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ABSTRACT

To model the evolution of strategic intelligence, players types are drawn

from a hierarchy of "smartness" analogous to the levels of iterated

rationalizability. If smarter types have demonstrably better survival fitness,

then we would tixve an evolutionary foundation for the standard game-theoratíc

assumption of super-intalligent players. The results do not support this

wishful conjecture.



1.0 Introduction,

The concept of "rationality" is well-defined for a single decision-

maker problem and generically predicts a unique decísion. However, for multi-

decision-maker problems (i.e. games), this standard concept of rationality is

not adequate to provide generically unique predictions. The problem of games

with multiple Nash equilibria is an obvious example. But even when there is a

uníque Nash equilibrium, rationality alone (and even common knowledge of

rationality) is often insufficíent to predict the Nash equilibrium solution [Tan

and Werlang, 1988j.

In response to this inadequacy, in the last decade or so, the game theory

profession has devoted considerable resources to the refinement program -

attemptíng to invent a solution concept that always exists, is unique, and

satísfies other esthetic criteria. It is by no means clear that thís research

program will succeed.

Moreover, in the process, fundamental questions have been raised about what

it means to be an "intelligenC" player in a game [Binmore, 1987]. With only a

handful of exceptions, game theory has taken as an ímplícit axiom that all

players are super-Lntelligent: i.e. possessing omnicient powers beyond those

supposed in single decision-maker problems. For example, in many games, all

players priors and the selection rule for the solution concept must be common

knowledge. The exceptions [e.g. Fudenberg and Maskin, 1986; and Kreps, Milgrom,

Roberts, and Wilson, 1982] have found that super-intelligent behavior can be

fundamentally different when there is even a small probability of irrational

players and is very sensitive to the ad hoc specification of the irrational

behavior.

To debate what it means to play "intelligently", we must also give meaníng

to "unintelligent" play, and then be prepared to demonstrate just how
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intelligent play is superior to unintelligent play in an environment in whích it

is possíble for some players to be unintellígent. Moreover, we should have a

model that justifíes the assumptions about unintelligent play that underpin the

derived intellígent behavior.

The methods of evolutionary game theory are well-suíted for this task.l To

illustrate, consider a symmetric 2-player game. We can conceive of a large

class of behavioral rules including constant-strategy rules as well as

sophisticated multi-stage-reasoning rules. We suppose a very large population

of potential players and an initial frequency distribution of behavioral types

(rules). In the first period, players are randomly matched a large number of

times so each behavior type receives its expected payoff agaínst the populatíon

distribution. Between the first and second period, each behavioral type

reproduces at a growth rate proportional to its payoff, thus generating a new

frequency dístribution of behavioral types at the begínning of the second

period. This process is repeated índefinitely.

The obvíous questions include: which types survive and which die out, do the

more intellígent types gain in population relative to the less intelligent

types, does the frequency distribution converge, and if so to what? Further, we

can study the robustness of these properties to the game being played.

Granted we can re-interpret extant evolutionary game theory models evolution

wi[h intelligence. That is, the growth of a strategy type can be re-interpreted

as arising from conscious decislons of íntellígent players to switch to lietter

performing strategies (wíth perhaps lagged and~or noisy information). However,

1For an introduction to the literature, see Friedman, 1991; Hofbauer and
Sigmund, 1988; Samuelson, 1988; Samuelson and Zhang, 1991; Selten, 1991; and van
Damme, 1987, chapter 9. For an innovative application, see Blume and Easley,
1991.
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in this re-interpreted model the intelligent traít ítself (the switching

behavior) is not subjected to evolutionary selection, and therefore the model

tells us nothing about the evolution of íntelligence. In contrast, the

alternative model sketched above and to be developed in thís paper i s about the

evolution of intelligence.

1.1 Tha Specification of Smart Playara.

The specification of unintelligent players is obvious. For each strategy,

we associate a"dumb" player of that type who will always play that strategy in

every situnCion. The specificntlon of intellígent players on the other hand ia

far from obvious, and we claim only to have a reasonable begínning model.

Henceforth, we will use the term "smart" play rather than intelligent play.

To motivate our approach, consider how a smart player might reason, facing a

population of dumb and smart players. Being smart entails doing better than

random behavior glven the lnformarlon available. Therefore, we must specify the

information available to our smart player. We assume that the variables of the

game (players, strategies, and payoff matrix) are known. We will also endow our

smart players with more information about the population of players, but first

it is insíghtful to consider what a smart player would do if all he~she knew

were these game variables. In accord with single decision-maker theory and the

expected utilíty hypothesis, a smart player would have a subjective belief about

tlie other players' strategy choices and choose a best-response. Therefore, a

smart plnycr would never choose ti stratogy thnt ia not a best-rcapon5e to somc

distríbution over the other players' strategies, and since we have no basis (at

this point in our discussion) to restrict the smart player's beliefs, we can
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impose no further restrictions.z

Now suppose that our smart player knows the game variables, the proportion

of the population that is dumb and the frequency distribution of dumb players

over strategies. This informatíon restricts the possible probability

distributions over the other players' strategíes. We can define the set of

strategies that are first-level rationalizable with respect to this information.

