Tilburg University

The fill rate service measure in an (s,Q) inventory system with order splitting

Janssen, F.B.S.L.P.; de Kok, T.

Publication date:
1997

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Janssen, F. B. S. L. P., \& de Kok, T. (1997). The fill rate service measure in an (s,Q) inventory system with order splitting. (CentER Discussion Paper; Vol. 1997-62). CentER, Center for Economic Research.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

R 35

Tilburg University

Center
for
Economic Research

No. 9762

THE FILL RATE SERVICE MEASURE IN AN (s, Q) INVENTORY SYSTEM WITH ORDER SPLITTING

By Fred Janssen and Ton de Kok

June 1997

The fill rate service measure in an (s, Q) inventory system with order splitting

Fred Janssen*

Ton de Kok ${ }^{\dagger}$
Version June 19, 1997

Abstract

Ahstract In this paper we derive expressions for the well-known fill rate service measure (P_{2}-service measure) and the fraction of the time the physical stock is positive ($P_{3}{ }^{-}$ service measure) for the (s, Q) inventory model with order splitting. When order splitting is applied, replenishment orders are split equally among n suppliers. Demand is modelled as a compound renewal process. Lead times of the suppliers are independent and identically mixed Erlang distributed random variables. An approximation algorithm is derived to compute the optimal value of the reorder point s subject to a service level constraint. The algorithm is verified by simulation.

1 Introduction

Since the introduction of order splitting by Sculli and Wu (1981) many papers considering this vendor management strategy have appeared. The order splitting strategy or multiple sourcing strategy is the partitioning of a replenishment order among two or more suppliers. Order splitting is advocated for the purpose of reducing lead time uncertainties, whereby safety stocks are reduced (see, for example, Sculli and Wu (1981), Pan and Liao (1989), Kelle and Silver (1990a, 1990b), and Guo and Ganeshan (1995)). Other papers show that due to delayed partial deliveries order splitting can decrease the inventory holding cost

[^0](see, for example, Zhao and Lau (1992), Lau and Zhao (1993), Lau and Lau (1994), and Chiang and Chiang (1996)).

When order splitting is applied, replenishment orders consist of n partial deliveries, each defining its own sub-replenishment cycle. When the lead times of the partial deliveries are independent and (non)-identically distributed random variables, the time until the first partial delivery arrives is equal to the first order statistic of n independent and (non)identically distributed random variables.

In this paper we will consider the (s, Q) inventory model with order splitting. In a practical situation it is often difficult to determine the value of the shortage costs. Then to find values for the optimal control variables often the expected ordering plus holding costs are minimized subject to a service level constraint (see, e.g, Hadley and Whitin (1963, p. 217), Tijms and Groenvelt (1984), Chiang and Chiang (1996)). Consequently, the service level contraint can be used to determine the reorder point s for given values of Q and n. In this paper we vary for the service level constraint between the fraction of the demand delivered directly from stock $\left(P_{2}\right)$ and the fraction of the time the physical stock is positive $\left(P_{3}\right)$.

The P_{2} service measure is well-studied and widely applied in practice. However, in the order splitting literature the service measure is largely unexplored. The P_{2} service measure is only discussed in Chiang and Benton (1994) and Chiang and Chiang (1996). The expressions derived by Chiang and Chiang (1996) are based on a model with deterministic lead times and normally distributed demand. Chiang and Benton (1994) consider at most two suppliers with shifted exponential lead times, and normally distributed demand.

The P_{3} service measure or ready rate finds common application in the case of equipment used for emergency purposes (Silver and Peterson (1985, p.265)). In this paper we will derive an expression for this measure in an order splitting environment. Moreover, this service measure naturally arises from a necessary condition when minimizing the sum of the expected ordering, holding and shortage costs, where the shortage costs are proportional to the expected average backlog level (see, Janssen and de Kok (1997)).

The above discussed performance measures are derived under very general assumptions for the demand and lead time process. Demand is modelled as a compound renewal process, and lead times of the suppliers are independent and identically mixed Erlang distributed random variables. The compound renewal process is a powerful tool to model real life demand processes, whereas with mixtures of Erlang distribution we can model a wide variety of lead time distributions.

Regarding the literature, most papers on order splitting consider constant demand models or consider at most two suppliers. In that sense these models are special cases of
the model presented in this paper. Secondly, we focus on performance measures that are often used in practice, such as the fill rate and the fraction of the time the physical stock is positive. Since stockouts may occur more than once in the same replenishment cycle, we do not think that the often used non-stock out probability (the so-called P_{1} service measure) is suitable in a multiple sourcing environment.

The paper is organized as follows. In section 2 the model assumptions are discussed and expressions for the performance measures are derived. Section 3 deals with some computational aspects of the derived performance measures and we present an algorithm to actually calculate these measures. In section 4 the algorithm is verified by discrete event simulation, and we will compare our results with results from Chiang and Benton (1994). Finally we summarize our findings in section 5 .

