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1. INTRODUCTION

The purpose here is simply stated: It is to weaken the requirement for existence of
Nash equilibrium in mixed strategies that payoff functions be continuous in pure strategy
vectors. (This is required, for example, by Glicksburg, 1952.) The weaker requirement
adopted here is that each player’s payoff is upper semicontinuous in the vector of all pure
strategy choices, and continuous in the vector of all other players’ strategies, for each own
choice. All pure strategy sets are taken to be compact as usual. A minor point is that
these strategy sets are taken to be subsets of metric spaces rather than just of Hausdorff
spaces, as in Glicksburg.

The following related result should be noted. Dasgupta and Maskin (1986, p. 4,
Theorem 2) discuss the existence of Nash equilibrium in pure strategies under weaker
continuity assumptions than those here. (It is easy to see that requiring payoffs to be
continuous in the vector of other players’ pure choices implies "graph continuity".)
However, they also require payoffs to be quasiconcave in own pure strategies, which is not
required here. Suppose one were to attempt to apply the Dasgupta and Maskin result to
mixed strategies as in the present context. It is trivial that quasiconcavity in own strategy
obtains when mixed strategies are permitted. The difficulty is to show that the weakened
continuity properties in pure strategies carry over to precisely analogous statements for
mixed strategies. This is essentially the contribution of the present note, although the
proof relies directly on Glicksburg (1952).

2. ECONOMIC MOTIVATION
The intention here is to show that it easy to construct economic models in which the
weakened continuity requirement is all that can be guaranteed.
Consider indeed Cournot duopoly, given in normal form as
G =((Q ) | i=1,2)



where Qi' i=1, 2 are compact subsets of RY and
ri:Q-oR,fori= 1,2,givenQ=Q1u Q2
are continuous functions. Define sets of mixed strategies as usual by
M; = {probability measures on Borel subsets of Qi}

and expected profits as, say,

1M *My 2 R, 7(m;,m,) = J LACTE q2)dm1(q1)dm2(q2), form e M,i=1,2
It follows from Glicksburg (1952) that a Nash equilibrium in mixed strategies, defined in
the usual way, must exist. (Novshek, 1980, however, asserts that a Nash equilibrium in
pure strategies, a Cournot equilibrium, that is, need not exist in these circumstances.)

Consider now the following Stackelberg version of this duopoly. Suppose that firm 1

is the leader, moving before firm 2. Firm 2 moves next given knowledge of 1’s choice. This
game of perfect information has a "subgame perfect equilibrium" in pure strategies. (See
Selten, 1975, for the definition of a subgame perfect equilibrium, or SPE, in a finite game.
Hellwig, et al, 1989, extend this to "continuous action" games.) Indeed the force of
subgame perfectness is that 2’s choice of quantity, i2(q1), say, given any previous choice by
firm 1 of q satisfy

f5(a;) € Ry(qy) = {ag| 75(a;,9p) 2 75(a;,0y’) for all gy’ € Q,}, for all q; € Q,,
where Rz is nonempty and upper hemicontinuous given that Q1 and Q2 are compact and

7 is continuous. (See Berge, 1963, p. 116.) If 2 breaks ties in 1’s favor, so
fy(q)) € arg max =(qy, qy)
q2€R2 (ql)
then firm 1’s maximization problem must have a solution. (Hellwig, et al, 1989, discuss
this issue of tie—breaking for general games with perfect information.) This completes the
specification of a Stackelberg equilibrium in pure strategies.
It seems natural to consider the following generalization of both the Cournot
simultaneous move game and the Stackelberg sequential move game. Suppose that, prior
to either firm’s choice, nature chooses state "0", with probability 1—e, and state "1" with

probability e. Firm 1 next chooses q in ignorance of the state of nature. In state "0",



firm 2 then chooses in ignorance of 1’s choice, as in the Cournot game. In state "1",
however, firm 2 is informed of 1’s choice, as in the Stackelberg version of the game. The
question is then whether there exists an SPE of this extended game.

