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An Extension of the "Folk Theoretn" with
Continuous Reaction Functions

Abstract

In Friedman and Samuelson (1990a), we showed that there exist subgame perfect

equilibria for infinitely repeated games in which the equilibrium strategy combinations are

rnntinuous. This paper extends these results by providing a munterpart to the Fudenberg and

Maskin folk theorem in rnntinuous strategies. We show that any outmme of the stage game

which is feasible and stridly individually rational can be supported as an outmme of a

subgame perfect equilibrium of the infini[ely repeated game with mntinuous strategies,

providing discount fadors are sufficiently high.
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An Extension of the "Folk Theorem" with

Continuous Reaction Functions

James W. Friedman

Larry Samuelson

1. Introduction

In an earlier paper, Friedman and Samuelson (1990a), the authors showed that there

exist subgame perfect equilibria for infinitely repeated games in which the equilibrium strategy

mmbinations are mntinuous. These equilibria support payoff outrnmes dominating those

associated wi[h a single-shot nonmoperative equilibrium of the game. The equilibrium

strategies consist of an initial action and a rnntinuous decision rule for choosing actions in

later periods.

In Friedman and Samuelson (1990a) we argued that discontinuous dectision tules are

sometimes implausible. We do not take the position that they are always less plausible than

rnntinuous strategies, but only that some circumstances favor one, some the other. In that

spirit, this paper extends our earlier results by providing a munterpart to the Fudenberg and

Maskin folk theorem in which decision rules are mntinuous.

[t has long been known that outmmes that Pareto dominate a Nash equilibrium of the

stage game can be supported in infinitely repeated games by Nash revetsion trigger strategies.

Let s' denote the action rnmbination called for by an equilibrium strategy mmbination and s`

a single-shot Nash equilibrium action combination. Under a trigger strategy player i chooses

si if no deviation from s- has been enmuntered, but chooses s~ after any deviation. The

rnntinuous strategies in Friedman and Samuelson (1990a) are analogous to trigger strategy
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equilibria in two ways: the equilibrium payoffs dominate single-shot Nash payoffs and

deviations from equilibrium behavior draw a punishment that dces not depend on which

player deviates. The strategies of Friedman and Samuelson differ from trigger strategies in

that the latter are dismntinuous, prescribing the same punishment for all deviations from s'.

Im m~trast, the Friedman and Samuelson decision tules prescribe an action near s~ in response

to a small deviation and prescribe actions which move mntinuously nearer to s~ the larger the

deviation. These continuous decision tules are akin to the reaction functions of oligopoly

theory.

Discontinuous deásion rules also appear in the existing formulations of the folk

theorem for repeated games. In the discounted folk theorem of Fudenberg and Maskin

(1986), which is typical of results in the area, equilibrium strategy combinations are

mnstructed that (1) will support a given payoff outmme if it dominates the minimax payoffs

of the playets (i.e., if it is strictly individually rationa[), (2) are subgame perfect, (3) tailor

punishment for defection to the defecting player, and (4) are based on dismntinuous decision

rules. 1~e Fudenberg and Maskin equilibria differ from trigger strategy equilibria with respect

to (1) and (3), and also differ in requiring significantly more complicated strategies. Much of

this complication appears in order to tailor punishments to the identiry of the deviator who

has triggered the punishment.

In order to achieve a folk theorem, we will work in this paper with strategies that

share features (1) to (3) with the Fudenberg and Maskin strategies. In particular, our

s[ra[egies will yield subgame perfect equilibria that support (virtually) any payoff that is

strictly individually rational. Our strategies will also tailor punishmenu to the identity of the

deviator who triggets the punishment. This tailoring of the punishment to the defector

appears crucial to supporting arbitrary individually rational outcomes. However, our



5

strategies are continuous, im m~trast to those of Fudenberg and Maskin.

Strategies in the folk theorem family generally utilize "reference points." These

reference points can be intuitively interpreted as indicating where the game is. For

(discontinuous) grim trigger strategy equilibria, the reference point takes on one of only two

values, indicating whether there has been prior defection.' The Fudenberg and Maskin folk

theorem requires a more rnmplicated reference point that indicates ( 1) whether there has

been a defection, ( 2) who is the most recent defector if there has been any defection, and (3)

how many periods in the past the most recent defection occurred. This information is needed

to determine the current period action prescribed by the equilibrium strategies.

