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Abstract

In this paper we first of all show that contemporaneous aggregation of
independent univariate GARCH processes yields a process which satisfies the
weak GARCH conditions introduced by Drost and Nijman (1992). Subsequently we
analyze the dependence of the parameters in the aggregate on the parameters
in the underlying models and present numerical results for the aggregation
of two GARCH(1,1) processes with identical "persistence" parameters, and a
GARCH(1,1) process with conditionally homoskedastic white noise. We show
that the variance parameters after aggregation depend on the underlying va-
riance and kurtosis parameters. Subsequently, we generalize the results by
showing that a linear combination of variables generated by a multivariate
GARCH process will also be weak GARCH and analyzing the parameters in this
weak GARCH process. We also derive the marginal (weak GARCH) processes
implied by several multivariate GARCH processes. The results explain why
GARCH is found in univariate as well as multivariate series and can be used
to facilitate the specification of multivariate GARCH processes.
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there. The authors benefitted from financial support oF the Royel
Netherlands Academy of Arts and Sciences ( K.N.A.W.) end the E.S.R.C. res-
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1. Introduction

It is a well known stylized fact that many financial time series such
as stock returns, exchange rates or interest rates exhibit conditional hete-
roskedasticity. For univariate time series, the ARCH model proposed by Engle
(1982) or the GARCH model proposed by Bollerslev (1986) are usually used to
parametrize the conditional heteroskedasticity. Multivariate extensions of
these models have been proposed e.g. by Engle (1987), Attanasio and Edey
(1987), Bollerslev, Engle and Wooldridge (1988), Diebold and Nerlove (1989),
Baba, Engle, Kraft and Kroner (1989), Engle, Ng and Rothschild (1990) and
King, Sentena end Wadhwani (1991). An excellent survey of the meny applica-
tions of GARCH processes is provided by Bollerslev, Chou and Kroner (1992).

In the existing literature univariate or multivariate GARCH models are
typically essumed for the time series under consideration, without wondering
whether these assumptions are consistent with GARCH assumptions for other
time series and~or at other frequencies. GARCH models have been estimated
e.g. for the (log) returns in the Deutsche Mark ~ US Dollar exchange rate,
the US Dollar ~ Japenese Yen rate and the Deutsche Mark ~ Japanese Yen rate.
As the returns on the third exchange rate are simply the sum of the returns
on the first two exchange rates, the GARCH models for these exchange rates
implicitly specify a model for the third exchange rate as well. Similarly
GARCH models have been fitted to returns on individual stocks as well as to
returns on portfolios, but once more the relation between the models for the
individual stocks and the one for the portfolio has not been considered
explicitly. Also multivariate GARCH models are used nowadays to describe
e.g. the joint behaviour of interest rates, exchange rates and stock re-
turns. Little attention has been paid however to the implication of such a
multivariate model for the univariete processes of the components. In this
paper we derive the properties of linear combinations of variables generated
by a multivariate GARCH process as well as the properties of marginal pro-
cesses implied by a multivariate GARCH assumption. We show that the
parametric structure of the commonly used GARCH models is lost by taking li-
near combinations or by marginalizing. Nevertheless we show that the linear
combinations and marginal processes will still be weak GARCH processes as
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defined by Drost and Nijman (1992). These results explain why GARCH is found
in univariate as well as multivariate series and can be used to facilitate
the specification of multivariate GARCH processes. Throughout Lhis paper we
restrict ourselves to bivariate models with GARCH(1,1) variances in order to
keep the algebra simple. C!ur general fremework however applies equelly well
to more general cases.

Consider a univariate time series {yt} which is stationary and sym-
metric with finite fourth moments. Drost and Nijman (1992) have defined {yt}
to be weak GARCH(1,1) if in the recursion

c2 ~ y . p c2- . oc y2-t t 1 t 1 (1)

the parameters y, a and ~ cen be chosen such that

P[ Yt I YL-i' Yt-2' .... ~ - 0 (2)

and

2 2
P[ Yt ~ Yt-1' yt-2' .... ~ z 6L (3)