But now our smart player knows the proportion of the population that is also

smart, and so it is possible to reason further.

Civen the information about the dumb players, the payoff matrix can be

uniquely modified to represent the payoff to smart players conditional on the

fixed known behavíor of dumb players. Then, one approach would to assume that

smart players play a Nash equilibrium of this modified game [Banerjee and

Weibull, 1991]. We reject this approach for several reasons. First, there may

be multiple Nash equilibria, in which case selecting any one presupposes a level

of coordination that should be explained by the model rather than assumed.

Second, even when there is a unique Nash equilibrium, the principles of

rationalíty alone do not compel that solution. Common knowledge (among smart

players) about the modífied game and the rationality of smart players would lead

only to the set of Berheim-Pearce (1984) rationalizable strategies which could

be the entíre set of strategies.

Based on these remarks, suppose smart players believe that all other smart

players reason as they do, and therefore smart players would never choose a

strategy that is not Berheim-Pearce (BP) rationalizable in the modified game.

We must also specífy how smart players choose from among multiple rationalizable

ZNote that since the populatíon contains dumb players, the íterative elíminatíon
of never-best-responses is not justifiable.



5

strategies. A simple, natural (but ad hoc) answer would be to assume a fixed

(e.g. uniform) dLstribution over the rationalízable strategies. It is

immediately apparent that this model of smart players is inappropriately

limited, because if thís fixed random selection rule were known, then a"really

smart" player would antícipate that behavior and instead play a best-response to

the predicted distribution. Hence, this initial model of smart players ís

woefully inadequate.

Our approach is to model a hierarchy of evermore thoughful and informed

players who re.ason analogously to the iterative levels of BP rationalizability.

At the first level, smartl players do not assume anything about the non-dumb

players, and consequently, smartl players confine their choices to the "first-

level rationalizable" strategies: those that are best-responses to some

probability distribution over other players strategies conditional on the

information about dumb players. If there is a unique first-level rationalizable

strategy, then smartl players choose that strategy. Otherwise, smarti players

choose among t}ie first-level ratíonalizable strategies using a(to be specified)

determinístic rule.

At the second level, we define smartz players whose information consists of

the information of smartl players plus the proportion of the population who are

smartl players and the probability distribution over smartl players' strategy

choices. [Equivalently, we could assume that smart2 players know the decision

rule of smartl players and can accurately predict the choices.j We assume that

smart2 players assume that the other players are at least as smart as smartl

players and never choose a strategy that is not in the first-level

rationalizable set. Consequently, smartZ players confine their choices to the
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"second-level rationalizable" strategies: those strategies that are are best-

responses to some probability distribution ovez other players' strategies

conditional on the information about dumb and smartl players. If there is a

unique second-level rationalizable strategy, then smart2 players choose that

strategy. Otherwise, smartZ players choose among the second-level

rationalizable strategies using a(to be specified) determínistic rule.

We can continue recursively defining smarto players for all n z 2. There

are two senses in which a smart~ player is amarter than a smart"-1 player.

First, the smart„ player reasons that no smarto-1 player will choose a strategy

that ís not (n-1)-level rationalizable. Second, and more importantly, a smart„

player anticípates the response of all less smart players. Nonetheless, the

smart" player is not smart enough to anticipate the behavior of other smart~

players. To fully capture the notion of a"transcendentally smart" player

requires an infinite híerarchy and a smart„ player. (If this were not true,

then the previously discussed problems in game theory would not have arisen.J

We turn now to the difficult issue of how to specify a smart~ player's

choice over the n-level rationalizable strategies conditional on his

information. Instead of an arbitrary randomization, we opt for a specification

that is responsive to evolutionary forces. Suppose that ín addition to primary

preferences over the consequences of the game each smart" player ís endowed with

a secondary strict transitive preference ordering over the strategies. This

secondary preference is superfluous when there is a unique rationalizable

strategy. However, when there are multiple rationalizable strategies, this

secondary preference is applied to the set of rationalizable strategies. Each

distinct secondary preference order distinguishes a smart player's type, and



there is an initial distribution of smarto players by type.3 Thus, the

proportion of smart„ players who choose a particular rationalizable strategy is

the proportion of smart~ players whose secondary preference (restricted to the

n-level rationalizable set) is for that strategy. In this model, evolutionary

dynamics can operate on the (secondary preference) types of smart~ players,

thereby making thc population of smart~ players more adaptable than they would

be with a fixed decísion rula.