In our previous work, we examined strategies that did not require a reference point

and also strategies requiring a scalar reference point ~, taking values in the interval [0, 1], to

indicate the level of punishment currently being carried out. Zero rnrresponded to the

maximal punishment and one rnrresponded to no punishment. As with trigger strategies, no

account was taken of whieh player defected.

To achieve a full folk theorem generalization with rnniinuous strategíes, this paper

abandons the scalar reference point in favor of a vector valued reference point of dimension n

t 1. The reference point vector is denoted ~-(~o, ~,,..., ~„). The fint mordinate (~~ has

the same meaning as our previous reference point and takes values in [0, 1], indicating the

current extent of coopera[ive óehavior with ~a - 1 being maximal cooperation and ~a - 0 being

the extreme of punishment. The remaining n mordinates (~,,..., ~„) designate the degree to

which the various players are current defectors. F~ ,~; - 1 at all times, meaning that there is a

nominal defector status across playets that always sums to unity. When the game begins,

(~,,..., S„) -(i~n,..., l~n), reflecting symmetry in the initial defector status.Z In any period

when no player defects (~,,..., ~„) is unchanged. If player i defects and ~, ~ 1, then ~, is
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increased and the remaining positive ~~ (j x i) are decreased in equal proportions to preserve

the total of unity. A maximal deviation by player i will cause ~, - 1 and ~~ - 0, j~ i. Similar

to Fudenberg and Maskin, if ~o - 0 and ~, - 1 for some player i, then player i is being held to

his minimax payoff. As with our earlier fotmulation, if ~o ~ 1 and players foUow their

equilibrium strategies, then ~o will rise over time, mnverging to ~o - 1 in the limit.

We thus work with a reference point that mmbines features found in Fudenberg and

Maskin (1986) and Friedman and Samuelson (1990a). This allows us to combine

charaderistics of the Fudenberg and Maskin strategies, suppotting individually rational

payoffs, with characteristics of the Friedman and Samuelson strategies, yielding equilibria in

mntinuous strategies. The result is an extension of the follc theorem to subgame perfect

continuous strategies.

The sense in which our equilibrium strategies are rnntinuous deserves attention. In

Friedman and Samuelson (1990a) the decision tule of a player i selected the period t action

(s„) as a mntinuous function of either the action mmbination of the previous period (s,.,) or

the action mmbination and the reference point (s,.,, ~,.,). The equilibrium mnttudion is

illustrated in the payoff space shown in Figure 1. Equilibrium behavior called for selecting s'

at t- 0(for a payoff of P(s')) and at later times, given that no defections had ocxurred.

(place Figure 1 about here)

Defections then called for equilibrium choices, parameterized by ~, on the line connecting

single shot Nash payoffs P(s~ and P(s'). The smaller the defection the nearer the indicated

point would be to P(s~.

Not all games permit such decision rules, as Figure 2 illustrates. The resulu of

(place Figure 2 about here)

Friedman and Samuelson (1990a) require that the rnnnecting path from P(s~ to P(s~ must be
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upward sloping (though it need not be linear). The points P(s~ and either C or A in Figure 2

cannot be rnnnected by an upward sloping path mntained in the set of feasible payoffs. We

have been unable to develop general conditions under which such a connecting path can be

rnnstructed. We propose two routes around the problem.' One route, followed in Friedman

and Samuelson (1990b), is to investigate particular classes of games, such as duopolies, in

which the problem can be shown to be absent. The other mute, followed below, is to adopt

the standard mnvention of allowing the players to choose rnrrelated mixed actions (cf.

Fudenberg and Maskin (1986)). in terms of Figure 1, this would give ~, the role of a

probabiliry distribution. When following their equilibrium decision rvles, the players would

choose a mrrelated mixed action placing probabiliry ~, on s' and 1-~, on s`. This paper uses

rnrrelated mixtures to develop a class of equilibria which is more general than the type

illustrated in Figure 1 and under whicb virtually any individually rational single shot payoff

vector can be supported.

The remainder of the paper is divided into four sections. The model is described in

Section 2. The main theorem, in which the playen are allowed to choose mrrelated mixed

actions, is presented in Section 3. Section 4 examines cases in which the folk theorem can be

achieved without correlated mixed actions. Conduding mmments are in Section 5.