where P[ xt I zt-1' zt-2' "" ~ denotes the best linear predictor of xt in
terms of a constant and values of zt-i and zt-i (i - 1, 2, ....). Drost and
Nijman (1992) have shown that GARCH models which assume that yt~at is i.i.d.
as proposed by Bollerslev (1986), which they refer to as strong GARCH mo-
dels, are not closed under temporal aggregation. A strong GARCH assumption
e.g. at the daily frequency is inconsistent with a strong GARCH assumption
at the weekly frequency. In addition they have shown that the class of weak
GARCH processes is closed under temporal aggregation. In this paper we
complement their results by showing that contemporeneous aggregation of in-
dependent univariate GARCH processes yields a weak GARCH process. We analyze
the dependence of the parameters in the aggregate process on the parameters
in the underlying models. Subsequently, we generalize this result by showing
that a linear combination of variables generated by a multivariate GARCH
process will also be weak GARCH and analyzing the paremeters in this weak
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GARCH process. Finally we derive the marginal weak processes implied by mul-
tivariate GARCH processes. The parameters in weak GARCH processes can easily
be estimated consistently. Moreover simulation experiments suggest that in
many cases the commonly used estimators, which are ML under the assumption
that the model is strong GARCH and the conditional distribution normal, con-
verge to values close to the weak GARCH parameters in large samples.

The plan of this paper is as follows. In section 2 we will consider ag-
gregation of independent GARCH processes. Numerical results are presented on
the GARCH parameters that arise through aggregation of a GARCH process with
conditional homoskedastic noise, as well as through the aggregation of two
GARCH processes with identical "persistence" parameters. In section 3 we
introduce an unrestricted bivariate GARCH(1,1) model end check that thia
atructure is preserved under linear transformation. Moreover we show how
marginal processes can be derived from multivariate representations. In sec-
tion 4, diagonal models, conditionally orthogonal models and factor GARCH
models, which all are special cases of the general set-up in section 3, are
analyzed ín more detail. Numerical results are presented on the impact of
marginalization on the properties of linear combinatíons of variables gene-
rated by these models. Sectíon 5 contains the results of a simulation
experiment on the properties of the commonly used quasi maximum likelihood
estimator in cases where data are generated by aggregating independent uni-
variate GARCH processes or by marginalizing from multivariate GARCH
processes. Finally section 6 concludes. Some technicalities are outlined in
appendices.

2. Contemporaneous aKgregation of independent univariete GARCH processes

In this section we consider the simple case of aggregation of two inde-
pendent GARCH(1,1) processes. The results derived in this section are
speciel cases of those in sections 3 and 4, but are derived here in a more
straághtforward and intuitive manner. Moreover the assumption of conditional
normality which will be made in sections 3 and 4 to simplify the algebra can
be avoided here.
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Consider variables ylt and y2t which are both generated by (strong)
GARCH(1,1) models i.e.,

yit a oit sit (i - 1,2), (4)

~it i.i.d.. E sit - G' E~it - 1' E~it - Ki.

ait L wi ~~i ai,t-1 ~ ai yit-1' (5)

It is well known that substitution of 62 - y2 - n yields an ARMA(1,1)
model for Yit'

it it it

yit . ~i . [1-(ai.~i)L]-1 [ 1-siL ] nit . (6)

where L is the lag-operator defined by L Yit s yit-1 ~d where Cí s E yit s
yi(1-oci-~i)-1 and

nit L yit - E[yitllt-1~ -(~it - 1) oit. (7)

From (6) one easily obtains

(Ylt'Y2t)2 ' Q1 ' 02 t[1-(oc1,P1)L]-1[ 1-P1L ] nlt i

~[1-(oc2.p2)L]-1[ 1-H2L ~ n2t ~ 2 ylty2t' (8)

As nlt' ~2t ~d ylty2t ~e mutually uncorreleted and none of these three va-
riables is autocorrelated, (8) implies that the sum of two independent
strong GARCH(1,1) processes i s weak C.1RCH(2,2). Thia result is obviously re-
lated to the well known result ( see e.g. Ltltkepohl (1984)) that the sum of
two independent ARMA(1,1) processes is ARMA(2,2). One important difference
with the ARMA case is the presence of the cross product term in the ráght
hand side of (8), which complicates the derivation of the GARCH parameters
for the aggregate series as we will see below.

Obviously equation (8) only yields an upper bound on the orders of the
weak GARCH process. In two important speciel cases, though, aggregation of
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GARCH(1,1) processes for which a1}~1 i aZ.s2 and aggregation of a GARCH(1,1)
process with conditionally homoskedastic white noise, the aggregate will in
fact be weak GARCH(1,1). For these speciel cases we will derive the weak
GARCH parameters in this section. The general case is discussed in section
4. The value of altpl has often been referred to as the persistence of
shocks to the volatilty in the GARCH process. As this terminology can easily
be critized we will put this terminology between quotation marks whenever it
is used. In fact the mean lag of the ARMA model in (6) is probably a much
better measure of persistence.