In sectíon 2, we formalize this model and derive several results about the

structure. In section 3, we specify the evolutionary dynamics. In section 4,

we present our results. Section 5 concludes, and all proofs are relegated to an

Appendix.

2.0 The Formal Structure of the Model.

Let G z(A,n) be a symmetric finite 2-player game, where A is a finite set

of actions, and a is the payoff matrix. Let ~(X) denote the set of probability

measures on a finite set X. Let ~ denote the set of all strict transítive

orderings of A.

The population of players consists of dumb players and smart„ players for n

? 1. Let yo, denote the proportion of the whole population that consists of

dumb players who always choose a E A. Similarly, let y~ denote the proportion

of the whole population that consists of smart~ players with secondary

preference k E P. Further, let yo ~ (y,l,~, y„ ~ (y„~)~~, and y~ (y~(~ZO. By

definition, Fj20 y~ - 1, and the state variable y completely describes the player

3In biology, species evolve mainly by acquiring new genes that are added to the
DNA stock. This analogy suggests that we could think of this secondary
preference as being inherited from a primordíal pool of dumb players.
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population.

We also want to know the dístribution by smartness category. The proportion

of the population consistíng of dumb players is so ~ E,~ yo„ and for n? 1, the

proportion of the population consisting of smarto players is s„ - F~~ y~. Note

that E~LOS~ - 1.

Given so ~ 0, the subpopulation of dumb player types is distributed among

the strategies according to fo ~ yo~so E.~(A), with fo, denoting the proportion

of dumb players who always play strategy a E A. Similarly, given so ~ 0, the

subpopulatíon of smart„ players i s distributed among the ~ orderings according

to f~ ~ y~s, E~(~), wíth f~ denotíng the proportion of smart, players with

secondary preference type k. Later we will add a time índex to these vectors.

2.1 Player Behavior.

It is first convenient to introduce some notation-saving definitions. Let

~:..u(A) -. A be the pure-strategy best-response correspondence. For each b E B

c A, let P(b,B) ~(k E~ ~ k ranks b highest in B). In other words, P(b,B) is

the set of secondary preference types that rank strategy b highest among the

strategies in B. Note that (P(b,B), b E B) is a partition of ~.

A dumb player simply plays his strategy type, so the relative distribution

of dumb play is fo. For later notational convenience, we define po E fo.

Letting Ro ~ A, we can recursively define the set of n-level rationalizable

strategies conditíonal on I(s~,y~), j-0,...,n-1) for n z 1:

R„ e Q(Q„). where Q„ `~~cn sjpi }(1 - E~c~ s~)~(~'1) ' (1)

We next construct the relative distribution of smart„ play: u n ~(u,,, a E A)
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-~ 0 for all a~ I~„ and

~ns
E f„~, otherwise.

kEP(a,R„)

(2)

Note that if E~, i s the singleton (a~), then ~~,,, - 1. Furthermore, pn is a

recursíve functíon of y, so eq(1-2) define u(y) ~ (p~)~~o.

The aggregate distributíon of strategy choices for the whole population is

P(Y) ~ E~ sw~(Y) . (3)

2.2 Properties of the n-Level Rationalizable Sets.

It is easy to see that i~, ~ F~,-1 for all n 2 1, and hence, ([~„ n? 1) is a

non-increasing sequence of nested sets. Furthermore, i f s~ - 0 for all j- 0,

.. , m, for m sufficiently large, then Itm ís the set of BP rationalizable

strategies.

Figure 1 illustrates the constzuction of the Qn and [~, sets. First,

partítíon the simplex ~.(A) into the pure-strategy best-response regions. Next,

locate fo, and construct Q1 as a ( 1-so) scaling of .~(A) with fo as the common

point. Then, R1 consists of the associated best responses that intersect Q1:

(1,2,3) in Figure 1. By construction, ql ~ sopo t sl~l lies in Q1. Then, QZ is

a(1-so-s1) scaling of ..u(R1) with ql as the common point. Then, RZ consísts of

the associated best responses that intersect Q2: (3) in Figure 1. Hence, F~, -

(3) for all n? 2. Consequently, p lies on the straight line connecting ql and

the (3)-vertex.

Observe that íf so 1 0 and fo is an interíor distribution, then R1 cannot

contain any weakly dominated strategies. Thus, smartn players will never choose

a weakly dominated strategy given an interior distribution of dumb players.
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Fc~N~~ 1.
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As a correspondence from {(s~,{~i), j-0,...,n-1) to A, it is easy to see that

for all n L 1, [~, is upper hemi-continuous. However, when we consider R„ as a

correspondence from y to A, upper hemi-continuity does not necessaríly hold for

n ~ 1, because the distrlbution of smartp-1 play, y~-1, can changc

dlscontínuously. Tl~ese potential discontinuftles are seríous problems for

continuous-tíme dynamícal systems. Therefore, we will confíne our attention to

díscrete-time dynamics.