Suppose that firm 2 again breaks ties in favor of firm 1 in state "1". Indeed,
suppose that firm 2’s strategy in state "1" is still denoted by 1), as in the Stackelberg
model and that the best reply correspondence B.2 is also as defined above. It follows that
1’s payoff in state "1",

m(a) = ry(apfy(a)) = max  my(ag, )
99 €Ry(q;)
say, is upper semicontinuous in q;- (See Berge, p. 116, Theorem 2.) In addition, 2’s payoff
in state "1",
73(a) = m3(ap(ay)) = max my(a, ay),
92€Qp
say, is continuous in q,. (See Berge, 1963, p. 116, "Maximum Theorem".) Hence the
overall expected payoffs can then be expressed as, say,

I1,(a;,95) = e2(a;) + (1~¢)my(a;,05) and Ty(ay,05) = exh(q;) + (1-€)my(a;,0,),
where II1 is upper semicontinuous in (ql,q2) and continuous in 9 and where II2 is
continuous in (ql,q2). It is then sufficient for existence of an SPE of the original extended
game that there exist a Nash equilibrium for this "reduced form" game. Given
counterexamples to existence of Cournot equilibrium in pure strategies, it follows that pure
strategies will not suffice generally for existence here either. Existence of a Nash
equilibrium in mized strategies for the "reduced form" game is ensured by the result of the
next section. (Robson, 1990, also makes use of the present result to develop a refinement
of Nash equilibrium for two—person nonzero—sum games. This is based on slight

uncertainty concerning the order of moves.)

3. THE RESULT
The following equivalent definitions are recalled. (See Berge, 1963, pp. 74-77.)



Definition 1: Upper Semicontinuity

Consider a function

U: S-R

where S is a metric space. U is "upper semicontinuous", or "u.s.c." for short, iff any of the
following equivalent conditions hold
(8) Ts"-8n-w thenVs> 03N 3n > N implies U(s”) < U(s) + &
(b) Ifs" -5, 10w, thenlim sup, U(s™) < U(s).
(c)  The upper contour sets {s € S| U(s) > U} are closed for all U € R.

The following class of games is considered.
Definition 2: Game, G

An N—person nonzero sum game is given as

G=((5;, Ul i=1,..N)
where Si are compact metric spaces, and the Ui are functions
U;: S+ RY,i=1,..,N, where § = §; x..x Sy,

such that
(i) U; is u.s.c. on §,i=1,...,N. This implies that each U; is bounded above (see Berge,
p. 76). For convenience, each U, is assumed nonnegative.
(ii) U; is continuous ins_j, for all 8, where s_; is the vector (sl,...,sN) with g; deleted,

i=1,.,N.

The following strategy sets are considered.
Definition 3: Mized Strategies

A mixed strategy m, for player i is a probability measure on the set of Borel sets of
Si' The set of all such probability measures is denoted Mi’ i=1,...,N. The payoff to player
iis, say,

vi(ml""’mN) = J U,dm, wherem = m, x..xmy,



is the unique product measure induced on S by my,...,My. Each Ui is measurable since it

is u.s.c., and since it is also bounded, it is integrable.

The sets of mixed strategies are given the following topology.
Definition 4: Weak Convergence
Suppose {m“}:=1 and m belong to M, the set of probability measures on the Borel
sets of some compact metric space S. Then "m"™ weakly converges to m", written
m® Lom iff jfdmn_.jfdm
for all real—valued continuous functions f on S. (See Billingsley, 1968, p. 7.) This topology
is consistent with the "Prohorov" metric (Billingsley, pp. 237—238.)

The following three preliminary results are needed to prove the theorem.
Lemma 1: Limit of Product is Product of Limits
Suppose that

m?lomi, n-o

where m'i', m; € M; for the compact metric spaces S, i=1,...,N. It follows that

mn = mlll l...'lﬂ; !—0 ml -...-mN =m

where mn, and m are the unique product probability measures on the Borel sets of the

compact metric space S induced by m’il and m, i = 1,...,N.