If the "persistence" parameters in the two independent GARCH processes
which are added coincide, i.e. a1 .~1 - a2 ~~2 ~ r, equation (8) reduces
to

[1-ïL~ (Y1t'YZt)2 z W ~ ~1-P1L) ~llt' L1-S2L] ~2t~ 2 [1-rL~ Ylty2t. (9)

with y a(yl~y2). Because of the properties of nlt' n2t ~d ylty2t the right
hand side will be a first order moving average process, say (1-aL)ut.
Rewriting (9) yields

(1-ëL) íY1t'Y2t)2 a W~ íl -~L) ut,

where

a(lta2)-1 -- E utut-1 ~ E ut,

ut -~1-S1L~ n1t' L1-AZL] n2t. 2[1-óL~ Ylty2t'

ut ' (1 -aL)-1 ut.

(10)

Once ~ is known, it is clear from the comparison with (6) that the weak
GARCH parameters for yltay2t are simply (~e,a) -(~, ~r-a). Note that the va-
lue of the parameter atp is the same in the aggregate process as in the two
underlying processes. The remaining problem is the determination oF a. From
(10) one has



E ut z (Itpl) E nlt `(1~~2) E n2t ` 4(1`~2) E yity2t

and

- E utut-1 -~1 E~lt `~2 E n2t ` 4 r E y1tY2t' (12)

Obviously E Y1tY2t - Qla2 by independence. Moreover E~it can be expressed
as a function of ai, ai, pi and the kurtosis of the error term Ki - E~it'

E~it x E(~it - i)2 E oit

- (xi-1) 6i {1-(Ai'ai)2} I (1-19i-2aiAi-aixi). (13)

where the second equality follows from a straightforward generalization of
the way in which Bollerslev (1986) computed the fourth moment of y. Asit~(1r~2)-1 - A-1(1~~-2)-1, the quadratic equation a(lta2)-1 S -Eutut-1~Eut
yields a unique solution for ~ within the unit circle.

Some illustrative numerical results on the aggregation of independent
GARCH(1,1) processes with coinciding "persistence" paremeters are reported
in Table 1. In the first five lines of the table the values ai and pi do not
differ between the two processes. The results in (9)-(13) indicate that for

Ylt`y2t the coefficient on the lagged variance term, p, will exceed ~1 L~2
while a( ai. The numerical values for a end p depend on the variance ratio
and the kurtosis parameters. If the variances of the two processes differ a
lot or if at least one of the processes has fat tails, the weak GARCH para-
meters in the aggregate will be close to those in the underlying processes.
The last three lines in the table show that the variance ratio can in fact
have a very large impact on the weak GARCH parameters. Note that in the case
considered in the last three lines the fourth moments condition is violated
ifxi-9.
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Table 1 Weak GARCH parameters a and p for yt L ylt. y2t in (1)-(3) if yit
(i-1,2) is generated by (4)-(5), assuming al.~l - a2.~2 -~.~.

pl al xl p2 a2 x2 6i~62 p a

0.90 0.05 3.00 0.90 0.05 3.00 1.OO o.920 0.030
0.90 0.05 3.00 0.90 0.05 3.00 4.00 0.912 0.038
0.90 0.05 9.00 0.9o O.oS 3.00 l.o0 0.910 0.040
0.90 0.05 9.00 0.90 0.05 3.00 4.00 0.903 0.047
0.90 0.05 9.00 0.90 0.05 9.00 1.00 0.907 0.043
0.50 0.35 3.GO 0.80 0.05 3.00 1.00 0.569 0.281
0.50 0.35 3.~ 0.80 0.05 3.00 4.00 0.516 0.334
0.50 0.35 3.~ 0.80 0.05 3.00 0.25 0.705 0.145

A second specisl case of (8) that is worth considering explicitly is
aggregation of a GARCH(1,1) variable and conditionally homoskedastic white
noise. In this case (8) reduces to

[1-(al'A1)L~ (Ylt'Y2t)2 - W ~ [ 1-A1L ~ Ttit' [ 1-(a1tA1)L ~ R2t

t 2 [1-(a1~P1)L) Ylty2t' (14)

Equation (14) shows that the agggregate will in this case be weak GARCH(1,1)
and that the "persistence" parameter of the GARCH process is not affected by
adding conditionally homoskedastic noise. Along the lines sketched above,
the weak GARCH parameters can easily be determined as functions of (02,

2 1
al'~1' 02' xl, x2). Table 2 shows, as could be expected on intuitive
grounds, that the GARCH parameters are affected much more by adding noise if
the signal to noise ratio is low than when ít is high. Also fat tails in the
GARCH process lead to a smaller impact of the noise, while fat tailed noise
yields larger deviations from the underlying variance parameters.
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Table 2 Weak GARCH parameters a and p for yt - ylt~ y2t in (1)-(3) if yit
(1-1,2) is generated by (4)-(5), assuming a2 - p2 z 0.