2 The model description

In this single echelon inventory model with order splitting we assume that the demand process is a compound renewal process. I.e., the interarrival times of customers can be described by the sequence $\left\{A_{i}\right\}_{i=1}^{\infty}$ of independent and identically distributed (i.i.d.) random variables with a common distribution function F_{A}, where A_{i} represents the time between the arrival of the i-th and $(i-1)$-th customer after time epoch 0 . The demand sizes of the customers are described by the sequence $\left\{D_{i}\right\}_{i=1}^{\infty}$ of i.i.d. random variables with a common distribution function F_{D}, where D_{i} represents the demand size of the i-th customer after time epoch 0 . The sequence $\left\{D_{i}\right\}_{i=1}^{\infty}$ is independent of $\left\{A_{i}\right\}_{i=1}^{\infty}$.

Shortages are backordered, and replenishment decisions are based on the inventory position, being defined as the total stock on hand plus on order minus the total stock backordered. The replenishment strategy that is considered is the continuous review (s, Q) policy. I.e., as soon as the inventory position drops below the reorder point s an amount of Q is ordered, such that the inventory position after ordering is between s and $s+Q$. Hence, we implicitly assume that always an amount of exactly Q is ordered. A replenishment order is equally divided among n different suppliers. The suppliers have independent and identically distributed lead times with a common distribution function G. If we rearrange the realisations of the lead times of the n partial deliveries in an increasing order, we get the order statistics. These order statistics are denoted by $L_{1: n} \leq L_{2: n} \leq \ldots \leq L_{n: n}$, with distribution functions $G_{k: n}$ for $k=1, \ldots, n$.

It is assumed that deliveries of two successive replenishment orders (each consisting of n partial deliveries) do not cross in time. Thus, the last partial delivery of a replen-

Figure 1: Evolution of the net stock and inventory position during a replenishment cycle for $n=4$.
ishment order arrives before any partial delivery of a subsequent replenishment order. A replenishment cycle is defined as the time period between two successive last arrivals of partial deliveries of two successive replenishment orders. The k-th sub-replenishment cycle of an arbitrary replenishment cycle is defined as the time period between the arrival of the $(k-1)$-th partial delivery and the k-th partial delivery $(k \in\{2, \ldots, n\})$. The first sub-cycle is defined as the time period between the arrival of last partial delivery of the replenishment cycle which preceded the arbitrary replenishment cycle and the arrival of the first partial delivery of the tagged replenishment cycle.

We are interested in the following long-run performance measures:
$P_{2}(s, Q, n)$ the fill rate (the fraction of demand directly delivered from stock);
$P_{3}(s, Q, n)$ the fraction of the time the physical stock is positive.
The renewal reward theorem (see, for example, Tijms (1994)) enables us to derive expressions for the long-run performance measures by deriving the related performance measures derived for an arbitrary replenishment cycle.

Let zero be an arbitrary moment in time, and denote the j-th ordering epoch after zero
by σ_{j}. Let $D\left(t_{1}, t_{2}\right)$ be the total demand during $\left(t_{1}, t_{2}\right], U_{j}$ the undershoot under s at σ_{j}. $L_{k: n}^{(j)}$ denotes the lead time of the k-th partial delivery in the j-th replenishment cycle after zero. Consider the second replenishment cycle after zero, that is interval ($\left.\sigma_{1}+L_{4: 4}^{(1)}, \sigma_{2}+L_{4: 4}^{(2)}\right)$ in Figure 1. Define the net stock as the stock on hand minus the total stock backordered. Then we denote for $k \in\{1,2, \ldots, n\}, I_{k}^{b}$ as the net stock at the beginning of the k-th subcycle in the second replenishment cycle after zero (just after the partial delivery arrived), and I_{k}^{e} as the net stock at the end of the k-th sub-cycle in the second replenishment cycle (just before the partial delivery arrives). Then it can be seen that (see Figure 1):

$$
\begin{aligned}
& I_{1}^{b}=s-U_{1}+Q-D\left(\sigma_{1}, \sigma_{1}+L_{n: n}^{(1)}\right) \\
& I_{1}^{e}=s-U_{2}-D\left(\sigma_{2}, \sigma_{2}+L_{1: n}^{(2)}\right) \\
& I_{k}^{b}=s-U_{2}+\frac{k-1}{n} Q-D\left(\sigma_{2}, \sigma_{2}+L_{k-1: n}^{(2)}\right), \quad k \in\{2,3, \ldots, n\} ; \\
& I_{k}^{e}=s-U_{2}+\frac{k-1}{n} Q-D\left(\sigma_{2}, \sigma_{2}+L_{k: n}^{(2)}\right), \quad k \in\{2,3, \ldots, n\} .
\end{aligned}
$$

Since the demand process is a compound renewal process and the lead times are i.i.d., it can be seen that $U_{1} \stackrel{d}{=} U_{2} \stackrel{d}{=} U$, and $D\left(\sigma_{1}, \sigma_{1} \mid L_{n: n}^{(1)}\right) \stackrel{d}{=} D\left(\sigma_{2}, \sigma_{2}+L_{n: n}^{(2)}\right)$, where $\stackrel{d}{=}$ denotes equality in distribution. Hence,

$$
I_{1}^{b} \stackrel{d}{=} s-U_{2}+Q-D\left(\sigma_{2}, \sigma_{2}+L_{n: n}^{(2)}\right)
$$

