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Abstract

Several problems in economic theory can be formulated as a dynamic pro-
gramming problem, plus an additional incentive compatibilily constraint. This
constraint requires the continuation value along the chosen sequence, at any
point in time, to be larger than some prescribed function of the state, the
control, or perhaps both. This constraint changes the nature of the problem
in a substantial way: for instance, even if the problem is discounted, standard
arguments based on contraction principles do not apply.

In this paper we show how to reduce this class of problems to a simple
variation of standard dynamic programming techniques. In particular the
value function for the problem is shown to be the fixed point of an appropriately
defined operator.

*1 wish to thank Jess Benhabib, Prajit Dutta, Peter Streufert, seminar participants in ULB,
(arlos 111, Columbia, Northwestern, Paris, Princeton and to participants to the Franqu: Foundation
Conference, June 1996, for useful comments and conversations. I am particularly thankful to an
associate editor and a referee for many stimulating comments.



1 Introduction

In recent years there have been several problems in economic theory which have a
common structure. They are all maximisation problems over an infinite horizon,
subject to two types of constraints. The first is the standard set of constraints: the
control variable may have to be chosen in a subset that depends on the state variable,
and the state variable itsell has to follow a law of motion which depends on the past
value of the state and of the control. The second type has the nature of an incentive
compatibility constraint; more precisely, the continuation value from the plan, at any
period, must be larger than some prescribed value, which may depend on the state
variable, and on the choice of the control variable prescribed by the plan.

We have referred to this additional constraint (and we shall use this name in the
paper) as an incentive compalibility constraint because we may think of the agent who
is solving the problem as having an outside option available, with some alternative
value; if the value of the problem is less than that, then he may refuse the problem
itself, and rather choose the outside option.

This additional constraint scems to preclude the use of traditional Dynamic Pro-
gramming (DP) techniques. In fact, an extension is necessary: but we plan to show
that a simple modification of standard techniques is sufficient. These problems have
been discussed and analysed in Marcet and Marimon [11]; see also their previous pa-
per [10], which provides an interesting example of a dynamic incentive constrained
problem. The main idea in their paper is to introduce the Lagrange multipliers in
the state space, and apply DP techniques to this enlarged state space. In the present
paper the state space will be unchanged, simplifying the analysis.

A problem that may look similar, but is in reality quite different, goes usually
under the name of optimal stopping. Since the similarity with the problem we analyse
may be confusing, we will discuss this issuc briefly. In an optimal stopping problem
an agent is deriving in cach period a payofl from a control variable, that he may
choose, and a state variable, which he may be able to control. In addition he has at
any period the option of stopping the process, and getting a termination payoff that
may depend on the final value of the state variable. Of course in this problem the
continuation value from any oplimal policy must be at least as large as the value of
choosing to terminate the process, since this option is always available to the agent.
It is however a perfectly admissible policy for the agent to let the process continue
at any state, even if the future value from doing so is lower than the termination
value. As a consequence, the value (from an optimal policy) of a problem where
the termination option is available is higher than in the similar problem where this
option is not available.

This is quite different from the constrained problem that we consider in this
paper. llere every admissible policy, and not just the optimal ones, must satisfy the
constraint. If this is not possible, the value of the problem is set to minus infinity.
As a conscquence the value from an optimal policy of a problem where the incentive
constraint has to be satisfied in addition to the others is smaller than in the similar
problem where this constraint is not present.



Before we proceed we present some examples to illustrate the nature of the prob-
lem.

1.1 Examples of Incentive Constrained Problems

Our first example is a game of joint exploitation of a renewable resource. In this
game two players have concave, strictly increasing utility functions and a common
discount factor. The two utilities depend on the consumption of a common resource;
the stock of it which is left in cach period determines the quantity available in the
next period. lach player may attempt to consume part of the output. He faces
the following tradeofl: the less he consumes, the more stock of the common good
is left for production in the next period. The saving, however, is beneficial to both
players, and this externality typically produces a consumption rate higher than the
optimal. It is interesting in this model to characterise the sccond best equilibria,
that is the subset of subgame perfect equilibria that are also Pareto efficient. Due
to the specific structure of the game, this analysis can be reduced to the study of
a constrained maximisation problem of the type we have described in the previous
section. IHere are some details.

The value of the outside option is defined as follows. Each player at the moment
of deciding his consumption has the alternative of following the prescribed second
best plan, or defecting. I he defects, he knows that the equilibrium after defection is
determined as the equilibrium (in that subgame) where both players are consuming
maximally. It is fairly casy to check that this is indeed a subgame perfect equilibrium.
So the best he can derive from the defection is the maximum over consumption today,
different from the prescribed consumption, plus the discounted continuation value of
the maximal consumption equilibrium from next period. The second best solution is
therefore characterised as the solution of the problem of maximising the welfare of
the two players, subject to the constraint that the continuation value for cach player
is larger than the defection value. For details, the reader is referred to Benhabib and
Rustichini [3].

This simple example cannot be analysed with the techniques in Marcet and Ma-
rimon [11]. In fact they impose conditions on the problem that make the value
function continuous: but as we see more in detail later, the value function in this
problem is, in general, discontinuous.

