Tilburg University

Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs need not be Continious in Pure Strategies

Robson, A.J.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Robson, A. J. (1990). Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs need not be Continious in Pure Strategies. (CentER Discussion Paper; Vol. 1990-38). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CetER Discussion for
 Economic Research paper

8414 1990 ?

38

No. 9038

EXISTENCE OF NASH EQUILIBRIUM IN MIXED STRATEGIES FOR GAMES WHERE PAYOFFS NEED NOT BE CONTINUOUS IN PURE STRATEGIES

by Arthur J. Robson

June 1990

ISSN 0924-7815

EXISTENCE OF NASH EQUILIBRIUM IN MIXED STRATEGIES FOR

 GAMES WHERE PAYOFFS NEED NOT BE CONTINUOUS IN PURE STRATEGIES*Arthur J. Robson
Department of Economics
University of Western Ontario
London, Ontario
CANADA N6A 5C2

October, 1988
Last revised April 1990
*This paper is a revision of the appendix of an earlier version of Robson (1990). The research was supported by the Social Sciences and Humanities Research Council of Canada. I am also grateful to the CentER for Economic Research at Tilburg University for their hospitality. I thank Phil Reny and Eric van Damme for comments.

1. INTRODUCTION

The purpose here is simply stated: It is to weaken the requirement for existence of Nash equilibrium in mixed strategies that payoff functions be continuous in pure strategy vectors. (This is required, for example, by Glicksburg, 1952.) The weaker requirement adopted here is that each player's payoff is upper semicontinuous in the vector of all pure strategy choices, and continuous in the vector of all other players' strategies, for each own choice. All pure strategy sets are taken to be compact as usual. A minor point is that these strategy sets are taken to be subsets of metric spaces rather than just of Hausdorff spaces, as in Glicksburg.

The following related result should be noted. Dasgupta and Maskin (1986, p. 4, Theorem 2) discuss the existence of Nash equilibrium in pure strategies under weaker continuity assumptions than those here. (It is easy to see that requiring payoffs to be continuous in the vector of other players' pure choices implies "graph continuity".) However, they also require payoffs to be quasiconcave in own pure strategies, which is not required here. Suppose one were to attempt to apply the Dasgupta and Maskin result to mixed strategies as in the present context. It is trivial that quasiconcavity in own strategy obtains when mixed strategies are permitted. The difficulty is to show that the weakened continuity properties in pure strategies carry over to precisely analogous statements for mixed strategies. This is essentially the contribution of the present note, although the proof relies directly on Glicksburg (1952).

2. ECONOMIC MOTIVATION

The intention here is to show that it easy to construct economic models in which the weakened continuity requirement is all that can be guaranteed.

Consider indeed Cournot duopoly, given in normal form as

$$
G=\left(\left(Q_{i}, \pi_{i}\right) \mid i=1,2\right)
$$

where $Q_{i}, i=1,2$ are compact subsets of R^{+}and

$$
x_{i}: Q \rightarrow R, \text { for } i=1,2, \text { given } Q=Q_{1} \times Q_{2}
$$

are continuous functions. Define sets of mixed strategies as usual by

$$
\mathbf{M}_{\mathbf{i}}=\left\{\text { probability measures on Borel subsets of } \mathrm{Q}_{\mathbf{i}}\right\}
$$

and expected profits as, say,

$$
\tau_{i}: M_{1} \times M_{2} \rightarrow R, \quad \tau_{i}\left(m_{1}, m_{2}\right)=\int \pi_{i}\left(q_{1}, q_{2}\right) d m_{1}\left(q_{1}\right) d m_{2}\left(q_{2}\right), \text { for } m_{i} \in M_{i}, i=1,2
$$

It follows from Glicksburg (1952) that a Nash equilibrium in mixed strategies, defined in the usual way, must exist. (Novshek, 1980, however, asserts that a Nash equilibrium in pure strategies, a Cournot equilibrium, that is, need not exist in these circumstances.)

Consider now the following Stackelberg version of this duopoly. Suppose that firm 1 is the leader, moving before firm 2. Firm 2 moves next given knowledge of 1's choice. This game of perfect information has a "subgame perfect equilibrium" in pure strategies. (See Selten, 1975 , for the definition of a subgame perfect equilibrium, or SPE, in a finite game. Hellwig, et al, 1989, extend this to "continuous action" games.) Indeed the force of subgame perfectness is that 2 's choice of quantity, $\mathrm{f}_{2}\left(\mathrm{q}_{1}\right)$, say, given any previous choice by firm 1 of q_{1} satisfy

$$
f_{2}\left(q_{1}\right) \in R_{2}\left(q_{1}\right)=\left\{q_{2} \mid \pi_{2}\left(q_{1}, q_{2}\right) \geq \pi_{2}\left(q_{1}, q_{2}\right) \text { for all } q_{2}^{\prime} \in Q_{2}\right\}, \text { for all } q_{1} \in Q_{1}
$$ where R_{2} is nonempty and upper hemicontinuous given that Q_{1} and Q_{2} are compact and π_{2} is continuous. (See Berge, 1963, p. 116.) If 2 breaks ties in 1 's favor, so

$$
f_{f_{2}\left(q_{1}\right) \in \underset{q_{2} \in R_{2}\left(q_{1}\right)}{\arg \max } \pi_{1}\left(q_{1}, q_{2}\right)}
$$

then firm 1 's maximization problem must have a solution. (Hellwig, et al, 1989, discuss this issue of tie-breaking for general games with perfect information.) This completes the specification of a Stackelberg equilibrium in pure strategies.