For ease of notation we will suppress the indices 2 in σ_{2}, U_{2} and $L_{k: n}^{(2)}$.
First we will derive an expression for $P_{2}(s, Q, n)$. The expected shortage during the k-th sub-cycle (denoted by $\beta_{k}(s, Q, n)$) is given by the expected shortage at the end of the sub-cycle minus the shortage at the beginning (the last term for avoiding double counting), hence

$$
\begin{equation*}
\beta_{k}(s, Q, n)=\mathbb{E}\left(-I_{k}^{e}\right)^{+}-\mathbb{E}\left(-I_{k}^{b}\right)^{+} \tag{1}
\end{equation*}
$$

where $x^{+}=\max \{0, x\}$.
Since the demand and lead time process are stationary it can be shown that the total demand during a complete replenishment cycle is equal to Q. Hence,

$$
\begin{equation*}
P_{2}(s, Q, n)=1-\frac{1}{Q} \sum_{k=1}^{n} \beta_{k}(s, Q, n) . \tag{2}
\end{equation*}
$$

By using renewal theory we can derive an expression for $P_{3}(s, Q, n)$ (see Appendix 1), namely

$$
\begin{align*}
P_{3}(s, Q, n)= & \frac{1}{2}\left(c_{A}^{2}-1\right) \mathbb{E} D \sum_{k=1}^{n} \frac{\mathbb{P}\left(I_{k}^{b}<0\right)-\mathbb{P}\left(I_{k}^{e}<0\right)}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}+U\right)^{+}-\mathbb{E}\left(I_{k}^{e}+U\right)^{+}}{Q} \tag{3}
\end{align*}
$$

Note that $I_{k}^{e}+U=s+\frac{k-1}{n} Q-D\left(\sigma, \sigma+L_{k: n}\right)$. For situations, in which the undershoot is negligible and the demand process is a compound Poisson process it can be seen that $P_{2}(s, Q, n)$ and $P_{3}(s, Q, n)$ are equal.

We did not use the fact that the lead times of the partial deliveries are identically distributed. Hence, (1) and (2) are also valid for non-identically distributed lead times. However, it is well-known that the moments and the distribution function of the order statistics for non-identically distribution random variables are quite complex, see Balakrishnan (1988). For computational convenience we therefore restricted ourselves to identically mixed Erlang distributed lead times for the different suppliers.

3 Computational aspects

A versatile class of distribution functions is the class of mixtures of two Erlang distributions (denoted by ME distributions), i.e.

$$
\begin{equation*}
f(x)=\sum_{j=1}^{2} p_{j} \mu_{j}^{k_{j}} \frac{x^{k_{j}-1}}{\left(k_{j}-1\right)!} e^{-\mu_{j} x}, \quad x \geq 0 \tag{4}
\end{equation*}
$$

where $p_{1} \geq 0, p_{2} \geq 0, p_{1}+p_{2}=1, k_{1}, k_{2} \in \mathbb{N}$.
In Tijms (1994, p.358) formulas are given to fit a ME distribution on a positive random variable based on the first two moments of that variable. When X and Y are ME distributed and $z \in \mathbb{R}$, then closed form expressions for $\mathbb{E}(X-z)^{+}, \mathbb{E}\left((X-z)^{+}\right)^{2}$, $\mathbb{E}(X-Y)^{+}$and $\mathbb{E}\left((X-Y)^{+}\right)^{2}$ exist.

In the model presented in section 2, we assumed that F_{A}, F_{D} and G are known. Expressions (1) and (2) contain the distributions of $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ and the distribution of the undershoot U. In general these distribution functions are hard to obtain from F_{A}, F_{D} and G. To avoid this problem, we assume that $D\left(\sigma, \sigma+L_{k: n}\right)+U$ and $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ are ME distributed. So, we only need the first two moments of $D\left(\sigma, \sigma+L_{k: n}\right)+U$ and $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ to calculate the expressions (1) and (2) for given values of s, Q, and n. Since U is independent of $D\left(\sigma, \sigma+L_{k: n}\right)$ it is sufficient to find expressions for the moments of U and $D\left(\sigma, \sigma+L_{k: n}\right)$ separately.

Now we use the fact that the distribution function of the undershoot is approximately equal to the stationary residual lifetime distribution with respect to F_{D}, when $Q \geq \operatorname{Cond}(D)$, (see Tijms (1994, p.14)). For a positive random variable X with finite moments $\mathbb{E X X}, \mathbb{E} X^{2}$, and where c_{X} represents the coefficient of variation of $X, \operatorname{Cond}(X)$
is defined as

$$
\operatorname{Cond}(X)=\left\{\begin{array}{lll}
\frac{3}{2} c_{X}^{2} I E X & \text { if } \quad c_{X}^{2}>1 \tag{5}\\
\mathbb{E X} & \text { if } & 0.2<c_{X}^{2} \leq 1 \\
\frac{1}{2 c_{X}} \mathbb{E} X & \text { if } & 0<c_{X}^{2} \leq 0.2
\end{array}\right.
$$

Then using results from renewal theory gives

$$
\begin{align*}
\mathbb{E} U & \simeq \frac{\mathbb{E} D^{2}}{2 \mathbb{E D}} \tag{6}\\
\mathbb{E} U^{2} & \simeq \frac{\mathbb{E D} D^{3}}{3 \mathbb{E} D} \tag{7}
\end{align*}
$$

