggests that we should examine this with partic-
ular care for inefficient pure action outcomes. For instance, could mutual defection
be a long run outcome in the Prisoners’ Dilemma? Can a Pareto-inefficient pure
strategy Nash equilibrium be an ECA? These issues are addressed in the following
section.

7 Some Examples

In this section, we consider examples of two specific games: the Prisoners’ Dilemma
and a coordination game. The objective is partly to explore the tractability of our
approach when applied to specific games, and partly to examine the questions raised
at the end of the previous section.
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To simplify the exposition, we assume in this section that players choose prob-
ability weights from an arbitrary finite grid Q on the interval [0, 1], which includes
both 0 and 1. The state space is then the set of all mixed strategy pairs (e, 8) with
the property that a and § assign probabilities in the grid @ to every action. The
state space is therefore discrete, and for given aspirations the learning rules of the
two players generate a finite Markov chain. This implies that we can invoke the re-
sults concerning invariant distributions of perturbed finite Markov chains presented
in Young (1993, Appendix). We shall hereafter refer to such contexts as involving
discrete learning rules.

In this framework Assumption (A1) reduces to requiring continuity of learning
rules in the aspiration level, while (A2)-(A5) can be translated appropriately. While
the translation of (A3)-(A5) is straightforward, (A2) would imply here that a PDF
on an action must result in an increase in the weight on that action in the follow-
ing period (unless the weight already happens to be 1). This increase in weight,
however, must consist of at least a certain discrete amount. Consequently, as it
stands, assumption (A2) could well be inconsistent with (Al): vanishingly small
PDFs must result in a least a discrete increase in the weight on an action, whereas a
zero feedback will typically cause the current strategy to be unchanged. To restore
continuity of the learning rule in aspirations, we therefore modify the rule to make
it non-deterministic in the following fashion.

With a certain inertial probability ¢, a player leaves her current strategy unal-
tered, whilst with the residual probability 1 — g, she modifies it in a deterministic
fashion satisfying (A2)-(A5). We impose the following assumptions on the inertial
probability:

(A6: Inertia) The inertial probability q is a continuous function of the achieved
payoff f and the aspiration level F, bounded away from zero, and satisfies ¢ = 1 if
the feedback is ezactly zero (f = F).

For the rest of this section we shall assume that the learning rule satisfies (A1)-
(A6). It can be verified that all previous results of this paper continue to hold in
this context.?® Nevertheless, to provide insight into the nature of our results, we
shall rarely invoke any of our earlier theorems, and will provide direct arguments
instead; indeed, these will also serve to provide illustrations of the logic of the earlier
results. In keeping with the idea that these examples serve expositional purposes,
we suppress tedious technical details in the proofs.

We shall consider the following class of games which includes both a coordination
game and the Prisoners’ Dilemma as special cases.

C D
C [ (bb) | (0%)
D | (x0) | (2:2)

2This is shown in earlier versions of this paper; a proof is available on request.
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where b > a > 0. If z < b then this reduces to a coordination game, with two pure
strategy Nash equilibria: (C,C) and (D,D), with the former Pareto-dominating the
latter. If on the other hand z > b this is a Prisoners’ Dilemma. For simplicity, we
ignore the borderline cases where z may equal a or b.

We now present a basic set of results concerning possible ENCAs of this class of
games. These will be combined later to yield conclusions concerning the coordination
game or the Prisoners’ Dilemma.

THEOREM 7.1 Consider the class of games, represented above in tabular form, with
z # a, z #b. Assume that players employ discrete learning rules satisfying (A1)-
(A6). Then

(1) There always ezists an ECA resulting in the cooperative payoff (b,b).

(i1) There ezists an ENCA resulting in the payoff (a,a) if and only if z > a.

Proof. (i) Consider the invariant distribution corresponding to the case where both
players have aspirations equal to b, and neither of them trembles. Then it is easily
verified that the pure strategy state where both players select C for sure, is the
unique absorbing state, and morever can be reached in a finite number of steps from
any other state with positive probability (Figure 2 below illustrates the dynamic
induced separately for the two cases where z < b and z > b respectively).

Insert Figure 2

Hence with zero trembles there is a unique invariant distribution which is concen-
trated entirely on this outcome. So the sequence of limiting distributions correspond-
ing to any sequence of asymptotically vanishing trembles and aspirations (b, b) must
converge to this degenerate distribution, where the payoffs equal (b, b).

This argument proves that (C,C) is ENCA; it is an ECA by an argument anal-
ogous to Theorem 5.1.

(ii) We first show that if z > a then there exists an ENCA resulting in the payoffs
(a,a). The dynamic pattern is shown in the first part of Figure 3. With z > a, the
D strategy becomes UG for each player.