The second example is the classical optimal taxation problem in a general equi-
librium model with infinitely lived agents (see for instance Chamley (5] but with a
twist. As usual in the standard second best problem the government is taking the
first order conditions of the agents as given. At the moment of announcing the se-
quence of future taxes, however, the government has to insure that one additional
constraint is satisfied: the continuation value on the competitive equilibrium from
any point in the future determined by the announced plan has to be larger than
some value, which may depend on the capital stock of the economy at that time.
We may think of this value as the value of a deviation option for the government
itself. The third-best taxation problem is the problem of maximising the welfare of



the representative agent, subject to this incentive compatibility constraint. For a
detailed discussion see Benhabib and Rustichini [4]

2 The general incentive constrained problem.

We let S denote the stale space, and A the action sel. S and A are topological
Hausdorll, locally compact spaces. The stale and aclion space is X = S x A; ils
infinite product is denoted X™ = x{2,X; we take on it the product topology. lor
x € X®,x = (zo,%,,...) we denote x = (x¢,T41,...) where z, = (s4,a;). Both
X and X™ are also HausdorfT; and so is any subspace of it. There is some gain in
avoiding the restriction of S and A to finite dimensional spaces: this issue is discussed
later, in section 2.1,

For any sct. X, P(X) is the power set of X. The correspondence ¢ : S — P(A)
defines the set of feasible actions, and the function F7: X — S defines the transition
to the new state. F and (7 jointly define a transition correspondence @ : X — P(X)
as:

Q(s,a) = {(u,b) : u = 1(s,a),be G(u)} (2-1)
The iterates of Q are denoted by QF for i = 0,1,...; Q%(s,a) = (s,a).

The set of sequences that are conceivable from s is x2,Q%(s, G(s)); this is in
general a proper superset of the set of feasible sequences. Note for future use that

Q(s,G(5)) = (F(s,G(s)), G(F(s,G(s)))-
The set. of feasible scquences from a given initial state s is
D(s) = {x € X : 29 € (5,0(5)), 241 € Q(z,) for all > 0.}

Preferences on sequences are represented by a function U taking values in the
extended real line R* = R U{—00} U {+00}. The following concepts have been
introduced by Koopmans [8]:

Definition 2.1 U is after first period separable if for all z,y € X and allx,y € X,
U(z,x) > U(x,y) if and only if U(y,x) = U(y,y).

This is his postulate (3.b) ([8], page 292).

Definition 2.2 U is first period separable if for all z,y € X and all x,y € X,
U(z,x) > U(y,x) if and only if U(z,y) > U(y,y)

This is his postulate (3.a) ([8], page 292). The intuitive meaning of these two pos-
tulates is clear: significantly, they go under the name Limited Noncomplementarity
in Koopmans et alii ([9], page 85).

Definition 2.3 U is stationary if for all z € X and all x,y € X*, U(z,x) >
U(z,y) if and only if U(x) > U(y).



This is Koopmans’ stationarity postulate (1) ([8], page 294).
An aggregator is a function W : X x V. — V, where V is a subset of R*, such
that for every x € X™|

U(x) = W(wrg, U(1x)). (2:2)

As Streufert. ([14], page 61) notes, the proofl of the classic result of Koopmans [8] can
be adapted 1o show that if a function U/ is after first period separable and stationary,
then there exists a unique aggregator which is strictly increasing in future utility.
Let now D be the function from X to the reals, describing the incentive constraint.
The set of feasible and incentive compalible sequences from a given initial state s

W(s) = {x € X :x € ®(s), and for all t > 0, W(z,,U(141%)) = D(z)}.
Definition 2.4 The unconstrained problem al s is lo find:
sup l/(x),

subject lo :
x € ®(s) (2:3)

We denote this problem (), and its value Jo(s).
Definition 2.5 The incentive constrained problem at s is to find:
sup [/(x),

subject lo:
x € W(s). (2.4)
If W(s) =0, then supl/ = —oo.

We denote this problem € P(s), and its value J*(s).

The constraint. W(x, U(ix)) = D) will be called in the following the in-
centive compalibility constrainl. We use this name because the constraint specifies
that the continuation value along the sequence has to be larger than or equal to the
value of a prescribed function of the state and of the controlin that period. If this
prescribed value is interpreted as an outside option available to the agent who is per-
forming the maximisation, then the constraint requires that the sequence provides
at any point the right incentive to the agent to follow the plan.
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2.1 Stochastic Models.

The assumptions imposed on the state space S and the action set A are general
cnough that a rather large class of stochastic problems is included as possible appli-
cations of our results. Let us briefly discuss how this can be done.

Let © be a topological space, and let S = A(Q2) be the set of regular probability
measures on 2 endowed with the Borel structure. The topology on S is the weak®
topology. A transition kernel g : 2 x A — S which is continuous determines in turn
a continuous transition function I7: 8 x A — S delined by:

F(s,a)(0) = ‘/“ d{w, a)(0)s(dw)

for cvery s,a and every Borel subset O C €.
A typical aggregator in this situation, for example a linear aggregator, might be:

W((s,a),y) = /“ sl V) <+ B (2.5)

where u is a utility function and A the discount factor. Assumptions (A.2) and (A.3)
below are casily checked in this example.

In the general setup we have described above the feasibility constraints are de-
scribed by the function ¢ from S to subsets of A, In the case of stochastic models
one might wish to express constraints that make the feasible set of actions depend
on the state w rather than on the distribution s. This type of coustraints can be
incorporated into the function U/, or equivalently into the aggregator. For example,
in the case of the lincar aggregator in 2.5 we may sel u(w,a) = —oo when the action
a is not feasible at the state w.

2.2 Existence and basic properties of a solution.

In this section we collect some basic propertics of the value function of the incentive
constrained problem. We assume:

Assumption 2.6 (A.1) (i is upper hemiconlinuous and compacl valued; IY s con-
Linwous.

