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Abstract: We use a recent simulation-based optimization method, sample-path opti-
mization, to find optimal buffer allocations in tandem production lines where machinea aze
subject to random breakdowns and repairs. We explore some of the functional properties
of throughput oí such systems and exploit these properties to prove the almost sure con-
vergence of our optimization technique, under a regulazity condition on the steady-state.
Utilizing a generalized semi-Mazkov process ( GSMP) representation of the system, we de-
rive recursive expressions to compute one-sided directional derivatives of throughput, from
a single simulation run. Finally, we give computational results for lines with up to 50
machines. We also compaze results for smaller lines with the results from a more conven-
tional method, stochastic approximation, whenever applicable. In these numerical studies,
our method performed quite well on problems that are difficult by current computational
standards.

Key Words: Stochastic optimization, buffer allocation, tandem manufacturing lines,
steady-state throughput, sample-path optimization, generalized semi-Mazkov processes

~Part of this work has been done when the author was at the Depaztment of Industrial Engineering,
University of Wisconsin-Madison.

The reseazch reported here was sponsored by the Air Force Office of Scientific Research, A'v Force
Materiel Command, USAF, under grant number F49620-951-0222. The U. S. Government óas certain
rights in this material, and is authorized to reproduce and distribute reprints for Governmental purposes
notwithstaoding any copyright notation thereon. The views and conclusions contained herein aze those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the sponsoring ageacy or the U. S. Government.



1

1 Problem Description and Related Literature

Finding the optimal buffer allocations continues to be an important problem in the design
and analysis of production systems that operate under uncertainty, especially in systems
where most of the uncertainty is centered azound the availability of machines which are
subject to impredictable and lengthy breakdowns. In capital intensive industries like auto-
motive, even a simple redistribution of total existing buffer capacity may lead to significant
savings in spending, see Ho et al. (1983) or Wei et at. (1989) for example. One of the aims
of the work reported here is to enhance the set of available tools for optimizing the perfor-

mance of tandem production lines, operating under such uncertainty, which can be viewed
as the building blocks of more general production systems.

Tandem queues consist of a number of servers in series with buffers of possibly finite sizes
between the servers. Jobs start at the first server, pass through each server in sequence,
and finally leave the system afte.r being s2rved by the last server. These queues have

been widely used as models for several manufacturing and communication systems; see
for example Buzacott and Shanthikumaz (1992) and Yamashita and Onvural (1994). We

focus on a pazticulaz tandem queue where service rates aze determiniatic and the servers
aze subject to randum breakdowns with associated random repair times. It is common
to use this type of queues to model tandem production linea in which maca~ines are the

servers.
Tandem Lines are a class of production lines which aze extensively used for mass pro-

duction of vazious products. The study of such lines has drawn much attention of engineers
and business managers who want to improve an existing line or design a new one. In any

case, one is faced with an optimization problem in a complex stochastic system: to opti-
mize the performance of the line under vazious financial and~or non-financial constraints.

Possible decision vaziables in tandem production lines include buffer capacities, cycle times
of machines, and repair rates of machines. Recently, there has been progress towazds the
optimization of steady-state throughput, the amount of production per unit time by the
last machine in steady-state, with respect to machine cycle timea. Plambeck et at. (1996)
used sample-path optimization, a simulation-based optimization method, to optimize lines
with up to 50 machines under various linear equality and inequality constraints on the
cycle times. The aim of the current paper is to go one step further and to optimize the
steady-state throughput with respect to 6u,(jer capacities. Under certain conditions, the
existence of a steady-state in tandem queues is guaranteed by regeneration theorems. We
do not go into any detail about such conditions; we refer the reader to, for example Loynes
(1962), Nummelin (1981), and Gershwin and Schick (1983).

Consider a tandem production line with m processing machines (MI,... ,M,,,) con-
nected by m- 1 buffers (Bl, ... , B,,,-~ ). The material processed may be discrete entities
(e.g. assemblies in an automobile factory), in which case we speak of a discrete tandem
(DT) line, or it may be ftuid-like (e.g. chemical production), in which case we refer to a
continuous tandem (CT) line. The time it takes a machine to procPSS one unit of product
is called the cycle time. Notice that in a CT line the natural description for processing rate
of a rnachine is the flow rate which is the reciprocal of cycle time. The product, discrete
or continuous, enters from one end of the line, goes through each machine in sequence,
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Figure 1: The tandem productíon line

finally emerges from the other end as a final product. Since many real world systems can
be modeled by DT lines, they have received a lot of attention in the literature; see Suri
and Fu (1994) and the references therein. One approach to model and analyze DT lines is
to approximate them by CT lines, which is also the approach we will employ in this work.

Our basic model has some additional features: There is infinite supply to the first
machine and infinite demand from the last machine. There are no transfer delays from
machines to buffers, within buffers, or from buffers to machines. A machine can fail only
when it is operational. The amount of product processed by each inachine between its
failures, i.e. the operating quantity between failures for each machine, is a random variable.
The repair time for each machine is aLso a random variable. In the DT line model, cycle
times of machines are deterministic and machines are blocked via manufacturing blocking.
In the CT line model analogous to this DT line, each machine has a deterministic maximum
flow rate, C;; so machine i can work at a rate anywhere between 0 and C;. See Suri and
Fu (1994) for a translation of various input pazameters and performance measures between
these CT and DT lines. It is azgued in Suri and Fu (1994) that a natural failure model
for CT lines, that aze approximations for DT lines, is one in which the next failure of a
machine is determined by the quantity produced since the last failure (as opposed to being
determined by the time of operation since the last failure). The failure model we used in
our CT line model and simulation is therefore based on the quantity produced by each
machine.

A few words about the dynamics of the line are in order: Consider a machine M;. In
addition to its own failures, sometimes M; may have to reduce its production rate or even
completely stop because of the interactions with other machines. For example, if the buffer
B; is full, M; cannot produce at a rate lazger than the current rate of M;fl; in such a case
M, is said to be ólocked. Similarly, if the buffer B;-1 is empty, M; cannot produce at a
rate lazger than the current rate of M;-1; in that case M; is said to be stan~ed.

As a result of such interactions between the machines, one would like to increase the
buffer capacities to make the machines more independent of each other to increase the
throughput. However, due to financial and spatial limitations, increasing the buffer capac-
ities azbitrazily is not feasible in practice. Finding optimal buffer capacities that maximize
the performance of the line and yet do not violate the financial~spatial constraints, is
still an open question in the study of tandem production lines. Analytical results based on
Markov chain representations of the model aze available for only 2- and 3-machine DT lines
(Gershwin and Schick (1983)) and for 2-machine CT lines (Gershwin and Schick (1980)).
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To find the optimal buffer allocation in DT lines, a heuristic method based on a Markov
chain representation was used in Hillier and So (1991); aince the number of states of the
Markov chain grows very rapidly with increasing number of machines and buffer capacities
(e.g. a line with four stations and a buffer capacity of three at each station gives rise to a
Markov chain with 19, 402 states), they could only consider lines with up to 5 machines.

The intractability of analytica] models for long production lines makes simulation an
attractive approach. A method to estimate the sensitivity of line throughput with respect
to buffer capacities in DT lines was introduced in Ho et al. (1979), and these gradient
estimates were then used in a heuristic "hill climbingr algorithm to find the optimal buffer
allocation. As for CT lines, an algorithm based on generalized Benders' decomposition
was developed to optimize steady-state throughput and in-process inventory with respect
to buffer capacities in Cazamanis (1987). To compute the necessazy gradients, the approach
of Ho et al. (1979) was adopted for CT lines; but there was no justification for using a
deterministic optimization technique with noisy function and gradient values to solve a
stochastic optimization problem.

There aze many trade-offs, arising from the complex dynamics of the system, and
people who study these lines usually focus on two common performance measurea: line
throughput (the a.naunt of production per unit time) and in-process inventory. Since the
throughput is random, typically one is concerned with steady-state throughput. We also
focus on that performance measure, since one can put bounds on parts of or on the total
in-process inventory, via additional constraints, as illustrated by the numerical examples in
~5. We aze actually interested in optimizing the steady-state throughput of a tandem line
with many machines under possibly several constraints. Because of the lack of analytical
results for lines longer than two machines, we use a simulation-based optimization method.
Furthermore, as mentioned eazlier, we follow the approach of Suri and Fu (1994) in using
CT line approximations to model and analyze DT lines. It is proven in Fu (1996) that the
continuous production case is the limit of the discrete production case, in a certain sense,
as the piece size approachPS zero while the production rate remains constant.

There aze several reasons why working with CT line approximations is useful. Using CT
lines instead of DT lines brings considerable increase in computational efficiency. Extensive
numerical results on the substantial time advantage of CT simulations over DT simulations
are reported in Suri and Fu (1994). For example, in an extensive study of 192 15-machine
lines, in 2~3 of the 192 cases the ratio of DT simulation time to CT simulation time
was at lea9t 10, whereas in 10 of the cases the ratio was more than 80. Furthermore,
extensive numerical results on both DT and CT lines in Suri and Fu (1994) indicate that
approxiination of DT lines via CT lines is quite accurate. For example, for fairly small
lines (up to six machines), the throughput values obtained from CT line approximations
in Suri and Fu (1994) were very close to the throughput of the original DT line (relative
errors ranging from O.OJo to -2.3010); in an extensive study of 192 15-machine lines, in 90q
of the cases the difference between the DT line throughput and the equivalent CT line
throughput was less than 410. We decided to approximate the DT lines by CT lines, since
CT line simulations aze substantially faster than DT line simulations, the approximations
are quite accurate, and we aze interested in optimizing systems of large size (for which the
increase in the computational efficiency is expected to be even higher).



When addressing the buffer allocation problem, using CT line simulations is very ben-
eficial from optimization point of view as well. First, techniques for continuous parameter
optimization aze much mote advanced than those for disctete parameter optimization. Sec-
ond, dealing with continuous parameters enables us to compute directiona] derivatives of
throughput, using infinitesimal perturbation analysis (IPA), which are valuable for opti-
mization purposes. (In Appendix B, utilizing a GSMP representation developed for the
CT lines in Suri and Fu (1994), we derive recursive expressions for directional derivatives
of throughput with respect to buffer capacities.)

Clearly, the buffer allocation problem in production lines is one instance of a generic
simulation optimization problem: given that one can obtain a function and a gradient value
at a pazameter setting, locate an optimizer of the performance function. When faced with
this problem, people often used some form of the stochastic approximation method; see
Robbins and Monro (1951) or the single-run optimization variant Meketon (1987). These
methods aze known to have a number of drawbacks. First, their empirical performance is
very sensitive to the choice of a predetermined step size. ~ and Healy (1992), L'Ecuyer
et al. (1994), and Glasserman and Tayur (1995) contain a number of examples which
demonstrate this sensitivity. Second, since they are mainly first-order gradient methods,
they are often thought to experience more difficulties on lazge problems than on small
problems. Third, in case of constrained optimization, these methods handle inequality
constraints -even linear inequalities- via projection onto the feasible set. In general, this
can retazd the performance of an algotithm immensely, as is illustrated by an example in
Appendix 6 of Plambeck et nl. (1996). In that example, such a method requires neazly 1043
steps to find the minimizer (the origin) of a lineaz function on the nonnegative orthant R~.
Notice that this difficulty does not arise in case of linear equality constraints since one can
reduce this to an unconstrained problem by appropriate affine transformations. Finally,
if the function being optimized is non-differentiable, then the stochastic approximation
method becomes a vaziant of subgradient optimization; see Correa and Lemaréchal (1993)
for example. That method is known to be very slow and it also suffers from other drawbacks
such as the lack of a good stopping criterion and the difficulty in enforcing feasibility as
mentioned above.