ProoF Consider the firstly the case N = 2. Suppose then

f: S1 x 82 —R
is any continuous function, which is then clearly bounded and integrable. It must be
shown that

J fdm® — I fdm



Using Fubini’s Theorem (Bartle, 1966, pp. 119—120) this is equivalent to showing that

I (j fdm®)dmd — J ( j fdm  )dm,
as n - w. Define then

Fay) = [ 1(sy,8,)dm](s,) and F(sy) = [ (s, 8,)dm, (s)
which are continuous functions, given that f is continuous and bounded, using the Lebesgue
Dominated Convergence Theorem (Bartle, p. 44). By the weak convergence of m],
Fn(sz) — F(s,) Vs, € S,
Furthermore, {Fn} is equicontinuous. Indeed, since f is continuous on the compact S1 x Sz,
V6> 03 €> 03 dy(s,8)) < e= |1(s,.85) —£(8;,8,)| < 6,V 8,€S,,Vs,, 89€S,
where d2 is the metric on 82. Hence
|F%(s5) — F(s,)] € J| f(s,,8) — (8,,85) | dm®(s, ) < & for all n.
Clearly the {F"} are also pointwise bounded. It follows that
Fn(lz) — F(sy)
uniformly on S, (see Rudin, 1964, p. 158). Hence V6> 03 N, 3n > N, implies
[}
|F™(sp) —F(s))| <5, V8,€S,

which implies, in turn,
|| F(og)am(sy) — [ P1,)am5(a) ] < §

In addition, weak convergence of mj to m, implies:
3N2 3n> N2 implies

|| Ps,)am3(s,) - [ P )amy(ay)| < §



Hence n > Max{N,, N,} implies the result for N = 2:

|J' F"dm;-j Fdm,| ¢ |J Fndmg—I Fdm3| + |I deg—I Fdm,| < &
The result for general N now follows by induction, using the associativity of the product
operation for measures. (See Friedman, 1982, p. 87.)
Note: A stronger version of the above result for N = 2 can be found in Parthasarathy
(1967, p. 57, Lemma 1.1). The proof, however, is less direct than that given here.

Lemma 2: Inheriting U.S.C.
Consider the u.s.c. function
U: s—Rrt
where S is a compact metric space. Suppose {mn :=1, m € M, the set of probability
measures on Borel sets of S, and m™ ¥ m. It follows that I Udm is u.s.c. in m:

lim sup_ J Udm® ¢ I Udm.

PROOF Billingsley (1968, pp. 12—13, Theorem 2.1) proves the equivalence of five
conditions characterizing weak convergence. Part of his proof yields the required result,
although this is not explicit. For completeness, the proof is as follows.
Without loss of generality, it is assumed that
0<U(8) <1 VseS.
For fixed k € N, define

F, = {s|U(s) 2 ¢} i=0,..k
which are closed precisely because U is u.s.c. (Billingsley assumes U is continuous and uses

the following argument on both U and —U.)
All the Fi are measurable sets, U is a measurable function, and it follows that

k & . & I . .
2 gl U < < [ vdm ¢ 2 sl <u@) <
1= =



Thus
> B ¥
R SCUMELIAVE j Udm < 5 (m(F; ;) - m(F,)]
The two sums can be simplified to yield

1 k -
i3 m(R)< J Udm < ¢+ & m(F,).
i=1 i=1
Billingsley shows that
m" ¥ m iff lim sup, m"(F) < m(F) for all closed sets F.
Thus applying the upper bound above for the integral over m", and the lower bound for the
integral over m,
limsup_ [Udm® <L+l 3 m(F.) <L + [ Udm
Pn =EVk i=1 i’°k
and, since k is arbitrary,

lim sup_ J Udm® ¢ J Udm QE.D.

Lemma 3: Inheriting Continuity
Suppose that Ui and Vi, 1,...,N, are as in Definitions 1, 2 and 3. Then Vi(mi,m -i)’

where m i denotes the vector (ml,...,mn) with m, deleted, is continuous in m 4 in that:

ml_l_i Yim _; implies Vi(mi,mfi) — Vy(m;m_;), Vm;eM;, Vm_,, mfi €M,

where M * is the Cartesian product of MI""’MN with Mi omitted and where weak

convergence is as in Definition 4.