2. The Model

2.1 The Single-Shot Game

The single-shot game is characterized by (N, S, P), where N-{1,..., n} is the set of

players, S, is the single-period pure strategy space of player i ( the set of actions available to

player i in any period), S- X;ENS; is the single-period pure action space, Pi is the single-period

payoff function of player i, and P -(P,,..., P~. A pure action combination for the players in



N`{i}, the n- 1 players other than player i, is denoted s,,,`~,}. The mrresponding action space is

denoted SM,,, - x}E,,,`{,~5~. We make the following rnmmon assumptions:

ASSUMPTION 1 N is finite.

ASSUMPTION 2 S; c Rm is mmpact and mnvex, i E N.

ASSUMPTION 3 P; is scalar valued and continuous on S, i E N.

We do not make the usual quasiconcavity assumption, which is used to ensure the existence of

a noncooperative equilibrium in the single-shot game, because this equilibrium plays no role in

our analysis. The critical punishment payoffs are minimax rather than equilibrium payoffs.

2.2 The Infinitely Repeated Game

The infinitely repeated game can now be formally expressed. Although the equilibrium

we examine has a stationary character, the players can use a succession of different dedsion

rules over time and strategy spaces must be formulated to take this into acrnunt. In

particular, for t? 1, player i can use any rule from the set V„ -{v;, ~ v;,:S' yS;}. As we assume

perfect monitoring (i.e., that each player knows at time t the actions taken by all players in the

past), the history of the game at time t, h, -(so,..., s,.,) E S`, is known to each player who is

then free to select any decision tvle from V,,. A typical strategy in the repeated game is then

01 -(SfO, Vilr V;Z,...) E Sixl~,~1VH -~,i. l,etting O- (~;,. , O~), VI - xfENVlI, 8nd L- xIEN~Ir

note that a strategy rnmbination, o E~„ induces a specific path of action rnmbinadons: u(o)

-(uo(o), u,(o),...) where uo(o) - sor ui(o) - v~(so) - v~(uo(o)), u~(o) - v2(uo(v). u~(o)).
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and, in general u,(o) - v,(uo(o),..., u,.,(o)).

Letting a- (a,,..., a") E (0, 1)" be the players' dismunt parameters, the repeated

game payoff functions are

G~(o) - Fi~oaip~(u,(o)) (1)

Letting G-(G,,..., G"), the game is then given by (N, ~„ G).

2.3 Minimax Payoffs

The minimax payoff of player i is defined as min,M~i~E~~ ymax,iE~P,(s,,,`~,},s,).' Let s' be

the action combination that minimaxes player i, so that v; - P;(s') and v-(v,,..., v"). Let

P(s') -(y'1,..., y;.,, v;, y;,,,...,yÁ) - y', so that P(s~) is the vedor of payoffs when player i is

minimaxed. Note that we do not know, in general, how a given y; (the payoff player i

receives when player j is being minimaxed) is related to v;. When minimaxing player j, player

i could receive a payoff either higher or lower than v;.

2.4 Reference Points

Let A„ - {x E R; ~ F~ ,ay - 1} be the unit simplex in R". The reference point is then

defined to be ~-(~o, ~,,..., ~") E[0,1] xA„ - Y. A payoff vector is associated with each

value of the reference point. The payoffs associated with various reference points can be

described by a family of line segments in payoff space, one for each n-vector (~,,..., ~"). These

line segments are intimately related to the minimax payoffs of the players and to the payoffs

that are sustained when there is no defec[ion.

It is help(ul to intuitively sketch this relationship. Let v ~~ x' and e~ 0. For each i E

N let w~ E S satisfy
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P(w') -(x~ t c..... x~-; t F. x„ x,,, t c...., x,; t c) a x'.