Insert Figure 3

There are two absorbing states, corresponding to the pure strategy outcomes (C,C)
and (D,D), while all other states are transient. So every invariant distribution must
concentrate its weight on either of these. Note also that one tremble is required
to move from the absorbing state (C,C) to the other (D,D), but two trembles are
required in the opposite direction. In the terminology of Young (1993), the (D,D)
state has a lower stochastic potential than (C,C). So the limit of the sequence of
(unique) invariant distributions corresponding to an arbitrary sequence of vanishing
trembles must be the invariant ditribution concentrated entirely on (D,D), where
both players earn a payoff of a.

Now consider the case where z < a, so that D is no longer a UG strategy. The
resulting dynamic pattern is shown in the second part of Figure 4. It is still the case
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that the pure strategy states (C,C) and (D,D) are the only absorbing states, and
all other states are transient. The only difference is in the pattern of resistances:
now one tremble suffices to go from any one of these two absorbing states to the
other, so they have the same stochastic potential. Specifically, starting from the
pure (D,D) state, one tremble (by A, say) serves to move the state to one where A
selects C with positive probability, whilst B continues to select the pure strategy D.
Hence the outcome (C,D) occurs with positive probability. Given z < a, B will now
assign positive weight to C by virtue of (A3), whilst (A6) implies that with positive
probability A will not change his current strategy owing to inertia. Hence with
positive probability the state will transit to one where both select C wth positive
probability, and thence to the one where they both select C with probability one.
Hence one tremble suffices to move from the absorbing state (D,D) to the other (C,C).
The same is true in the opposite direction. So the limit of the invariant distributions
corresponding to vanishing trembles must assign positive weight to both outcomes
(C,C) and (D,D), implying that the limiting payoffs must strictly exceed a. Since the
learning rule is continuous, this establishes that there cannot be an ENCA resulting
in payoffs (a,a). ]

We are now in a position to provide a more complete characterization of equilibria
in coordination games, where z < b.

THEOREM 7.2 Consider a generic coordination game, where z < b,z # a, and
suppose that both players employ discrete learning rules satisfying (A1)-(A6). Then:
(1) If © < a, there is a unique ENCA (and ECA) outcome where both players
earn a payoff of b.
(ii) If z > a, there are two ENCA payoff vectors: (b,b) and (a,a).

Proof. Applying an argument analogous to that of Theorem 5.3, no mixed strategy
payoff can be the result of an ENCA, as it is Pareto dominated by the pure strategy
payoff (b,b). Hence the only possible ENCA outcomes are the pure strategy payoffs
(b,b),(a,a),(z,0),(0,z). Given Theorems 5.1 and 6.1, it remains to show that (z,0)
or (0,z) can never be an ENCA outcome. Given (Al), it suffices to check that with
aspirations equal to (z,0), the corresponding limit of the invariant distributions (as
trembles go to zero) yields an average payoff different from (z,0); an analogous
argument takes care of (0,z). The dynamics yielded by aspiration vector (z,0) in
the case of no trembles is illustrated in Figure 4 below, for both the cases z < a and
2 >

Insert Figure 4

In the case where a > z, note there are three absorbing states: those corre-
sponding to the pure strategies (C,C), (D,D) and (D,C). All others are transient. It
takes two trembles to move from the pure strategy state (D,D) to the pure strategy
state (C,C), whereas it takes exactly one tremble to move between any other pair
of absorbing states. Hence the limiting invariant distribution (as trembles vanish)
must divide weight between the two pure strategy states (D,C) and (D, D). Then
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both players earn higher than their aspirations on average, so (z,0) cannot be an
ENCA outcome in this case. In the other case, it is evident that there are only two
absorbing states: the pure strategy states corresponding to (D,C) and (C,C), while
all others are transient. Morever, one mistake suffices to move from one absorbing
state to the other, so the average payoff in the limiting invariant distribution must
be higher for both players than their aspirations. [ ]

The coordination game thus exhibits the following features: (a) long run equi-
libria must involve one of the two pure strategy Nash equilibrium payoffs; (b) for
some parameter values (z < a), the long run equilibrium outcome is unique and
efficient; (c) for other parameter values, there are multiple Pareto-ranked equilibria,
so in this range initial conditions will matter in determining the eventual outcome.
Note in particular the contrast with the theories of equilibrium selection of Kandori,
Mailath and Rob (1993) or Young (1993): long run outcomes need not be unique,
and the inefficient Nash outcome can result even if it is both Pareto-dominated and
risk-dominated by the efficient Nash outcome.?!

Finally, we consider the Prisoners’ Dilemma where 26 > 2 > b > a > 0. Using
the result of Theorem 6.1, the following is immediate.