PrOOF Define
vi(m;8_;) = J U, (s;,8_;)dm;(s;)
This is a continuous function of s i for any m; € Mi' given Ui('i" —i) is continuous in 8 g

and bounded, by the Lebesgue Dominated Convergence Theorem. Hence Fubini’s Theorem



implies
Vil m%) = [ y(mys_a{ Mo} — Vyfmy m )
asm_niy—om_i,uaingl.emmal‘

Finally, a Nash equilibrium is defined in the obvious fashion:
Definition 5: Nasih Equilibrium
A Nash equilibrium in mixed strategies for the game described in Definitions 1, 2,
and 3 is
* *
(my,...,my) € My x..xMy
such that

* * *
Vi(mi, m_i) > Vi(mi’ m_i) Vm, € M;, fori=1,...,N.

The main result is then
Theorem 1: Ezistence of NE
Any game G, as in Definitions 1, 2, and 3 has a Nash equilibrium as in Definition 5.

PRrooOF Define the best—reply correspondences
Ri: M g Mi

Ri(m_;) = {m; € M;|V(m;, m_;) > V;(m{, m ;) Vm{ € M;},i=1,..,N
In order to apply the generalization of Kakutani’s theorem due to Glicksburg
(1952, p. 171, "Theorem"), note the following:
(i) C(Si), the continuous functions on the compact metric space, Si’ is a Banach space.
(ii) C(Si)‘, the linear functionals on C(S;) is a convex Hausdorff linear topological space.
(iii) M;, the probability measures on Borel sets of §;, is a convex compact subset of C(Si)*.
Note that (i), (ii) and (iii) are as in Glicksburg. He refers to the "w‘ topology" that is, the
"wenk* topology" but this is identical to the "topology of weak convergence" as defined by
Billingsley. (1968, p. 236.)
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(iv) Each R; is convex valued, given the use of mixed strategies and expected payoffs.
Thus, for example, if t € (0,1) m;, m{ € R,(m_;) then
tm, + (1-t)m{ € Ry(m_,).

Also, Ri is nonempty. This follows immediately from Lemma 2, since
u.s.c.functions attain a maximum on a compact set. (See, for example, Berge, p. 76,
Theorem 2.)

(v) The heart of the matter is to show that each R.i has a closed graph. That is, suppose
m? Fom_, m] € Rj(m?,) ¥ m;. (Since M; are metrizable, i=1,2, they are first countable
and the usual sequences characterize the topology. See Dugundji, 1966, pp. 186—187,

pp- 217—-218. There is a more general characterization in Glicksburg.) It must then be

shown that m, € R.i(m —i)' Suppose not. Then there exists m{ € M; such that
Vi(m{, m_;) - V;(m;, m_;) = 3A > 0.

Now Lemmas 1 and 2 imply that

and there exists an Nl such that n > N1 implies
n_n
Vj(mj, m;) < Vi(my, m_j) + A
Also, Lemma 3 implies there is an N2 such that
n > N, implies | V;(m}, mf_i) =V;m{,m_))| < A.
Hence n > Max{N,N,} implies
T n_mn,
Vi(mi,m_i) = Vi(mi ’m—i) =
[Vi(m{ ,mfi)—vi(m{ rm_i)]"‘lvi(mi ,m_i)—Vi(mi,m_i)]+[Vi(mi,m_i)—Vi(mlil,mfi)]
>-A+3A-A=A>0

This contradicts
m] € R;(m%,). Q.E.D.
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Remark. It might be that the continuity assumptions here can be further relaxed.
Note, indeed, that Berge (1963, pp. 210—211) presents a result due to Sion of an existence
theorem for a two—person zero sum game for which each player’s payoff is u.s.c. (and
quasiconcave) in his own choice and 1.s.c. (and quasiconvex) in the other. The present
result imposes stronger conditions on V, and V, considered as functions of (m,,m,), given
that V2 = —Vl; indeed they must then be continuous in (ml,m2).
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