It seems natural to consider the following generalization of both the Cournot simultaneous move game and the Stackelberg sequential move game. Suppose that, prior to either firm's choice, nature chooses state " 0 ", with probability $1-\epsilon$, and state " 1 " with probability ϵ. Firm 1 next chooses q_{1} in ignorance of the state of nature. In state " 0 ",
firm 2 then chooses in ignorance of 1 's choice, as in the Cournot game. In state "1", however, firm 2 is informed of 1's choice, as in the Stackelberg version of the game. The question is then whether there exists an SPE of this extended game.

Suppose that firm 2 again breaks ties in favor of firm 1 in state " 1 ". Indeed, suppose that firm 2's strategy in state " 1 " is still denoted by f_{2}, as in the Stackelberg model and that the best reply correspondence R_{2} is also as defined above. It follows that 1's payoff in state " 1 ",

$$
\pi_{1}^{L}\left(q_{1}\right) \equiv \pi_{1}\left(q_{1}, f_{2}\left(q_{1}\right)\right)=\max _{q_{2} \in R_{2}\left(q_{1}\right)} \pi_{1}\left(q_{1}, q_{2}\right)
$$

say, is upper semicontinuous in q_{1}. (See Berge, p. 116, Theorem 2.) In addition, 2's payoff in state " 1 ",

$$
\pi_{2}^{F}\left(\mathrm{q}_{1}\right) \equiv \pi_{2}\left(\mathrm{q}_{1}, \mathrm{f}_{2}\left(\mathrm{q}_{1}\right)\right)=\max _{\mathrm{q}_{2} \in \mathrm{Q}_{2}} \pi_{2}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)
$$

say, is continuous in q_{1}. (See Berge, 1963, p. 116, "Maximum Theorem".) Hence the overall expected payoffs can then be expressed as, say,

$$
\Pi_{1}\left(q_{1}, q_{2}\right)=\epsilon \pi_{1}^{L}\left(q_{1}\right)+(1-\epsilon) \pi_{1}\left(q_{1}, q_{2}\right) \text { and } \Pi_{2}\left(q_{1}, q_{2}\right)=\epsilon \pi_{2}^{F}\left(q_{1}\right)+(1-\epsilon) \pi_{2}\left(q_{1}, q_{2}\right)
$$

where Π_{1} is upper semicontinuous in $\left(q_{1}, q_{2}\right)$ and continuous in q_{2}, and where Π_{2} is continuous in $\left(q_{1}, q_{2}\right)$. It is then sufficient for existence of an SPE of the original extended game that there exist a Nash equilibrium for this "reduced form" game. Given counterexamples to existence of Cournot equilibrium in pure strategies, it follows that pure strategies will not suffice generally for existence here either. Existence of a Nash equilibrium in mixed strategies for the "reduced form" game is ensured by the result of the next section. (Robson, 1990, also makes use of the present result to develop a refinement of Nash equilibrium for two-person nonzero-sum games. This is based on slight uncertainty concerning the order of moves.)

3. THE RESULT

The following equivalent definitions are recalled. (See Berge, 1963, pp. 74-77.)

Definition 1: Upper Semicontinusity

Consider a function

$$
\mathbf{U}: \mathbf{S} \rightarrow \mathbf{R}
$$

where S is a metric space. U is "upper semicontinuous", or "u.s.c." for short, iff any of the following equivalent conditions hold
(a) If $\mathrm{s}^{\mathrm{n}} \rightarrow \mathrm{s}, \mathrm{n} \rightarrow \infty$, then $\forall \delta>0 \exists \mathrm{~N} \ni \mathrm{n}>\mathrm{N}$ implies $\mathrm{U}\left(\mathrm{s}^{\mathrm{n}}\right)<\mathrm{U}(\mathrm{s})+\delta$
(b) If $\mathrm{s}^{\mathrm{n}} \rightarrow \mathrm{s}, \mathrm{n} \rightarrow \mathrm{\infty}$, then $\lim \sup _{\mathrm{n}} \mathrm{U}\left(\mathrm{s}^{\mathrm{n}}\right) \leq \mathrm{U}(\mathrm{s})$.
(c) The upper contour sets $\{\mathrm{s} \in \mathrm{S} \mid \mathrm{U}(\mathrm{s}) \geq \overline{\mathrm{U}}\}$ are closed for all $\mathbb{U} \in \mathbf{R}$.

