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Abstract

In this paper, we investigate the loas of asymptotic efSciency of aemiparametric and quasi-
maximum likelihood eatimators rclative tu maximuin likelihood rxtimat4FS in models with
Generalized Autoreg~easive Conditional Heteroacedasticity (GARCH). For a general time-
varying location-scale model, the factors that contribute to differencea in efficiency among
the estimators can be divided in two categoriea. One pertaina to the parametric apecificar
tions of the conditional mean and the conditional variance. The other corresponda to the
ahape characteristics of the conditiona! density of the atandardized errora, aummarized in
the coefficients of skewneas sud kurtoais together with the Fiaher information for location
and acale. The quantification of these factot~e has practical implicationa since it can help
to decide if the more complex semiparametric eatimator provides aufficient e~iciency gaina
with respect to the simplest quasi-maximum likelihood eetimator. We alao prove that there
ie no probability density function, with the exception of the normal, for which the asymp-
totic efficiency of the three estimatoi~s is the same. Particular modela are also considered,
for which the efficiency compaz~isons are greatly simpli8ed.
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1 Introduction

In this paper, we compare the efficiency properties of maximum-likelihood-based estima-
tora in the context of Generalized Autoregressive Conditionally Heteroecedastic (GARCH)
models. Asymptotically, consiatency ia both a desirable and required property of an esti-
mator, but the property of maximal efficiency, though deairable, is not always attainable.
Asymptotic efficiency is a function of the level of information available to the researcher.

We develop a atrategy for evaluating efficiency gains when eatimating several typea of
GARCH and GARCH-in-mean models, but the methodology will be extended to other time-
varying location-scale models. The estiinatora we consider aze all based on the likelihood
principle. A likelihood function is constructed based on an assumed conditional probability
density function. Depending on the amount of information available, we can eatimate a
model with a maximum likelihood (ML) eatimator where the conditional probability density
function ia fully known, a semipazametric (SP) eatimator where the density is cretimated with
a data-based procedure, or a quasi-maximum likelihood (QML) eatimator where conditional
notmality is assumed, though this assumption is likely to be false. The efficiency gains are
directly proportional to the amount of information available; hence, ML ia more efficient
than SP, whicó is more efBcient than QML estimation.

The compazison of the asymptotic variance-covaziance matrices of the ML, SP, and
QML eatimatore reveal that, in the general time-varying location-scale model, differencea
in e~ciency are the result of the interaction between the epecified model and the shape
characteristica of the conditional probabílity denaity function. These interactions can be
diaentangled when we focua on interesting apecific location-scale models. Relevant factora
that contribute to differences in efficiency among the three estimatora are the Fisher in-
formation for location, the Fisher information for scale, the coeeïcient of kurtoais and the
coefficient of skewness of the conditional density. Our reaults have practical implications.
The empirical researcher can assess the 'closenesa' of the SP estimator to the ML and QML
estimators. When comparing a QML to an SP estimator, there is a practical trade-off be-
tween simplicity in implementation and potential gains in eeïciency. If the SP estimator is
`closer' to the QML than to the ML, the potential efficiency gains would be weighed againat
the costa of implementing the more complex SP estimator.

We distinguish among five typea of models, depending on the relation between the
conditional mean and the conditional variance. The most general model consiats of a time-
varying conditional mean and a time-vazying conditional vaziance, where mean and variance
are mutually dependent upon each other. The GARCH-in-mean models are examples of thia
class. This general model can be particularized to provide four interesting specific modela.
First, we consider a pure time-varying location model with homoscedastic errora, where the
parameters of interest aze only the mean parameters. In thia group, we may include dy-
namic specifications as ARMA modele and general regression modela. The second model is
a pure time-varying scale model, where the pazameters of intereat are the conditional vari-
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ance parametera. In this group, we tnay include any type of conditional heteroacedasticity
specification, such as the classic ARCH and GARCH, Exponential GARCH, Non-linear
GARCH, Asymmetric GARCH. The tltird group of modela conaieta of a conditional mean
and a conditional variance apecification such that the conditional mesn does not depend on
the parameters of the conditional variance, and the conditional variance does not depend
on the parametere of the conditional mean. In this group, we may include regresaion models
with heteroscedasticity other than GARCH, such as multiplicative heteroacedasticity, and
ARMA type models, where the conditional vaziance ia a function of past observationa. The
fourth group conaista of a conditional variance that dependa on the full set of inean and
variance parametera, but the conditional mean doea not depend on the conditional variance
parametera. In this group, we reatrict the conditional vaziance to be a symmetric function
of the errors as in the classical ARCH and GARCH models. In the third and fourth groups,
we also impoae symmetry of the probability density function of the errora.