pl al xl x2 ai~62 ~6 a

0.90 0.05 3.~ 3.00 1.00 0.933 0.017
0.90 0.05 3.00 3.00 4.00 0.914 0.036
0.90 0.05 3.00 3.00 0.25 0.947 0.003
G.9o 0.05 9.00 3.00 1.00 0.915 0.035
0.90 0.05 3.~ 9.00 1.00 0.940 0.010
G.50 0.35 3.00 3.00 1.00 0.571 0.279
0.50 0.35 3.~ 3.00 4.00 0.517 0.333
0.5G 0.35 3.~ 3.00 0.25 0.721 0.129

3. Marginalization and aggregation in multivariate GARCH models: the general
case.

In the previous section we restricted ourselves to aggregation of inde-
pendent GARCH processes. In many applications, e.g. to exchange rates or
stock returns, the independence assumption is very strong. For that reason
we therefore consider in this section the aggregation of two processes whose
joint distribution belongs to a class of bivariate GARCH(1,1) models. We
first check that the class is closed under linear transformation and discuss
the properties of the weak GARCH processes that arise after marginalization.

The class of bivariate GARCH models that we consider ís

( y2t ,
- Et,2 I ~~t J .

where

E z Qllt Q12t l
r J '

o12t Q22t

~lt - i.i.d. N(G.I ). (15)
~2t 2

and
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Qllt yll bll b12 b13 Qllt-1
Q12t - y12 ~ b21 b22 b23 a12t-1 `
Q22t y22 b31 b32 b33 a22t-1

2
g11 a12 813 ylt-1

; a21 fl22 823 y}t-ly2t-1 '
a31 a32 833 y2t-1

(16)

As we assume throughout that ï t is a positive-semidefinite matrix (see Baba
et el. (1989) for sufficient conditions), it can be interpreted as

Vart-1(yt) where yt a(ylt'y2t)' In the sequel we also assume that the pa-
rametera in (16) are such that fourth moments of yt exist. In a more compact
matrix notation ( 16) can be written as

st s y~ B st-1 ' A zt-1' (17)

where s' -(c , a , a )-{vech(E )}', y' a(Y Y w) and z' -2 t 211t 12t 22t t 11' 12' 22 t
(ylt' ylty2t' y2t) "{vech(ytyt')}'. The model ín (15) end (17) i s a parti-
cular case of the multivariate GARCH(p,q) model considered in Bollerslev,
Engle and Wooldridge (1988). If bi~ - 0(v i,j) one obtains the original bi-
variate ARCH(1) specification of Kraft and Engle ( 1982). Other interesting
specisl cases are the diagonal and factor GARCH model, and models which
yield conditional orthogonality. These special cases will be considered in
the next section.

An importent property of the bivariate GARCH model in (16} is that its
structure is preserved under linear transformation (see Baba et al. (1989)).
In appendix A we show that if P is a non-singular matrix, the vector xt - P
yt will also satisfy the bivariate GARCH model in (15) and (17) with the pa-
rameters W. B and A replaced by Y. B and A defined as

y z D{ (PBP) D Y.

B r D` (P6P) D B D~ (p-1Bp-1) D,

n z D' (P~p) D A D' (p-16P-1) D

(18)



11

where D is the duplication matrix defined by vec(Et) a D vech(Et) and D~ is
its Moore-Penrose inverse.

A second important aspect in the analysis of the bivariate GARCH model
is the derivation of the implied merginal processes. Marginalization is
required as the second step in assesing the impact of contemporaneous ag-
gregation on variables that are generated by the multivariate GARCH
processes, but it is moreover of substantiel interest in its own right and
can be used to facilitate the specification of multivariate GARCH processes.

In order to discuss marginalization define nt z zt - Et-1[zt]. Substitution
in (17) yields the trivariate ARMA(1,1) process

[ I- (A.B) L] zt a y t [ I- B L ] nt. (19)

The marginal process for yit can be obtained from the first row of the final
form of the model ( see e.g. Zellner and Palm (1974)),

.
det {I-(AfB)L} zt ~ y ~ adj {I-(A~B)L} (I-BL) ~t (20)

~
where y a adj {I-(A~B)L} y and where det and adj refer to the determinant
and adjoint matrix respectively. As the determinant is a third order polyno-
miel ín the lag operator and the elements of the adjoint matrix are second
order polynomials in the lag operator, (20) shows that the marginal process
for ylt will be at most weak GARCH(3,3). As we shall see in the next sectio-
n, though, in meny cases of interest a reduction of these orders can be
obtained. Of course a reduction through coincidental parameter cancellation
is always a possibility.