The following class of games is considered.
Definition 2: Game, \boldsymbol{G}
An N -person nonzero sum game is given as

$$
\mathrm{G}=\left(\left(\mathrm{S}_{\mathbf{i}}, \mathrm{U}_{\mathbf{i}}\right) \mid \mathrm{i}=1, \ldots, \mathrm{~N}\right)
$$

where S_{i} are compact metric spaces, and the U_{i} are functions

$$
U_{i}: S \rightarrow R^{+}, i=1, \ldots, N, \text { where } S=S_{1} \times \ldots \times S_{N},
$$

such that
(i) U_{i} is u.s.c. on $\mathrm{S}, \mathrm{i}=1, \ldots, \mathrm{~N}$. This implies that each U_{i} is bounded above (see Berge, p. 76). For convenience, each U_{i} is assumed nonnegative.
(ii) U_{i} is continuous in s_{-i}, for all s_{i}, where s_{-i} is the vector $\left(s_{1}, \ldots, s_{N}\right)$ with s_{i} deleted, $\mathrm{i}=1, \ldots, \mathrm{~N}$.

The following strategy sets are considered.

Definition 9: Mixed Strategies

A mixed strategy m_{i} for player i is a probability measure on the set of Borel sets of S_{i}. The set of all such probability measures is denoted $M_{i}, i=1, \ldots, N$. The payoff to player i is, say,

$$
v_{i}\left(m_{1}, \ldots, m_{N}\right) \equiv \int U_{i} d m, \text { where } m \equiv m_{1} \times \ldots \times m_{N}
$$

is the unique product measure induced on S by $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{N}}$. Each U_{i} is measurable since it is u.s.c., and since it is also bounded, it is integrable.

The sets of mixed strategies are given the following topology.

Definition 4: Weak Convergence

Suppose $\left\{\mathrm{m}^{\mathrm{n}}\right\}_{\mathrm{n}=1}^{\infty}$ and m belong to M , the set of probability measures on the Borel sets of some compact metric space S. Then $" m$ weakly converges to m ", written

$$
\mathrm{m}^{\mathrm{n}} \xrightarrow{\mathrm{w}} \mathrm{~m} \text { iff } \int \mathrm{fdm}^{\mathrm{n}} \rightarrow \int \mathrm{fdm}
$$

for all real-valued continuous functions f on S. (See Billingsley, 1968, p. 7.) This topology is consistent with the "Prohorov" metric (Billingsley, pp. 237-238.)

The following three preliminary results are needed to prove the theorem.

Lemma 1: Limit of Product is Product of Limits

Suppose that

$$
m_{i}^{n} \underset{ }{w} m_{i}, n \rightarrow \infty
$$

where $m_{i}^{n}, m_{i} \in M_{i}$ for the compact metric spaces $S_{i}, i=1, \ldots, N$. It follows that

$$
m^{n}=m_{1}^{n} \times \ldots \times m_{N}^{n} \underset{\sim}{w} m_{1} \times \ldots \times m_{N}=m
$$

where m^{n}, and m are the unique product probability measures on the Borel sets of the compact metric space S induced by m_{i}^{n} and $m_{i}, i=1, \ldots, N$.

Proof Consider the firstly the case $\mathbf{N}=2$. Suppose then

$$
\mathrm{f}: \mathrm{S}_{1} \times \mathrm{S}_{2} \rightarrow \mathrm{R}
$$

is any continuous function, which is then clearly bounded and integrable. It must be shown that

$$
\int \mathrm{fdm}^{\mathrm{n}} \rightarrow \int \mathrm{fdm}
$$

Using Fubini's Theorem (Bartle, 1966, pp. 119-120) this is equivalent to showing that

$$
\int\left(\int \mathrm{fdm}_{1}^{\mathrm{n}}\right) \mathrm{dm}_{2}^{\mathrm{n}} \rightarrow \int\left(\int \mathrm{fdm}_{1}\right) \mathrm{dm}_{2}
$$

as $\mathrm{n} \rightarrow \boldsymbol{\infty}$. Define then

$$
F^{n}\left(s_{2}\right)=\int f\left(s_{1}, s_{2}\right) d m_{1}^{n}\left(s_{1}\right) \text { and } F\left(s_{2}\right)=\int f\left(s_{1}, s_{2}\right) d m_{1}\left(s_{1}\right)
$$

which are continuous functions, given that f is continuous and bounded, using the Lebesgue Dominated Convergence Theorem (Bartle, p. 44). By the weak convergence of m_{1}^{n},

$$
F^{\mathrm{n}}\left(s_{2}\right) \longrightarrow \mathbf{F}\left(\mathrm{s}_{2}\right) \forall \mathrm{s}_{2} \in \mathrm{~S}_{2} .
$$