Recently a new rnethod called sample-path optimization that overcomes some of these
difficulties was proposed in Plambeck et a!. (1996) and analyzed in Robinson (1996). The
method exploits the fact that the performance function we want to optimize is the almost-
sure limit of a sequence of approximating functions (outputs of simulations of runs of
increasing lengths, all using the same random number streams). That is, if we go out
faz enough along the sample path we get a good estimate of the limit function. Being a
deterministic function, this resulting estimate can then be optimized using deterministic
optimization techniques. One of the most powerful features of sample-path optimization
is the availability of superlinearly convergent (fast) deterministic optimization methods
that can handle constraints explicitly. Using these methods we can often optimize the
approximating function to high accuracy in relatively few function and gradient evaluations.
This is pazticularly important when function and gradient evaluations aze expensive. The
method can be used even when the performance function or the sample functions aze non-
differentiable (convexity of the functions is required in this case), this time using methods of
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non-smooth convex minimizat.en, such as bundle algorithms, in the optimization scheme.
Another useful feature of this approach is its modulazity; the computation of function
acid gradient values is sepazated from the optimization. This enables the use of already
existing simulation codes (if they also provide gradient values or can be modified to do so)
together with optimization codes that call external subroutines for function and gradient
evaluations. If the system simulated is lazge and complex, and the optimization code is
sophisticated, then the advantage of modularity becomes more substantial.

Since the optimization problem we are facing is a difScult one with possibly several
vaziables and constraints, we believe that sample-path optimization can be an appropriate
technique to solve this problem. Roughly speaking, the method we propose consists of
fixing a single sample point (by the method of common random numbera) and a relatively
long run (i.e. we do not make multiple runs or "batch", for the purposes of averaging or
constructing a distribution) and working with the resulting deterministic function. Using
the recursive expressions we derive in Appendix B, we compute an exact directional deriva-
tive of this deterministic function. Therefore our simulation procedure should be viewed
as a subroutine providing a function and a gradient evaluation of a deterministic function
at a given parameter setting. We then connect this to a standard nonlineaz programming
solver whic6 requires an external snhtou4ine providing function and gradient values, and
solve the problem. Furthermore, by showing certain functional properties of throughput
along with a niceness condition, we can verify that a set of sufficient conditions, mentioned
in g2, that guazantee almost-sure convergence of our procedure holds. In other words, we
show that under a regulazity condition on the steady-state, the optimizer computed using
the scheme just described, converges almost surely to the correct optimizer as we go faz
enough on the sample-path.

The remainder of this paper is divided into four main sections. In ~2, we discuss
the basic ideas behind the sample-path optimization method and cite a set of sufficient
conditions that guazantee the almost-sure convergence of the method. In g3, we discuss
some functional properties of throughput and show how they can be used to prove that the
conditions cited iu ~2 hold, guaranteeing the convergence of the sample-path optimization
method when applied to the buffer allocation problem. In ~4, we explain and discuss several
issues related to the way we compute directional derivatives of throughput from a single
simulation run. In ~5, we present some computational results. Finally, ~6 contains some
concluding remarks. At the end, there aze two appendices containing additional technical
details. Appendix A has some of the technical results used in g3. Appendix B contains
a brief description of the GSMP representation of Suri and Fu (1994) and our derivation
of recursive expressions for computing directional derivatives of throughput, based on this
GSMP representation.

In our view, the present work makes the following contribution:
- To present a solution approach for a difficult stochastic optimization problem which nat-
urally arises in manufacturing systems. Some recent developments in modeling stochastic
systems and optimization via simulation (such as modeling fluid systems using GSMP's and
satnple-path optimization) aze assembled together and applied to a well-studied but not
well-solved problem. The approach is proven to be convergent under mild conditions and
its empirical effectiveness is demonstrated by succesfully solving some numerical examples



which are considered very difficult by current standards.
- To demonstrate that as a sirnulation-based optimization method, sarnple-path opti-
mization, has a number of features that makes it both theoretically and practically a
user-friendly and effective method for solving difficult problems, unlike more conventional
methods such as stochastic approximation. The conditions for convergence can be veri-
fied on non-trivial, difficult problems. Exact gradients simply computed by IPA, even for
threshold-type parameters, can be succesfully used in connection with it. It is a numerically
robust procedure; several vaziables and vazious constraints can be handled easily.
- To show how path-wise functional properties of performance measures can be useful aside
from providing qualitative guidelines and insights, and give references to work reported
elsewhere, for addítional exposition and details regarding properties of throughput in buffer
capacities.

Flrrthermore, the approach we use here is cleazly applicable to several other dif6cult
stochastic optimization problems in the manufacturing and operations area. Broadly speak-
ing, the same approach is used in Giirkan and Karaesmen (1997) for finding optimal hedging
points of a production flow controller, in the sense of Bielecki and Kumaz (1988). There,
the fluid version of the problem is considered and the dynamics of the controller are mod-
elled as a GSMP; GSMP framework lets us work with multiple states, and not only with
exponential distribution but with fairly general distributions. Utilizing the GSMP repre-
sentation, the sensitivity estimates of a cost function, consisting of inventory and backlog
costs, with respect to hedging points are computed. These sensitivity estimates are then
used in connection with sample-path optimization for finding the optimal solution. To this
end, we also hope that the present work makes this solution procedure accessible, both
theoretically and operationally, to other researchers trying to solve other difficult probleins
which this approach could be applicable.

2 Sample-path optimization method

In this section we describe the basic ideas behind sample-pat.h optimization, a simulation-
based method, for optimizing performance functions in certain stochastic systems; we also
mention a set of sufficient conditions that guazantee the convergence of the method. We
do not go into any technical detail and refer the interested reader to Robinson (1996),
which also contains a brief survey of related techniques and ideas similar to sample-path
optimization that have appeared in the literature. A comprehensive summary of the prop-
erties of the method is given in Giirkan et al. (1994) which also reports the performance of
the method on a small closed queueing network. An alternative set of conditions to those
developed in Robinson (1996) for proving the convergence of the method aze provided in
Giirkan et al. (1996, 1997). This new set of conditions substantially broadens the class
of problems to which the method is applicable; in pazticular it enables the solution of
stochastic vaziational inequalities using the sample-path technique.

Many problems in simulation optimization can be modeled by an extended-real-valued
stochastic process {L„(x) ~ n- 1, 2, ...}. The L„ take values that may be real numbers or
foo, whereas the pazameter x takes values in Rk. For each n~ 1 and each x E Rk, L„(x)
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are random variables defined on a common probability space (SI,.F,P). Using extended-
real-valued random vaziables is very convenient for modeling constraints, since one can
always set Ln(x) - foo for those x that do not satisfy the constraints. In what follows,
we use the term "proper" for an extended-real-valued function f. It means that j never
takes the value -co and it is not identically foo.

The method assumes the existence ofa limit function L~ such that the Ln almost surely
converge pointwise to L~ as n-i oo. For many systems, such existence and couvergence
can often be inferred from regeneration theorems and~or the strong law of large numbers.
In the following we refer to Ln(x) as the sample function and we write Ln(w,x) when we
want to emphasize the dependence of Gn(x) on the sample point w.

Let us demonstrate this setup with a simple example. Suppose that we aze analyzing
an M~M~1 queue and we are interested in the steady-state system time of a customer,
denoted by L~. Let Ln be the average of the system times of n customers, i.e. Ln is
the output of a simulation of run length n(n service completions in this case). From the
regeneration theorems we know that under certain conditions on the pazameters of the
system L~ exists and the Ln converge pointwise to L~ along almost every sample path.

We aze interested in finding the infimum and, if it exists, a minimizer of L~. In general
we can onl,y observe Ln for finite n. Therefore we approximate minimizers of L~ using
such information about Ln. The method is simple: fix a lazge n and w E S2, compute
a minimizer x;,(w) of Ln(w,.), and take x;,(w) as an approximate minimizer of L~(m,.).
Note that minimizers of L~(m, .) may generally depend on the sample point w. However,
in many practical problems for which one would anticipate using this technique L~ is a
deterministic function, for example a steady-state performance function or an expected
value, i.e. it is independent of w.

As shown in Robinson (1996), the conceptual method of sample-path optimization con-
verges with probability one under three hypotheses: the approximating functions Ln(w, -)
are lower semicontinuous and proper; they epiconverge to the limit function L~ (c,~, -); and
the limit function L~(w, .) almost surely has a nonempty, compact set of minimizers. For
a precise statement of this result, see Theorem 3.7 and Proposition 3.8 of Robinson (1996).
Note that since numerical methods used in practice find solutions that are approximate,
the behavior of the method when e-minimizers (points yielding an objective function value
within some positive tolerance e of the minimum value) are computed is quite important
from a practical point of view; results in Section 4 of Robinson (1996), especially Theorem
4.2, show that the behavior of the method remains unchanged in that case.

Since epiconvergence is possibly an unfamiliaz kind of convergence, we give its definition
below.

Definition 1 A sequence Ln of extended-r~al-valued functions defined on Rk epiconverges
to an extended-real-valued function G~ defined on Rk (written Ln ~ L~) if for each
x E Rk the following hold:

a. For each sequence {xn} converging to x, L~(x) c Iiminfn~~Ln(xn).
6. For some sequence {xn} converging to x, L~(x) ~ limsupn1~ Ln(xn).

Note that in (b) we actually have L~(x) - limn~~ Ln(xn), because of (a).



It is known that epiconvergence is independent of pointwise convergence in the sense
that neither implies the other. For a very readable elementazy treatment of the relation-
ships between different types of convetgence, see Kall (1986). The forthcoming book by
Rockafellar and Wets (1997) contains comprehensive treatment of epiconvergence and re-
lated issues; we thank the authors of that book for making the extracts of a draft version
available to us.

Notice that once we fix n and a sample point w, L„(c.~, x) becomes a deterministic func-
tion of x. With this observation, very powerful methods of constrained and unconstrained
deterministic optimization are available to use on L,,. In the smooth case we can appl,y
superlineazly convergent methods like the BFGS algorithrn (or a variant of it in case of
constraints) to minimize L„ to high accura.cy in few function and gradient evaluations.
For more information on these algorithms see Fletcher (1987) or Gill ct al. (1981). Use of
superlinearly convergent methods enables us to be confident about the location and the
accuracy of the minimizer of L,,; i.e. we can differentiate between the errors due to the
approximation of L~ by L„ and those due to the inaccurate computation of a minimizer
of L,,. With slower algorithms like stochastic approximation this is difficult, if not im-
possible. If the sample functions and~or the performance function we want to minimize
aze nondifferentiable and convex, then we can use the Bundle-Trust method; see Kiwiel
(1990). We emphasize that in both the smooth and the non-smooth case, the deterministic
solution methods available can handle constraints explicitly and without any difficulty.