The first two moments of $D\left(\sigma, \sigma+L_{k: n}\right)$ are given by the well-known results

$$
\begin{align*}
\operatorname{IE} D\left(\sigma, \sigma+L_{k: n}\right) & =\mathbb{E} N\left(\sigma, \sigma+L_{k: n}\right) \mathbb{E} D \tag{8}\\
\mathbb{E} D^{2}\left(\sigma, \sigma+L_{k: n}\right) & =\mathbb{E} N\left(\sigma, \sigma+L_{k: n}\right) \sigma^{2}(D)+\mathbb{E N}^{2}\left(\sigma, \sigma+L_{k: n}\right)(\mathbb{E} D)^{2} \tag{9}
\end{align*}
$$

where $N\left(\sigma, \sigma+L_{k: n}\right)$ denotes the number of customer arrivals during ($\sigma, \sigma \mid L_{k: n}$). Recall, that σ is an order epoch. Hence, a customer arrived at epoch σ. Therefore we can use the following asymptotic expressions (see, for example, Cox (1962))

$$
\begin{align*}
\operatorname{IEN}\left(\sigma, \sigma+L_{k: n}\right) \simeq & \frac{\mathbb{E} L_{k: n}}{\mathbb{E} A}+\frac{\mathbb{E} A^{2}}{2 \mathbb{E} A}-1 \tag{10}\\
\mathbb{E} N^{2}\left(\sigma, \sigma+L_{k: n}\right) \simeq & \frac{\mathbb{E} L_{k: n}^{2}}{(\mathbb{E} A)^{2}}+\mathbb{E} L_{k: n}\left(\frac{2 \mathbb{E} A^{2}}{(\mathbb{E} A)^{3}}-\frac{3}{\mathbb{E} A}\right) \\
& +\frac{3\left(\mathbb{E} A^{2}\right)^{2}}{2(\mathbb{E} A)^{4}}-\frac{2 \mathbb{E} A^{3}}{3(\mathbb{E} A)^{3}}-\frac{3 \mathbb{E} A^{2}}{2(\mathbb{E} A)^{2}}+1 \tag{11}
\end{align*}
$$

These asymptotic relations hold for $k=1, \ldots, n$ only when $\mathbb{P}\left(L_{k: n} \leq A\right)$ is small. In case this probability is larger than say 0.001 , we propose a Gamma approximation presented by Smeitink and Dekker (1990) to compute the first two moments of the renewal function.

What remains to compute are the moments of the order statistics $L_{k: n}$. Using an analogous approach as is described in Balakrishnan and Cohen (1991, p.44), enable us to compute $\mathbb{E} L_{k: n}^{m}$ for $m \in \mathbb{N}$, and $k=1, \ldots, n$, in case G is ME distributed.

Summarizing, to compute values for the expressions (1) and (2) for given values of s, Q, and n, we have to go through the following three steps

- Compute the moments of the order statistics $\mathbb{E} L_{k: n}^{m}$ for $m \in\{1,2\}$ and $k=1, \ldots, n$.
- Compute the first two moments of U and $D\left(\sigma, \sigma+L_{k: n}\right)$ for $k=1, \ldots, n$, by using relations (6) to (11).

Table 1: basic setting parameters for the experiments

n	$\mathbb{E} D$	c_{D}	$\mathbb{E} A$	c_{A}	$\mathbb{E} L$	c_{L}	Q	$P_{3, \text { target }}$
1	5	$\frac{1}{2}$	$\mathbb{E} D / 5$	$\frac{1}{2}$	5	$\frac{3}{10}$	50	0.50
2	10	1		1	10	$\frac{1}{2}$	100	0.99
3		2		2		1	250	
5								
10								

- Compute $P_{2}(s, Q, n)$ and $P_{3}(s, Q, n)$ by fitting ME distributions on $D\left(\sigma, \sigma+L_{k: n}\right)$ and $D\left(\sigma, \sigma+L_{k: n}\right)+U(k=1, \ldots, n)$, and using relations (1) and (2) respectively.

As been argued in the introduction, the service level contraint can be used to determine the reorder point s for given values of Q and n. The appropriate value of s can le found by solving $P_{i}(s, Q, n)=P_{i, \text { target }}$. Since $0 \leq P_{i}(s, Q, n) \leq 1$ and is increasing in s, the roots of the $P_{i}(s, Q, n)=P_{i, \text { target }}$ can be found simply by using a local search algorithm (see, for example Press et al.(1992)).

4 Numerical results

In this section we validate the quality of the algorithm described in the previous section for computing $P_{2}(s, Q, n)$ and $P_{3}(s, Q, n)$ by discrete event simulation. The numerical experiments are performed for a wide range of parameter values. The input values of the system parameters are given in Table 1. Each of the 3240 experiments consist of 10 subruns of 100.000 time units (exclusive 1 initialisation run). The demands, customer arrivals and lead times are drawn from ME distributions. For given values of n, Q and $P_{3, \text { target }}$ the reorder point s^{*} was determined by solving $P_{3}(s, Q, n)=P_{3, \text { target }}$. The output of the simulation experiment are values for the service measures under consideration, denoted by $P_{2, \text { sim }}$ and $P_{3, \text { sim }}$ respectively, and the fraction of the partial deliveries that crossed any partial deliveries of previous placed replenishment orders, denoted by $X_{s i m}$.