Furthermore, $\left\{\mathrm{F}^{\mathrm{n}}\right\}$ is equicontinuous. Indeed, since f is continuous on the compact $\mathrm{S}_{1} \times \mathrm{S}_{2}$,

$$
\forall \delta>0 \exists \epsilon>0 \ni \mathrm{~d}_{2}\left(s_{2}^{\prime}, s_{2}\right)<\epsilon \Rightarrow\left|f\left(s_{1}, s_{2}^{\prime}\right)-f\left(s_{1}, s_{2}\right)\right|<\delta, \forall s_{1} \in S_{1}, \forall s_{2}, s_{2}^{\prime} \epsilon S_{2}
$$

where d_{2} is the metric on S_{2}. Hence

$$
\left|F^{n}\left(s_{2}^{\prime}\right)-F^{n}\left(s_{2}\right)\right| \leq \int\left|f\left(s_{1}, s_{2}^{\prime}\right)-f\left(s_{1}, s_{2}\right)\right| \mathrm{dm}_{1}^{n}\left(s_{1}\right)<\delta \text { for all } n .
$$

Clearly the $\left\{\mathrm{F}^{\mathrm{n}}\right\}$ are also pointwise bounded. It follows that

$$
F^{n}\left(s_{2}\right) \rightarrow F\left(s_{2}\right)
$$

uniformly on S_{2} (see Rudin, 1964, p. 158). Hence $\forall \delta>0 \exists \mathrm{~N}_{1} \ni \mathrm{n}>\mathrm{N}_{1}$ implies

$$
\left|F^{n}\left(s_{2}\right)-F\left(s_{2}\right)\right|<\frac{\delta}{2}, \quad \forall s_{2} \in S_{2}
$$

which implies, in turn,

$$
\left|\int F^{n}\left(s_{2}\right) d m_{2}^{n}\left(s_{2}\right)-\int F\left(s_{2}\right) d m_{2}^{n}\left(s_{2}\right)\right|<\frac{\delta}{2}
$$

In addition, weak convergence of $\mathrm{m}_{2}^{\mathrm{n}}$ to m_{2} implies:

$$
\begin{gathered}
\exists \mathrm{N}_{2} \ni \mathrm{n}>\mathrm{N}_{2} \text { implies } \\
\left|\int \mathrm{F}\left(\mathrm{~s}_{2}\right) \mathrm{dm}_{2}^{\mathrm{n}}\left(\mathrm{~s}_{2}\right)-\int \mathrm{F}\left(\mathrm{~s}_{2}\right) \mathrm{dm}_{2}\left(\mathrm{~s}_{2}\right)\right|<\frac{\delta}{2}
\end{gathered}
$$

Hence $\mathrm{n}>\operatorname{Max}\left\{\mathrm{N}_{1}, \mathrm{~N}_{2}\right\}$ implies the result for $\mathrm{N}=2$:

$$
\left|\int F^{n} d_{2}^{n}-\int F d m_{2}\right| \leq\left|\int F^{n} d m_{2}^{n}-\int F d m_{2}^{n}\right|+\left|\int F d m_{2}^{n}-\int F d m_{2}\right|<\delta .
$$

The result for general N now follows by induction, using the associativity of the product operation for measures. (See Friedman, 1982, p. 87.)

Note: A stronger version of the above result for $\mathrm{N}=2$ can be found in Parthasarathy (1967, p. 57, Lemma 1.1). The proof, however, is less direct than that given here.

Lemma 2: Inheriting U.S.C.

Consider the u.s.c. function

$$
\mathbf{U}: \mathbf{S} \rightarrow \mathbf{R}^{+}
$$

where S is a compact metric space. Suppose $\left\{\mathrm{m}^{\mathrm{n}}\right\}_{\mathrm{n}=1}^{\infty}, \mathrm{m} \in M$, the set of probability measures on Borel sets of S, and $m^{n} \xrightarrow{w} m$. It follows that \int Udm is u.s.c. in m :

$$
\lim \sup _{\mathrm{n}} \int \mathrm{Udm} \mathrm{~m}^{\mathrm{n}} \leq \int \mathrm{Udm}
$$

Proof Billingsley (1968, pp. 12-13, Theorem 2.1) proves the equivalence of five conditions characterizing weak convergence. Part of his proof yields the required result, although this is not explicit. For completeness, the proof is as follows.

Without loss of generality, it is assumed that

$$
0<\mathrm{U}(\mathrm{~s})<1 \quad \forall \mathrm{~B} \in \mathrm{~S} .
$$

For fixed $\mathbf{k} \in \mathbf{N}$, define

$$
F_{i}=\left\{s \left\lvert\, U(s) \geq \frac{i}{\frac{1}{\mathbf{L}}}\right.\right\} \quad i=0, \ldots, k
$$

which are closed precisely because U is u.s.c. (Billingsley assumes U is continuous and uses the following argument on both U and - U .)