An unanswered question about this method is how large a sample should be chosen
to get a good estimate of the limit function L~, and hence to get a good e.gtimate of the
solution. When L~ is an expectation in a static system and a sample mean construction is
used to estimate it, then under certain regularity conditions one can use a certain type of
central limit theorem to choose n so as to achieve a good estimate of L~; see Rubinstein
and Shapiro (1993). In other situations, such as the dynamic setting here, one can solve the
problem for increasing values of n and observe the convergence behavior of the solutions.
As employed in Plambeck et nl. (1996) and examples in ~5, this approach has produced
good results for lazge problems and complicated systems.

In this section, we summazized the basic ideas behind sample-path optimization and
mentioned some of the potential advantages it has over more conventional simulation op-
timization techniques. We also cited one set of sufficient conditions which guazantee the
convergence of the method with probability one. In the next section, we will show how to
verify that these conditions hold for a lazge family of problems.

3 Convergence of the method

We focus on minimizing a combination of the reciprocal of steady-state throughput (the
amount of production per unit time by the last machine in steady-state) and a cost func-
tion. We use this functional form to model a problem where one wants to maximize the
throughput but there aze costs associated with increasing the buffer capacities. Since the
sample-path optimization method can easily handle additional constraints, one can put
bounds on parts of or on the total in-process inventory as well (as illustrated by the exam-



9

ples in ~5). In this section, we mention some properties of throughput as a function of buffer
capacities and discuss their implications on the convergence of sample-path optimization.

We fix a sample path of length T and let 6T(b) be the sample throughput when
b-(bl,... ,b,,,-i) is the vector of buffer capacities. In Gurkan and Ozge (1997), we
provide a mathematical framework to model the dependence of throughput on the buffer
capacities and the maximum machine flow rates. By exploiting that framework it is pos-
sible to prove certain fiinctional properties of throughput. Below, we show how to use
these properties together with a regulazity condition on the steady-state to verify that the
siifficient conditions (mentioned in ~2) for the almost-sure convergence of the method hold.
This is not common in simulation optimization literature. In a few cases where convex-
ity (of the functions involved) was present, it was possible to verify the assumptions of
sample-path optimization or stochastic counterpazt method (a closely related technique);
see Plambeck et al. (1996) and Shapiro and Homem-de-Mello (1996). On the other hand,
the assurnptions needed to guarantee the convergence of stochastic approximation are usu-
ally numerous, tedious, and difbcult to validate in practice; see Haurie et al. (1994) or
Andradóttir (1996) for example. Therefore, in the past people usually had to resort to
simulation optimization without much theoretical support and rely on indirect, numeric
vcrification techniqnPS.

In the next result, we deal with the upper semicontinuity of sample throughput. This
is important for two reasons: convergence analysis of sample-path optimization for our
problem requires upper semicontinuity of sample throughput, and lack of upper semicon-
tinuity in a function to be maximized may cause great dif8culties when doing practical
optimization.

Theorem 1 ForT E [O,oo), 6T is an upper semicontinuous function ojb with proóability
one.

Piroof. See Giirkan and Ozge (1997).
As can be seen from Figure 2, 9T for T E[0, oo) cannot be lower semicontinuous; see

Giirkan and Ozge (1997) for a discussion on this. Fortunately, as mentioned in ~2 and can
be seen in Theorem 3.7 aiid Proposition 3.8 of Robinson(1996), the upper semicontinuity
of 6T suffices to prove the convergence of the conceptual method; the discontinuity of the
sample functions does not constitute a problem from the theoretical point of view.

It is also possible, to show the monotonicity of throughput in buffer capacities. Results
of this nature have appeared in the literature for DT lines, see for example Meester and
Shanthikumar (1990). Although the monotonicity of throughput in buffer capacities has
been part of the folklore, see tor example Ho et aL (1983), as faz as we aze aware a formal
proof has not appeared in the literature for CT lines before. Below we use the term
"non-decreasing" for a function f : Rk --~ R, by which we mean that f(x1,... ,xk) 1

f(yi, ..., yk) whenever x; 7 y; for i- 1, ..., k.

Theorem 2 For T E [0, oo], AT is a non-decreasing function of b with probnbility one.

Prnof. See Giirkan and Ozge (1997).
This monotonicity result together with a technical lemma about epiconvergence of

monotone functions can be used to show the following result.
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Figure 2: The throughput of a 2-machine CT line for different run lengths.
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Proposition 1 Assume that urith probabiláty one,
a. e7~ -i eao.
6. O~ is upper semicontinuous.
Then with probability one, 1~9T ~ 1~6~.

Proof Use Theorem 2 with Proposition 2 of Appendix A.
Proposition 1 shows that 1~6T -i I~A~, provided 6~ is upper semicontinuous.

Intuitively, one even expects it to be continuous: the steady-state throughput of a line
should not be very sensitíve to arbitrazily small clianges in the buffer capacities. In a
2-machine line, the continuity of steady-state throughput is provided by the analytical
formula derived in Gershwin and Schick ( 1980). For longer lines we are not aware of
results of this nature, although computational evidence strongly indicates that steady-
state throughput is indeed a continuous function of buffer capacities, see Figure 2. Figure
2 displays the throughput of a 2-machine CT line, where operating quantities to failures
and repair times are exponentially distributed, for different run lengths T. In extensive
numerical experiments ( also for longer lines) we observed the same kind of behavior: a
discontinuous function with frequent jumps of large sizes when T is small, a smooth function
when T is lazge.

To verify the convergence conditions, we also need to show that aii extended-real-valued
function derived from 1~OT ( a finite-real-valued function), 6y restricting it to a nonempty
closed set, is proper. We will do this via the next result, Theorem 3. It basically states
that ( independent of the observation length T) the throughput of a system with infinite
buffer capacities is bounded above ( by the maximum flow rate of the last machine) and a
system with no buffer capacities would still produce a positive throughput.

Let Wy be the operating quantity between the (p - 1)st and the pth failures at M;
and Ry be the repair time of M; after the pth failure. The analysis in this paper does not
depend on the particular distributions chosen for the random vaziables Wy and Rp ( as long
as they aze not deterministic), except in Theorem 3. This is the only result in which we
will cnake a distributional assumption: We assume that for each i and p, random vaziables
WP and R'y are exponentially distributed with means w; and l~r; respectively, and show
that AT(0) ) 0 for any T, which means that a CT line with no buffer capacity has still
positive throughput. We also used exponential distribution in the numerical experiments
reported in ~5. Essentially any distribution whose support is on ( 0, oo) can be used; the
choice of the exponential distribution is made for ease of exposition, in both cases.

Theorem 3 Assume that for each i and p, mndom variaóles WP and R'y are ezpo-
nentially distributed with means w; and l~r; respectively. Then for T E [O,oo], 1~6T
is a unijormly bounded and strictly positive function of 6 with probability one; that is
0 G 1~C,,, c 1~6T(b) G 1~6T(0) G oo for any 6.

ProoJ 0 G 1~C,,, G 1~6T(b) G 1~6T(O) is obvious, since the throughput is bounded by
C,,,, the maximum flow rate of the last machine, in any case. We now show that for any
T, (~T(0) ~ 0.

When b- 0, the line operates at the rate of the slowest machine, say C,,,;,, and it
stops ( i.e. fails) whenever one of the machines fails. Since there is no buffer between the



Iz

machines and the product is continuous, this particular m-machine line degenerates to a
I-machine line but with possibly more complicated failure and repair distributions. We
have 9T(0) - QT~T where QT is the amount produced by this 1-machine line in (O,T].
For this equivalent 1-machine line, define

Xi: operating quantity between the (i - 1)st and ith failures of the machine,
Y;: repair time after the ith failure.
Observe that the X; are exponentially distributed random vaziables with rate

wi 1 f--. f w;,,~ and the probability density function (pdf) of Yi is given by

-t -~

Ï(t) - -1 wl -I ri ~ e2P(-r~t) t ... ~- -~ wn` t r,n - exp(-rmt),wl ~ . . . ~ wm wl ~ . . . .~ wm

by conditioning on which machine has failed. Since QT 1 min{X1,C,,,inT} and X~ ~ 0
with probability one, we have QT~T 1 0 with probability one for any finite T.

Let to - 0 and tn - time of the nth repair for n~ l. Then tn -~; ~(C,,,~nXi t Y;)
and the amount produced at time tn is ~; 1 X;. For any T E [tn-i, tn], the ratio QT~T is
smallest either at T- tn-I or at T- tn (the quantity produced remains constant between

tn-1 f cmin`Yi and tn). SO

n ~.
iTf QT - inf ~'-1 `

n ~.i-l(CminXi f yi)

By the strong law of lazge numbers,

I n 1 1-1 I n (T1TU1)-1 -F- ... ~(rmwm)-1- ~ ,yi -i (w~ ~ . . . ~ w;,, ) and - ~ y, -~
n i-1 n i-1 wi1~...~.~mt

Hence

as n -i oo.

~it Xilim ~ 0.
n-~oo ~.i1(CminXi ~- Yi)

So K - infT QT~T ~ 0, and we conclude that AT(0) ? K~ 0, for any T. 1

As mentioned eazlier, in our computations we minimized a combination of reciprocal of
throughput and a coat function subject to a set of constraints. The cost function usually
captures the information regazding costs of buffer capacities whereas the constraints specify
the admissible allocations in terms of technological, finaneial, or spatial restrictions. Let
hT :- a~6T t Qf be the finite-real-valued function that we are interested in minimizing
where a and (i are scalars and f is a cost function of 6. Let A be a nonempty closed
constraint set and define a new family of extended-real-valued functions {gT} by taking
gT - hT on A and gT - foo off A. In Proposition 3 of Appendix A, we show that if {hT}
has certain properties, then {gT} also has the same properties. We use this technical result
in the proof of our main convergence result, Theorem 4, which shows that the sample-
path optimization inethod converges when applied to the optimization of throughput with
respect to buffer capacities.
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Theorem 4 Suppose that, with probability one, 9~ is an upper semicontinuous funetion
of b mzd f is a continuous, non-decreasing, non-negative function that is norm-coercive:

i.e., f(b) -~ oo as ~~b~~ -i oo. Let A be n nonempty closed set and {fT} be a sequence
of lower semicontinuous cost funetions associated with buffer capacities that converge uni-

formly on compact sets to f. Then for su,~ciently large T nnd any positive scalars ~ and
(3, the set of minimizers oj ~-}. (~fT on A is nonempty and any point in it is cloae to
some minimizer of ~ t Qj on A, with pmbability one.

Prooj. The function ~ f-Qf is lower semicontinuous, and it is norm-coercive because f is
norm-coercive and ~ is bounded below by zero. Thus the set of minimizers of ~ f~3f
on Rt-1 is nonempty and bounded; it must also be closed by lower semicontinuity. Use
Theorem 1 to see that each ~ t QfT is a lower semicontinuous function of b. Then apply

Theorem 7.44 of Rockafellaz and Wets ( 1997) and Proposition 1 to get ~.{- f3fT ~
~ f Qf. Let gT be ~ f(3fT on A and ~-oo off A. Use Theorem 3 and Proposition 3 of
Appendix A to observe that {gT} satisfy the requirements of Theorem 3.7 and Proposition
3.8 of Robinson ( 1996). 1

Remark 1 Although Theorem 4 allows us to work with a seyuence of funetions {JT}, a
typical choice would be to use the constant sequence in which fT - f :- ~;"il b; for every
T, as we did in the numerical examples in ~5. This functional form models a problem in
which one wants to maximize the throughput but tliere are costs associated with increasing
the buffer capacities.