To find the weak GARCH parameters, we proceed as in (10) and write the
ARMA(3~3) model for ylt ~

(1-n1L-n2L2-rt3L3) Ylt z c. (1-a1L-aZL2-a3L3) ut; E ut - cW. (21)

The autoregressive coefficients in the ARMA model in squares, which corres-
pond to the persistence parameters in the weak GARCH model, can easily be
found using a well known result for characteristic equations,
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det {I-(A~B)L} :- det(A~B) L3 ~ p(A~B) L2 - tr(A.B) L. 1 (22)

p(AaB) ~ det (Alir811) a det (A22.B22) . det (A33` B33) (23)

where Ai~ is the 2x2 matrix obtained from A by eliminating row i and column
j. The determination of aW and of the MA coefficients ai is less
straightforward. These coefficients can be obtained by equating the variance
and first three autocovariances of (1-a1L-a2L2-a3L3)ut with those of the
first element of the right hand side of (20). Given that ~t is serielly un-
correlated with zero mean, only its contemporaneous variance-covariance
matrix is required. This is derived in appendix B.

4. Marginalízation and aRgregation in multivariate GARCH models: speciel
cases.

Given the large number of parameters involved, restrictions have usual-
ly been imposed in order to estimate the bivariate GARCH model. Three
special cases will be analyzed in three subsections: the diagonal model, mo-
dels in which yltand y2t are conditionally orthogonal and the factor GARCH
model.

4.1 The diaaonal GARCH model

A first speciel case that has been popular is the diagonal GARCH model es-
timated e.g. by Attanasio and Edey (1987) and Bollerslev, Engle and
Wooldridge (1988) where A and B are both assumed to be diagonal. If moreover

822 L b22 ` 0 the independent case that has been analyzed in section 2 is
obtained. Equation (20) shows that the marginal process for ylt arising
from a diagonal GARCH model will be weak GARCH with parameters (ac,p) -

(all'bll)' irrespective of the fact whether the two processes are indepen-
dent, i.e. whether e22 - 0 and b22 - 0, or not. The stronger result that the
marginal process arising from a diagonal model will be strong GARCH can ea-
sily be verfied directly.
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The general results in section 3 show that linear combinations blylt~b2y2t
will be weak GARCH(2,2) if ylt and y2t are generated by independent
GARCH(1,1) processes, which is the result that has been obtained in section
2 along different lines. Linear combinations of variables generated by Lhe
diagonal GARCH model on the other hand will be weak GARCH(3,3) in general as
there is no reason to expect cancelling roots in (21) in this case. This is
caused by the fact that the class of diagonal GARCH processes is not closed
under linear transformation.

4.2 The conditionally orthogonal case

A second speciel case arises when ylt and y2t are conditionally ortho-
gonal, so that o12t ` 0(vt) i.e. a21 L a22 L a23 - b21 ` b22 ` b23 - b12 `
b3~ - W12 z 0. The model that arises is (15) with Q12t ` 0,

allt - W11 ~ bllollt-1 } b13 Q22t-1 ~

2 2
f all ylt-1 ` fl12 ylt-lY2t-1 ~ a13 y2t-1 (24)

and an analogous expression for a22t. It is not hard to check that in gene-
ral the marginal process for ylt will be weak GARCH(2,2). Obviously the
model reduces to GARCH(1,1) if b13 - a12 - a13 - 0. Interestingly this ari-
ses in other cases as well, e.g. if y2t is homoskedastic, i.e. b3~ ~ b33 ~

831 ~ 832 z g33 ` 0. Also, if y2t only depends on its own squared values
(b31 a e31 ~ s32 a 0) and moreover b13 - e13 ~ 0, weak GARCH(1,1) is obtai-
ned as the marginal process for ylt whether or not its conditional variance
depends on lagged values of Ylty2t' ~e results in section 3 can be used to
show that linear combinations blylt`b2Y2t of conditionally orthogonal pro-
cesses ylt and y2t will be weak GARCH(2,2), as in the independent case.
Remember that in the general case the linear combination is GARCH(3,3). In
the independent case the marginal process will be GARCH(1,1), while it is
GARCH(2,2) in the conditionally orthogonal case. Similar the order of the
GARCH process of linear combinations of the two variables distinguishes con-
ditionally orthogonal processes from the general case. The above results
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can be used in principle to distinguish between independent and conditional-
ly orthogonal processes using univariate methods only, although this may be
difficult to do in practice.