This paper proceeds as follows: In Section 2, we describe the general time-varying
location-ecale model and the varioua estimation methodologies. In Section 3, we consider
efficiency comparisons among ML, QML, and SP estimatora for the general location-model.
In Section 4, we examine the efficiency comparisons for four apecific location-scale modela.
9CCtian 5 eoncludes the paper.

2 Location-Scale Models and Estimation Methodology

2.1 The General Location-Scale Model

Conaider a discrete time atochastic process {yt} paratneterized by a finite parameter vector
B. Conditioning on available information up to time t-1, the random variablea yt have condi-
tional mean mt(Bo) and conditional variance ht(Bo), where Bo denotea the true but unknown
parameter. The functiona mt(B) and ht(8) may be function of paat information, including
lagged exogenoua variablea xt,xt-l,xt-z,..., and of the parameter vector B, i.e. mt(B) -
m(xt,zt-t,xe-z,...,yt-t,yt-z,...te), ht(B) - hÍxn y:-t,xr-z,...,yt-i,Ue-z,...;6). Such
processes are known as regression models with Generalized Autoregreasive Conditionally
Heteroacedasticity (GARCH), possibly including GARCH-in-mean behavior. We assume
that the starting valuea of the process are taken from the stationary distribution and,
hence, the procesa, itself, is assumed stationazy. This implies that the scorea will be sta-
tionary too. Alternatively, if the ataz~ting values are observed, Drost and Klaassen (1997)
show that replacing the true non-stationary acores by the corresponding atationary onea has
no influence asymptotically, see also Koul and Schick ( 1995) for general conditions. Our
model will be

yt - me(eo) t ht(eo)un (I)
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where {ut} is an i.i.d. aequence with zero mean, unit variance, finite fourth moments,
and an absolutely continuous probability density function (pdf) g with derivative g', such
that the Fisher information for location and the Fisher information for scale are finite.
In general, the pdf g can be defined by additional parametere, say q, that are conaidered
nuisance parameters, but may contain relevant information for the estimation of the vector
of parametera of interest, B.

This paper ia concerned with the specification of the conditional density function g and
with the e6'icíency properties of maximum likelihood-based eatimatora of the parameter
vector B. We assume that the models for mt(B) and ht(B) are correctly apecified. We uae
three estimation methods, maximum likelihood (ML), quasi-maximum Iikelihood (QML),
and aemiparametric (SP) estimation, depending on how much information we have available
regarding the pdf. The iasue of efficiency ia directly related to knowledge eurrounding g.

The assumption of i.i.d {ut} innovations may be too restrictive for parametric maxi-
mum likelihood methods; in fact, a weaker asaumption as {ut} being a martingale differ-
ence aequence aufficea to render the QML eatitnator asymptotically normal (Bollerslev and
Wooldridge, 1tJ92). The i.i.d. assumption facilitatea the proofa of consiatency and aeymp-
totic normality. Moreover, most of the current parametric and aemiparametric literature
adopt auch an assumption. Therefore, we retain the i.i.d ae~umption in order to compare
the three eatimation methods on equal grounda.

2.2 Notation

Let ut(B) - (yt-mt(B))~ ht B) denote calculated residuals. Inserting the true but unknown
value of the parameter Bo yielda ut(Be) - ut. We define the vector function ~- (rGt,1G,)',
baeed upon the location-acale acorea, by

Ti~1(ue) -
-9~(ur)

9(ut)
and

~a(ut) - - (1 f ut9~(ut)l
` 9Íut) I

In the special case of a standard normal density the function 1[i reducea to

F(u) - ~ uyu I ~ .

Define the matrix W as

x, -~tiy ~ 1 ant(9) 1 8ht(9) j
r - te W.t - J .ht(B a8 ' 2ht(B) c~B

where 1 and a stands for location and scale reapectively.
Finally, we will use the notation GX,Y7- E(XY') and IIXII2-CX,X~- E(XX').
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2.3 Estimation Methodologies

Ficat, we conaider the case for which the pdF g is fully known to the researcher and the
object of interest ia the eatimation of B. Maximum likelihood estimation producea opti-
mal estimatora under a set of regularity conditiona. MLE eetimators are consistent and
asymptotically efficient since they achieve the Cramér-Rao lower bound.