3.0 The Evolutionarv Dynamics.

To represent the strategy choice of each type of smartn player, let o(n,k) .

(o E.~(A) ~ oa - 1 iff a is most preferred relative to é~, by smart~ type kJ. By

interpreting smarto as the dumb players and lettíng the k index range over A

instead of ~, we also let o(O,k) denote the strategy choice of the dumb players.

For n? 1, note that a(n,k) depends on I~, which in turn depends on the

distríbution of strategies of all less smart types ((si,pi), j-0,...,n-1), which

is a determinístic function of y.

Given aggregate play p, then ~rp is the vector of expected payoffs to each

strategy when matched with an opponent randomly drawn from the population of

players. The expected payoff averaged over the population is p~xp. The

expected payoff to a smart~ player of type k is a(n,k)~~rp.

Typícally, evolutionary models assume that the growth rate of a species type

is proportional to its expected payoff. It follows then that the growttt rate

of the population share of a species type is proportional to the difference

between its expected payoff and the population avezage payoff. We adopt this

approach, and assume for all j? 0 that
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y~k(ttl)-Yi~(t)
- ~(t)Io(j,k:t)~aP(t) - P(t)'~Pít)) , (4)

Y~r(t)

where v(t) 1 0 ís the adjustment speed parameter, and t denotes the temporal

period. The right-hand side of eq(4) is a deterministic function of the state

variable y(t), so given an ínitial condition y(0), eq(4) defines a unique

dynamic path. While the adjustment speed parameter has no affect on the

direction of the path at any point, i t does affect tha length of each step. It

is well-known that high adjustment speeds can severly destabilize a system

because of overshooting. To reduce the overshooting problems, we will be

ínterested ín the behavior of eq(4) for low adjustment speeds.

We have adopted a discrete-time dynamic model to avoid the technical

problems due to discontinuíties on the right-hand side of eq(4). Doing so,

guarantees the existence of a well-defined solution path. However, we must

wonder whether the technical problems of the continuous-time version might

manífest themselves in some other form (such as instabilities) in our discrete-

time versíon. We believe not because we can modify the model slightly so the

right-hand side of eq(4) is continuous. To do so, suppose that every smarto of

type k(n Z 1) unknowingly receives slightly distorted information about

((s~,~~), j-0,...,ii-11. Further, suppose the information received is, say,

uniformly dístributed over an c-ball around the true state, and that each

player's distortion is independent of all other player's distortions. Then,

íntegrating over this uncertainty, p~ and hence p would be Lipschítzian

continuous functions of y. In addítion, the definition of o(j,k) wuuld be

modified, and ít too would be a Lipschitzian continuous function of y. Thus, we
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could formulate a contínuous-time dynamical system with unique solution paths.

An artifact of an evolutíonary dynamic system specified ín terms of growth

rates is that if y~k(to) - 0, then y~k(t) - 0 for all t~ to. In other words,

player types that do tiot exist or that die out can never re-emerge. Therefore,

inítial conditions which have yjk(0) - 0 for some (j,k) are of limited ínterest.

We henceforth limit attention to "semi-interior" initial conditions of the form:

for all k E B, yik(0) ~ 0 for all j G n~tl and yjk(0) - 0 for all j 1 n~, where

n~ E(1, 2, .. , m) is the maximum level of smartness.

4.0 Results.

The first result ídentifíes a set of strategies that will eventually never

be played.

Proposítion 1. If a E A is not BP rationalizable, then starting from any semi-

ínterior y(0), p,(t) -~ 0.

This result does not depend on convergence of the solution path. An immediate

implication of Proposition 1 is that all dumb types associated with non-BP

rationalizable strategíes die out. On the other hand, Proposition 1 does not

imply that smartn types whose secondary preference ordering ranks the non-

rationalizable strategies first die out. Since a smart" player would never

choose a non-rationalizable strategy, the position of these strategíes in his

secondary preference ordering is irrelevant to the evolutionary dynamics. It is

also noteworthy that Propositíon 1 applies to the standard case wíth no smart

players. While the presence of smart players is not vital for this result, the

smart players do speed up the demise of non-rationalizable play, since pn, - 0
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for all a ~ R,,.

We consider next the class of games which have a unique BP rationalizable

strategy, say a~.

Prooosition 2. If G has a unique BP rationalizable strategy, a~, then (i)

po.(t) ~ 1 and fe,,(t) ~ 1, and (ií) there is a à~ 0 such that 6 t s~(t) c

1-d for all t and all j ~ n~tl.

In other words, all dumb players except the a~ types die out, but the a~ types

do not die out. Smart players do not die out, but neither do they domínate.

Intuitively, the dumb player who happens to be genetically disposed towards a~

is just as "fit" as any smart„ player; i.e., "being right is just as good as

being smart".