In Table 3 we summarized the results of these experiments. Each line in Table 3 represents 180 simulation experiments, and we calculated the mean absolute deviation of $P_{3, \text { target }}$ and $P_{3, \text { sim }}$ and the mean absolute deviation of $P_{2}\left(s^{*}, Q, n\right)$ (denoted by $P_{2, \text { target }}$) and $P_{2, s i m}$.

Table 2: The absolute deviations of the values of P_{2} and P_{3} computed by the algorithm and simulation.

Q	$P_{3, \text { target }}$	c_{L}	$\left\|P_{3, \text { target }}-P_{3, \text { sim }}\right\|$	$\left\|P_{2, \text { target }}-P_{2, \text { sim }}\right\|$	$X_{\text {sim }}$
50	0.50	0.3	0.0143	0.0085	0.4889
50	0.99	0.3	0.0037	0.0047	0.4892
100	0.50	0.3	0.0032	0.0024	0.1446
100	0.99	0.3	0.0022	0.0022	0.1447
250	0.50	0.3	0.0013	0.0011	0.0048
250	0.99	0.3	0.0011	0.0008	0.0047
50	0.50	0.5	0.0331	0.0257	0.5376
50	0.99	0.5	0.0064	0.0084	0.5374
100	0.50	0.5	0.0072	0.0055	0.1987
100	0.99	0.5	0.0039	0.0043	0.1987
250	0.50	0.5	0.0015	0.0016	0.0085
250	0.99	0.5	0.0015	0.0010	0.0085
50	0.50	1.0	0.1307	0.0949	0.5878
50	0.99	1.0	0.0096	0.0118	0.5878
100	0.50	1.0	0.0422	0.0319	0.3094
100	0.99	1.0	0.0085	0.0098	0.3091
250	0.50	1.0	0.0032	0.0031	0.0377
250	0.99	1.0	0.0053	0.0027	0.0377

From these experiments we can conclude the following about the quality of the expressions for the performance measures computed by the proposed algorithm in this section:

- For the situations in which $Q=100$ or $Q=250$, the proposed algorithm performs very good in all cases that are considered. Both $\left|P_{3, \text { target }}-P_{3, \text { sim }}\right|$ and $\left|P_{2}-P_{2, \text { sim }}\right|$ are small, even for high coefficients of variation.
- For the situations where $Q=50$ and $c_{L}=1$, we see discrepancies between the target and achieved P_{3} service level. The explanation for this deviation is that a large fraction of partial deliveries does cross (up to 58%). When this occurs we need to reconsider the determination of the moments $\mathbb{E}\left(L_{k: n}^{(2)}\right)^{m}$, which are now determined by realisations of lead times of partial deliveries from several replenishment cycles.

These results point out that the proposed algorithm performs very well. However we have to be careful in situations where crossing of orders indeed occurs.

In addition to the previous numerical validation we compared our results with results from Chiang and Benton (1994) to check the performance of our algorithm under different model assumptions. Chiang and Benton (1994) considered an (s, Q) inventory model with two suppliers, shifted exponentially distributed Lead times, and normally distributed demand. Chiang and Chiang (1996) and Chiang and Benton (1994) are the only two articles that consider the P_{2} service measure. But in both papers the undershoot of the reorder level at ordering epochs is neglected and double-counting is allowed of shortages just before two subsequent partial deliveries. Hence, when there remains a shortage just after the arrival of a partial delivery, this shortage is counted twice. It is easy to see that double-counting can lead to negative service levels. In the computational experiments of Chiang and Benton (1994) they consider normally distributed demand per day with mean 50 units/day and variance 10 units/day, and shifted-exponential lead times with mean 8 and variance equal to 4. To make a fair comparison we used the same first two moments for our models, i.e. $\mathbb{E} A=1, c_{A}=0, \mathbb{E} D=50, c_{D}=0.2, \mathbb{E} L=8$, and $c_{L}=0.5$. We simulated the model under the conditions of Chiang and Benton, that is with shifted-exponential lead times and normally distributed demand, and compared the results in Table 3.

The examples considered in Chiang and Benton (1994) are for very high service levels and for rather stable demand processes. Then neglecting the undershoot and doublecounting have no impact on the calculated reorder level, which is reflected by the good results in Table 3. In spite of the difference in the model assumption and the simulated distribution functions our method did perform very well. In case we simulated lead times

Table 3: A comparison of results from Chiang and Benton (CB) with our model (JK)

Q	$P_{2, \text { target }}$		s	$P_{3, \text { sim }}$
1350	0.9952	(CB)	531	$0.9953(\pm 0.0009)$
		(JK)	521	$0.9950(\pm 0.0009)$
1600	0.9954	(CB)	493	$0.9956(\pm 0.0005)$
		(JK)	504	$0.9960(\pm 0.0005)$
2050	0.9956	(CB)	455	$0.9956(\pm 0.0008)$
		(JK)	482	$0.9970(\pm 0.0007)$
2850	0.9959	(CB)	422	$0.9959(\pm 0.0008)$
		(JK)	456	$0.9971(\pm 0.0007)$

from a ME distribution the model presented in this paper performs slightly better than the results of Chiang and Benton.