Then the expected payoff vedor supported by cooperative behavior (i. e., ~o - 1) is ~.,'~,~;P(~'),

under which player i receives ay t(1 -~;)e. Thus if player i has zero defector status (~3; - 0)

he gets e more than if he is the sole defector (~; - 1). At the other extreme, if zero

rnoperation (i. e., ~o - 1) is called for, then the expeded payoff vector is ~,~;P(s'). Figure 3

(place Figure 3 here)

provides an illustration. Let ~, -.8 and SZ -.2. If ~o - 1, then expected payoffs are at B;

however, if ~o - 0 expeded payoffs are at A. The broken line from A to B traces out the

expected payoff poinu as ~o goes from zero to one. At C, ~o -.6. More generally, given

~ E Y, the players adopt a correlated action mmbination, denoted ((~), under which they

play ~' with probability ~~; and s' with probability (1 -~~~; for each i E N. Given ~, the

expected payoff veMOr is ~-,~,[~oP(~') t(1 -~~P(s')j. For example at C in Figure 3 the

expected payoff to player 1 is .8(.6P(~')) t.8(.4P(s')) t.2(.6P(~~) t.2(.4P(s~).

3. The Continuous, Subgame Perfect Folk Theorem

3.1 Strateges

Because each value of the reference point designates a correlated mixed action and has

an associated expected payoff vector, specifying strategies is accomplished by specifying how

the reference point is determined. We begin by letting the initial value of the reference point

be given by ~o -(1, l~n,..., l~n). Then the transition of ~, into ~,t, can be specified. If no

defection took place at time t, then ~„ through ;8~, are unchanged, meaning that the defector

status of the players is unchanged. (I. e., ~,,,t, -~;, for i E N.) If ~a ~ 1, then ~o,t„ - W~a

t 1- p for W E(0,1), which is nearer to one. If there was defection in period t, then ~;,,, ?

~;, for the defectors; while, for the nondefectors, ~;,a, 5~,,. As long as ~n ~ 0 for some
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nondefedors, strict inequality will hold for such nondefectors and for all defedors.

Furthermore, the ~; of the nondefectors will be reduced in equal proportions. ALso, ~o.,,, will

be smaller than it would have been in the absence of a defection.

To see the preceding in detail, let Po(s) - max„ E~P,(s`u~ denote the maximum

deviation payoff for player i from s and let c(~,) denote the realization at time t of the random

mrrelated action mechanism (thus c(~,) E{s',..., s", v,',..., ~"} - St). Then zh, defined

below, is the normalized extra deviation payoff received by player i if he deviates form c(~,)

by choosing some s;, x c(~,):

P.(c(~,)~„) - P;(c(~,))
zi, - m~{

pqc(~,)) - R,(c(~,)) ~ O~
(2)

Note that z„ is normalized to measure extra payoff as a fraction of the largest possible extra

deviation payoff that the player rnuld have and, if s;, reduces the payoff of player i, the extra

deviation payoff is taken to be zero. Let

zo - ~,z;,, zM - max{l, zo}

z; - min{1, zo1.

Eqs. (3) and (4) below give the transition from ~, to ~,,,.

~;.,., -(1 - z;)~;, t z„~z,". i E N (3)

~o.~.i - max{0, W~a - zo f 1- W} (4)

Eq. (3) has the desiced proper[ies that (1) a player's defector status must be

nonnegative, (2) the sum over players is one, and (3) if one or more players defect when the

defectors' rnmbined defector statuses are less than one, then their mmbined defector status

rises while that of each nondefector falls to a fraction of its previous value. Eq. (4) assures

that the level of cooperation is between zero and one and that, following defection, the level
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of cooperation is lower than it would have been in the absence of defection. When there is

exactly one dcfector, then equations (3) and (4) bernme

~~.~, ~-(1 - T~,)i~i, t H, and I)o.,.~ - max{U. WQa - T„ t 1- p}.

Eqs. (2) to (4), expressing the mapping of (~„ s,) to ~,,,, define a function ~y:YxS-.Y.

LEMMA 1 The function ~y, defined by eqs. (2) to (4), is rnntinuous.