Before deriving more results on the dynamic behavior of sj(t), it is

necessary to derive more characterizations of the dynamic behavior of y(t). It

is also interesting to ask whether known results for standard evolutionary

dynamics [so(0) - 1 in our model] hold in our more general model. One of the

typical results is that all NE are dynamic rest poínts and "almost all" dynamic

rest points are NE. Since every pure strategy (and hence every y such that p(y)

is a pure strategy) is a rest point of the dynamics, we do not have exact

equivalence between NE and rest points. However, if a rest point can be reached

from an interior initial condition, then it is a NE. A similar result holds in

our model.

Provosition 3. (a) If p[y(t)] i s a NE, then dy(t)~dt - 0. (b) If y(0) is semi-

interior and p(t) converges to p~, then p~ is a NE.
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Notice Proposition 3(b) does not require that y(t) necessarily converge -

only that the aggregate play, p(t), converge. This raises the question of the

relationship between convergence of y(t) and p(t). Clearly, if y(t) converges

to, say, y~, then p(t) will also converge provtded that p(.) is continuous at

y~. However, as stated in section 2, p(~) is discontinuous at points where the

correspondences R~ are discontinuous. On the other hand, as we argued at the

end of section 3, these díscontinuities can be easily elimínated by íntroducing

a tiny bit of noise, so for all practical purposes convergence of the state

variable y implies convergence of aggregate play p. The converse proposition ís

not at all immediate, considering that p(~) is a mappíng from the state space to

a much lower dimensíonal space.

Proposítion 4. If p[y(t)] converges to some p~ and if for all n? 1 Rn(t)

converges to some i~;, then y(t) ís also convergent.

Because of the potential discontinuities in the ratíonalizable sets,

convergence of aggregate play ín the presense of smart~ players may be more

unlikely than with only dumb players. To explore this possibility, we examine

cases where the evolutionary dynamics of dumb players only is hyperbolically

stable.

Proposition 5. If p~ is a strict NE, then p~ is hyperbolically stable; i.e.

given a~ ~ supp(p~), there ís a á~ 0 and e~ 0 such that IIp(Y(C))-p~~~ G L

implies ~p,(t)~p,(t) G-ó for all a r a~ and all t.

Thus, the introduction of smart~ players does not upset the hyperbolic



ls

stability of strict NE. On the other hand, Proposítion 5 does not assert

that the basin of convergence is the same. Indeed, because of the possible

discontínuities of the [~,(t) sets, when y(0) lnvolves only a small proportion of

dumb players, the c in Proposition 5 could be quite small in comparíson to a

y(0) which involves predominately dumb players. Smoothing the discontinuities

by introducing noise does líttle to help because there still could be a

signíficant decline in p,, due to the addition of a rationalízable atrategy, and

that decline might push p outside the basin of convergence.

Since the set of state vectors y that map to a given p~ is a manifold, it is

too much to hope that any particular point in that manifold is asymptotícally

stable.

We can now generalize Proposition 2 to cases where G has multiple BP

rationalizable strategies.

Proposition 6. If p(t) y p~, then there is a b~ 0 such that d G s~(t) c 1-b

for all t and all j t n~tl.

In other words, if the dynamic process converges, then no smart~ nor dumb player

has a superior (or inferior) survival fitness. Again, we have the príncíple

that being right is just as good as being smart.

Proposítion 6 implies that if we are to find cases for which, say, dumb

players díe out, we must focus on the non-convergent (often chaotic) cases.

Even if we succeed, the victory will be soured by the observatíon that despite

the superíor survival fitness of some smartn players, the aggregate play is non-

convergent.
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Pronositíon 7. (a) If so(t) ti 0, then s~(t) y 0 for all j~ 0. (b) Hence,

given n~ G m, there exists a d~ 0 such that so(t) ? d infinitely often.

The intuition behind (a) is that because the rationalizable sets R~

are nested, some of the smart~ types are mimicking the smar[~~1 players, and

hence must do as well. Then (b) is an immediate consequence of (a) and the fact

that Ej20 s~ - 1.

Thus, with a finite upper bound on smartness, dumb players will never be

driven out. One way to rationalize a finite upper bound n~ would be to assume

there are maintenance costs, c,,, for smartp players, with c~ 1 ci-1 for all j? 1

and lim~~c~ . max~n. Letting c(t) ~ Eí~os~(t)cí, we would add c(t) - cí inside

the brackets of eq(4). Then, for suffíciently large n, ~y~(t)~y~(t) t 0 for

a11 k E 6; hence, sn(t) ~ 0.

Notwithstanding the above remarks, Proposition 7 appears to leave open the

possibility that when n~ -, mass may escape to infinity: i.e. there may exist

an increasing divergent sequence (n(t)) such that E s(t) - 1. In other
pn(c) ~

words, a domínnnt tr:u~~cendental.ly smart player would evolvc - a result which

would vindicate traditional game theory, albeit actual play, p, would not

converge.