For a eample of length T, the averaged log-likelihood function ia given by

GT(B) --2T ~ l09 heÍB) -F. T~l09 9(ui(B)). (Z)
~ ~

The ML eatimator ia found by maximizing equation (2) with reapect to the vector of
parametera B. The score function ia given by

STI(B) - aGT(B)
C7B

1 ~- 1 8m~ ( B) 9~(ut(B))
- - T L he(B) ~ 9(ue(B))

1 8h~(B) q'(ui(B))l lf Zhi(B) ~ ~1 t ue(B)
9(u~(B)) I 1

1 ~ We~e,T i (3)

where ~~ ia used as short-hand notation for ~(ui). The ML eatimator 8,,,~ eolvea the system
of equationa ST~(B) - 0. Since thia syatem ia nonlinear in B, the aolution is obtained via
numerical techniquea. Note that the two factora in the acore function, h~(B)-~~~(8qsi(B)~8B)
and ~hi(B)-t(8h~(B)~8B), depend aolely on past information, and they rely on the epeci-
fication of the conditional mean and the conditional variance equatione. The other two
factora, g'~g and (1 f u~f ~g), are functiona of u~ and depend on the ahape of the pdf g. It
ia easy to ahow that the terma in (3) form a martingale difference sequence. The expecta-
tion of the acore ia zero for any pdf since integration by parta results in E(g'~g) - 0 and
E(urg'~g) - -1.

Proving conaiatency and asymptotic normality of the ML eatimator for (G)ARCH pro-
cesaea is a non-trivial exerciee. Basawa, Feigin, and Heyde ( 1976) provide a set of aufScient
conditiona for conaistency and asymptotic normality of estimators for dependent proceesea.
Results are only available under the asaumption of conditional normality and only for a lim-
ited clasa oF procesaea, mainly GARCH(1,1) and ARCH(p) ( see Weisa ( 1986), Lumsdaine
(1996), and Lee and Hansen ( 1994)). Under a correct apecification of the variance equation
and of the pdf g, the ergodic theorem and a central liinit theorem can be invoked to ahow
that

~(Bml -Bo) - ~ N(D,VmI), (4)

4



where V,;,tl - Bát is the expectation of the outer product of the ecore evaluated at the true
parameter vector Bo and is given by

Bot-E f7,(8GT(Bo)1 (a~r(Bo)l~l.
l` eB J` aB J J (5)

Under the assumption of a con~ectly-speci8ed model, the information matrix equality holds;
that is, Bp t - Apt, where the matrix Ap t is (minus) the expectation of the Hessian matrix
given by

Amt - -E r~Gr(BO) I .o ` BB~B, J
(6)

The second methodology that we consider for the estimation of the parameter vector
B is quasi-maximum likelihood estimation. In this case, the researcher does not have any
knowledge of the pdi that characterizes the standardized innovations ui and chooses the
normal pdf. The quasi-maximum likelihood estimator is the argument that maximizes the
likelihood function under the assumption of conditional normality, even though this may
be a false assumption. The score function corresponding to a qusei-maximum likelihood
function is

sy.~j(B) - i 1 Ómt(9)uf(B)
-T ~ - hi B) 8B

f 2h~(B)~h~ )( i -ur(B)z)~

- 1 ~ 17, WiFi, (7)
i

with Fi - F(u~). The acore function ~mt (B) preserves the martingale difference property.
It is easy to see that the expectation of the score is equal to zero because u~ is a etandardized
innovation, for which E(ut) - 0 and E ( ui)- 1. This property holds for any g and is the
basis for proving consistency and asymptotic normality of the QML estimator under a set
of regularity conditions. These conditions are discussed in Wooldridge ( 1995), Lee and
Hansen ( 1994), Lumsdaine ( 19~J6), and Weiss ( 1986). The limiting distribution of the QML
estimator is

~ (Bqmt - Bo) ~ N (~r Vqm!) , (g)

where Vy,,,t - Ap t19m~iBpmtAp tt9mtl and where A9mt and B9mt are (minus) the expectation
of the Hessian and the expectation of the outer product of the acore respectively calculated
under conditional normality. This estimator is less efficient than the ML estimator, reAecting
the lack of information about the pdf. The finite-sample properties of QML and e~ciency
losses with respect to ML have been studied in several Monte Carlo simulations by Engle and
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González-Rivera (1991) and by Bollerslev and Wooldridge (1992). Newey and Steigerwald
(1997) have shown that a qua.gi-maximum likelihood approach with t-distributions is also
feasible if an additional parameter is added. Although the derivationa fot this approach do
not differ easentially from the ones in ordinazy (normal) QML, we will not include the exact
expressiona for these estimatora.