5 Conclusions and future research

In this paper an (s, Q) inventory model is presented with order splitting, where the demand is modelled as a compound renewal process, and lead times of the suppliers are independent and identically distributed random variables. We derived expressions for performance measures which are often used in practice, namely the fill rate, and the fraction of the time that the physical stock is positive.

When shortage cost are hard to specify, a service level constraint can be used to determine the reorder point s. Based only on the first two moments of the underlying demand and lead time process, an algorithm is derived to compute s by solving $P_{i}(s, Q, n)=P_{i, \text { target }}$. The algorithm turns out to perform very good for situations in which the number of order crossings was not too high.

Although the performance measures are derived for non-identically distributed lead times of suppliers, the algorithm is only developed for identically distributed lead times. When a fast algorithm is available for computing the order statistics of non-identically distributed random variables, the key-formulas (1) and (2) can be applied in a similar way.

References

Balakrishnan, N., 1988. Recurrence relations for order statistics from n independent and non-identically distributed random variables. Annals of Institutional Statistics Mathematics,40, 273-277.

Balakrishnan, N. and Cohen, A.C., 1991. Order statistics and inference, Academic Press, Inc., San Diego.

Cox, D.R., 1962. Renewal Theory, Methuen, London.
Chiang, C. and Benton, W.C., 1994. Sole sourcing versus dual sourcing under stochastic demands and lead times. Naval Research Logistics, 41, 609-624.

Chiang, C. and Chiang, W.C, 1996. Reducing inventory costs by order splitting in the sole sourcing environment. Journal of Operational Research Society, 47, 446456.

Guo, Y. and Ganeshan, R., 1995 Are more suppliers better? Journal of Operational Research Society, 46, 892-895.

Janssen, F.B.S.L.P., and Kok, A.G. de, 1997 . The optimal number of suppliers in an (s, Q) inventory model with order splitting. CentER discussion paper 97??, Tilburg University.

Kelle, P. and Silver, E.A. 1990A. Decreasing expected shortages through order splitting. Engineering Costs and Production Economics, 19, 351-357.

Kelle, P. and Silver, E.A. 1990b. Safety stock reductions by order splitting. Naval Research Logistics, 37, 752-743.

Lau, H.S. and Lau, A.H., 1994. Coordinating two suppliers with offsetting lead time and price performance. Journal of Operations Management, 11, 327-337.

Lau, H.S. and Zhao, L.G. 1993. Optimal ordering policies with two suppliers when lead times and demand are all stochastic. European Journal of Operational Research, 68, 120-133.

Pan, A.C. and Liao, C., 1989. An inventory model under just-in-time purchasing agreements. Production and Inventory Management Journal, 30 (1), 49-52.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., 1992. Numerical Recipes in C, Cambridge, England.

Sculli, D. AND Wu, S.Y., 1981. Stock control with two suppliers and normal lead times. Journal of Operational Research Society, 32, 1003-1009.

Silver, E.A. and Peterson, R. 1985. Decision Systems for Inventory Management and Production Planning. Wiley, New York.

Smeitink, E. and Dekker, R., 1990. A simple approximation for the renewal function. IEEE Transactions Reliability, R-39, 71-75.

Tijms, H.C., 1994. Stochastic Models: An Algorithmic Approach. Wiley, Chichester.
Zhao, L.G. and LaU, H.S., 1992. Reducing inventory costs and choosing suppliers with order splitting. Journal of Operational Research Society, 43, 1003-1008.

Appendix 1: Proof of relation (2)

Define $T(x)$ as the expected total time that the physical stock is positive, in case the physical stock level on epoch 0 equals $x(x \geq 0)$, there are no outstanding replenishment orders, and time epoch 0 is an arrival moment of a customer. Let M be the renewal function associated with F_{D}, then by definition

$$
\begin{equation*}
T(x)=\mathbb{E} A M(x) \tag{A.1.1}
\end{equation*}
$$

Analogously, we define $\tilde{T}(x)$ as the expected total time that the physical stock is positive, in case the physical stock level on epoch 0 equals $x(x \geq 0)$, there are no outstanding replenishment orders, and time epoch 0 is an arbitrary moment in time. Let \tilde{A} be the arrival time of the first customer after zero. By conditioning on the first arriving customer after time epoch 0 , results into

$$
\begin{equation*}
\tilde{T}(x)=(\mathbb{E} \tilde{A}-\mathbb{E} A)+\mathbb{E} A M(x) \tag{A.1.2}
\end{equation*}
$$

Lemma A.1.1.

Let M be the renewal function associated with F_{D}, and let U the equilibrium excess distribution of D, then

$$
\begin{equation*}
(M * U)(x)=\frac{x}{\mathbb{E D} D} \tag{A.1.3}
\end{equation*}
$$

Proof:

Let $\tilde{F}_{D}(y)$ be the Laplace transform of F_{D}, thus $\tilde{F}_{D}(y)=\int_{0}^{\infty} e^{-y x} d F_{D}(x)$. Since $\tilde{U}(y)=$ $\left(1-\tilde{F}_{D}(y)\right) /(y \mathbb{E D})$ and $\tilde{M}(y)=1 /\left(1-\tilde{F}_{D}(y)\right)$, it follows that the Laplace transform of the convolution equals $1 /(y \mathbb{E} D)$. Hence, taking the inverse Laplace transform of $1 /(y \mathbb{E X})$ yields $(M * U)(x)=x / \mathbb{E} D$.