It also remains an open question whether or not smart„ players can be driven

out. The difficulty in trying to prove that a smarta player will not be driven

out (or that mass can escape to infinity) is that the E~,(t) correspondence is

discontinuous, and when a new strategy becomes rationalizable, a relatively

large proportion of the smartn players may switch to the newly rationalízable

strategy, but it could actually perform worse than average.
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5. Discussíon.

We have developed a model in which players have varying degrees of

smartness, and for which an infinitely smart player is equivalent to the usual

super-íntelligent player assumed in game theory. We supposed that smartness is

subject to evolutionary selectíon pressures, and asked whather smartness has

superior survival fitness. Our findings were negative. Dumb players are never

driven out by smart players. Indeed, if there are increasing maintenance costs

to smartness, then there ís a finite upper bound on surviable smartness.

We have focused our analysis on a fíxed (albeit arbitrary) finite,

symmetric, two-player game. Given our general definition of smartness, we could

be criticísed for this focus on a fixed game rather than on a distribution of

games in this class. For example, we could consider a set of MxM symmetric

games defined by a diverse but fíníte set of payoff matrices x, and a

probability distribution on these games. In each period, players are randomly

matched and a payoff matrix is drawn. The evolutionary dynamics would depend on

the average performance of all player types over all possible games in this

class.

It is reasonable to conjecture that smartness would have superior survival

fitness over dumb players in this environment. However, this result would be

due to the unreasonable limitations of dumb players. If by "dumb" we mean

merely mechanical and independent of information about the current population,

then we should permit more complex "genes" that are able to discriminate between

the alternative games (just as simple animal species are able to discriminate

among various objects in their environment). Given N possible games, and M

strategíes, there would be M" possible genetic types. [The secondary

preferences of the smart~ players should also be expanded analogously.] The



18

apparent inferioríty of dumb players would disappear, and the príncíple that

being tight is just as good as óeing smart would seem to hold.

Of course for an infiníte set of possible games, we would need an ínfinity

of types, and it may be reasonable to restrict "dumb" players to a fínite set of

types. However, ít is not obvious that these dumb players would be driven out.

The dwnb players' discriminatíon abílitíes could partítion the space of payoff

matrices in a way that mínimizes the consequences of the incomplete information.

[For example, for 2x2 games it may suffice to have a three-part partition that

recognizes when cach of the strategies is stríctly dominant.j In general, it

may be adequate to have the cardinality of the partition equal to 2"-1

corresponding to each possible non-empty subset of A.

For the sake of argument, suppose in this infinitely diverse environment of

games and fínite dumb types, that the dumb types are driven out. Our

celebration will be tempered by the observation that after some finite time, the

smartl players will be vírtually indistinguishable from the dumb types

confined to the rationalizable set R3, and hence no more fit. Moreover, for any

gíven game, these smartl players will be indistinquishable from the dumb players

of this paper. Therefore, we will not find that "the smarter, the better".

Thus, our model does not provide an evolutionary foundation for the usual

assumption in game theory that a11 players are super-intelligent, and it seems

unlikely that any other model will satisfactorily meet this goal. Future

research should develop more realistic models of intelligence subject to

evolutionary selectiou with [he Eoal of developing a theory of "Intelligent"

play in an evolutíonary context.
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APPENDIX OF PROOFS

Proof o!` Proposition 1.

Let BP~ denote the n`h-level BP rationalizable set: i.e. the subset of A

that survives n rounds of elimínation of never-best-responses (or equivalently,

since we are focusing on two-player games, strictly dominated strategies).

(1) Take any á~ BP1, so pnd - 0 for all n? 1, and pe - sof01. Since á

ís not first-level ratíonalizable, 3 q E~(A) such that q~xp ~ ei~xp for all p

E.ÁÍ.(A). Let c~ minP((q-e~)~xp) ~ 0. Define

V(t) ~ fos(t)I( n [fo.(t)lq' } .
aEn

Note that V~ 0 iff fos 1 0. Define ~V(t) ~ V(ttl) - V(t). Then,

AV(t) II~~(P.(t))q' Afo!(t) nfo.(t)

~
( l - E 4.

V(t) - In (P,(ttl))q' l. foa(t) aEA fo,(t).~

Note that, by virtue of the dynamic specification, eq(4), the expression in

square brackets i s equal to e~~xp - q~xp G-c~2. Therefore, V(t) ís a

Liapounov function, so by Liapounov's Direct Method [see, e.g. LaSalle, 1986],

fo!(t) -' 0.