4.3 The factor GARCH model

The restrictions in the third important apeciel case, the factor GARCH
model, are more subtle than in the previous two subsections. In the one fac-
tor case, the factor GARCH model as defined by Engle (1987) end Engle, Ng
and Rothschild (1990) imposes

Et

and

~ Y' - f~a"Y y'a a y Vart-1(a'Yt) ~'. (25)

Vart-1(a'yt) s~'Y'a a f3 Vart-2(~ ~yt-1) ` a(~~yt-1)Z' (26)

where p' ~(~l,~Z) and a' ~(a1,~2) are two dimensional vectors which are
normalized such that p'a ~ 1. It is not difficult to see that this model is
a special case of the bivariate GARCH model in (16) with

a a a ~2~2 2~2~ A ~2~2
11 12 13 . 1} 112 17~

821 g22 823 ' a ~1~?~~} 2p19z21AZ ~1~?~~?~ '
a31 83z a33 P2~1 z 1 2 2 2~, „ „1 (27)

and B~ Sac-1 A. According to (26), the "factor representing portfolio" a'yt
is generated by a strong GARCH(1,1) model, with paremeters ~'~a, S and a.
The marginal process for any linear combination b'yt where yt i s generated
by e factor GARCH model can be derived using the results in appendices A and
B.

An alternative extension of standard (i.e. conditlonally homoskedastic)
factor analysis models to time-varying variances was introduced by Diebold
and Nerlove (1989) and extended by King, Sentana end Wadhwani (1991). Their
model is a standard latent factor model with unobservable common factors
which are generated by strong GARCH processes,

2pa~ ~a
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yt ! pft`wt

ft ut 0 l ff l r fr l
I wt J s I 0 m J I wt J with I w~ J ` i.i.d. N(0. 13) (29)

and

2
Wt s e ~ ~ ~t-1 ' ~ ft-1' (30)

The conditionally heteroskedastic latent factor model in (28)-(30) is not
quite the aeme as the factor GARCH in (15), (25) and ( 26). However, both mo-
dels are very closely related. In Sentana (1993) it is ahown that factor
GARCH models can be written es conditionally heteroskedastic latent factor
models in which the latent factors are weak GARCH processes. Moreover it is
shown there that the conditionally heteroskedastic factor model can be writ-
ten in the form of the factor GARCH model, provided the assumption in the
factor GARCH model that the factor i s generated by a strong GARCH model is
replaced by the assumption that i t is generated by a weak one.

In order to illustrate the results on marginalization and linear
transformation in factor GARCH models, we computed the weak GARCH parameters
for several linear combinations blylt}b2y2t for a number of values of the
parameters in the factor GARCH model. First of all we normalized in such a
way that E ft ~ 1 and E yit ~ 1(ia1,2). It can be checked that given these
normalizations all parameters in (25) and (26), and thereby the weak GARCH
parameters, are fully determined by a snd p in (26) and the signal to noise
ratios Ri ~ Var(pift) ~ Var(yit) a pi in (28). The results are presented in
table 3. For two specifications of the conditional heteroskedasticity in the
factor and two pairs of signal to noise ratios, the weak GARCH parameters
for the marginal processes for ylt and yzt as well as for línear combina-
tions are presented.- We have already noted that ~'yt will be strong GARCH
with parameters g and ac. The value of a2~a1 which corresponds to R1 a.75
and R2 -.7o is .913. while a value of .236 is implied by R1 ~.95 and R2 -
.10. The results in table 3 show that when the weight on y2t is increased
keeping the weight on ylt fixed to unity, the weak GARCH parameter
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Table Weak GARCH parameters c and p for biylt`b2y2t in (1)-(3) if the
data are generated by the factor GARCH model in (15), (25) and (26).

GARCH param. signal to weight in weak GARCH
of factor noise ratios linear comb. parameters

P ~ Ri A2 bi b2 H a

.80 .10 .75 .70 1 0 .834 .067
i .5 .804 .096
1 .913 .Soo .ioo
1 1 .800 .100
.5 1 .807 .093
0 1 .841 .059

.10 .40 .75 .70 1 0 .216 .284
1 .5 .113 .387
1 .913 .100 .400
1 1 .100 .400
.5 1 .123 .377
0 1 .240 .260

.80 .10 .95 .10 1 0 .807 .093
1 .236 .800 .100
i .5 .806 .094
1 1 .833 .067
.5 1 .868 .032
0 1 .898 .002

.lo .40 .95 .10 1 0 .122 .378
1 .236 .100 .400
1 .5 .121 .379
1 1 .211 .289
.5 1 .349 .152
0 1 .491 .009



a will increase upto the value a, which ia reached when the weight on y2t e-
quals a2~a1. Further increases in the weight on y2t appear to yield smaller
values for a. This property can in principle be used in finding factor
representing portfolios using univariate analysis only. Note that e.g. in
Engle, Ng and Rothschild (1990) the relative weights in the factor represen-
ting portfolios are assumed to be known a priori.