All the F_{i} are measurable sets, U is a measurable function, and it follows that

$$
\sum_{i=1}^{k} \frac{i-1}{k} m\left\{s \left\lvert\, \frac{i-1}{k} \leq U(s)<\frac{i}{k}\right.\right\} \leq \int U d m \leq \sum_{i=1}^{k} \frac{i}{k} m\left\{s \left\lvert\, \frac{i-1}{k} \leq U(s)<\frac{i}{k}\right.\right\}
$$

Thus

$$
\sum_{i=1}^{\mathbf{k}} \frac{i-1}{\mathbf{k}}\left[m\left(F_{i-1}\right)-m\left(F_{i}\right)\right] \leq \int U d m<\sum_{i=1}^{\mathbf{k}} \frac{i}{\mathbf{k}}\left[m\left(F_{i-1}\right)-m\left(F_{i}\right)\right] .
$$

The two sums can be simplified to yield

$$
\frac{1}{\mathbf{k}} \sum_{i=1}^{\mathbf{k}} m\left(F_{i}\right) \leq \int U d m<\frac{1}{\mathbf{k}}+\frac{1}{\mathbf{k}} \sum_{i=1}^{\mathbf{k}} m\left(F_{i}\right) .
$$

Billingsley shows that

$$
m^{n} \xrightarrow{w} m \text { iff lim } \sup _{n} m^{n}(F) \leq m(F) \text { for all closed sets } F .
$$

Thus applying the upper bound above for the integral over m^{n}, and the lower bound for the integral over m ,

$$
\lim \sup _{n} \int U d m^{n} \leq \frac{1}{\mathbf{k}}+\frac{1}{\mathbf{k}} \sum_{i=1}^{k} m\left(F_{i}\right) \leq \frac{1}{\mathbf{k}}+\int U d m
$$

and, since \mathbf{k} is arbitrary,

$$
\lim \sup _{\mathrm{n}} \int \mathrm{Udm} \mathrm{~m}^{\mathrm{n}} \leq \int \mathrm{Udm}
$$

Lemma 9: Inheriting Continuity

Suppose that U_{i} and $V_{i}, 1, \ldots, N$, are as in Definitions 1,2 and 3. Then $V_{i}\left(m_{i}, m_{-i}\right)$, where m_{-i} denotes the vector $\left(m_{1}, \ldots, m_{n}\right)$ with m_{i} deleted, is continuous in m_{-i} in that:

$$
m_{-i}^{n} \xrightarrow{w} m_{-i} \text { implies } V_{i}\left(m_{i}, m_{-i}^{n}\right) \rightarrow V_{i}\left(m_{i}, m_{-i}\right), \forall m_{i} \in M_{i}, \forall m_{-i}, m_{-i}^{n} \in M_{-i}
$$

where M_{-i} is the Cartesian product of M_{1}, \ldots, M_{N} with M_{i} omitted and where weak convergence is as in Definition 4.

Proof
Define

$$
\mathrm{v}_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}, \mathrm{~s}_{-\mathrm{i}}\right)=\int \mathrm{U}_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{~s}_{-\mathrm{i}}\right) \mathrm{d} \mathrm{~m}_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right)
$$

This is a continuous function of 8_{-i}, for any $m_{i} \in M_{i}$, given $U_{i}\left(8_{i}, s_{-i}\right)$ is continuous in s_{-i} and bounded, by the Lebesgue Dominated Convergence Theorem. Hence Fubini's Theorem
implies

$$
V_{i}\left(m_{i}, m_{-i}^{n}\right)=\int v_{i}\left(m_{i}, s_{-i}\right) d\left\{\prod_{j \neq i} m_{j}^{n}\left(s_{j}\right)\right\} \rightarrow V_{i}\left(m_{i}, m_{-i}\right)
$$

as $\mathrm{m}_{-\mathrm{i}}^{\mathrm{n}} \xrightarrow{\mathbf{w}} \mathrm{m}_{-\mathrm{i}}$, using Lemma 1 .

Finally, a Nash equilibrium is defined in the obvious fashion:

Definition 5: Nass Equilibrium

A Nash equilibrium in mixed strategies for the game described in Definitions 1, 2, and 3 is

$$
\left(m_{1}^{*}, \ldots, m_{N}^{*}\right) \in M_{1} \times \ldots \times M_{N}
$$

such that

$$
V_{i}\left(m_{i}^{*}, m_{-i}^{*}\right) \geq V_{i}\left(m_{i}, m_{-i}^{*}\right) \forall m_{i} \in M_{i}, \text { for } i=1, \ldots, N .
$$

The main result is then

Theorem 1: Existence of NE

Any game G, as in Definitions 1, 2, and 3 has a Nash equilibrium as in Definition 5.