(2) Next take á e BP1`BP2, so 3 q E.~.(A) such that q~xp ~ es~xp for all p E

,Á~.(BP1). By virtue of (1), there exists a t~ and an c~ 0 such that for all t~

t3 and all p E~(R1(t)), (q-e~)~xp z e. Now pl - sofo, t si~l~. By the same

methods used in (1), we can show that fo~(t) - ~ 0. Further, since fon(t) -~ 0,

for sufficiently large t, á ff R1(t); hence, yl~ - 0.

(4) Repeating these steps for all levels of BP rationtilizability, we

conclude that íf a ff nn~o BPn, then p~(t) -~ 0. Q.E.D.
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Proof of Pronosition 2.

If G has a unique BP rationalizable strategy a~, then it follows immediately

from Proposition 1 that fo~,(t) y 1. To prove the second part, first observe

that for all n?1, E~,(t) converges to (a~) in fínite time, say t'. Thus, for

all t~ t', all smartn types play a~ and, therefore, have identical growth

rates, which ís also the growth rate of yo,.. The population of all these

player types remain in constant ratio to each other for all t 1 t', and hence

none die out. Further, since so ? Yo,~. dumb types do not die out either. In

other words, for all j c n~fl, 3 ó~ 0 such that ó C si(C) G 1-ó. Q.E.D.

Proof of Prouositíon 3.

(a) Suppose p(y(t)] is a NE. Then, for all a E supp(p(t)), (e~-p)~np - 0.

Thus, ~yo(t) - 0, which implies that R1(ttl) - R1(t). Then, Dyl(t) - 0, and so

on. (b) Assume that y(0) is semi-interior and p(t) y p~, and suppose to the

contrary that p~ is not a NE. In other words, suppose there is a strategy ê

such that (e9-p~)~~p~ - b~ 0. Then, 3 t' such that for all t 1 t' (es-

p(t))~ap(t) ? ó~2 ~ 0. But then 4p~(t),ps(t) Z vó~2 ~ 0 for all t, which is

incompatíble with the given convergence of p(t). Therefore, p~ is a NE. Q.E.D.

Proof of Pronositíon 4.

Given that p[y(t)] y p~, let S- supp(p~) and B~ A`S. Hence, pb(t) y 0 for

all b E B, and 3 ó~ 0 such that p,(t) ? ó for all a E S.

Obviously, yoy(t) ~ 0 for all b E B. Now consider a smart~ player of type k

whose secondary preference ordering ranks some b E B as most preferred. Then,

either yik(t) ~ 0, or for t sufficíently large b~ Ri(t). In the latter case,

the fate of these types depends on their preference ordering restricted to S,
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and they will have the same fate as other types with identícal restricted

preferences. Thus, without loss of generality, we may assume S- A(or

equívalently, reinterpret B as being restricted to S).

Convergence of p(t) ímplies that Gp(t) y 0, and ~p~(t) consists of four

components:

(i) ~Yo,(t).

(ii) the smart~ types whose secondary most preferred element in both R~(t)

and R~(ttl) ís a: k E P(a,Ri(t))nP(a,R~(ttl)) - P~.

(iii) the newcomers to strategy a- the smart~ types whose secondary most

preferred element in R~(ttl) is a, but whose most preferred element ín R~(t) was

not a: k E P(a,R~(ttl))`P(a,Rj(t)) - Pi.

(iv) the departers from strategy a- the smartj types whose secondary most

preferred element in R~(t) was a, but whose most preferred element in Rj(ttl) is

not a: k E P(a,Ri(t))`P(a,Ri(ttl)) - P~.

Now we can write

(~) opa(t) - oYoa(t) t s[ E oy,k(t) t E Y,k(t) - E y,k(t) ).
j?1 kEPj kEPj kEP~

The arrival and departures create a troublesome discontinuity in the dynamíc

process. In princípal, the arrivals and departures could be balanced so ~p(t)

0, while y(t) does not converge.

Let R~ - lim inf R~(t), Since the best-response correspondence is upper

hemi-continuous R~ is non-empty. Further, the nestíng of the R~ sets is

inherited by the R~ sets. Now suppose there is a t" such that for all t? t",

R~(t) - Rj for all j, in which case, Pj and P~ are empty and Pj - P(a,Rj).

Then, since the set of state variables (yo~, yik for k e P(a,R~) and j ~ n~tl)

all have identical growth rates, from (~), convergence of p(t) implies that
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~yo,(t) ~ 0 for all a and Ay~k(t) y foz all k E P(a,R~) and j G n~tl. Further,

the growth rates of these state variables equal the growth rate of p,(t), and

since p,(t) converges, so must this set of state variables. Moreover, since

v~P(a,R~) -~, all the state variables converge. Q.E.D.