5. ProbabilitY limit of the standard QMLE estimator

In the previous sections we have described how weak GARCH parametera can be
obtained for auma of lndependent strong GARCH proceases sa well as for mar-
ginal processes implied by a number of multivariate GARCH proceases. The
weak GARCH parametera cen of course easily be estimated consiatently from
the autocorrelations of the squared observations. The estimatora obtained in
this way are probably not very efficient. Moreover many empirical studies in
the literature are based on the use of a quasi maximum likelihood estimator
(QMLE) under the assumption of a strong GARCH process and conditional norma-
lity. For both reasons we consider the properties of this QMLE estimator in
this section. In Drost and Nijmen (1992) it was noted that if data were ge-
nerated by strong CARCH processes at one frequency and QMLE estimates were
computed at lower frequencies, the parameter estimates tended to be very
close to the weak GARCH paremeters. In tables 4 and 5 we report results on a
similar simulation experiment where we concentrate on aggregation and margi-
nalization. Note that Weiss (1986) has shown that the QMLE estimator is
consistent under weaker conditions that the validity of conditionally normal
strong GARCH assumption, which are referred to as the semi-strong GARCH con-
ditions in Drost and Nijman (1992). The properties of the QMLE estimator
under weak GARCH have not yet been established, so that we have to rely on
Monte Carlo results.

In the first row of table 4 e.g. we consider QMLE estimation of the sum of
independent conditionally normal GARCH processes with variance parameters S.i
- 0.9 and ai - 0.05 and equal (unconditional) variances. In the last two co-
lumns of the table we present the averages over 20 samples of the QMLE
estimates obtained from 80,000 generated data. Given the very low
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Table 4: Weak GARCH parameters and estimated plim of standard QMLE eatimator
for yt ~ ylt 4 y2t if yit (i~1,2) is generated by (4)-(5)

plim plím
2 2 ~

IBl al xl A2 a2 x2 61~62 p a a

0.90 0.05 3.00 0.90 0.05 3.00 1.00 0.920 0.030 0.920 o.oz9
0.90 0.05 3.00 0.90 0.05 3.00 4.00 o.91z o.038 0.910 0.037
0.90 0.05 9.00 0.90 0.05 3.00 1.00 0.910 0.040 0.916 0.036
0.90 0.05 9.~ 0.90 0.05 3.~ 4.00 0.903 0.047 0.909 0.041
0.90 0.05 9.00 0.90 0.05 9.00 1.00 0.907 0.043 0.909 0.040
0.50 0.35 3.00 0.80 0.05 3.~ 1.00 0.569 0.281 0.690 0.125
0.50 0.35 3.~ 0.80 0.05 3.~ 4.00 0.516 0.334 0.581 0.234
0.50 0.35 3.00 0.80 0.05 3.~ 0.25 0.705 0.145 0.775 0.062
0.50 0.35 3.00 0 0 3.~ 1.00 0.571 0.274 0.685 0.112
0.50 0.35 3.~ o 0 3.00 4.00 0.517 0.333 0.582 0.232
0.50 0.35 3.~ 0 0 3.00 0.25 0.721 0.129 0.783 0.038

Table : Weak GARCH parameters and estimated plim of standard QMLE estimator
for bl ylt ~ b2 y2t i f data are is generated by the factor GARCH
model in (17), (27) and (28)

GARCH param. signal to weight in weak GARCH
of factor noise ratios linear comb. parameters

plim plim
~ a Ri R2 bi b2 p a p a

.80 .10 .75 .70 1 0 0.834 0.067 0.820 0.075
1 .5 0.804 0.096 0.803 0.096
1 .913 0.800 0.100 0.800 0.100
1 1 0.800 0.100 0.799 0.100
.5 1 0.807 0.093 0.805 0.094
0 1 0.841 0.059 0.828 0.070