Proof
Define the best-reply correspondences

$$
\begin{gathered}
R_{i}: M_{-i} \rightarrow M_{i} \\
R_{i}\left(m_{-i}\right)=\left\{m_{i} \in M_{i} \mid V_{i}\left(m_{i}, m_{-i}\right) \geq V_{i}\left(m_{i}^{\prime}, m_{-i}\right) \forall m_{i}^{\prime} \in M_{i}\right\}, i=1, \ldots, N
\end{gathered}
$$

In order to apply the generalization of Kakutani's theorem due to Glicksburg (1952, p. 171, "Theorem"), note the following:
(i) $C\left(S_{i}\right)$, the continuous functions on the compact metric space, S_{i}, is a Banach space.
(ii) $\mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)^{*}$, the linear functionals on $\mathrm{C}\left(\mathrm{S}_{\mathrm{i}}\right)$ is a convex Hausdorff linear topological space.
(iii) M_{i}, the probability measures on Borel sets of S_{i}, is a convex compact subset of $C\left(S_{i}\right)^{*}$. Note that (i), (ii) and (iii) are as in Glicksburg. He refers to the " ω * topology" that is, the "weak ${ }^{*}$ topology" but this is identical to the "topology of weak convergence" as defined by Billingsley. (1968, p. 236.)
(iv) Each R_{i} is convex valued, given the use of mixed strategies and expected payoffs. Thus, for example, if $t \in(0,1) m_{i}, m_{i}^{\prime} \in R_{i}\left(m_{-i}\right)$ then

$$
t m_{i}+(1-t) m_{i}^{\prime} \in R_{i}\left(m_{-i}\right) .
$$

Also, R_{i} is nonempty. This follows immediately from Lemma 2, since u.s.c.functions attain a maximum on a compact set. (See, for example, Berge, p. 76, Theorem 2.)
(v) The heart of the matter is to show that each R_{i} has a closed graph. That is, suppose $\mathrm{m}_{-\mathrm{i}}^{\mathrm{n}} \xrightarrow{\mathrm{w}} \mathrm{m}_{-\mathrm{i}}, \mathrm{m}_{\mathrm{i}}^{\mathrm{n}} \in \mathrm{R}_{\mathrm{i}}\left(\mathrm{m}_{-\mathrm{i}}^{\mathrm{n}}\right) \xrightarrow{\mathrm{w}} \mathrm{m}_{\mathrm{i}}$. (Since M_{i} are metrizable, $\mathrm{i}=1,2$, they are first countable and the usual sequences characterize the topology. See Dugundji, 1966, pp. 186-187, pp. 217-218. There is a more general characterization in Glicksburg.) It must then be shown that $m_{i} \in R_{i}\left(m_{-i}\right)$. Suppose not. Then there exists $m_{i}^{\prime} \in M_{i}$ such that

$$
V_{i}\left(m_{i}^{\prime}, m_{-i}\right)-V_{i}\left(m_{i}, m_{-i}\right)=3 \Delta>0
$$

Now Lemmas 1 and 2 imply that

$$
\mathrm{m}^{\mathrm{n}}=\mathrm{m}_{\mathrm{i}}^{\mathrm{n}} \times \mathrm{m}_{-\mathrm{i}}^{\mathrm{n}} \mathrm{w} \mathrm{~m}_{\mathrm{i}} \times \mathrm{m}_{-\mathrm{i}}=\mathrm{m}
$$

and there exists an N_{1} such that $n>N_{1}$ implies

$$
\mathrm{V}_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}^{\mathrm{n}}, \mathrm{~m}_{-\mathrm{i}}^{\mathrm{n}}\right)<\mathrm{V}_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}, \mathrm{~m}_{-\mathrm{i}}\right)+\Delta
$$

Also, Lemma 3 implies there is an N_{2} such that

$$
\mathrm{n}>\mathrm{N}_{2} \text { implies }\left|\mathrm{V}_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}^{\prime}, \mathrm{m}_{-\mathrm{i}}^{\mathrm{n}}\right)-\mathrm{V}_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}^{\prime}, \mathrm{m}_{-\mathrm{i}}\right)\right|<\Delta .
$$

Hence $\mathrm{n}>\operatorname{Max}\left\{\mathrm{N}_{1}, \mathrm{~N}_{2}\right\}$ implies

$$
\begin{gathered}
V_{i}\left(m_{i}^{\prime}, m_{-i}^{n}\right)-V_{i}\left(m_{i}^{n}, m_{-i}^{n}\right)= \\
{\left[V_{i}\left(m_{i}^{\prime}, m_{-i}^{n}\right)-V_{i}\left(m_{i}^{\prime}, m_{-i}\right)\right]+} \\
{\left[V_{i}\left(m_{i}^{\prime}, m_{-i}\right)-V_{i}\left(m_{i}, m_{-i}\right)\right]+\left[V_{i}\left(m_{i}, m_{-i}\right)-V_{i}\left(m_{i}^{n}, m_{-i}^{n}\right)\right]} \\
>-\Delta+3 \Delta-\Delta=\Delta>0
\end{gathered}
$$

This contradicts

$$
\mathrm{m}_{\mathrm{i}}^{\mathrm{n}} \in \mathrm{R}_{\mathrm{i}}\left(\mathrm{~m}_{-\mathrm{i}}^{\mathrm{n}}\right)
$$

Remark. It might be that the continuity assumptions here can be further relaxed. Note, indeed, that Berge (1963, pp. 210-211) presents a result due to Sion of an existence theorem for a two-person zero sum game for which each player's payoff is u.s.c. (and quasiconcave) in his own choice and l.s.c. (and quasiconvex) in the other. The present result imposes stronger conditions on V_{1} and V_{2} considered as functions of (m_{1}, m_{2}), given that $\mathrm{V}_{2}=-\mathrm{V}_{1}$; indeed they must then be continuous in $\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$.