Now, consider the k-th sub-cycle $(k \in\{1, \ldots, n\})$. The expected physical stock at the beginning of the k-th sub-cycle (just after the replenishment arrived) is equal $\left(I_{k}^{b}\right)^{+}$, whereas the expected physical stock at the end of the k-th sub-cycle (just before the replenishment arrives) is equal to $\left(I_{k}^{e}\right)^{+}$. Then it is easy to see that the the expected time that the physical stock is positive during the k-th sub-cycle is given by $\mathbb{E} \tilde{T}\left(\left(I_{k}^{b}\right)^{+}\right)-\mathbb{E} \tilde{T}\left(\left(I_{k}^{e}\right)^{+}\right)$. By using relation (A.1.2), Lemma A.1.1., and by conditioning on I_{k}^{b}, we find

$$
\begin{aligned}
\mathbb{E} \tilde{T}\left(\left(I_{k}^{b}\right)^{+}\right)= & \int_{0}^{s+\frac{k-1}{n} Q} \tilde{T}\left(s+\frac{k-1}{n} Q-x\right) d F_{D\left(\sigma, \sigma+L_{k-1: n}\right)+U}(x) \\
= & (\mathbb{E} \tilde{A}-\mathbb{E} A) \int_{0}^{s+\frac{k-1}{n} Q} d F_{D\left(\sigma, \sigma+L_{k-1: n}\right)+U}(x) \\
& +\mathbb{E} A \int_{0}^{s+\frac{k-1}{n} Q} \int_{0}^{s+\frac{k-1}{n} Q-x} d(M * U)(y) d F_{D\left(\sigma, \sigma+L_{k-1: n}\right)}(x) \\
= & (\mathbb{E} \tilde{A}-\mathbb{E} A) \mathbb{P}\left(I_{k}^{b}<0\right)+\frac{\mathbb{E} A \mathbb{E}\left(\left(I_{k}^{b}+U\right)^{+}\right)}{\mathbb{E} D}
\end{aligned}
$$

and for $\mathbb{E} \tilde{T}\left(\left(I_{k}^{b}\right)^{+}\right)$an analogue expression can be derived. Finally using that the length of a replenishment cycle equals $\frac{Q \boldsymbol{E} A}{\boldsymbol{E} D}$, and summing up the expected time the net stock is positive during the n sub-cycles, yields

$$
\begin{align*}
P_{3}(s, Q, n)= & \frac{\mathbb{E} D}{Q \mathbb{E} A} \sum_{k=1}^{n}\left(\mathbb{E} \tilde{T}\left(\left(I_{k}^{b}\right)^{+}\right)-\mathbb{E} \tilde{T}\left(\left(I_{k}^{e}\right)^{+}\right)\right) \\
= & \frac{1}{2}\left(c_{A}^{2}-1\right) \mathbb{E} D \sum_{k=1}^{n} \frac{\mathbb{P}\left(I_{k}^{b}<0\right)-\mathbb{P}\left(I_{k}^{e}<0\right)}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}+U\right)^{+}-\mathbb{E}\left(I_{k}^{e}+U\right)^{+}}{Q} \tag{A.1.4}
\end{align*}
$$

No.	Author(s)	Title
9689	T. ten Raa and E.N. Wolff	Outsourcing of Services and the Productivity Recovery in U.S. Manufacturing in the 1980s
9690	J. Suijs	A Nucleolus for Stochastic Cooperative Games
9691	C. Seidl and S. Traub	Rational Choice and the Relevance of Irrelevant Alternatives
9692	C. Seidl and S.Traub	Testing Decision Rules for Multiattribute Decision Making
9693	R.M.W.J. Beetsma and H. Jensen	Inflation Targets and Contracts with Uncertain Central Banker Preferences
9694	M. Voorneveld	Equilibria and Approximate Equilibria in Infinite Potential Games
		A Two-Supplier Inventory Model
9695	F.B.S.L.P. Janssen and	A.G. de Kok

| | | Nitle |
| :--- | :--- | :--- | :--- |
| | Author(s) | Optional Engine Power on Automobiles |

No. Author(s)

9712 M. Dufwenberg and W. Güth

9713 H. Uhlig
9714 E. Charlier, B. Melenberg and A. van Soest

9715 E. Charlier, B. Melenberg and A. van Soest

9716 J.P. Choi and S.-S. Yi
9717 J.P. Choi
9718 H.Degryse and A. Irmen
9719 A. Possajennikov

9720 J. Jansen

9721
9722
9723

Title
Indirect Evolution Versus Strategic Delegation: A Comparison of Two Approaches to Explaining Economic Institutions

Long Term Debt and the Political Support for a Monetary Union
An Analysis of Housing Expenditure Using Semiparametric Models and Panel Data