An immediate implication of assumption 2.6 is that the correspondence Q@ is upper
hemicontinuons and compact valued.

Assumption 2.7 (A.2) The function U is after first period separable, first period
separable, and stationary. Lt Wi X x V. — V be the associaled aggregator: W
is striclly increasing e fulure ulility, V is an interval in R*, and for every z,
W (zx,—00) = —o0.

Assumption 2.8 (A.3) W is upper scmiconlinuous.
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In Proposition 3, page 65, Strenfert [14] shows how the assumption (A.3) can itself
be derived from assumptions imposed directly on the utility function U.

The final key concept, biconvergence, has been introduced by Streufert [14]. We
nse here a slight strengthening of his condition. Let K be any compact subset of
§: then the function U/ is said to be K-upper convergent on x2,Q'(K,G(K)) if for
every x € x2,QU K, G(K))

‘Ilr(x’lmsup U650 Tt x:"__‘HIQi(I\',(l(I\'))) = [} (2.6)

Analogously, the function U is said to be K-lower convergent on x2,Q(K,G(K)) if
for every x € x2,Q'(K,G(K))

Bim inf U (g, ..y, X041 Q' (K, G(K))) = U(x)- (2.7)

The function U is said to be K-biconvergent if it is both K-upper and K-lower
convergent.

Assumption 2.9 (A.A4) For any s € S lhere ws compacl neighbourhood K of s such
thal U is K-biconvergent on x2,Q'(K,G(K)).

This assumption is discussed in detail later (section 2.2.1). We now turn to the
last component: the function D. In many applications this function gives the value
of deviation from a preseribed equilibrinm. As such it is derived as a solution of
an optimisation problem or of an equilibrium condition, and inherits naturally from
the original some specific properties. For instance, it is quite commonly a concave
function. ‘This fact may create problems, since the function D lies on the opposite
side of an incquality with respect to the function W. In particular the st on incentive
compaltible paths may not be convex. It is therefore particularly desirable to put on
it as few assumptions as possible. We only need a rather weak regularity condition,
and no geometric property (like convexity):

Assumption 2.10 (A.5) For every s € S, D(s, ") s lower semiconlinuous.
We are now rcady for our preliminary results.

Lemma 2.11 For every compact subsel K of S:
(1) max U(x2,Q (K, ((K)) s achicved;
(i1) U is upper semiconlinuous on %2, (K, G(K).

The proof of the part (i) is very similar to the proofl of proposition 3, part (A.6),
in page 82 of Streufert [14], once the assumption of upper convergence is replaced
by the K-upper convergence condition. The proof of (ii) is similar to the proofs of
lemma 2 and 3 (ibidem).

Lemma 2.12 Assume Al, A2, A3, A4, A.5. Then

(i) the correspondences ®, ¥ are upper hemicontinuous, compact valued;
(ii) the incentive constrained problem has a solulion;

(iti) the function J* is upper semicontinuous.

i



Proof.

(i) From (A.1) the correspondence € is upper hemicontinuous and compact val-
ned. Hence the set. B(s) = x,Q' (s, (/(5)) is compact in the product topology for
cvery s, and so are ®(s) and W(s), since it is immediate that they have a closed
graph. By lemma | of Streufert [14] (page 76) the correspondence R is upper hemi-
continuous. Since G is upper hemicontinuous and /' continuous, ® has closed graph,
hence by theorem 8, page 110, of Aubin is upper hemicontinuous, since it is contained
in R; it is also compact valued. Now the set

{x € X : W(z,U(i41%)) = D(z1),t =0,1,...}

is closed by assumption (A.5) and the upper semicontinuity of U; hence also ¥ is
upper hemicontinuous.

(i) This claim now follows from the upper semicontinuity of U/ on the compact
sel X200 (s, ((s))-

(iii) For any s € S, let K be a compact neighbourhood of s, so that U is upper
hemicontinuous on x2Q* (K, G(K)) by lemma 2.11. The claim now follows from
the Maximum theorem. =

2.2.1 Discussion of the assumptions

Assumptions (A.1) to (A.A4) are quite standard. (A.1) requires a more detailed anal-
ysis. Rather than K-convergence, Streufert [14] uses a weaker concept, upper conver-
gence, which requires the equality in 2.6 to hold when K is a singleton. On the other
hand to prove the upper semicontinuity of the value function for the unconstrained
problem he has to assume (see his theorem C, page 69, in [14]) the existence of a pair
(.J=,J*) of super and sub solutions of the Bellman operator; i.c. two upper semicon-
tinuous Munctions such that J= < BJ=,J* > BJ*. So an alternative approach to
obtain the upper semicontinuity of the value function for the constrained problem is
the following: assume biconvergence, rather than K-biconvergence, and the existence
of two functions (J~,.J 1) as above; conclude that the unconstrained value [unction is
upper semicontinuous. Then the proof of theorem 3.6 below will give that the value
function of the constrained problem is upper semicontinuous. Note in fact that the
proof of the theorem does not. require the K-biconvergence assumplion, but simply
biconvergence.

The coneepts of upper and lower convergence impose a joint restriction on pref-
crences and technology. See Streufert [14] for a discussion of the notions of upper
and lower convergence, and in particular of the relation between these concepts and
the purely ordinal, more traditional ideas of impatience, or tail insensitivity . Bi-
convergence and impatience turn out to equivalent, in the sense made precise by his
Propositions 1 and 2, page 63.