Remark. To see the dífficulty in proving a more general result, suppose instead

that 3 á E S`RÍ such that á E R1(t) infinitely often (i.o.). Consider a

period ttl when á becomes first-level rationalizable: á E R1(ttl)`R1(t). Note

that we have á E R~(t) for all j? 1. Then, letting a- á in (~), we have for

all j? 1 that P~ - P~ -~ and

Opa(t) - ~Yoa(t) t E E Yjk(t) .
j~l kEPj

Since ~p~(t) y 0, the right-hand side must vanish. Unfortunately, we cannot

conlude that ~y09(t) and y~k(t) -~ 0 for all k E P~, because it is conceiveable

that 4yoQ(t) is negative just enough to offset the positive newcomers.

Proof of Provosition 5.

Given a strict NE p~, let a~ - supp(p~). Strictness ímplies 3 6 ~ 0 such

that for all a s a~, (e,-e,,)~se,, 5-b for all a r~ a~. Further, there is an e~

0 such that IIp-p~~~ ~ e implies that p(p) -(a~). For any n and y, by

construction, p(y) E Qn. Therefore, IIp(Y)-p~~~ ~ r implies (a~) -~(p(y)) c Itn.

Consider Q1 - yo t(1-so).~ (A). For any a r a~, mín(qa E Q1) - yo, G c,

min(q,,) - yo,., and max(q,,) - 1- Eb~a~yb 1 1-e. In other words, Q1 is interior

to but arbitrarily close to the simplex of A truncated by q~, ? ypz,. Further,

yo,, is growing while, for all a~ a~, yo~ is decreasing. Thus, Q1 is shífting

monotonically in the direction of a~. It follows that R1(t) ís non-increasing
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as long as IIp-p~~~ ~ c. Hence, all discontinuities in RI(t) must be implosions,

and since a~ E R1(t), all such discontínuities will generate positive jumps in

p~, [referríng to (~) of the previous proof], and negative jumps ín pa for the

elimínated strategy. 1'hus, the dynamics of the dumb players and the smartl

players push p(t) towards p~.

Next, consider QI - yo t slp~ t(1-so-sl).~(R1). For any a r a~, min(q~ E QZ)

- Yo. t~Erc.,eli Yik ~ E, min(4,~) - Yo,~ } FtErc,~,al~ Yik, and maxlq„) ~ 1-e. In

other words, QZ is interior to but arbitarily close to the simplex of A

truncated by min~q,.1. Further, the latter quantity is growing while, for all a

r a~, min(qo,) is decreasing. Thus, QZ ís shifting monotonically in the

direction of a~. It follows that R2(t) is non-increasing as ]ong as IIp-p~~~ ~ t.

Hence, all discontinuitíes in RZ(t) must be implosions, and sínce a~ E RZ(t),

all such discontinuities will generate positive jumps in p~„ and negative jumps

in p, for the elimínated strategy. Thus, the dynamics of the smart2 players

also push p(t) towards p~.

Iterating this argument for all n, the I~(t) sets are non-increasíng in t,

so for all a r a~, Ap,(t)~p~(t) t-á. Q.E.D.

Remark: The proof of Propositíon 5 can be adapted to prove that if a~ is a

"robust" NE (i.e. a~ is the unique perfect best response to itself, Okada,

1983), then a~ is asymptotically stable.

Proof of Pronosition 6.

Given p(t) ~ p~, sínce the best-response correspondence is upper hemi-

continuous, 3 a~ E~(p~)n~(p(t)) c Rí(t) for all j? 1 and t sufficiently large.

Therefore, all player types who rank a~ highest, do not die out and grow at the
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same strictly positíve rate as yo~,. Therefore, 3 ó~ 0 such that so(t) ?

Yo,~(t) z b for t sufficiently large. For n 2 1, let k~ denote the secondary

preference type that ranks a~ highest. Then, similarly, 3 6 1 0 such that sa(t)

~ Yot~(t) ? ó for t sufficíently large. Q.E.D.

Proof of Prooosition 7.

(a) Suppose so(t) ~ 0. Then, observe that, for suffíciently large t, R1(t)

differs from the first-level BP rationalizable set only by deleting all

strategíes (if any) that are never perfect best-responses to some g E.~(A); call

this set PBP1. For each a E PBP1 and each k E P(a,PBPl), Ylk and yoa have the

same growth rate; hence, together with Proposition 1, so(t) y 0 implies sl(t) y

0.

Next, for sufficíently large t, RZ(t) differs from the second-level BP

rationalizable set only by deleting all strategies (if any) that are never

perfect best-responses to some g E ~((PBP1); call this set PBP2. For each a E

PBPZ and each k E P(a,PBYZ), yZk and yo, have the same growth rate; hence,

together with Proposition 1, so(t) y 0 implies s3(t) ~ 0. Therefore, by

induction, so(t) y 0 ímplies s~(t) y 0 for all j z 1.

(b) Given n~ G m and E~~o sj(t) - 1 for all t, we cannot have so(t) y 0, so

there must be a S 1 0 such that so(t) ~ b infinitely often.
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