The third methodology that we consider is the semiparametric estimation of the pa-
rameter vector B. In this eituation, the researcher doea not know the pdf of the standard-
ized innovationa but assumea that it is sufficiently smooth (Hájek and Sidák (19G7)) to be
approximated by a nonparametric denaity eatimator. Semiparametric ARCH models were
introduced by Engle and González-Rivera (1991), and their asymptotic propertiea were stud-
ied by Linton (1993), Steigerwald (1994), Drost and Klaassen (1997). The aemiparametric
estimator ia a two-etep estimator. In the Srst atep, conaistent eatimatea of the pazametera
of interest are obtained through, for example, quasi-maximum likelihood eatimation and
are used to conatruct a nonparametric density of the atandardized innovationa. The aecond
step conaista of using this nonparametric denaity to adapt the initial estimator by a one-step
Newton-Raphson improvement. The goal is to recapture the seymptotic efficiency losses
due to quasi-maximum likelihood estimation, which can be aubstantial when the departure
of the tnir. pdf from normality is large. On efficiency grounda, the semiparametric eati-
mator is an intermediate eatimator between the unattainable maximum likelihood and the
quasi-maximum likelihood estimatore. The eemiparametric eatimator ia tecmed adaptive if
it happena to have the same asymptotic efAciency as the maximum likelihood estimator.
The semiparametric efficiency bound depends on how informative the nuisance parameters,
q, of the density aze for the eatimation of the parametera of interest B. Let S(q) be the
population score vector for the nuisance parameters and S(B) be the population acore vector
for the parametera of interest. The vector of parametera q ia unknown and conaequently the
semiparametric eatimator of B cannot exploit the information contained in n. If q containa
any information about B, the efHcient score for B is found by calculating the residual vector
R(B) from the projection of S(B) on the closure of the set of all lineaz combinationa of
S(rl), called the tangent set T. The tangent aet conaists of lineaa combinationa of S(n) and,
becauae the u's are random variablea with mean zero and variance one, the elementa of the
tangent set are orthogonal to the function vector (ui,ui - 1)'. Through the projection, all
the variation of S(B) due to S(q) ia removed (Newey (1990)). The residual vector R(B) ie
the difference between S(B) and the projection and, by conatruction, ia orthogonal to this.
Hence, R(B) is the eH'icient acore for B and the aemiparametric efficiency bound ia

~
Vsy - ~T ~ E [Rt(eo)Rt(Bo)~~~- . (9)

We consider two cases: (i) the density g of the errora is completely unknown and (ii)
the denaity g ie known to be symmetric. In (ii) the tangent aet contains only aymmetric
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functions. In the rest of this article, expectations are implicitly taken under Bp and g.
In the most general case (i), for a sample of length T, the sample average vector residual

is

RT(B) 1 ~ Rt(B)T t
STr(B)

E(Wrt) X ~, ~{~t~r(ut)- Gt~r. F~IIFII-2 F(ut)1 ~t

E(W,t) x T~{[~G,(ut)- G~e,F~IIFII-2 F(ut)~ }
t

- STr(e)

- E(Wt) X T~{[~G(ut)- G~,F~IIFII-2 F(ut)]}. (IO)
t

where STr(B) is given in ( 3). The derivation of equation ( 10) can be found along the lines
in Bickel et al. (1993), see Drost et al. (1997) for the present time aeries set up. Note that
it is yuite easy ta verify that R~ (0) is indeed the effieient aeore. In the first plaee, R~(B)
is orthogonal to the tangent set T and, secondly, the difference between STr(9) and RT(6)
belongs to this tangent space.

In the case ( ii) where the error densities are symmetric, the tangent apace T consists of
sums of all symmetric functions orthogonal to F(ut). In this case, the difference STr(B) -
RT(B) needs to be a symmetric function. We need to remove the non-symmetric residual
of the projection of ~t onto F. Hence, in the symmetric case the sample average vector
residual is given by

1~rvm (8) - ST`t (B)

- E(Wt) r 0
`0 ~~ x T~{[~G(ut)- G~, F~IIFII-Z F(ut)] }. (II)

r

The conditions to show that R7.y~`(B) is the required efhcient scare are easily verified.