THEOREM 7.3 Consider the Prisoners Dilemma, with z > b > a > 0 and suppose
both players employ discrete learning rules satisfying (A1)-(A6). Then the mutual
cooperation payoff is an ECA, and the mutual defection payoff is ENCA.

Note the contrast with the coordination game, where the inefficient pure strategy
outcome of mutual-D could not be an ENCA. The reason is the difference in the “off-
equilibrium” dynamic: the outcome CD leads both players in the direction of mutual
defection in the Prisoners’ Dilemma, whilst in the coordination game it causes the
two players to move in opposite directions.

Indeed, in the Prisoners’ Dilemma, mutual-D is even an ECA under additional
restrictions. A proof of this assertion is available on request.

There is one other distinct feature of the Prisoners’ Dilemma: (C,C) does not
Pareto dominate all other strategy pairs. In particular, there are asymmetric mixed
strategy outcomes that are Pareto efficient and individually rational (e.g., alternation
between (C,C) and (C,D) in suitable proportions). This raises the possibility of long
run outcomes apart from (C,C) or (D,D) involving asymmetric payoffs. What can be
shown is the following: (a) an ENCA outcome with symmetric payoffs must be either
of the two pure strategy outcomes (C,C) or (D,D), and (b) an ENCA outcome with
asymmetric payoffs must involve one player obtaining an expected payoff exceeding
b, and the other player between a and b. Part (a) follows from the fact that the long
run outcome of the process induced by aspirations for both players intermediate
between a and b is (C,C) with zero trembles. Part (b) follows by noting that no
player can get less than a, his maxmin level, while the other player gets more than
a — essentially because with these aspirations D is a UGB strategy for the former.
If the other player has an aspiration exceeding b then there are no other MF or

21To illustrate this last point, consider the case where b > z +a and z > a.
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UGB outcomes, so the low aspiration player must end up with payoffs of at least
a.?? Hence an asymmetric outcome can only take the form of one player defecting
“more” than the other on average, while they cycle between different states.

8 Conclusion

Non-Nash play can arise in a game for two reasons. First, the learning rule is
sometimes incapable of finding the best outcome even in one-person “games” against
a deterministic environment. Second, the intrinsic structure of interactive play may
prevent each player from choosing a best response to the other’s strategy. It should
be emphasized that in our model, the second feature drives our results. In the one-
person variant of this model (in a deterministic environment) an equilibrium with
consistent aspirations always yields the highest possible payoff.
Nevertheless, our results must be qualified by the following observations.

(1) In games with many players, our results are weakened on two counts. First, in
the event of a defection the coordination required to restore cooperation is of an
order of magnitude that is exponential in the number of players. In addition, any
single player’s deviation has a smaller effect, thereby dampening the reactions of
the opponents. In particular, cooperation is impossible with a continuum of players.
Limit play must be Nash.

(2) In “learning” games (even with a few players) where the past is given the same
weight as the present, but where play is otherwise myopic (fictitious play, for in-
stance), the tendency to cooperate is also weakened. A current deviation does not
evoke a large reaction from the opponent, who considers her rival’s entire history of
play.

(3) Our results therefore pertain to environments where there are a small number of
players and where current experience is paramount in determining current strategy.
There is also the somewhat more nebulous issue of how much rationality is assumed
for the players. Following the spirit of an evolutionary perspective, one might well
ask: what degree of rationality is conducive to cooperation? Assuming that players
behave myopically, i.e. try to increase current payoffs, the answer might be a “low
degree of rationality” in some well-defined sense.?3

Numerous avenues of future research appear promising. First, it is essential to
develop a more complete theory by explicitly modelling the dynamics of aspiration

22The same outcome results even if the other player has an aspiration intermediate between a and
b, whence (C,C) is MF but also one where the low aspiration player gets a payoff higher than a.

23 As Vernon Smith (1991) elaborates, game experiments where players are better informed (such
as in experimental asset markets, rather than double auctions) usually exhibit slower convergence
to efficient equilibrium outcomes. Morever, that play eventually does tend to converge to these
equilibria stands in contrast to persistent deviations from “rational” behaviour exhibited in many
single person experimental contexts. Our approach posits behaviour at the individual decision-
maker’s level which is consistent with observed deviations from rational play in many single person
experiments (such as emergence of “matching” behavior in two arm bandit problems), while showing
that cooperative behavior may nevertheless obtain in a multiperson setting.
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revision. Second, the sensitivity of our results to alternative formulations of satis-
ficing ought to be explored. Third, the model should be extended to accommodate
more than two players. Fourth, it would be interesting to examine the consequences
of embedding this model within a richer setting, e.g. where firms select prices, cus-
tomers select products, voters select between different candidates and so on.
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Figure 1: Prisoners' Dilemma. Shaded area (except for (a,a)) ruled out.
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