An Analysis of Housing Expenditure Using Semiparametric Cross-Section Models

Vertical Foreclosure with the Choice of Input Specifications
Patent Litigation as an Information Transmission Mechanism
Attribute Dependence and the Provision of Quality
An Analysis of a Simple Reinforcing Dynamics: Learning to Play an "Egalitarian" Equilibrium

Regulating Complementary Input Supply: Cost Correlation and Limited Liability

Estimating Short-Run Persistence in Mutual Fund Performance Target Zones and Exchange Rates: An Empirical Investigation A One-Stage Model of Link Formation and Payoff Division

Club Efficiency and Lindahl Equilibrium
Testing the Predictive Value of Subjective Labour Supply Data

Strategic Delegation: An Experiment
Campaign Expenditures, Contributions and Direct
Endorsements: The Strategic Use of Information and Money to Influence Voter Behavior

Existence of Optimal Auctions in General Environments
Optimal Budget Balancing Income Tax Mechanisms and the Provision of Public Goods

The Advantage of Hiding Both Hands: Foreign Exchange Intervention, Ambiguity and Private Information

How Larger Demand Variability may Lead to Lower Costs in the Newsvendor Problem

A Model of Random Matching and Price Formation

No.	Author(s)	Title
9733	J. Ashayeri, R. Heuts and B. Tammel	Applications of P-Median Techniques to Facilities Design Problems: an Improved Heuristic
9734	M. Dufwenberg, H. Norde, H. Reijnierse, and S. Tijs	The Consistency Principle for Set-valued Solutions and a New Direction for the Theory of Equilibrium Refinements
9735	P.P. Wakker, R.H. Thaler and A. Tversky	Probabilistic Insurance
9736	T. Offerman and J. Sonnemans	What's Causing Overreaction? An Experimental Investigation of Recency and the Hot Hand Effect
9737	R. Kabir	New Evidence on Price and Volatility Effects of Stock Option Introductions
9738	M. Das and B. Donkers	How Certain are Dutch Households about Future Income? An Empirical Analysis
9739	R.J.M. Alessie, A. Kapteyn and F. Klijn	Mandatory Pensions and Personal Savings in the Netherlands
9740	W. Güth	Ultimatum Proposals - How Do Decisions Emerge? -
9741	I. Woittiez and A. Kapteyn	Social Interactions and Habit Formation in a Model of Female Labour Supply
9742	E. Canton and H. Uhlig	Growth and the Cycle: Creative Destruction Versus Entrenchment
9743	T. Feenstra, P. Kort and A. de Zeeuw	Environmental Policy in an International Duopoly: An Analysis of Feedback Investment Strategies
9744	A. De Waegenaere and P. Wakker	Choquet Integrals with Respect to Non-Monotonic Set Functions
9745	M. Das, J. Dominitz and A. van Soest	Comparing Predicitions and Outcomes: Theory and Application to Income Changes
9746	T. Aldershof, R. Alessie and A. Kapteyn	Female Labor Supply and the Demand for Housing
9747	S.C.W. Eijffinger, M. Hocberichts and E. Schaling	Why Money Talks and Wealth Whispers: Monetary Uncertainty and Mystique
9748	W. Güth	Boundedly Rational Decision Emergence -A General Perspective and Some Selective Illustrations-
9749	M. Lettau	Comment on 'The Spirit of Capitalism and Stock-Market Prices' by G.S. Bakshi and Z. Chen (AER, 1996)
9750	M.O. Ravn and H. Uhlig	On Adjusting the HP-Filter for the Frequency of Observations
9751	Th. v.d. Klundert and S. Smulders	Catching-Up and Regulation in a Two-Sector Small Open Economy

No. Author(s)
J.P.C. Kleijnen H.L.F. de Groot
S. Hochguertel
K. Kultti
K. Kultti
R. Kabir
A.B.T.M. van Schaik and
H.L.F. de Groot and R. Nahuis Optimal Product Variety, Scale Effects, and Growth

Experimental Design for Sensitivity Analysis, Optimization, and Validation of Simulation Models

Productivity and Unemployment in a Two-Country Model with Endogenous Growth

Precautionary Motives and Portfolio Decisions
Price Formation by Bargaining and Posted Prices
Equivalence of Auctions and Posted Prices
The Value Relevance of Dutch Financial Statement Numbers for

Title

 Stock Market InvestorsR.M.W.J. Beetsma and H. Uhlig An Analysis of the "Stability Pact"
M. Lettau and H. Uhlig Preferences, Consumption Smoothing, and Risk Premia
F. Janssen and T. de Kok The Optimal Number of Suppliers in an (s, Q) Inventory System with Order Splitting

The Fill Rate Service Measure in an (s, Q) Inventory System with Order Splitting

Pr. anuanien manir tunninn tur airturqLANDS
Bibliotheek K. U. Brabant

17000013949665

[^0]: *Co-operation centre Tilburg and Eindhoven Universities, Tilburg University, P.O. Box 90153, B929, 5000 LE Tilburg, The Netherlands, E-mail: F.B.S.L.P.Janssen@kub.nl.
 ${ }^{\dagger}$ Department of Technology Management, Eindhoven University of Technology, P.O. Box 513, Paviljoen F4, 5600 MB Eindhoven, The Netherlands