REFERENCES

Bartle, R.G. (1966), The Elements of Integration, Wiley: New York.
Berge, C. (1963), Topological Spaces, MacMillan: New York.
Billingsley, P. (1968), Convergence of Probability Measures, Wiley: New York.
Dasgupta, P. and Maskin, E. (1986), "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory", Review of Economic Studies LIII(1), 172, 1-26.

Dugundji, J. (1966), Topology, Allyn and Bacon: Boston.
Friedman, A. (1982), Foundations of Modern Analysis, Dover: New York.
Glicksburg, I.L. (1952), "A Further Generalization of the Kakutani Fixed Point Theorem, with Application to Nash Equilibrium Points," Proceedings of the American Mathematical Society 3, pp. 170-174.

Hellwig, M., Leininger, W., Reny, P. and Robson, A., "Subgame Perfect Equilibrium in Continuous Games of Perfect Information: An Elementary Approach to Existence and to Approximation by Discrete Games," Journal of Economic Theory, forthcoming.

Novshek, W., (1980), "Cournot Equilibrium with Free Entry", Review of Economic Studies, 47, 473-486.

Parthasarathy, K.R. (1967), Probability Measures on Metric Spaces, Academic Press: New York.

Robson, A. (1990), "An 'Informationally Robust Equilibrium' for Two-Person Nonzero-Sum Games", mimeo, CentER, Tilburg

Rudin, W. (1964), Principles of Mathematical Analysis, McGraw-Hill: New York.
Selten, R. (1975), "Re-examination of the Perfectness Concept for Equilibrium Points in Extensive Form Games", International Journal of Game Theory 4, 25-55.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:
(For previous papers please consult previous discussion papers.)

No. Author(s)
8917 F. Canova
8918 F. van der Ploeg

8919 W. Bossert and
F. Stehling

8920 F. van der Ploeg

8921

8922
C. Fershtman and
A. Fishman

8923
M.B. Canzoneri and C.A. Rogers

8924 F. Groot, C. Withagen and A. de Zeeuw

8925 O.P. Attanasio and G. Weber

8926

8927

8928
C. Dang

8929

8930

8931 H.A. Keuzenkamp
8932 E. van Damme, R. Selten and E. Winter

Title
Seasonalities in Foreign Exchange Markets
Monetary Disinflation, Fiscal Expansion and the Current Account in an Interdependent World

On the Uniqueness of Cardinally Interpreted Utility Functions

Monetary Interdependence under Alternative Exchange-Rate Regimes

Bottlenecks and Persistent Unemployment: Why Do Booms End?

Price Cycles and Booms: Dynamic Search Equilibrium

Is the European Community an Optimal Currency Area? Optimal Tax Smoothing versus the Cost of Multiple Currencies

Theory of Natural Exhaustible Resources: The Cartel-Versus-Fringe Model Reconsidered

Consumption. Productivity Growth and the Interest Rate

Monetary and Fiscal Policy in a 'Hartian' Model of Imperfect Competition

Reducing External Debt in a World with Imperfect Asset and Imperfect Commodity Substitution

The D_{1}-Triangulation of R^{n} for Simplicial Algorithms for Computing Solutions of Nonlinear Equations

Bayesian Multivariate Exogeneity Analysis: An Application to a UK Money Demand Equation

Fiscal Aspects of Monetary Integration in Europe

The Prehistory of Rational Expectations
Alternating Bid Bargaining with a Smallest Money Unit

No.	Author (s)	Title
8932	E. van Damme, R. Selten and E. Winter	Alternating Bid Bargaining with a Smallest Money Unit
8933	H. Carlsson and E. van Damme	Global Payoff Uncertainty and Risk Dominance
8934	H. Huizinga	National Tax Policies towards ProductInnovating Multinational Enterprises
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Guth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Rendom Utility Model for Continuous Choice
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	Dual Capacity Trading and the Quality of the Market
8944	C. Hsiao	Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data
8945	R.P. Gilles	Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure
8946	W.B. MacLeod and J.M. Malcomson	Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alternatives
8947	A. van Soest and A. Kapteyn	The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution
8948	P. Kooreman and B. Melenberg	Maximum Score Estimation in the Ordered Response Model
8949	C. Dang	The D_{3}-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations

No.	Author(s)	Title
8949	C. Dang	The D_{3}-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations
8950	M. Cripps	Dealer Behaviour and Price Volatility in Asset Markets
8951	T. Wansbeek and A. Kapteyn	Simple Estimators for Dynamic Panel Data Models with Errors in Variables
8952	Y. Dai, G. van der Laan, D. Talman and Y. Yemamoto	A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron
8953	F. van der Ploeg	Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem
8954	A. Kapteyn, S. van de Geer, H. van de Stadt and T. Wansbeek	Interdependent Preferences: An Econometric Analysis
8955	L. Zou	Ownership Structure and Efficiency: An Incentive Mechanism Approach
8956	P.Kooreman and A. Kapteyn	On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply
8957	E. van Damme	Signaling and Forward Induction in a Market Entry Context
9001	A. van Soest, P. Kooreman and A. Kapteyn	Coherency and Regularity of Demand Systems with Equality and Inequality Constraints
9002	J.R. Magnus and B. Pesaran	Forecasting, Misspecification and Unit Roots: The Case of $A R(1)$ Versus $\operatorname{ARMA}(1,1)$
9003	J. Driffill and C. Schultz	Wage Setting and Stabilization Policy in a Game with Renegotiation
9004	M. McAleer, M.H. Pesaran and A. Bera	Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment
9005	Th. ten Raa and M.F.J. Steel	A Stochastic Analysis of an Input-Output Model: Comment
9006	M. McAleer and C.R. McKenzie	Keynesian and New Classical Models of Unemployment Revisited
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multivariate t Regression Models

No.	Author(s)	Title
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multivariate t Regression Models
9008	G.W. Imbens	Duration Models with Time-Varying Coefficients
9009	G.W. Imbens	An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling
9010	P. Deschamps	Expectations and Intertemporal Separability in an Empirical Model of Consumption and Investment under Uncertainty
9011	W. Guth and E. van Damme	Gorby Games - A Game Theoretic Analysis of Disarmament Campaigns and the Defense Efficiency-Hypothesis
9012	A. Horsley and A. Wrobel	The Existence of an Equilibrium Density for Marginal Cost Prices, and the Solution to the Shifting-Peak Problem
9013	A. Horsley and A. Wrobel	The Closedness of the Free-Disposal Hull of a Production Set
9014	A. Horsley and A. Wrobel	The Continuity of the Equilibrium Price Density: The Case of Symmetric Joint Costs, and a Solution to the Shifting-Pattern Problem
9015	A. van den Elzen, G. van der Laan and D. Talman	An Adjustment Process for an Exchange Economy with Linear Production Technologies
9016	P. Deschamps	On Fractional Demand Systems and Budget Share Positivity
9017	B.J. Christensen and N.M. Kiefer	The Exact Likelihood Function for an Empirical Job Search Model
9018	M. Verbeek and Th. Nijman	Testing for Selectivity Bias in Panel Data Models
9019	J.R. Magnus and B. Pesaran	Evaluation of Moments of Ratios of Quadratic Forms in Normal Variables and Related Statistics
9020	A. Robson	Status, the Distribution of Wealth, Social and Private Attitudes to Risk
9021	J.R. Magnus and B. Pesaran	Evaluation of Moments of Quadratic Forms in Normal Variables

No.	Author (s)	Title
9022	K. Kamiya and D. Talman	Linear Stationary Point Problems
9023	W. Emons	Good Times, Bad Times, and Vertical Upstream Integration
9024	C. Dang	The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations
9025	K. Kamiya and D. Talman	Variable Dimension Simplicial Algorithm for Balanced Games
9026	P. Skott	Efficiency Wages, Mark-Up Pricing and Effective Demand
9027	C. Dang and D. Talman	The D_{1}-Triangulation in Simplicial Variable Dimension Algorithms for Computing Solutions of Nonlinear Equations
9028	J. Bai, A.J. Jakeman and M. McAleer	Discrimination Between Nested Two- and ThreeParameter Distributions: An Application to Models of Air Pollution
9029	Th. van de Klundert	Crowding out and the Wealth of Nations
9030	Th. van de Klundert and R. Gradus	Optimal Government Debt under Distortionary Taxation
9031	A. Weber	The Credibility of Monetary Target Announcements: An Empirical Evaluation
9032	J. Osiewalski and M. Steel	Robust Bayesian Inference in Elliptical Regression Models
9033	C. R. Wichers	The Linear-Algebraic Structure of Least Squares
9034	C. de Vries	On the Relation between GARCH and Stable Processes
9035	M.R. Baye, D.W. Jansen and Q. Li	Aggregation and the "Random Objective" Justification for Disturbances in Complete Demand Systems
9036	J. Driffill	The Term Structure of Interest Rates: Structural Stability and Macroeconomic Policy Changes in the UK
9037	F. van der Ploeg	Budgetary Aspects of Economic and Monetary Integration in Europe
9038	A. Robson	Existence of Nash Equilibrium in Mixed Strategies for Games where Payoffs Need not Be Continuous in Pure Strategies

Bibliotheek K. U. Brabant

17000011175875