Theorem 4 tells us that, provided a regularity condition on the steady-state of the sys-
tem holds, if we go out far enough in the sample-path, then each apptoximate optimization
problem will have a solution, and each such solution we compute is close to a true solution
of the limit problem. Note that if the approximate minimizer found by the optimization
code is a local minimum then it is close to a local minimum of the limit function; if it is
a globa] minimum then it is close to a global minimum of the limit function. We should
emphasize that in the absence of convexity of the function being optimized, standard non-
linear optimization codes can only guarantee to find a local minimum which may or may
not be a global minimum.

4 Gradient Estimation

In the previous section, we have discussed the theoretical issues that arise when using
sample-path optimization to find optimal buffer allocations in tandem lines with unreliable
machines. We now turn to issues that arise in practical implementation.

Recall that the solution methodology we use consists of fixing a long sample path
and optimizing the resulting function using the most powerful deterministic optimization
algorithms available to us. Most of these algorithms require that function evaluations at
a given parameter setting be supplemented by sensítivity information. Modern simulation
techuology provides us with gradient estimation techniques such as the likelihood ratio



14

or the score function method (Rubinstein and Shapiro (1993)), and perturbation analysis
(Glasserman (1991) and Ho and Cao(1991)); these methods usually enable us to obtain
(approximate) gradient evaluations from a single realization of the sample patli.

In our computations, we use a simulation code written by Bor-Ruey Fu, hased on a
generalized semi-Markov process (GSMP) representation of CT lines developed in Suri and
Fu (1994); we thank him for making this code available to us. In Appendix B, utilizing
that GSMP representation, we derive recursive expressions for the one-sided directional
derivatives of throughput with respect to the buffer capacities.

A GSMP can be thought as a mathematical framework which models the evolution of
a discrete-event simulation. An excellent description of this framework can be found in
Shedler (1993). The basic idea of a GSMP can be explained as follows: There is a set of
states and a set of events. The GSMP jumps from one state to another upon the occurrence
of an event; at each state there aze some active events. At any time, each active event
is associated with a clock representing the residual lifetime of that event and a speed at
which the clock runs down. If the clock corresponding to event e in state s equals k and
the speed at which this clock runs is r, then e is scheduled to occur after k~r units of time.
The next event and the time until it occurs ase always determined by the smallest clock
reading~clock speed ratio.

Upon the occurrence of an event, changes may occur in the physical state, clock settings,
and clock speeds: If event e occurs in state s, the process may move to a new state s' wíth a
certain probability p(s'; s, e); the set of active events changes with the state; clocks for any
old events which remain active continue to run in the new state; new clocks are initialized
for all new active events and for the event which just occurred if it is also active in the new
state. The initial value of each new clock for event e in state .s is a random variable with
a prespecified cumulative distributíon function F(.; s, e). This goes on until a termination
criteria is reached. Although, in the past GSMP's were mainly used to model systems with
discrete entities, they can also be used to model fluid systems; see Suti and Fu (1994) and
Gnrkan and Kazaesmen (1997).

In Appendix B, we first brieRy outline the GSMP representation developed in Suri and
Fu (1994) for CT lines. Next, utilizing this GSMP representation, we derive a recursive
formula to compute exact one-sided directional derivatives of throughput with respect
to buffer capacities, in a single simulation run. The resulting infinitesimal perturbation
analysis algorithm in the form of a pseudo-code that can easily be incorporated into a
simulator can be found in g5.4 of Gurkan (1996).

The estimators we derive are solely based on data from the operation of the system at a
single set of parameter values. They are therefore easily computable from a single simula-
tion run or even from real data. We believe that this type of sensitivíty information would
prove to be useful even if it is not used in connection with a sophisticated optimization
algorithm. In the rest of this section, we explain a few key ideas and discuss some issues,
related to the estimator we derive in Appendix B.

As mentioned earlier, we use infinitesimal perturbation analysis (IPA) to compute one-
sided directional derivatives of throughput, 6(6). Since the sample throughput is a dis-
continuous function, we cannot work with its gradient, instead we work with its one-sided
directional derivatives; see for example Rockafellar (1970) for more on one-sided directional



ls

derivatives. Let f: Rm-1 -i R be a function which has one-sided directional derivatives
at a point b-(61,... ,bm-~) with respect to the positive unit vectors, then IPA computes
aii array whose jth component is

dtÍ- Í(6fOb.yi)-Í(b)
db~ - óió 06

where yj is the jth unit vector in Rm-1. If in addition f is differentiable at the point
6, then the azray computed is the gradient. In either case, such information would be
valuable for optimization purposes. In the following we use dt(. )~d6~ to denote the one-
sided directional derivative of (.) at the point 6 with respect to the vector y~; at points
where (- ) is differentiable, it should be understood that df (.) ~db~ stands for the derivative
of (.) with respect to 6~.

Let the sample path ( obtained by fixing w E 12) of the underlying stochastic system
operated at the base point b be called the nominal path; whereas the sample path (with
the same fixed w) of the system operated at the perturbed point 6 -~ 06 is called the
perturbed path. Let t„ be the time of nth event. Two sample paths aze said to be similaz
in [0, t„] if and only if the order of the events is the same for both paths. In other words,
two sample paths are similar if the same sequence of states occur in the same order even
though the state transition times of these sample paths may be different. "Similarity" of
the nominal path and the perturbed path (or sometimes a weaker form of it) is a standazd
issue one needs to deal with when developing IPA algorithms. Our work is no exception.
Let to, tl, ... be the event occurrence times in a sample path and r; - t; - t;-~ be the
time between the (i - 1)st and ith events. We assume that along any sample path of
finite length, say n events, with min{Tk~k - 1, 2, ... , n- 1} ~ 0, thete is always 06~ 1 0
(depending on the sample path) small enough such that increasing 6~ by ~b~ does not
cause any event order change; that is the perturbed path and the nominal path are similaz.
This similazity assumption is crucial for the IPA construction we will employ to compute
d}6(b)~d6~. Unfortunately, checking the validity of the similazity condition rigorously
for CT lines seems to be fairly burdensome. In Giirkan ( 1996), p. 80-82, we present a
suf8cient condition which guarantees the similazity of the perturbed path and the nominal
path. Under this condition, it is possible to show that, given any finite t,,, there exists
with probability one a small positive number ë( which may depend on the sample path)
such that if 0 G 06~ G ó for each j, then the perturbed path is similaz to the nomina! one
in [0, t„]. The intuitive idea behind this is that on the sample path of this discrete event
dynamic system, any two events are separated by a finite time interval with probability one,
provided that the distribution functions of all the random variables involved in the GSMP
(operating quantities between failures and repair times of machine M; for i- I,... ,m in
our case) aze independent of each other, concentrated on (O,oo), absolutely continuous,
and have finite means. Hence, for a path of finite length we can always arrange to have
the accumulated perturbations on the perturbed path be smaller than such finite time
intervals; see Giirkan ( 1996) for a rigorous discussion on this.

The sample throughput can be defined as A(b) - Q~T(Q), where Q is the prespecified
volume to be produced by the last machine and T(Q) is the time required to produce Q
when 6- ( 61,... ,6m-1) is the vector of buffer capacities. Without loss of generality, we
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assume to - 0, q;(to) - 0, and U;(to) - 0 for i - 1,... ,m. If the rzth event is the event
that the cumulative volume produced by M,,, equals Q, then T(Q) - t„ and we have,

dt6(b) - dt Q Q dtT(Q) - Q dtt„
db~ db~ (T(Q)) - -T2(Q) db~

- tn db~ . (4.1)

From ( 4.1) we see that O(6) has a one-síded directional derivative with respect to y~ at b if
and only if t„ has one. In Appendix B we show that t„ has the desired property and derive
a recursive expression for dtt„~db~, which is a quantity computable from the simulation
information generated up time t,,.

A very closely related work is reported in Fu (1996). There an IPA algorithm to
compute the paztial derivatives of throughput with respect to the flow rates of machines
was developed. Some of our results in Appendix B have been adapted from Fu (1996), and
this is noted where applicable. In several cases these adaptations involved additional proof
and~or extension of the result.

Remark 2 A GSMP is non-interruptive (in the sense of Schassberger (1976)) if a clock,
once set, continues to run until the associated event occurs. The GSMP representation, of
Suri and Fu (1994), for the CT line always violates this condition. For example, suppose
M; is failed and M;tl is operational at time t, and a buffer empty event, say LïE;, is
scheduled to occur at time t t Ot. Let v;(t) be the flow rate of M; at time t. If M; is
repaired at time t',where t' G t-I- Ot and v;t1(t') c v;(t'), then the event CiE;, which was
active at time t, is no longer scheduled at time t'. In this case [iE; is interrupted by the
repair of M;.

It is worth noting that violation of the non-interruption condition makes the generic
IPA gradient estimation algorithm of Glasserman (1991) not directly applicable. It also
rules out the applicability of the results, developed in Glasserman and Yao (1992a,19926),
for c.hecking the first and second order properties of stochastic systems that can be modelled
as non-interruptive GSMP's. Note that we are not ruling out the possibility of constructing
another GSMP representation, for this system, whích is non-interruptive or the possibility
of modifying some results of Glasserman (1991) or Glasserman and Yao (1992a,19926) so
that they aze applicable to interruptive GSMP's. However, both of these approaches would
require further investigation which is not the subject of this paper.

Remark 3 An important problem in gradient estimation literature has been the devel-
opment of estimators with good asymptotic behavior. The convergence theorems and
convergence rate results for stochastic approximation methods are concerned with the un-
biasedness of this estimator; for example see Kushner and Clark (1978). An additional
advantage of sample-path optimization is that the convergence of the conceptual method
is independent of the asymptotic properties of this estimator. As mentioned earlier, when
using sample-path optimization the only requirement from the practical point of view is
an exact gradient or a directional derivative (whichever is available) of the sample function
to be optimized. If IPA is applicable to a problem, then the resulting gradient estimator
naturally satisfies this requirement.
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5 Numerical Experiments

We now report the results of three set of numerical experiments which we used to test
the empirical performance of sample-path optimization (SPO). In some of these problems,
we compazed the performance of SPO with the performance of stochastic approximation
(SA). Although the single-run optimization (SRO) variant of SA appeazs to perform better
than classical SA for some problems in the literature (Leung (1990)), we used SA in our
compazisons. This is due to the fact that applying SRO to the buffer allocation problem
would require certain nd hoc techniques which we did not want to go into. (For example,
one would need to deal with issues such as: if B~ is full at an iteration and the algorithm
prescribes to reduce its capacity at the next iteration, should we throw away some of the
contents of B~? If so, how should we use such volumes in the calculation of line throughput,
if at all? etc. )

In all the experiments conducted, the objective function was of the form

m-I
minLn(b) :- c' enl(6) f~ b~

i-l

where c is a scaling constant specific to each prublem and nr. is the number of machines
in the line. As mentioned above, this functional form captured the tradeoff of cost (of
increasing the buffer capacities) against throughput. In all cases, the operating quantities
between failures and the repair times of the machines were exponentially distributed with
specified means.

DESCRIPTION FOR SPO
As the optimizer for SPO, we used the deterministic nonlinear optimization code

E04UCF of NAG Fortran library, Mazk 16 (NAG (1993)). The routine E04UCF is essen-
tially identical to NPSOL (Gill et al. (1986). This is a sequential quadratic programming
method incorporating an augmented Lagrangian merit function and a BFGS quasi-Newton
approximation to the Hessian of the Lagrangian.