3 Efficiency Comparisons Among ML,QML,SP Estimators

In this section we present the results concerning the moat general time-varying location-
scale model, and in the next section we particularize them for specific models. To simplify
the exposition and because we work with atationary acorea, we refer to one specific element
of the acore auch that Wt becomes W, Wjt becomes Wj, W,t becomes W„ and so on.
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Observe that the expectations E(~F') and E(FF') can be explicitly calculated:

K-~~G, F7- ~ p 2~, L -IIFII2- I~ K~ 1~,

where ~- E(u~) and n. - E(u4). Furthermore `

M -11~GII2
ie the Fiaher-information in the location acale model. Note that M- KL-~K ia poaitive
aemidefinite, aince

M - KL-~K -11~G - KL-IF'll2 .

We introduce some additional notation before stating our main resulta. Define

n-11WII2, A-E(W)E(W)~, E-II-A.

Moreover, define for some arbitrary symmetric positive semideSnite matrix A,

nA -11WA1~2112, AA - E(W)A E(W)~, ~A -~A - AA.

By conatruction these matrices are positive semidefinite.
To facilitate the comparison of asyinptotic variance-covariance matricea we work with

the inverse of theae matricea, V,~~ , V9,~1, and V;pl. We focus in the absolute losaea ( gains).
The relative losses are atraiglitforward to derive from the abaolute ones. Flirthermore,
the construction ofthe asymptotic variance-covariance matrices relies on certain regularity
conditions such as tliose in Bollerslev and Wooldridge ( 1992). Essentially, these conditiona
require the satisfaction of uniforcn weak lawa of large numbers and uniformly positive def-
initeness for (minus) the expectation of the liessian, as well as for the expectation of the
outer product of the score.

Uaing the acore function ( 3), and equationa (4) aad (5), for the maximum likelihood
eatimator we can write

vml -11W~~I~- ~M. (12)

For the quasi maximum likelihood estimator, uaing (7) and (8), we obtain

Vyml -~~CW~,WF)~IWF~I-2 WF 112- IIh-II~IIIx. (13)

For general error distributiona, using ( 9) and ( 10), the semiparametric information bound
can be written as

V;PI -~I W~G - E(W)~~G - KL-I F] 112- Eal-xt-~x f na~t-~x. (14)
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The available information increases if the error diatributions are known to be aymmetric.
The efficient score ia given in (11). Thus, the aemiparametric information bound ia

Vap,iym - ~~ W~Y - E(W )[tG - KL'~F] i" E(W)Z[~G - KL-~~ ~~2
- ~M-AL-~A"-~IIh"L-~tii"AZ(M-AL-~K]Z, (15)

where Z is the indicator matrix Z - [1 0]~[1 0).
Comparisona of expresaions ( 12), (13), and (14) yield the following reaults.

Result 1. For a general error distribution, V;pi - Vqm~ ia a positive aemidefinite matrix.

PROOF: Compaz~ing expressiona (13) and (14),

1 1 I
Vep - Vqm! -~M-AL-~I~" f inKL-~h- - IItiIIL~IIh'}. (1~)

To ahow that the aecond term on the right-hand eide is positive semideSnite, observe that

II~L-~~; - II~,'II~IIIh' -11WKL-1F- IIh'II~1WF~~2 .

This completea the proof. O

Reault 2. For a general error distribution, V,~~l - V;p1 ia a poaitive semidefinite matrix.

PROOF: Comparing expresaiona (12) and (14),

Vm~l -Vsp~ - AM-tiL-~K~ ~ (17)

The following Result 3 can be obtained directly from Resulta 1 and 2. For tranaparency
reaeons, we alao include a direct proof.

Result 3. For a general error distribution, Vm~ - Vq,~~ is a poaitive semidefinite matrix.

PROOF: Using the expressions for the asymptotic information matricea (12) and (13),
we obtain by atraightforward calculations

t ~
Vm~ -Vqm~-nM-F"L-~F f{IIF-L-~t; -IIhII~'IIF'}. (18)

Both terma on the right-hand aide are poaitive aemidefinite. ~

If the error probability density ia known to be symmetric, the efftcient score in the
aemiparametric location-scale context ie sliglitly different from the acore for general error
distributions. Resulta 1 and 2 have to be modified to reflect the additional information.

H



We need to include an additional term Az[al-tiL-~ti]z. The detaile are left to the reader.
Observe, however, that the aymmetric case is not a aubcase of Reaulta 1 and 2. Knowing
that the densities are symmetric yields essentially different scorea.

The joint implication of Results 1, 2, and 3 ia that, with the exception of the nor-
mal density, there is not any other probability density function for which the asymptotic
variance-covariance matrices of the ML, QML, and SP estimators are equal. This is sum-
marized in the following result.