Like biconvergence, K-biconvergence is relatively easy to check in applications.
Let us mention one example. Consider a growth problem with deterministic dynam-
ics, and state space S the finite dimensional cuclidean space. In this case the function



I” is typically increasing in s; that is, if we understand the inequality > to hold com-
ponentwise, I'(s,a) > F(u,a) il s > u, for every a € A; also the correspondence (7
is typically monotonic in s (that is, G(s) 2 G(u) il s > u.) To check that the bi-
convergence assumption holds one computes the utility on a maximal accumulation
path starting at the initial state s. To check that K-biconvergence holds it suffices
10 choose an u > s, and make the same computation. An extremely simple instance
of this procedure can be found in the discussion of the example in section 2.3 below.

In Benhabib and Rustichini [3] an example is presented that fits into the format
of our general incentive constrained problem. In the example the utility function is
concave, and the production function is also concave. Still the value functions J* is
discontinuous (although it is, as follows from the above theorem upper semicontinu-
ous.)

An intuitive reason for this discontinuity can be given if we begin by looking at
the solution of the first best problem, which is a standard optimal growth problem. In
{his case the optimal policy requires low consumption for low levels of capital stock,
in order to accumulate and reach higher levels of the stock. On the first best path the
accumulation brings the stock to a "high” steady state value. This policy may not
be pursued in the second best problem, because the low consumption of one of the
players makes defection very attractive for the other, since there is a comparatively
large amount. of capital stock left available for his consumption. To make the value
of defection lower than the continuation value it is therefore necessary to increase
consumption. Note that in this way both the value of defection and the continuation
value are decreased, since the savings are reduced compared to the optimal solution.
So when the initial capital stock is very low this reduction may be so large that
the capital stock in the next period is lower, rather than higher. But at that point
the continnation value itsell is too low, since the future benefits from accumulation
are gone. Hence the fast consumption becomes the only cquilibrium. The switching
point. between accumulation and fast consumption is the discontinuity point.

2.3 A minimum utility growth model

It is now time to present how our techniques work. To do this we introduce an
example which is somewhat artificial, but also extremely simple. This should allow
us to focus on the method we introduce.

Take the log-utility, lincar-production version of the classical optimal growth
model; i.c. let W((s,a),u) = loga + Bu, G(s) = [0,as], F(s,a) = as — a, and
D(z) = 0. We may think that the agent has the option always available of migrating
out of the cconomy, and getting a non negative lifetime utility.

We assume a > 1, and g € (0,1). Assumptions (A.1),(A.2),(A.3) and (A.5) are
obvious. For the assumption (A.5), note that for any s and any u > s, Qi (u,G(u)) =
[0, tu] x [0,00F ] for every 23 and since the series Y200 B log(a'u) converges, K-
biconvergence at s follows from Lebesgue dominated convergence theorem; so (A.5)
is satisfied for any value of «, 8. Also note that the function D) is a constant; still as
we shall sce the problem of determining the value function is non trivial.

9



The value function of the unconstrained problem is Jo(s) = (1 — 8)7 ' logs + I,
where I a constant; and the corresponding optimal stationary consumption policy
is a(s) = o1 — B)s. The capital stock m the optimal sequence is s, = (afB)'se for
every L. So il

ap < |

the incentive constraint is eventually violated in the unconstrained optimal path.
I'rom the corollary 3.9 in the sequel we know therefore that the constrained value
function is equal to —oo on some subset of the domain. In fact, this subset is a
interval, since the value function is increasing. To determine the value function
exactly we now introduce our basic operator. Define for any upper semicontinuous
function .J:

(77)(s) = max loga+ pJ(as —a) (2.8)

a€l0,0rs]
subject to J(s) > 0;

We set (1'J)(s) = —oc il the constraint is not satisfied. The constraint in the problem
2.8 may scem strange, because it is satisfied or not independently of the choice of the
control variable. Its role in this example will probably be clarified by the corollary
3.9 in the following. Note that 7' is well defined on the cone of upper semicontinuous
functions on the real line, and maps this cone into itself.

Apply this operator to the function Jy, and iterate. We obtain a sequence of
functions which is monotonically decrcasing. Some easy calculation shows that this
sequence of functions converges to a limit function J* which is equal to —oo for
values of s < (@ — 1)7". The interval [(a — 1)7', 400) can be written as a disjoint
union of intervals I,,, and on each interval the function is logarithmic, of the form:

=B at—1
4 A

J(s) = 5 log(a™s + l

(the constants D, are more complicated and not important for our purposes.) Our

) + Du;

general result below (theorem 3.6) shows that this is in fact the value function for the
constrained problem. This function is concave where it is finite valued. The optimal
policy is stationary, and is determined as usual as the solution of the maximisation
problem 2.8. The optimal sequence of capital stock s, decreases to the steady state
value (o —1)7".

The example we have just seen contains the main ingredients. The operator 1" in
the general case will be the natural generalisation of the one we have seen, and the
value function of the problem will be determined as the decreasing limit of iterations
of T, as it is in the example.

3 The constrained dynamic programming.

In this section we give a systematic treatment of the incentive constrained problem as
a dynamic programming problem. We begin with the basic component, the operator

10



1. To avoid repetitions, we say here that all the results in this section are derived
under the assumptions (A.1) to (A.5), and we shall not repeat this in the statement
of the results, except in the statement of the main theorem 3.6.

3.1 The operator 7.

We first describe the set of policies. The set of plans is the set of sequences m =
(70,71, ..) of functions, with m, mapping S to A for t > 0. The shift of a plan i
defined by L(mg,my,...) = (7, 72,...).