The code determined the total number of simulation runs K required to find an ap-
proximate minimizer using SPO; this decision was controlled by the "Optimality Tolerance
(OptTol)". The pazameter OptTol specifies the accuracy to which the user wishes the final
iterate to approximate a solution of the problem. Broadly speaking, OptTol indicates the
number of correct figures desired in the objective function at the solution. For example, if
OptTol is 10-s, the final value of L„ should have approximately six correct figures. When
there are only lineaz constraints, E04UCF considers a point "optimal" if the current step
length, the norm of the seazch direction, and the norm of the projected gradient become
sufficiently small. Although we only imposed lineaz constraints in the numerical results
reported here, E04UCF is capabl~ of handling nonlinear constraints as well; in the pres-
e~ICe of nonlinear constraints, to be considered "optimal", the point should also satisfy an
additional stopping criteria; see NAG (1993) for additional details.

DESCRIPTION FOR SA
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For the application of SA to problems with only simple bound constraints on the buffer
sizes, we generated a sequence of points according to

b,ti - n~(b' - no9`)i
where g' is an estimate of the gradient or the directional derivative ( whichever is available)
at b`, ao is the predetermined step size constant, and II~(-) is the projection onto the
feasible set ~ determined by the bound constraints. It is well known that if one does not
impose explicít bounds on the variables to ensure the boundedness of the iterates, the SA
algorithm may diverge. Therefore in all the experiments reported here we used simple
bound constraints to ensure that the SA algorithm did not suffer írom unboundedness
problems.

For problems with additional lineaz equality constraints on the buffer sizes, we took a
different approach that exploits this special structure. The idea is to reduce the dimen-
sion of the problem via affine transformations and solve an unconstrained problem in a
lower dimensional space. Let us demonstrate this approach on the following optimization
problem: min f(x) subject to Ax - d where x E R", f: R" -i R, A is an m x n matrix
with full row rank m ( C n), and d E Rn`. Applying QR factorization to Ar, we find an
orthonormal n x n matrix Q and an upper triangular m x m matrix R such that

AT - Q ~ ~ I .

Let L - RT and paztition Q-[Ql QZ], whe`re

Qllh

and Qz are n x m and n x(n - m)
matrices respectively. Then we get A[Q1 Qz] -[L 0]. It is not difficult to check that any
feasible point x can be written as x - Q2z ~- Q~L-~d with z:- Q2 x E R"-~`

In other words, any x E R" can be transformed to a point in Rn-n` ( which can be
thought as a model for kernelA) via QZ x. Similazly, any z E R"-n` can be transformed
to a feasible point in R" via Q2z f QIL-ld. Now if we write ~(z) - f(Q2z f Q~L-~d),
the problem we want to solve becomes

min m(z).
zERn-m

Hence if we impose m independent lineaz equality constraints on an n-dimensional problem,
we will effectively solve an unconstrained optimization problem with n- m variables. See
for example Gill et a!. ( 1981) or Fletcher ( 1987) for more on these issues.

Therefore when there are only lineaz equality constraints, we can summazize the steps
of the SA algorithm as follows:

Step 1: Given b` and g', compute z` - QZ 6' and d~' - QZg`.
Step 2: Compute z't~ - z' -~d~'.
Step 3: Simulate at b`fl - Q2z'}1 ~ Q1L-Id to get g'tl, let i- á f 1, and go to Step

1.
We could iterate according to this scheme if we did not have to impose the bounds on

the vaziables. To haudle this issue we transformed the bounds on x, l c x G u, into lineaz
inequality constraints on z as:

1 - Q1L-ld ~ Q2z c u- Q1L-ld. (5.1)
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We can handle general lineaz inequality constraints on x using the same idea; Bx G e
would be transformed to z-space as:

BQ2z C e - BQ~L-ld. (5.2)

After each step in the reduced space we had to project onto the region where the in-
equalities (5.1) and (5.2) are satisfied. Note that after the affine transformations, simple
bound constraints on variable x become general lineaz inequality constraints on vaziable
z. Therefore, in the presence of either simple bounds or additional linear inequality con-
straints, to maintain feasibility one has to do a non-trivial projection in the z-space.

To solve problems with lineaz inequality constraints and~or bounds, we need to modify
Step 2 of the above algorithm as follows:

Step 2': Compute z`tl - IIs,(z' - i-~aad~') where IIy,(-) is the orthogonal projection
onto the feasible set

~-{z I!- Q~L-Id C Qpz G u- Q1L-ld, BQ2z G e- BQ1L-ld}.

The projection onto a feasible set defined by lineaz inequalities can be carried out by
s9lving a minimization problem with quadratic objective function and lineaz inequality
constraints. For this purpose we used E04NAF of NAG Fortran library, Mazk lb (NAG
(1993)). This routine is essentially identical to SOL~QPSOL described in Gill et a(. (1986).

EXAMPLE 1

The first set of experiments is with a 3-machine line. We considered two sepazate
cases, a balanced (i.e. symmetric) (Problem 1) and an unbalanced (Problem 2) line, and
compazed the performance of SPO and SA. Table 1 contains the data for these problems.

In both problems, the bounds ! and u had each element equal to zero and 200 respec-
tively. We chose the upper bounds large enough so that they were inactive azound the
solution. The scaling constant c was 10,000 for Problem 1 and 5,000 for Problem 2. We
solved each problem from two different initial points and the random number seeds for the
simulation were consistent for both methods. Since for small n the resulting functions were
discontinuous, we used n- 2, 000, 000 volumetric units per simulation call to get a good
estimate of the limit function. To get two decimal digit accuracy in the objective function
values, we set OptTo! to 10-s in Problem 1 and to 10-5 in Problem 2. As mentioned above,
the code E04UCF determined K, the total number of simulation runs to find an approx-
imate minimizer using SPO. In each case, for the SA algorithm we then made the same
number K of simulation runs, each run corresponding to one iteration of the algorithm.

We solved two versions of each problem: (A) only simple bounds, (B) an additional
lineaz equality constraint. The additional lineaz equality constraints were bl f 62 - 100
and b~ t 6z - 40 for Problems 1 and 2 respectively. For SA, in the presence of simple bound
constraints anly, we used 140 and 90 as ap for Probletn 1 and 2 respectively; we changed
the values of ao to 1.2 and 2.6 respectively after introducing the equality constraint. The
results for the balanced line with only simple bounds and the additional lineaz equality
constraint appeaz in Table 2 and 3 respectively. Corresponding results for the unbalanced
line aze suminazized in Table 4 and 5.
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Table 6 contains the "optimal" solutions, which we found by using SPO with a very large
computational effort; 50,000,000 volumetric units per simulation run. This was feasible
since these aze small lines. In Table 6, ~~ZTg~~ represents the norm of the projected gradient
which should be approximately zero around the solution. The "Error" column in Table
2-5 is the Euclidean distance between the final point and the optimal solution of the
corresponding problem.

A few words about the ao values used for the results in Table 2-5 aze in order. In all
four cases, we needed to spend considerable effort to find a good value of ao. This "sensi-
tivity to the initial step size choice" is an important difficulty experienced by most SA-type
methods, as our own experience confirmed. Each of the reported ao is found after trying
at least 10 different values, the first few to find the correct magnitude, the rest to fine-tune
the value so that correct convergence occurred in specified number of iterations. This was
feasible since these were small problems and we knew where the "optimal" solution was. In
a study in which one does not have a priori knowledge about the location of the optimizer
or in which the problem size is not small, this sensitivíty issue would constitute a more
serious problem (as we see in the next set of experiments).

EXAMPLE 2
Problem 3, the second set of experiments which we compared the performance ot SPO

and SA, is with a 15-machine line. This problem is motivated by related research done
at Ford Motor Company, see Wei et al. (1989). Table 7 contains the specifications of the
line. As in the first set of experiments, the vectors l and u had each element equal to zero
and 200 respectively. Again, these bounds were lazge enough so that none of them was
active at the optimal solution. We chose c to be 7, 000 and used n- 1, 000, 000 volumetric
units per simulation run. We considered two versions of the problem: (A) linear equality
constraints, (B) additional linear inequalities and bounds (some of which are active at the
optimal solution). The equality constraints used aze as follows:

b3fb4f65-60, ó7fbsfós-50, bitfót2fbta-70, btz-f-biatóta-45.

Table 8 contains the results for (A). We set OptTol to 10-5 and started from the
infeasible point b-(50,20,100,50,50,15,70,20,10,15,25,20.5,24.5,0) which is projected
to the feasible initial point specified in the table. The SPO method converged after 11
iterations. For SA, since this is not a small line (it takes around 12 minutes to compute
one function and gradient evaluation when n- 1, 000, 000, with a DEC 5000), it was
not feasible to try many values for ap. We tried 1,5,10,20; the resulting final points are
reported. We found the "optimal" solution by SPO using n- 5, 000, 000 volumetríc units
per simulation run and 10-s as OptTol. At the "optimal" point the objective function
value is 4078.87 and the norm of the projected gradient ~~ZTg~~ is 2.0E-1.

For (B), we added the following inequality constraints:

bl t bz ~ 75, 25 ~ 63, bs C 30, 40 C blo, 20 G b~2. (5.3)
Table 9 contains the results. We observed convergence to the final point by SPO in 11
iterations. For SA, we tried 7, 10, 12, 15 as ap. We again found the "optimal" solution by
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using SPO with OptTol set to 10-6 and n- 5, 000, 000; the final objective function value
is 4108.80, the norm of the projected gradient ~~ZTg~~ is 1.0E-1, the first three inequality
constraints are active while all others aze inactive at the "optimal" solution. As before,
"Error" in Table 8 and 9 is the Euclidean distance between the final point and the optimal
solution of the corresponding problem.

EXAMPLE 3
The last set of experiments is with a 50-machine line; as a result of our experience

with SA for 15-machine problem, we only applied SPO in this case. Table 10 contains the
data of the line. We chose c to be 10, 000 and set OptTol to 10-4. We first considered
an unconstrained problem, Problem 4A. Due to the size of the line, we took a different
approach to solve this problem. We first let n- 200, 000, stazted from a vector of 10's,
and found an approximate minimizer. Next, we took this point as our initial point and
increased the run length to n- 500,000. Finally, we increased n to 1,000,000. Table
11 shows the approximate minimizers found each time. Table 12 contains the number of
iterations K, the objective function value and the norm of the gradient at each point. We
decided to accept the point when n- I, 000, 000 as "optimal" since the algorithm took
only one iteration, the Euclidean distance between it and the previous point was small, and
the norm of the gradient was close to zero. In Teble 12, "Ecrar" is the Euclidean distanee
between each point and the final point when n- 1, 000, 000; we also report the function
value at each point when n- 1,000,000.