Iiesult 4. For the general time-varying location-scale model, and asauming that i)
E(W) has full rank, ii) dc E R~ (W - E(W))c ~ 0, then

vmll - vsp~ - Vyml (19)

if and only if the probability density function g(.) is normal. Furthermore, equality between
any two variance-covariance inatrices impliea the equality of the three matrices.

PROOP: To prove sufficiency ia straightforward. If the density is normal, then K- L- M,
and (19) followa. To prove necessity, consider the following. If (17) is equal to zero, and i)
holds, then M- KL-~K. If (16) ia equal to zero and iij holds, then M- KL-~K and
n~[G-~K - Rtin~~n~;. If (18) is equal to zero, then (16) and (17) are equal to zero. The
equality M- KL-~K yielda a pair of diffetential equationa for which the only solution
is the normal density. To find the aolution to this ayetem, proceed as in González-Rivera
(1997). O

4 SpeciBc Models

In thia section, we discuss four interesting submodela of the general time-varying location-
scale model presented in Section 3. Depending upon the relation between the parameters in
the mean and the parametens in the variance, we can have: i) A pure time-varying location
model. The parametere of interest are only location parameters. In thie group, we may
include dynamic apecificatione as ARMA models and general regreasion models. ii) A pure
time-varying acale model. There is no conditional mean and the parametera of interest
are only the variance parametera. In thia group we may include any type of conditional
heteroacedasticity specification, auch as the claseic ARCH (Engle (1982)) and GARCH
(Bollcrslev (1986)), Exponential GARCH (Nelson (1991)), Non-linear GARCH (González-
Rivera (1998)), Asymmetric GARCH (Ding et al. (1993)). iii) Block-diagonal models,
where the parameter vector can be split in two groups. One group containa the parameters
in the conditional mean, and the other contains the parametera in the conditional variance,
auch that the conditional variance does not depend upon the parameters in the conditional
mean and the conditional mean doea not depend upon the parameters in the conditional
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variance. In this group, we may include regression modela with heteroscedasticity other
than GARCH, such as multiplicative heteroscedasticity, and ARMA type models, where
the conditional variance is a function of past observationa. iv) Block-triangular models,
where the conditional variance depends upon the full aet of inean and variance parameters
but the conditional mean does not depend upon the conditional variance parameters. In
this group, we may include regression models and ARMA type models with conditional
heteroacedasticity, but we require the ARCH or GARCH pmcesa to be aymmetric as deSned
in Engle (1982), as well as symmetry of the pdf of the errora. For iii) and iv), we present
the aimplified expressions only for aymmetric error diatributiona. In case of general error
diatributiona, the reaulting formulas are not esaentially aimpler than the general onea in
Section 3.

4.1 Location models

In the clasa of pure location models, Results 1, 2, and 3 of Section 3 are greatly aimplified.
This ia due to the fact that we do not have to differentiate the conditional variance with
respect to the parameter of interest. Thus the matrix W consiats of only one column,
W~ -[Wj]. The mstrlcea II, A, and E contain excluaively location information. The
function vector F aimplifiea to F- u becauae the variance of the error distribution ia not
reatricted to one in the location case. The matricea K, L, and M are reduced to numbera
k- 1, l- Eu2 - 02, and m- f(gt~g)2g. This impliea e.g. that expressiona like II,,,
may be written as mII. Under a general error distribution, Resulta 1, 2, and 3 for the pure
location model are

Yspl - Yqml - [Tn - U-2]F.,

Ymtt - Vap~ - [m - ~-2]A~

Y,~rl - vy,~t - [m - o'ZjII.

Under the asaumption A~ 0 and E~ 0, the three estimators have the same asymptotic
distribution if and only if m- 0-2. Thia condition ia only satisfied by the class of normal
distributions. The case of E- 0 ie rather exceptional. It only happena when the derivative
of the conditional mean with respect to the mean parameters ia nonrandom, i.e. the i.i.d.
location model. In this inatance, the aemiparametric estimator is as efficient as the quasi
maximum likelihood estimator. The equality A- 0 can happen in several modele such
aa ARMA models without a conatant term and regresaion modela where the regreasors
have zero expectation. In theae madela, the aemiparametric eatimator is as efficient as
the maximum likelihood estimator for all error diatributiona. This property is known as
adaptivity of the mean parametei~s.

If the error distribution ia restricted to the symmetric clasa of densitiea, we always have
adaptivity of the location parametera, independently of any restriction on the matrix A.
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Resulta 1, 2, and 3 for symmetric densitiea aze

Vsyl - Vqmf - Ifn - O-2]II,

Vm~~ - V,P~ - O,

V,~~l - Vy,n~ - ( m - o-2]II.