We define 83 = s, a) = mo(s), and for every t > 0, s7y,

7}

Il

Wie® n " —
I'(s7,af), af =
m(s8,ag,...,s7). Ila] € G(s]) for every £ >0 the plan is called a policy, so a policy
is a feasible plan; the set of policies is denoted by 11 Let z] = (s, af); every policy
defines a sequence of state and action pairs (xf,z],...). Also for every pair (s,7)
with 7 € 1l we can define a function J7(s) by:

1(s) _{ Ulzy,57,.- ) o Ul 2,0 2 DlE)id =013

—00 otherwise

Note that for every = and s:

J™(s) = W((s,mols), J " (F(5,m0(5))). (3.9)
Clearly,
J*($) = sup.J7(s)- (3.10)
nell

Now we turn to the dynamic programming formulation of the problem. Let
C'(S) denote the cone of upper semicontinuous functions from S to R*. We define
an operator 1" on this space as follows: for any J € GH3)

(1'J)(s) = sup W((s,a),J(F(s,a))) (8.11)
a€G(s)
subject to J(s) > D(s,a).

If there is no feasible @ that satisfies the incentive constraint at s then we set

(1'J)(s) = —o0. (3.12)

For convenience we introduce the correspondence A from C'(S) x S into subsets
of the action set, defined for any pair (/,s) by

A(J,s) = {a € G(s): J(s) = D(s,a)}. (3.13)
Note that if



then

A(J,s) D A(J', s) for every s.

With this notation, the operator 7" can be defined as

(1 0)(s) = sup W((s,a),J(I'(s,a))),
a€A(Js)
with the convention that sup,co W((s,a),J(F(s,a))) = —oo. This formulation
should bring out clearly the similarity with the Bellman operator, as much as two
crucial differences.

The first difference is the condition 3.12. This condition implies that even in
well behaved cases (for instance, smooth and convex preferences and technology) the
operator may not map continuous functions into continuous functions.

The second difference is already observed in Benhabib and Rustichini [3]: even
in the discounted case, the operator T' is not a contraction. It is easy to sce why the
standard proof of this property for unconstrained dynamic programming problems
(sce e.g. Stokey and Lucas, [12]) fails. This proof, based on Blackwell’s theorem,
requires that for any function J and constant ¢, B(J + ¢) < BJ+ fec. This property
does not, hold in the case of the operator 1" because the function J appears in the
constraint set.

To simplily the exposition and avoid the need to recall each time the prowmso
that the set A(J,s) is non emply, we first extend the definition of W by setting:
W((s,0),y) = —oo for every s and y; then to every upper semicontinuous function
J we associale a function p(.J,-) defined by:

u(J,s) € arginax MeM.,J”W((s‘a),.l(l"(s,a))), if A(J,s) #0; (3.14)

u(J,s) = {0}, il A(J,s) = 0. (3.15)
A fized point of the operator 1" is any upper semicontinuous function J such that
TJ = J; it may be described by the equation
J(s) = W((s,p(J,8)), J(I'(s, p(J, 5))) for every s. (3.16)
The Bellman operator B is defined, as usual, by
(BJ)(s) = ré\(@(x) W((s,a),J(F(s,a)))- (3.17)
For any J € C''(S), it is clear that
B =T,

For any k = 0,1,... we let 7% denote the k-th iterate of T, and T° is the identity.
In the next proposition we collect some obvious and useful facts.



Proposition 3.1 i. The supremum in the definition 3.11, 3.12 of T' is achieved;
i, T £(8) = OS5
ii. If J>J thenTJ >T.J';
. If J <I'J then T*J < T*'J for every k.

We can apply now Theorem B, page 67, of Streufert [14]. This theorem imposes our
assumptions (A.1) to (A.4) plus the conclusion of the lemma 2.11 to conclude that
Jo is an admissible solution of the Bellman’s equation, i.e.:

.l() = Ij.lu.
Since for every J,

B =T, (3.18)
we have that

Jo > TJo. (3.19)

Also it follows from the lemma 2.12 in the case D = —oo that Jo € C'(S). Hence
the sequence of functions

i = g, k=0,1;. ..
is a decreasing sequence in C'(S), and therefore the function Jo, defined by
Definition 3.2 J(s) = limi—o Ji(s),

is well defined, and is an upper semicontinuous function because the limit of a de-
creasing sequence of upper semicontinuous functions.

We state this observations formally, together with the property that Ju is a fixed
point of T, in the following theorem.

Theorem 3.3 Let J, be defined as in 3.2 above. Then
i. Jo 15 an upper semicontinuous funclion, Jo, < Jo;
t#h: Pis = dlose
Proof. The point i follows from the definition of Ju, and the properties 3.19 and

3.18 above; point it is proved in the two next lemmata.

Lemma 3.4 Let J., be defined as in the definition 3.2 above. Then Tl < Jos:



Proof.

I

(TJw)(s) max W((s,a),Jx(F(s,a)))

a€A(Joo,s)
< s,a), (1% ; :

S W ((s,a), (T%Jo)(F(s,a))) (3.20)
The first equality is the fixed point property of Ju. For the second, note first that
(i) T*Jo > Jo, which also implies (i1) A(T*Jo,s) 2 A(Joo,s). (¢) and (i2) together
give the second inequality. But the term in 3.20 is (T*+'Jo)(s); we have therefore
proved that 7'Js < T*kJy for every k > 1, and therefore T'Jo < Jo as claimed. =

Lemma 3.5 Let Jy, be defined as in 3.2 above. Then TJow > Joo.