We also solved a constrained problem, Problem 4B, with the following constraints:

10 25 30 40
~b;-175, ~b;-210, ~6;-100, ~b;-120, (5.4)
i-1 i-11 i-26 i-31

49 14
~ b; - 150, bl ~ 10, blo G 10, ~ b; ~ 50, (5.5)
i-a 1 i- u

ls 2a 42
~ b; ~ 20, 621 ? 10, ~ b; c 90, 633 1 10, ~ b; ~ 40,
i-n i-zz i-ao (5.6)

7 39 32 49
~ b; ~ 75, ~ b; 1 42, ~ b; 1 100, 645 ~ 10, ~ b; c 60.
i-3 i-34 - i-29 - i-47

We started from the infeasible point b -(5,5,5,5,5,20,20,20,20,20,15,15,15,15,15,
5,5,5,5,5,25,25,25,25,25,20,20,20,20,20,15,15,15,15,15,5,5,5,5,5,10,10,10,10) which
is projected to the feasible initial point b- (10, 11.875, 11.875, 11.875, 11.875,
26.875, 26.875, 26.875, 26.875,10, 12.5,12.5, 12.5, 12.5,12.5, 2.5, 13, 4, 4, 4, 24, 24, 24, 24,
11.33,11.33, 11.33, 46, 20,17,17,17,17,17, 7, 7, 7, 7, 7, 35, 35, 35, 35,10, 0, 0, 0, O). We repeated
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exactly the same experiment we did for the unconstrained problem; the corresponding re-
sults are shown in Table 13 and 14. The constraints in (5.4-5.6) are active while all others
aze inactive at the optimal point when n- 1, 000, 000.

SUMMARY OF NUMERlCAL EXPERIENCE

The results of our numerical experience can be summazized as follows.
1. Since for small n, the sample throughput is a discontinuous function, as illustrated

in Figure 2, it is necessazy to use fairly long run-lengths to get a good estimate of the
steady-state throughput.

2. The cost function appears to be quite flat near the optimum. In other words, neaz the
optimum, the cost does not vary much. As a consequence, though our algorithm does not
always terminate at the same buffer capacities, the costs at termination aze consistently
very close.

3. Although the results reported in Table 2-5 suggest that both methods work equally
well on small problems, due to the several trials to find a good value of ao, the computational
effort spent in finding each SA solution was at least 10 times the effort spent for the
corresponding SPO solution. In lazger problems, the issue of finding a"good initial step
size" becomes a more important difficulty.

4. In general we found SPO an efficient and robust method to work with: one can start
with an initial run length and a desired accuracy, compute an approximate minimizcr, and
increase the run length and~or the desired accuracy until no considerable improvement in
the solution is observed.

6 Conclusion

We have presented some results of using sample-path optimization to find optimal buffer
allocations in tandem production lines with unreliable machines. We discussed some strua
tural properties of throughput and how these properties together with a niceness condition
on the steady-state can be used to prove the convergence of the conceptual method. We
also discussed the basic ideas behind developing an IPA algorithm to compute directional
derivatives of throughput with respect to buffer capacities. Finally, we have presented the
results of some numerical experiments. In these numerical studies, our method performed
qllite well on problems that are difficult to solve by current computational standards.

Under a niceness condition on the steady-state of the system, the solution procedure
we propose is guaranteed to provide accurate solutions for the buffer allocation problem in
CT lines. On the other hand, when the main goal is to solve the buffer allocation problem
in DT lines, depending on the particular problem of interest, our procedure can still be
useful: One can start with the DT line and approximate it by a CT line, for example using
the guidelines of Suri and Fu (1994), solve the resulting continuous parameter optimization
problem and find the optimal buffer configuration using the procedure outlined here, and
translate the results back to the DT line setting again. Alternatively, if the discrete nature
of the problem is really important and have to be addressed, then our procedure can be used
in connection with a discrete optimization method and speed up the solution procedure to
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a great extent, for example by providing a good starting point.
Possible directions for future research may include the following.

. In proving the convergence of sample-path optimization, we imposed the upper semi-
continuity of (~~ as a regularity condition. Although extensive numerical cxperiments
we performed indicate that it is indeed a continuous function of buffer capacities,
more theoretical work is needed to prove this.

. More experiments may bring more insight and better understanding to the problem
and to the capabilities and strengths of the solution methodologies we considered.
We hope that our numerical examples demonstrated that these tools can successfully
be used to gain more insight about buffer allocation problems.

. It would be interesting to test this scheme of approximating a DT line by a CT
line, finding its optimal buffer configuration using sample-path uptimization, and
translating the resulting CT line parameters back to the DT line setting, on a real-
world probletn. One can then compaze the empirical performance of sur,h a scheme
with the performance of other heuristics especially developed for DT lines.

i Although the tandem lines we studied in this work were originally inspired by prodttc-
tion~assembly systems, the underlying ideas could be useful in applications involving
telecommunication and traffic systems where fluid models are commonly used, or
in other difficult optimization problems in manufacturing~operations azea. Working
with fluid approximations, in the context of simulation optimization, has several ad-
vantages: potential gains in computational efficiency, possibility of computing exact
directional derivatives of the performance measures of interest (e.g. by utilizing a
GSMP representation of the fluid model), and using this sensitivity infortnation in
connection with simulation optimization methods.

. The work reported here is another encouraging sign that sample-path optimization
will contribute to the solution of difficult problems; the method proves to be especially
useful in solving problems with many vaziables and~or constraints. However, there
is still more work to be done on both theoretical and operational issues involved
in using the method successfiilly in optimization of more general production línes
and~or other classes of problents.
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Appendix A: Technical Results for Section 3

We prove a general result about the epiconvergence of non-increasing functions; it is
used in the proof of Proposition 1 in ~3.
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Proposition 2 Assume that with probnbility one,
a. Ln -) Lpp.
b. L~ is lower semicontinuous.
c. Each Ln(1 c n G oc) is a non-increasing function.
Then with probability one, Ln ~ L~.

Proof Construct a set P of ineasure zero such that whenever w~ P, Ln -i L~
pointwise, L~ is lower semicontinuous, and for each n- 1, ... , oo, Ln is a non-increasing
function. Choose any w~ P and for brevity omit the sample point w from Ln and L~.

We first prove that Ln aze (almost) equi-lower semicontinuous, i.e for any x E Rn and
e~ 0 there exist a neighborhood U(x, c) and a number N(x, e) such that Ln(y) 1 L„(x) -e
for each
y E U(x, e) and n ~ N(x, e). Fix x and e~ 0. Since L~ is lower semicontinuous,
we can find a ó 1 0 satisfying L~(y) ~ L~ (x) - e f 3 for y E IIm I[x; - ó, x; f á). We
also have Ln(x f ó) ~ L~(x f á) and Ln(x) -i L~(x) by pointwise convergence where
(x ~- ó) means (x1 f ó, ... , x,,, f ë). Hence we can choose N such that Ln(x f ó) 1
L~(x f ó) - ef 3 and L~(x) ~ Ln(x) - e~3 for n J N. Then for n? N,

Ln(y) ? Ln(xtó) ~ L~(xfë)-e f3 ~ L~(x)-ef3-ef31 Ln(x)-e~3-2ef3 - Ln(x)-e.

Now, Ln ~ L~ follows from Theorem 5 of Kall ( 1986). 1

The following result shows that when there is a sequence of finite-real-valued func-
tions with certain properties, these properties are preserved by the extended-real-valued
functions constructed by restricting the finite-real-valued functions to a nonempty closed
constraint set.

Proposition 3 Let A be a nonempty closed subset of Rk, and let {hn~l G n C oo} be a
sequence of finite-real-valued random junctions on A. Assume that with probability one the
following hold:

n. Each hn is lower semicontinuous and domain of hn (the set on which hn is finite-
real-valued) is nonempty.

b. hn -~ h~.
For 1 G n G oo define a function gn to 6e hn on A and foo off A. Then the family of

functions gn almost surely satisfies the following:
i) Each gn is lower semicontinuous and proper.

eii) 9n -~ 900.

Proof. Properness is immediate. The rest of the proof is similar to Proposition 2.4 of
Robinson (1996); we skip it to save space.

Appendix B: Recursions Based on the GSMP Representation for CT Lines

We first briefly outline the GSMP representation developed in Suri and Fu (1994) to
model CT lines. In what follows, when t is the time of an event, take f(t) - f(t}) for
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every function f of t. We start by defining the vaziables which correspond to the physical

state of the system.
Let a;(t) be the state of M;, i- 1, ... , m, where

D if M; is down ( failed),
O if M; is operational at full capacity C;,

a'(t) -
S if M; is starved,
B if M; is blocked.

Let v;(t) E[0, C;] be the flow rate of M;, i- 1, ..., m and x~ ( t) E [0, b~] be the level of
B~,j-1,...,m-lattimet.

The set of event types is E- {.F;, R;, LiF~, LiE~, Tf : i- 1, ..., m, j- 1, ..., m- 1},
where

.F; represents the failure of M;,i - 1,... , m

R; represents the repair of M;, i- 1, ..., m

BF~ represents the becoming full of B~, j- 1, ... , m- 1

C3E~ represents the becoming empty of B~, j- 1, ...,m- 1

Tj represents the termination of simulation.

We assume that the simulation is terminated when the last machine produces Q units of
product. Now, we can describe the clocks and associated clock speeds. Let k(e, t) be the
reading of the clock for event e at time t and r(e, t) be the speed at which that clock runs
down. E(t) is the current set of active events, i.e. the set of events with r(e, t) ~ 0. Then
the next event to occur is given by

e' t ar min( ) - g {k(e't) ~e E E(t)}
r(e,t)

When more than one event satisfies the "argmin" on the RHS, in principle, any con-
sistent tie breaking rule may be used; the authors of Suri and F~ (1994) suggest using the
lexicographic order by event name.

Define W;(t) as the remaining volume to be produced by M; until failure whenever it
is operational, U;(t) as the remaining time to the repair of M; whenever it is failed, and
q;(t) a-v the volume produced by M; up to time t. Recall that b~ was defined to be the
capacity of buffer B~, for j- 1, ... ,m- 1. Then the clock readings and the clock speeds
are defined as in Table 15.

Note that the units for the clock readings are different: W;(t) is in volume units whereas
U;(t) is in time units. The speed associated with each clock essentially converts these
units into standazd time units. To understand why these choices of clocks and speeds are
appropriate and to see a detailed account of changes that take place upon the occurrences
of events in different states, we refer the reader to Suri and F~ (1994).
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e

k(e, t)
r(e,t)

W;(t)
vi(t)

L3F~

~viÍt)-vitl(t))t ~vitl(t)-v~l

Table 1: The clock readings and associated speeds

U;(t)
I{o,(1)-DI

CiE~
b- 2(t) x(t) Q - 9m(t)

Remark 4 If the termination criteria were simulating the CT line for a prespecified
amount of time T instead of a prespecified quantity Q, we would need to modify k(e, t)
and r(e, t) for e - Tj: k(e, t) - T- t and r(e, t) - 1 for all t. Furthermore, although
it may require additional modifications, a non-deterministic termination time or quantity
rule can also be handled in this framework, as long as it is based on a stopping time.

Next, by utilizing this GSMP representation, we show how to compute exact one-
sided directional derivatives of sample throughput with respect to buffer capacities, in a
single simulation run. Let to,tl,... be the event occurrence times in a sample path and
r, - t; - t;-t be the time between the (i - 1)st and ith events. Recall that we assume
to - 0, q;(to) - 0, and U,(to) - 0 for i - 1,... ,m. If the nth event is the event that the
cumulative volume produced by M,n equals Q, then T(Q) - tn and we have,

dtG(b) - dt Q Q dfT(Q) - Q dttn
dbj dbj (T(Q) )--TZ(Q) dbi - t,~, dbj ~

In the following we show that tn has the desired property and derive a recursive expression
for d}tn Jdbi, which turns out to be a quantity computable from the simulation information
generated up time tn.