.80 .10 .95 .10 1 0 0.807 0.093 0.808 0.092
1 .236 0.800 o.ioo 0.804 0.098
i .5 0.806 0.094 O.So7 0.092
1 1 0.833 0.067 0.829 0.067
.5 1 0.868 0.032 0.869 0.031
0 1 0.898 0.002 0.807 0.003
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variability of the estimates over the 20 samples these must be very precise
estimates of the true probability limit of the QMLE estimators. The estima-
ted probability limit is 0.920 for ~ and 0.029 for a, which ia very close to
the weak GARCH parameters that are presented in table 1 and in columns eight
and nine of teble 5. The same holds true for the cases presented in lines 2
to 5 in the table. These result are all in line with the evidence on tempo-
ral aggregation in Drost and Nijman (1992). Table 4 also contains a number
of cases however where the estimated probability limit of the QMLE estima-
tors differa substantielly from the weak GARCH parameters. The probabiliy
limit of the QMLE estimate of the "persistence" paremeter a.~ is roughly
in line with the value suggested by the weak GARCH parameters, although the
underestimation is clearly significant. The plím of the estimated individual
coefficients differs considerably from the weak GARCH parameters. Of course
the question why the QMLE estimators is approximately consistent in eome ca-
aes end clearly inconsistent in others is an important topic for future
research, that is however outside the scope of this paper.

In table 5 results similar to those in table 4 are reported for the factor
GARCH model. The estimated probability limits are, for the cases considered,
usually close to the weak GARCH parameters. In particular the fact that ~ is
largest at the linear combination which yields a strong GARCH process is
reflected in the simulated results. The results in the last line of the
table are probably caused by the fact that ~ is hardly identified if a is
very close to zero.

6. Conclusions

In this paper we have discussed contemporaneous aggregation of indepen-
dent univariate GARCH processes as well as marginalization and
contemporaneous aggregation in more general multivariate GARCH processes. We
have shown that the class of strong GARCH processes, which is typically as-
sumed in applied work, is not closed under these transformations. We have
also shown that the weak GARCH conditions are satisfied in all these cases
and have discussed the relation between the various models and their parame-
tervalues. The results explain why GARCH will be found e.g. when enalyzing
exchange rate returns which are the sum of two underlying conditionally he-
teroskedastic exchange rate returns or when analzying the return on a
portfolio of stocks which are conditionally heteroskedastic.
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Appendix A The impact of linear trensformations on the parameters in the bi-
variate GARCH model

In order to derive the impact of linear transformation on the parametera in
the bivariate GARCH model we use the duplication matrix D defined by vec(EL)
~ D vech(ït). It is atraightforward to check that vech(ït) ~ D`vec(Et).
Equation (17) can now be rewritten as

vec(Et) ~ Dy . D B D~ vec(Et-1) ~ D A D' vec(Yt-lyt-1) (A.1)

~
If xt ~ P yt where P is a non-singular matrix, and Et ~ Vart-1(xt) the pro-
perties of the vec operator imply

vec(Et) ~ vec(PEtP') z (P9P) vec(it)

and

vec(EL) a (P6P)Dy . (P9P)DBD'Vec(ït-1) . (PBP) DAD; vec(Yt-lyt-1)

~
s (PBP)Dy ~ (PBP)DHD~(P-1BP-1)vec(Et-1)

~ (PBP) DADf (P-1BP-1) veC(xt-lxt-1)' (A.2)

Premultiplying (A.2) with the Moore-Penrose inverse of D yields the required
result.
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Appendix B Determination of the variance of nt in (19).

In this appendix we will derive the variance-covariance matrix of nt defined
in (19) which ás required to determine the weak GARCH parameters in the mar-
ginal process for ylt in (21). Note first of all that Var(nt) ~ E~t~t as E
~t S 0. Moreover as Et-lzt ~ st the law of iterated expectations yields

Var(nt) - E ntnt - E zizt - E stst. (A.3)

The typical element of Var(qt) therefore is E(Et-1(yityjtykty~t)-oijtoic.Ct)'
Hut because the conditional distribution is assumed to be normal in sections
3 and 4(see (15)) we can use a well known result on fourth moments of a bi-
variate normal variable Et-1(yityjtykty~t) s aijtok.lt ` Qíktaj~t ` Qi~tójkt
to show that

E ~ijtqk.Ct s E (oiktoj~t ` oi~tójkt). (A.4)

The remaining problem is to determine hijk.L : E QijtQk.Lt' We solve this
problem by constructing a six dimensional linear system with six unknowns, h
- E vech(stst). From (17) we know that

E stsL ~ W' ' w Ezt-lA' r A Ezt-1 r~ ` w Est-1B' i B Est-1 w~ 4(A.6)

~ A Ezt-lzt-1 A' ~ B Est-lst-1 B' ~ A Ezt-lst-1 B` B~t-lzt-1 A~'

Now note first of all that Ezt-1 z E st-1 ~[I-(A~B)]-lw. Moreover, by the
law of iterated expectations, E st-lzt-1 - E st-ist-1' As finally E zt-lzt-1
is also a linear function of the six unknowns in h, as we have aeen above,
(A.9) yields a six dimensional linear system for vech(E stst) in the six
unknown elements of h.
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