Proof. If J(s) = —oo the claimed inequality is obvious; so in the rest of the proof
we assume that Jo(s) > —oo. Since Jo(s) is the limit of the decreasing sequence
{Jx(s)}32,. we have Ji(s) > —oo for every k. Now take, for every k = 1,2,..., an
clement a; in the set of maximisers in the problem defining Ji(s):

max W((s,a), Ji—1(F(s,a)))

a€G(s)
subject to Jr_1(s) > D(s,a).

Since G(s) is a compact set by assumption (A.1), there exists a subsequence ¢ : N —
N such that a) converges to some @ € (i(s) as k tends to co. Then (see Streufert,

(14])

Joo(F(s,6)) = li;n oy (F(s,a))
> limlim sup Jyx)(1'(8, a4(i)))
k 1>k
> limlim sup Jy()(F(s, agi)))
k i>k
2 lim sup .la,(,-)(l"(s,aﬂ,-))). (321)

The first equality follows from the definition of Jeo; the second inequality from
the upper semicontinuity of Jyx), the third from the inequality Jyu) < Jgk) for
i > k, and the fourth follows because the index k is not appearing in the limit. We
conclude:

Joo(F(s,a)) > Tlim sup Ja)(F'(s, ag()))s (3.22)
while

— D(s,a) > lim sup —D(s, ay(s)) (3.23)

14



is immediate from the lower semicontinuity of D(s.-) (assumption (A.5)). Adding
3.23, 3.22 and using a basic property of the lim sup we get:

Jo(F(s, &) — D(5,8) : (:8.24)
> lim sup[Jy)(F (s, apry)) — D(s,ag))]-

But by definition of ay),

J¢(,)(I“(S,a¢(,))) — I)(S,(l(/.(,') > 0 (‘{25)

for every z, and so from 3.24 and 3.25

Joo(F(s,a)) — D(s,a) > 0. (3.26)

Now

(11 )(s)

]

max W ((s,a), Jo(F(s,a)))

2€G(s)

subject 1o Joo (F(s,a)) > D(s,a)
W((s,a), Jx(I(s,a)))

lim sup W ((s, ap(s)), Jo) (F' (s, a4:))))

1—00

lim sup Jy(iy+1(s)

1—00

= Jols):

The first equality is again the fixed point property of Jo; the second follows because
@ € G(s), and 3.26; the third incquality is derived with the same argument used to
prove the chain of incqualities 3.21, the last two are the definitions of Jx and J,

vV IV

respectively. This proves our claim. .
We can now state and prove the theorem that characterizes the value function

J*:

Theorem 3.6 Assume (A.1) to (A.5); then

b = A

8, J*¥=TI%

3. If J' € C'(S) is such that J' =TJ' then J" < J=.

Proof. Claim 2 follows from 1 and the fixed point property of Jo,. Claim 1 is proved
in the next two lemmata. Claim 3 is proved last.

Lemma 3.7 Assume (A.1) to (A.5); then
Jooy 2T



Proof. It is cnough to prove that

Joo(5) > J7(s)

for every policy m and every s € S. In turn to show this, from the definition 3.2 of
J, it suflices to prove that

(T*h)(s) = I"(s) (3.27)

for every k = 0,1,... The proof of this last claim is by induction on k. For k =0,

('/'”Jn)(-\') = Jol(s) = J7(s).

because 1 is the identity operator, and the policy 7 satisfies the feasibility con-
straint. Assume now 3.27 for k = n—1, we claim 3.27 holds for k = n. I[.J"(s) = —o0
the claimed inequality is obvious, so in the rest of the proofl we assume J7(s) > —oo.
Recall that my(s) denotes the first period choice of action according to the policy 7
we have:

(I )(s) = 'l'('l'""-/u)(s)
T(Jn1)(s
=  max W( sya), Juoy(F(s,a)))

a€li(s)
subject to J,_y(F(s,a)) > D(s,a)

Il

> l{g(@x W ((s,a), Ju-(F(s,a)))
subject to J.(F(s,a)) > D(s,a)
> JU(8); (3.28)

where the first equality follows from the definition of 7™, the sccond from the def-
inition of J,_;, the third from the definition of 7', the fourth from the induction
hypothesis, and the last from the basic relation 3.9. =

Lemma 3.8 Assume (A1) lo (A.5); then

I 2 il
Proof. Recall that, with v(s) = p(Jw, s) for every s,
Joo(8) = W((s,0(5)), Joo(F'(5,v(5))))- (3.29)
If Joo(s) = —oo the claimed inequality is obvious, so in the rest of the proof we

assume Jo,(s) > —oo. Define the sequences
S0 = 8, a; = V(8:), 8iga = F(siyai), 2 = (si,a:),1=0,1,... (3.30)
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Iteration of 3.29 gives, for every k=0,1,...

Jis(38) = Wilao: Wiy oo Wiwe=isJsslse))): (3.31)
Now Joo(s) > —oo, 3.31 and assumption (A.2) imply
Joo(8k) > —o0, for k=0,1,... (3:32)
Since Jo, 15 a fixed point of T', from the delinition 3.30 and 3.32 we have
Joo(8r) = D(xi), Tor E=10,1;:.. (3.33)
From .Jy > .J,, follows that for every s € S:
sup U(x2,@"(s,G(s))) = Joo(s). (3.34)

Now we have:

SUp U (2, Trg1s - -2 Thpms X021 Q' (Sk4my Gl5km)))

sup W (zi, W(ziksry- oy W(Ekgm, U( x:’;,Qi(.sk+,,., G(skm)))))

Wz, W(zksrs - W(Zhgm-1, Joo(Sk4m))))

Jool51)

D(x). (3.35)

%

The first equality is from the basic relation 2.2 linking U and W the second from
3.34; the third from 3.31; the fourth from 3.33. By upper convergence the above
inequality implies that for every £ =0,1,. ..