4.2 Scale models

Reaulta I, 2, and 3 for the pure tiine-varying acale models aze alao greatly aimplified. The
matrix W consiate of only one column, Wi -~W,]. In contrast to the location model,
the vector function F remaina unchanged becauae tlie error distribution haa two moment
reatrictions. The matricea K and M reduce to the row-vector k-(0 2) and to the real
number m - f(1 f ug~~g)zg respectively. The matrix L ia not affected. For the quaei-
maximum likelihood eatimator, we find that ~m~ -~Bóm~` and that its asymptotic
variance covariance matrix simplifies to V9,~~ -~ll. For general ermr diatributiona,
Resulta 1, 2, and 3 for the pure time-varying acale model are

Vsp~ - Vqml - Im -. 4 2]E f 4~Z y n,ti-I-~ (K-I)(K-I-( )
~ 1 4

Vm~ - V'a - ~m - K - 1 - ~Z]A.

Vm! - Vqmf - Im - K4I]II.

Similaz to the pure location model, E- 0 ia only poasible in the i.i.d. scale model. In
the pure acale models, A~ 0 happens in all practical econometric aituationa. Under the
asaumption E~ 0 and A~ 0, adaptivity ia not possible in the ecale model with general error
diatributiona. However, V,;,~~ - V;P ~ if and only if the following condition holda m-~-~~C'
González-Rivera ( 1997) has shown that thia condition is satisfied by a clasa of aymmetrized
(~ - 0) square root chi-aquared distributions ( among which the normal density is a special
case) and for a class of nonsymmetric distributions wíth ~~ 0.

If ~- 0, V,~,il - V;P1 - V9m~ for the set of distributiona deacribed in González-Rivera
(1997). If ~~ 0, the aemipazametric estimator is always more efficient than the quasi-
maximum likelihood eatimator. In other words, there is no density for which the asymptotic
diatributions of the three eatimators are the aame.

Note that adding a symmetry condition to the set of error diatributiona doea not increase
the information of the aemiparametric estimator in the pure ecale model. Consequently, the
previoua conclusiona remain for the symmetric case.
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4.3 Block-diagonal models

In these models, the parazneter vector is partitioned in two subsets, mean and vaziance
parameters, such that the conditional mean doea not depend on the variance parameters
and the conditional variance does not depend on the mean parameters. The matrix W is
partitioned as followa

W- ~ olm Wë J,
where the superindexes 'm' and 'v' account for 'mean' and 'variance' respectively. We
restrict our attention to symmetric error distributions. Denote the diagonal elements of the
diagonal matrix M by ml and m, (the off-diagonal elements are zero because of symmetry)
and let the block-diagonal matrix II have a upper-left block III and a lower-right block II,.
Results 1, 2, and 3 for block-diagonal models with symmetric error distributione are

V-t - V-t ~ntl - 1]III 0
sp Qml - ~ ~m 4 E~-~J s

Vml -Vyt - 0 0
0 ~m, - ~]A, ) '

V-t - V9 t ~ml - 1JIIl 0
mf ml - 0 Ims - K4IJ~s ~.

Note that the location parametet~s can be adaptively estimated, just as in the pure location
problem with symmetric error distributions. Adaptivity of the ecale parameters will not
hold. The asymptotic efficiency of the three estimators will be identical, i.e. V,~j - V;yt -
Vq„~l, if and only if ml - 1 and m, - 4~(K - 1). These two conditions are joinUy satisfied
only by the norma! distribution.

4.4 Block-triangular models

In these models, the conditional variance depends on the parameters of the conditional mean
but the conditional mean does not depend on the paz~ameters of the conditional variance.
We restrict our attention to symmetric densities. The matrix W is of the following form

w-f Wlm W~ J .U W;

Fltrthermore, if the conditional variance is a symmetric process in the innovations of the
mean model, it can be shown that E(W; W;~) - 0(Theorem 4 in Engle, 1982). Exam-
ples where this orthogonality condition is satisfied are the classical symmetric ARCH and
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GARCH modela. In these casea, the matricea IIF and IIL are block-diagonal, but the equal-
ity IIh~-~h - IIti.II~IIIh. - 0 doea not hold anymore. Neverthelesa, the lower-right block
of this matrix ia zero, and only for the acáe parametera do we obtain the same comparisons
as thoae of the block-diagonal models, i.e.