For n - 0, 1,... let en~l be the (n f 1)st event; then

entl - e'(tn) - argmin{
k(e, tn)

le E E(tn)} and
r(e,tn)

k(en}Irtn)
tnfl - tn f Tnfl where Tntl -

r(en}]rtn)

Let yi be the jth unit vector in Rni-1. Here is the main theorem.

Theorem 5 For n 1 0, tntt has a one-sided directional derivative at b with respect to yi
Jor a1l b and j- 1, ... , m- 1 given by

d}tntl - d}tn I dtk(entt~tn)
( )dbi dbi } r(entl,tn) dbi
6.1

The proof of Theorem 5 is by induction. First we prove a few technical lemmas and then
proceed with the proof of the theorem.

Lemma 1 For all n - 0, 1,..., r(enfl,tn) has a one-sided directional derivative at b with
respect to yi for alt b and j- 1, ... , m- 1 that is 0.
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Proof. Observe that at any event time tn, v;(tn) is equal to either one of Ct,... , C,,, or
to 0. Thus v; ( tn) is a function of Ct, ... , C,,,, and tn. Of those vaziables only tn depends on
the buffer capacities. As a consequence of similazity for small enough ~6 , 0, tn (b } ~by~ )
is still the occurrence time of the nth event. Hence v;(tn(6 i- Oby~)), the flow rate of M;
at time tn(b f Obyi), must be the same as v;(tn(b)). The same argument applies to ~; to
give a;(tn(6 i- Obyi)) - a;(tn(b)). The clock speeds of events aze functions of either a; or
v;; therefore we must have r(en}t,tn(b ~-~byi)) - r(e„}t,tn(b)). So

d}r(en}t, tn) - lim r(en}l, tn(b f ~byi)) - r(en}l, tn(b)) - 0. 1
d6~ oalo 06

The next lemma will start the induction.

Lemma 2 tt, rt, U;(to) and q;(to) for i- 1, ... , m, have one-sided directional derivntives
at b urith respect to y~ for all 6 and j - 1,... ,m - 1. These are given by d}U;(to)~dbj -
d}q;(to)~db~ - 0 for nll i and j, and

d}tt d}Tt d}k(et, to) 1 - J r:- 1 tÍ ez - gF.,l {-7) vi to -vi}i W t
db~ - d6~ - db~ r(el,to) - 0 otherurise.

Proof. Since we stazt to operate the CT-line at time to - 0, we have q;(to) - 0 and
U;(to) - 0 for all i- 1,... ,m. Obviously q;(to) and U;(to) aze independent of bj; hence
they aze differentiable functions of 6~. Since tt - rt - k(et,to)~r(el,to), to prove the
assertion about tl and rt it is enough to show the following facts about k(et, to) and r(el, to)
(the result will then follow from elementary properties of one-sided directional derivatives):
(a) r(et,to) ~ 0; (b) r(et,to) has a one-sided directional derivative at b with respect to yi
for a116 and j- 1, ..., m-1 that is finite; ( c) k(el, to) has a one-sided directional derivative
at b with respect to y~ for all 6 and j- 1,... ,m - 1 that is finite. Since et E E(to), (a) is
immediate from the definition of E(t) and ( b) follows from Lemma 1. To see (c), observe
that E(to) -{.F;, BF;,Tj : i- 1, .. ., m}. So we have

r Wi if et - .T;,
k(et, to) - 11l 6; if et - gFi,

Q if et - Tj.

Thus k(el,to) is a differentiable function of 6~ for j- 1,... , m - 1 whose derivative is
either 0 or 1. 1

Remark 5 We have asaumed that when we stazt to observe the CT-line all machines are
up. Our results would go through with slight modifications for a different set of initial
conditions.

Lemma 3[adapted from Proposition 3.4 of Flt (1996)~ Suppose that U;(tn-t) jor i-
1, ..., m and rn have one-sided directionat derivatives at 6 with respect to y~ for al! b and
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j- 1, .. . , m- 1. Then U;(tn) hns a one-sided directionaf derivative at b with respect to y~
for all b and j- 1, ... , m- 1 given by

dtUi(tn) d~U~y"-~ - db if 1Z E F.(t )i ~ a n i
db~ - p otherwise.

Proaf. Recall that

Ui(tn)
Ui(tn-1) - Tn if R, E EÍtn),

- 0 otherwise.

The result follows by taking the one-sided directional derivative of the right-hand side of
equation (6.2) at b with respect to y~. 1

Lemma 4[adapted from Proposition 3.2 of Fu (1996)] Suppose that qi(tn-1) for i-
1, ..., m and rn have one-sided directiona! derivatives at b with respect to y~ for all b and
j- 1,... ,m - 1. Then q;(tn) has a one-sided directional derivative nt 6 wáth respect to y~
for all b and j- 1, ... , m- 1 given by

d}9i(tn) d}4i(tn-1) d}Tn
db - db. i-vi(tn-1)' db '~ ~ i

Proof. Since v;(t) is constant between adjacent events, we have qi(tn) - 9i(tn-i) f
v; (tn-t ). rn. F~om the proof of Lemma 1 it is clear that dv;(tn-I ) f d6~ is 0; hence the result
follows. 1

Lemma 5 [adapted from Proposition 3.5 of Fh (1996)] Suppose that U;(tn) and q;(tn) for
i- 1, ... , m have one-sided directional derivntives at b with respect to y~ for all b and
j- I,... ,m - 1. Then k(entl,tn) has a one-sided directionnl derivative at b with respect
to yj for nll b and j- 1, ..., m- 1 given 6y

dtl.'(enfl, tn)
db~

-dt;t„
dói

df U; t„
dói

I dt:t,. }dt: ~ t~
{i-j} - dy~ dp~

d}9;~tn) - d}9; ~ tn
~i ~
-dfqm(t~

en;

tf entl - ~i,

4f Cn}1 - ~i,

iÍ enti - ~Fi, (6.3)

tÍ entl - QEir

if enti - Tj.

Proof. Let Wr be the random vaziable denoting the operating volume between the
(r - 1)st and the rth failures at Mi. If the (n -F 1)st event is the pth failure of Mi, i.e.
entt -.P;, then

P

k(Pnflitn) - Wi(tn) - ~Wr -4i(tn).
r-1
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Hence
~~-1 W,' - 4i(tn) if enti - ~;,
U;(tn) if enti - ~;,

k(Pntl, tn) - bi -[4i(tn) - 9it1(tn)] ~f entl -~Fi,
4i(tn) - 9it1(tn) if entt - gE;,
Q- 4m(tn) if enti - TJ.

The result follows immediately. 1

Now we are ready to prove the main theorem.
Proof of Theorem 5. Lemma 2 provides the stazt of the inductive argument. Suppose

that tn,Tn,4t(tn-i) and U;(tn-1) for i- 1,... ,m have one-sided directional derivatives at
b with respect to yj for all b and j - 1, ..., m- 1. First apply Lemma 3 and Lemma
4 to get the one-sided directional differentiability of q;(tn) and U;(tn). Then Lemma 5
implies that k(entl, tn) has a one-sided directional derivative at b with respect to yj for all
b and j- 1, ..., m- 1. Using elementary properties of one-sided directional derivatives
along with Lemma 1 we conclude that rnt~ has a one-sided directional derivative at b with
respect to yj for all b and j- 1, ... , m-1. Since tnti - tnfrnti, the one-sided directional
derivative of tnfl at 6 with respect to yj is given by

dttnt~ dttn } 1 dtk(enti,tn). 1
dbj - dbj r(enti, tn) dbj

Notice that equation (6.1) provides a recursive representation for dtnti~dbj.
In the terminology of perturbation analysis, Theorem 5 and Lemmas 1-5 describe how

perturbations at the time of an event affect perturbations at the time of the next event.
To make this complete we need three more results which describe how the perturbations
at one machine affect the perturbations at adjacent machines.

Proposition 4(adapted from Proposition 3.5 of Fu (1996)] If M; fails at tn, then

dt4i(tn)-0 for j-1,...,m-1.
dbj

Proof. If the nth event is the pth failure of M;, then the total volume produced by M;
up to tn, q;(tn), is equal to Wi t W2 -~ ... t Wp, which does not depend on the buffer
capacities. The result follows immediately. 1

The following two propositions aze related to the buffer events 6F; and [iE;.

Proposition 5[adapted from Proposition 3.6 of Fu ( 1996)] If M; is blocked by M;tl at
tn, then

dt9i(tn) dt4;~ 1(tn) ~ j{i-j) for j- 1,... ,m - 1.
dbj - dbj

ProoJ Since M; is blocked by M;t~, the buffer B; must be full at tn. Therefore the
difference between the volume produced by M; and M;tl must be equal to the buffer
capacity b„ i.e. q;(tn) - q;tl(tn) - b;. The result follows immediately. 1
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Proposition 6[adapted from Proposition 3.7 of Fu (1996)] If M, is starved by M;-~ at
t,,, then

d}4i(tn) dtqi-1(tn) for j- 1, ... , m- 1.
db~ - db~

Proof Since M; is starved by M,-t, the buffer B,-i must be empty at t,,. Therefore
the volume produced by M; up to time t„ must be the same as the volume produced by
M;-1 up to time t,,, i.e. qi(tn) - qi-1(tn) - 0. 1

Remark 6 Again, if our termination criteria were simulating the CT line for a prespecified
amount of time T, we would define the throughput as 6(b) - q,,,(T)~T. Then when tn - T
for some n, we have

d}8(b) - d} qm(T) d}9m(T) 1 - d}9m(tn) 1
db~ db~ ( T)- db~ T- db~ t„ ~

We also need to modif 6.3 áS d}kl`k'~'tkl --d}~ if ek~l - 7 since k e ~ kY( ) dy~ ~` I~ ( kf~,tk) sT-t
in that case.