Ul @r, Brpisesa) 2 dealSe) = D Be);

The above inequality implies (i) that the sequence {zx}§2, is in the set of sequences
that satisfy the incentive constraints in the maximisation problem that defines J*(s);
and (i2) that U(zg,z1,...) > Juo(s). The two conclusions (z) and (27) give:

J*(8) = Jos(5)-

This concludes the proof of the lemma. =

To complete the proof of the theorem we turn to Claim 3. Let J' be a fixed point
of T. Since B*J' > T*J' = J' for every k, and B*J' converges to a limit which is less
than or equal to Jy, we have Jy, > J'. Now the incqualities Tk Jy > T*J' for every k
imply that J* > J' as claimed. This concludes the proof of the theorem. =

We conclude with a corollary of the theorem. It shows that when the constraint
function ) only depends on the state variable, the problem is equivalent to the
unconstrained problem if J* is everywhere finite:

17



Corollary 3.9 When the function D depends only on the state variable s, if J*(s) >
—o00 for cvery s € S, then J* = Jy.

Proof. As we know,

e (3.36)

holds in general. Also il Jy(s) > D(s) for every s, then the incentive constraint
is satisfied by the optimal unconstrained policy, and therefore J* = Jo. Assume that
this last equality, which is the conclusion of the corollary, does not hold. From our
second remark we now conclude that for some s, Jo(s') < D(s"). But then from 3.36
J*(s') < D(s') too, and therefore J*(s') = —oo from the definition of the operator
s .

4 Finite Horizon Approximations

The specific problems of the class discussed in this paper may be difficult to analyse
explicitly in analytical terms: so a numerical simulation of the solution may be in
some cases a useful tool. A natural way to set the problem numerically is of course
the direct compntation of the value function by successive iterations, as we have seen
in the previous sections. A second way is Lo compute finite horizon approximations.
In this section we study conditions under which appropriately defined approximate
solutions of finite-horizon truncations are a good approximation of the infinite horizon
problem. First some basic notations and definitions are introduced.

X is now assumed to be a separable metric space. (When S = A(Q) as in the
section 2.1, this condition follows if § is separable metric.) For any element x € X
we define the constant path .x € X™ as

(.x), = x for cvery I.
The function v : X — R* is defined by applying the utility function U to constant
paths:

v(z) = U(.x) (4.37)

so that clearly

v(z) = W(z,v(z)).

We begin with the case ) = —oo, that is the unconstrained case. This is a useful
introduction, and will perhaps also be helpful to clarify the difference between the
two cases.

Let X7 be the T' times product of X. The finite horizon approrimation aggregator
WT: XT+ — R* is

W7 (zo, 71, . ., zr) = W(z0, W(21,.. . W(zTo1,0(27)) - - )- (4.38)
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Clearly for every T and every (zo,...,x71) € b da
UT(x) = U(Zo, - - -+ Tr—1ye (£7)) = W (@0, 21, ..., ZT)- (1.39)

An finile horizon approzimation (with horizon T') to the unconstrained problem
is denoted by PT(s) and is defined as the problem of finding:

max W' (zo, ..., z1), (4.40)

subject to:

zo € (5,G(3)), T4 € Q(zy) for every t = 1,..., T = 1.

The optimal solution of the I' approximation is denoted by X7, and the value
at s by J7*(s). To be uscful for numerical purposes our approximation cannot
require exact solutions of the truncated problems; so we introduce the concept of an
¢ optimal solution. This is a fcasible path that is not more than ¢ distant in value
from the true optimal (of the truncated problem), that is a feasible path 37 which
satisfies

JT*(s) < W o, 97) + €. (1.41)

The set. of c-approximate solutions is denoted by c-argmax PT(s).

The sequence of approximate solutions is now determined in the natural way.
Find approximate solutions to the finite dimensional problem PT(s), extend the
solution to an clement in X™ sctting the coordinates for t > T equal to the T
component. Now make the horizon grow, and at the same time improve the approx-
imation. LFor large T', we obtain in this way a value arbitrarily close to the value of
the infinite horizon problem, and a sequence of solutions that are close to an optimal
solution of the infinite horizon problem. More formally we have:

Theorem 4.1 Assume (A.1) to (A.5), and let { xT}Fo0, X" € X for every T be
a sequence such thal:

1) limp ™ =0,

2) zl =z} for every t > T, and (7o ,J:E’r) € !'-argmazP"(s),

then any cluster poinl X of the scquence {xT}55.0 is a solution of P(s).

Proof. Let #7 be a sequence of ('-approximate solutions of PT(s), and let x* "7 =
x? be a subsequence converging to x. Then

U(x) > lim Sllpl/ll‘l(xl)
i
> lim sup[J(s) — €]
;
= lim sup J 57 (s). (1.42)
7
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Let X be a solution of the infinite horizon problem, so that:

I*(s) = U(x). (1.43)
Then
JT(s) 2 UT(%) (4.44)
because #.41 € Q(&,) for every L. Since U is upper semicontinuous
lim supl"r(f() £ JH(s): (4.45)
o
while
lin;rinfl/(i.,, ey By X2 Q' (5,G(s)) = J*(s) (4.46)
by lower convergence, so that:
lim U™ (%) = J*(s), (4.47)
We conclude from 4.45, 4.46:
lim sup J7%(s) > J*(s), (1.18)
v
so the conclusion follows from the combination of 1.42 and 1.48. .