, -~ ~
VsP~~~ - V9ml~~~ - m, -

V1~,~ - V,P~;I - ~ms -

i i ~
Vml~~~ - V9ml~,~ - ms -

4.5 Numerical Efficiency Losses

For the particular modela of the previoua sections we calculate the relative el~ciency losa of
the QML eatimator with reapect to the ML eatimator.

We consider a set of atandardized probability density functiona for which we compute the
coefficienta of akewnees and kurtosis, and the Fisher information of location and scale. For a
ataadardized Student-t with v degreea of freedom, we have that ~- 0, rc - 3(v-2)~(v-4),
ml - v(v f 1)~((v - 2)(v -~ 3)), and m, - 2v~(v f 3). For a standardized Chi-square with
v degrees of freedom, we óave that (- 2 2 v, ~: - 3(v f 4)~v, ml - v~(v - 4), and
m, - 2v~(v - 4). With these expresaions, the efficiency lose of the QML eatimator with
reapect to the ML estimator ia atraightforward to compute. In the following table we ahow
some examplea where the efficiency losa is quantified for the above mentioned probability
density functiona.

Tàble I
Standardized Shape Characteristics Efficiency Losa

DensitY (V ml.V'~ - 1)9b
ml m, ~ K Mean Par. Variance Par.

Normal 1 2 0 3 0 0
Student-t
v- 5 1.25 1.25 0 9.00 25 150
v- 8 1.09 1.45 0 4.50 9 27
v- 12 1.04 1.60 0 3.75 4 10
Laplace 2 1 0 6 100 25
Chi-Square
v- 10 1.67 3.33 0.89 4.20 67 167
v- 15 1.36 2.73 0.73 3.80 36 91
v- 20 1.25 2.50 0.63 3.60 25 63
v- 30 1.15 2.31 0.52 3.40 15 38
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With the exception of the Laplace diatribution, it can be aeen that the relative efHciency
losa ie larger for the variance parametera than for the mean parametera. Conaequently, the
implementation of a semiparametric eatimator has a lazger pay-off in thoae inatancea in
which the variance pazameters are the parametera of intereat.

5 Conclusions

In thia paper we have quantified the asymptotic efficiency loasea (gains) of the ML, QML,
and SP eatimatore in the context of GARCH modela. We have obtained a set of reaults
for a general time-varying location-scale model. The factora that contribute to differencea
in efficiency among the eatimatora can be divided in two categoriea. One pertaina to the
parametric specificationa of the conditional mean and the conditional variance. The other
correaponda to the ahape characteriatica of the conditional denaity of the atandazdized errors,
summarized in the coefficient of skewneas and the coefficient of kurtoais together with the
Fiaher information for location and acale. We have proven that there ia no probability
density function, with the exception of the normal, for which the asymptotic efficiency of
the three eatimatora ie the same.

Out of the genernl location-ecale modrl, we have extiaCted four particulaz models. In a
pure time-varying location model, the coefficienta of akewnese and kurtoais, and the Fiaher
information for acale do not play any role in explaining efficiency differencea. In a pure
time-varying scale model, there is no need for the Fisher information for location, but the
ccefficient of akewnesa ia important in explaining differencea between the SP and QML
eatimatora, and between the SP and the ML eatimatora. Surpriaingly, however, akewnesa
is irrelevant in determining efficiency differencea between the ML and QML eatimatora. In
the pure acale modela with akewnesa equal to zero, the three eatimatora can have equal
aeymptotic efficiency for other denaitiea than the normal. Apart from pure location and
pure acale modela, we have conaidered two more caaea, block-diagonal modele and block-
triangular models, with symmetric denaity functiona. In the block-diagona) models, the
asymptotic variance-covariance matrices are block diagonal between the mean and variance
parametera. Eeaentially, in these models, the efficiency comparisona reduce to those of
the pure location and pure acale modela together. In the block-triangular modela, the
asymptotic variance-covariance matrices are atill block diagonal between mean and variance
parametera, but it is only for the acale parametera where the efficiency compariaona reduce
to those of the pure acale models.

These results have practical implicationa for the empirical reaearcher. A potential atrat-
egy may be to etart the estimation procesa with a QML methodology. To recapture the
efficiency loasea of the QML eatimator, we need to evaluate the matrix M, the cceE6cient of
skewness and the coefficient of kurtoais of the atandardized residuals. The matrix M can be
eatimated by non-parametric methoda. The matrices II and A are already eatimated in the
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QML estimation. Straightforward application of Results 1, 2, and 3 providea the efficiency
loss. Thie impliee that even with the most inefficient eatimator euch ae QML, the reeearcher
can estimate the maximal ef6ciency bound provided by the unattainable ML estimator.
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