The above results completely specify the perturbation generation and propagation rules
and provide a recursive formula for d}9(b)~db~. Using this IPA algorithm we can compute
the exact one-sided directional derivative of O(b) at any b in a single simulation run. ~5.4
of Gurkan (1996) contains the pseudo-code, excerpted from Fu (1996), to simiilate CT
lines, and the pseudo-code of the IPA algorithm we developed in this appendix; the steps
(needed for IPA algorithm) added to the basic simulation algorithm aze mazked as "IPA".
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1

problem m
cycle times
of machines

mean volume
to failure

mean time
to repair

1 3 0.2 0.8 0.2 100 100 100 10 10 10
2 3 0.045 0.07 0.03 160 240 120 2.0 1.2 1.0

Table 2: Specifications of 3-machine CT lines

SPO SA
Initial
point K

Final
point "Error"

Final
point "Error"

95 105 9 56.85 56.60 8.0E-1 56.45 55.80 3.2E-1
30 30 7 56.35 56.83 7.5E-1 56.71 53.63 2.5E0

Table 3: Solutions generated by SPO and SA for Problem lA

SPO SA
Initial
point K

Final
point "Error"

Final
point "Error"

80 20 7 49.93 50.07 1.6E-1 50.06 49.94 2.8E-2
10 90 11 49.95 50.05 1.3E-1 49.88 50.12 2.3E-1

Table 4: Solutions generated by SPO and SA for Problem IB



2

SPO SA
Initial
point K

Final
point "Error"

Final
point "Error"

10 10 11 37.19 24.13 6.6E-1 41.58 23.16 3.SE0
83 17 7 38.20 24.06 3.5E-1 37.35 23.14 1.1E0

Table 5: Solutions generated by SPO and SA for Problem 2A

SPO SA
Initial
point K

Final
point "Error"

Final
point "Error"

20 20 5 23.42 16.58 4.2E-2 23.23 16.77 3.l)rl
5 35 8 23.60 16.40 2.1E-1 23.54 16.46 1.3E-1

Table 6: Solutions generated by SPO and SA for Problem 2B

Problem 6` L„(6") ~~Z g~~
lA 56.26 56.06 9141.94 4.0E-3
1B 50.04 49.96 9146.18 0.0
2A 37.85 24.11 868.13 7.0E-2
2B 23.4516.55 874.94 5.0E-4

Table 7: "Optimal" solutions to Problem 1 and 2
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machine cycle time
mean volume

to failure
mean time
to repair

1 0.230 100 10.0
2 0.430 90 4.5
3 0.306 100 6.0
4 0.250 90 4.5
5 0.350 90 4.5
6 0.400 100 5.0
7 0.200 90 5.4
8 0.333 90 5.4
9 0.280 90 4.5
10 0.320 90 5.4
11 0.308 120 6.0
12 0.400 100 8.0
13 0.300 90 1.8
14 0.360 90 4.5
15 0.240 90 4.5

Table 8: Specifications of the 15-machine CT line

SPO SA

Initial
point

Fi~ial
point

ao-1
Final
point

ao-5
Final
point

ae-10
Final
point

ae-20
Final
point

"Optimal"
solution

b~ 50.0 58.34 49.35 50.87 53.34 54.36 55.92
bz 20.0 47.68 21.47 31.90 47.02 82.57 47.14
63 53.3 14.01 43.26 23.26 15.90 10.00 13.32
b4 3.3 19.43 5.86 11.66 14.89 16.69 19.45
65 3.3 26.57 10.88 25.08 29.20 33.32 27.23
bs 15.0 45.72 22.41 38.97 49.00 63.78 47.90
bi 50.0 16.26 34.37 10.14 12.62 13.91 15.66
b8 0.0 18.69 11.11 34.83 29.37 26.78 19.06
by 0.0 15.05 4.51 5.03 8.01 9.31 15.29
bio 15.0 35.32 21.67 34.49 94.82 61.41 37.35
blt 25.0 38.12 28.48 34.83 37.63 38.39 38.72
bi2 20.5 17.13 18.86 16.33 16.23 18.42 16.35
bi3 24.5 14.74 22.66 18.84 16.14 13.19 14.93
bt~ 0.0 13.12 3.48 9.83 12.63 13.39 13.72

"Error" 4.23 61.25 30.66 16.35 47.44 -

Tahle 9: Solutions generated by SPO and SA for Problem 3A



SPO SA

Initial
point

Final
point

ao - 7
Final
point

ao - 10
Final
point

ao - 12
Final
point

ao - 15
Final
point

"Optimal"
solution

bl 50.0 42.86 45.24 43.85 43.79 42.71 42.31
6z 20.0 32.14 29.76 31.15 31.21 32.29 32.69
b3 53.3 25.00 25.00 25.00 25.00 25.00 25.00
b4 3.3 13.52 11.34 14.36 15.24 15.11 13.60
b5 3.3 21.48 23.66 20.64 19.76 19.89 21.40
bs 15.0 30.00 30.00 30.00 30.00 30.00 30.00
67 50.0 19.99 13.21 16.30 17.49 19.20 19.51
68 0.0 17.24 31.14 25.47 23.62 20.38 17.61
by 0.0 12.77 5.65 8.23 8.89 10.43 12.88

blo 15.0 40.00 42.66 42.85 42.20 42.17 41.47
bl ~ 25.0 37.20 33.50 34.88 35.38 36.12 36.88
bt2 20.5 20.03 20.00 20.00 20.02 20.71 20.01
b13 24.5 12.77 16.50 15.12 14.59 13.17 13.12
bl4 0.0 12.20 8.50 9.88 10.38 11.12 11.88

"Error" 1.87 18.39 10.65 8.55 4.56 -

Table 10: Solutions generated by SPO and SA for Problem 3B
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machine cycle time
meau volume

to failure
mean time
to repair machine cycle time

mean volume
to failure

mean time
to repair

1 0.850 116.65 4.82 26 0.300 102.58 5.67
2 0.440 101.44 8.79 27 0.570 98.44 9.85
3 0.360 101.86 7.02 28 0.460 109.22 5.89
4 0.900 112.07 6.91 29 0.530 117.36 8.27
5 0.490 112.42 9.69 30 0.960 96.46 8.55
6 0.920 116.08 9.11 31 0.810 110.98 6.80
7 0.620 97.69 9.75 32 0.950 118.29 5.12
8 0.990 95.06 7.25 33 0.170 90.25 6.39
9 0.960 llb.bl 6.59 36 0 270 103.57 fi.87
10 0.880 99.05 5.29 35 0.160 88.05 8.15
11 0.400 111.69 9.18 36 0.690 113.83 5.77
12 0.870 101.34 9.82 37 0.390 84.58 4.06
13 0.180 115.08 5.16 38 0.860 87.14 6.55
14 0.410 96.38 9.22 39 0.500 113.94 4.27
15 0.650 82.09 4.51 40 0.910 118.64 9.38
16 0.680 101.59 5.71 41 0.425 89.88 5.22
17 0.140 86.58 7.87 42 0.475 108.54 6.36
18 0.250 105.86 4.15 93 0.280 101.22 9.33
19 0.220 104.92 5.49 94 0.200 95.23 4.60
20 0.290 81.22 4.19 95 0.450 96.02 4.75
21 0.710 96.88 4.94 46 0.750 103.29 7.48
22 0.630 95.89 4.27 47 0.310 114.63 4.91
23 0.150 99.93 8.33 48 0.970 98.60 4.34
24 1.000 87.48 9.83 49 0.940 87.42 8.47
25 0.930 100.32 6.45 50 0.370 93.68 6.51

Table 11: Specifications of 50-machine CTline
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O pt i mal
solution

Eor n-2E5

Optim al
solution

for n-5E5

Opti mal
solution

for n-10E5

Opt i mal
solution

for n-2E5

O ptim al
solution

for n-5E5

O pt imal
solutioa

for n-30E5
b~ 5.35 5.21 5.85 bzs 14.54 13.67 13.66
ba 3.23 3.70 3.97 bzv 9.17 8.40 8.37
ba 8.50 11.26 11.70 bze 9.97 9.35 9.27
ba 17.14 16.88 17.10 bze 30.56 31.96 32.07
bs 19.51 18.62 19.00 bao 26.02 26.91 26.96
bs 24.09 22.67 22.80 bai 14.35 14.69 14.75
b7 41.12 40.10 40.10 baz 18.59 19.22 19.53
bs 31.51 30.65 30.60 baa 5.27 3.94 4.06
bo 24.28 24.59 24.50 baa 4.48 4.08 4.19
bio 16.46 18.15 18.10 bas 10.40 11.45 11.67
b~ ~ 16.09 20.16 20.10 bas 7.22 6.46 6.57
b~z 13.98 18.77 18.70 ba~ 10.32 9.79 10.01
b~a 10.46 13.52 13.30 baa 11.88 11.23 11.40
b~q 805 10.35 10.20 bas 12.56 12.43 12.60
bis 5.52 6.70 6.51 bqo 20.50 19.76 19.85
bis 8.58 30.55 30.50 bq~ 6.76 5.78 5.85
bi~ 3.28 3.75 3.59 b~z 4.09 3.94 4.12
b~e 2.67 3.03 2.88 baa 1.89 2.00 2.15
bie 2.51 2.65 2.54 b44 4.17 4.58 4.73
bzo 6.59 8.09 8.13 bas 7.18 8.25 8.47
bzi 4.71 5.07 5.01 b4s 11.52 9.58 9.54
bzz 9.96 10.29 10.20 ba~ 17.58 16.45 16.48
bza 97.36 48.71 98.80 b4s 17.33 18.35 18.34
bza 45.60 47.30 47.50 b49 8.77 12.31 12.09
bzs 21.29 21.33 21.40

Table 12: Solutions generated by SPO for Problem 4A

Optimal solution
for n-2E5

Optimal solution
for n-5E5

Optimal solution
for n-10E5

K 16 6 1
L„(b;,) 11989.57 12001.51 11997.54

~~~Ln(6n)~~ 8E-1 6E-1 SE-1
"Error" 10.55 1.27 -
Ltos(6;,) 12020.23 11998.49 11997.54

Table 13: Sutnmary of SPO results for Problem 4A
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O pt imal
solution

íor n-2E5

Optimal
solution

for n-5E5

Opt im al
solution

for n-10E5

Optim al
solution

for n-2E5

Optimal
solution

for n-5E5

O ptimal
solution

for n-10E5
b~ 10.00 10.00 10.00 bae 20.76 20.80 20.89
ba 0.00 0.09 0.36 bzr 6.57 6.52 6.57
ba 11.59 11.91 12.44 bae 7.74 7.69 7.68
b4 16.26 16.31 16.29 bae 44.86 44.81 44.69
bs 18.07 18.14 18.25 bao 20.07 20.18 20.17
bs 21.08 21.19 21.22 63~ 17.71 17.81 17.81
bT 33.60 33.62 33.47 bax 17.36 17.38 17.34
68 26.67 26.43 26.19 baa 10.00 10.00 10.00
b9 27.73 27.30 26.78 baa 9.14 9.06 8.98
b~o 10.00 10.00 10.00 bas 10.23 10.37 10.46
bi~ 22.97 22.16 22.00 bae 4.34 4.39 4.99
b~z 14.11 14.36 14.61 bar 8.54 8.59 8.66
b~a 8.08 8.06 7.95 bae 11.12 11.06 11.05
bie 5.33 5.42 5.44 bas 12.55 12.49 12.46
6~s 6.26 6.46 6.71 bdo 19.01 18.87 18.74
óis 11.86 11.91 12.01 b,~ 10.52 10.58 10.65
b,7 10.ar 10.45 10.41 6„ ]0.48 10.55 10.fi1
bie 2.26 2.25 2.22 b,a 0.84 0.85 0.86
b~e 7.27 7.31 7.36 b,d 1.64 1.65 1.67
bao 4.22 4.26 4.38 b,s 11.12 11.11 11.13
bxi 10.00 10.00 10.00 bqe 63.47 63.43 63.39
bza 8.55 8.64 8.58 ber 7.40 7.38 7.34
bza 43.39 43.71 43.90 bae 32.74 32.70 32.66
bzn 37.63 37.65 37.52 6q9 11.78 11.74 11.70
bzs 18.08 17.36 16.90

Table 14: Solutions generated by SPO for Problem 4B

Optimal solution
for n-2E5

Optirnal solution
for n-5E5

Optimal solution
for n-10E5

K 10 1 1
Ln(bn) 12058.14 12081.55 12076.73
~~Z g~~ 7E-1 SE-I 7E-1

"Error" 2.19 1.13 -
Lloe(b;,) 12079.39 12078.19 12076.73

Table 15: Summary of SPO results for Problem 4B
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