For the general case (where D is finite) a more subtle argument is needed; in
particular it is now necessary to construct a sequence of approximations of the utility
function which are monotonically decreasing to U.

More precisely, let the function V be any function from X to R* that satisfies:

V(xo) > U(zo, 1, ..) for every (z,...) € ¥(F(s,a0)). (4.19)

Using the unconstrained value function one can find a natural candidate for
the function V; but more obvious estimates may be available (for instance, if U
is bounded by a constant M, then this constant is an admissible V). Also let:

U" (o, .. z1) = W(z0, W(x1,...,W(zr_1, V(27))). (4.50)

For the given V| the finile horizon approrimation, also denoted CPT(s), is defined
by:

max W (zo, (W(z1, ... W(zr-1,V(z7))))), (4.51)

subject to:
(i) o0 € (5, G(5)), 2e1 € Q) for every t =1,...,T =1,
and
(ii) W(ze, (W(zear, - .- W(or-1, V(@r)) = D(@e),t =0,1,...,T — 1.
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Optimal solutions and approximate solutions are defined and denoted as for the
case of the PT(s) problem. In this subsection we shall need the definition of epi-
convergence of functions. Actually, since our problem is a maximization problem, we
present the hypo-convergence version of the theory. For a more complete discussion
the reader is referred to Attouch and Wets [2] or Attouch [1].

Definition 4.2 A scquence of functions {U7 )52, defined on a melric space X and
wilth values in the extended reals hypo-converges Lo U at x if

(i) For every subsequence of funclions {U r!}‘l";“ and sequence of points {x?}52, con-
verging Lo &, we have thal

lim sup U (27) < U(x);
;
and
(i) there exisls a sequence {x' Y5, converging Lo x such thal

lin;lvinl'l/"'(r‘r) > Ulz).

With the new definition of finite approximation problem C P"(s), theorem 4.1
holds with virtually no changes. For completeness, the statement is:

Theorem 4.3 Assume (A.1) Lo (A.5), and lct (T xTYV5 0, X" € X for cvery T be
a sequence such that:

1) imp " =0,

2) ! =z for cvery t > 1", and (& ....ad " -argmazC P (s),

) €
then any clusler poinl x of the sequence {(x"}5 is a solution of CP(s).

Proof. I'or U defined by 4.50 we have

uT > U™ > U for every T; (4.52)

so that for every 7"
JT(s) > J*(s).

Also, by assumptions (A.4) (in particular, from upper convergence), for every x,
lim U™ (x) = U(x)

By the monotonicity property 4.52, the sequence of functions is equi-upper semicon-
tinuous (in the product topology); hence by corollary 2.19, in Dolecki et alii [6]

U™ hypo converges to U

We now prove that U(x) > J*(s). Let {x"7}52, be a subscquence converging to
x. Then

21



U(x) > limsuplUT(x™) (4.53)

> |'.n.:n.fu"r(x"") (4.54)
> nmla..u/"'(x"') (1.55)
> |in,ri..r{./"'-‘(.~»)7("'] (4.56
> Iin;rinf.ll""(s) (4.57)
> J5(s). (4.58)

The first inequality follows from the hypoconvergence of U", and the last by the
monotonicity of the same sequence; the others are obvious.
Iinally, note that the cluster point X is incentive compatible, that is:

U(x) > D(z)t=0,1,...

We conclude that x is a solution of C'P(s) as claimed. .

5 Conclusions

Ixamples of applications of the general problem discussed in this paper arc appear-
ing in the literature quite frequently in the recent past particularly in the arca of
dynamic games and application to macrocconomics and policy issues. Examples have
been provided in this paper: but see also Marimon and Marcet [11]. A very nat-
ural application is the characterization of second best equilibria: see the examples
described in section 1.1. We hope to have contributed here in clarifying a few points
of a technical and conceptual nature concerning these problems.

The first is that incentive constrained problems may have a natural formulation,
and a natural solution, in the general framework of dynamic programming, while
keeping unchanged the original state space. This is particularly clear once it is re-
alized that the appropriate space for the value function in this case is the space of
upper semicontinuous functions. Of course this space has already been used exten-
sively for this purpose: but in the case of incentive constrained problems it is made
necessary, rather than by the lack of regularity of the problem (like, for instance, an
upper semicontinuous rather than continuous utility, or production) by the constraint
itself.

The formulation of the value function for the problem as the solution of a fixed
point should be useful in the study of analytical properties of the optimal path. Of
course, one important, property provided by the contraction mapping approach is
lost: the uniqueness of the solution. For instance, the function which is identically
cqual to minus infinity is trivially always a fixed point.

The last point we want to emphasize is that the solution to incentive constrained
problems is robust: in particular it is robust to numerical approximations. Consider
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for instance the procedure, quite common in the treatment of policy problems by
numerical methods, of approximating the infinite horizon problem by a linite horizon
truncation. In these procedures it is usnally assumed that, if the finite horizon is far
enough in the future, then the solution to the finite problem is a good approximation
to the true optimal solution. This assumption is legitimate in view of our theorem

1.3.
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