(5)

PROOF Each z„ is rnntinuous in (~„ s,); ~i;,,, is rnntinuous in (~,,, z,,,..., z,,,), i E N; and ~o,,,

is continuous in (~a, z,,,..., z,,,). O

We now construct equilibrium strategies. Using ~y, the equilibrium decision rule for

player i is to choose an action in time t from the se[ S~ -{~~,..., u~;", s;,..., si} according to a

commonly observed random mechanism with probability distribution (,(j3,) -(~Boj3,,,..., 5~,,,,

(1 -~~,)~,,..... (1 - áa)~~,) where ~r - ~y~(~3,.,, s,-,), j- 0,..., n. Thus r, - r~ for all players i

and j; the players use the same mixed action and they draw their actions by observing the

same random variable. This decision rule, along with the period zero action of player i, is the

(proposed) equilibrium strategy of the player. Thus the equilibrium strategy of player i is o; -

({;(~~, Z;(tlr(.))) and the equilibrium strategy rnmbination is denoted ó.

3.2 Equilibrium

These strategies provide a mntinuous folk theorem:

THEOREM 1. Under Assumptions 1 to 3, if x' ~~ v and an e-neighborhoods of x' is
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rnntained in the attainable payoff space of (N, S, P), there exist values of (a, p) E(0, 1)""

such that ó is a continuous subgame perfect equilibrium strategy combination for the

repeated game yielding an equilibrium payoff to player i in each period of xj f(1-l~n)E.

PROOF The sense in which the strategies of the players are rnntinuous is that each Zi is

rnntinuous in ~, and ~y is rnniinuous in (~,.,, s,.,). It remains to show that the strategy

mmbination ó is a subgame perfect equilibrium.

Let II; - max,ESP;(s) denote the global maximum payoff to player i. Then the

maximum payoff to a player is bounded above by II{ -~;(1 -~~(II; - v;) for ~, E[0, 1].

Now rnnsider a deviation of relative size z5t - z by a single player, i, when the

reference point is ~. To simplify notation suppose that

Y - ~y:ÍiPi(~IE,~i.

w - ~ivi t ~xi~iPi(~) - áivi (1 - QaY

x - x; t ( 1 - ~,)e,

~ - f~i t z(1 - ~i)]vi t (1 - ~i)(i - z)Y - w - (1 - Ri)z(Y - vJ,

X - x; f ( 1 - Ri)(1 ' Z)E - x - (1 ' ~i)~,

Thus for fixed Sp j E N, w is the expected (one period) payoff to player i at ~o - 0 and x is

his expected payoff at ~o - 1. Using the expression for y, w-~,v, f(1 -~;)y. Following the

small deviation by player i of size z, ~; rises and the other ~i (j ~ 0, i) fall. The respective

counterparts of w and x, after ~ changes due to the deviation, are ~ and x'. The payoff for

player i with z- 0(i.e., if he followed the equilibrium prescription and did not deviate) is

Pi(c(J4o)) f F,:~ai[(1 - W(1 -~o))X t W~(1 -~o)w]

- p(c~o)) f[ ai aiP(1 -~o)lx t aiP(~
' 1-a; 1-a,p J 1-a,W

(6)
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and the maximum payoff player i rnuld receive as a result of deviating is

z[II; - ~~(1 - ~o)(~ - vi)] f (1 - z)P~(c(~o)) f

ai ai(k - k~o } Z) lz t
a~(W - W~o f Z)N,

~1 - a; 1- a;p J 1- a;p

The following inequality expresses the mndition that eq. (6) exceeds eq. (7) (i.e., deviation

payoff is less than nondeviation payoff):

zP;(c(~o)) - z[Q - ~~(1 - ~o)(II; - v;)] - a'z (~ - x')
1-a;W

(7)

t a~W(1 - ~o)(w - ~ } f ai aiV(1 - ~~~(x x,] , 0 (8)
1-a;p ll-a; 1-a;p

To show conditions under which eq. (8) holds, substitute into eq. (8) for x, x', w, and w'. It is

[hen seen that all terms are multiplied by z, which is always positive. Divide by z and

separate terms into those multiplied by ~; and those multiplied by (1 -~;). (f each of these

two groupings is positive then eq. (8) holds. Eq. (9) shows the ~, grouping with the terms

rearranged and eq. (10) shows a rearrangement of the (1 -~;) grouping. That the two

groupings are positive is equivalent to eqs. (9) and (10) holding; therefore, eqs. (9) and (10)

ii~iviy ey. (ó).

II; - P;(c(io)) - (1 - Qo)(II; - v;) c a~ (~5 - v;)
1 - a;p

~p ail(I~ - i~F~O -F Z)(y - V~ E) f]t; - y f E) a~E
11; - Pi(cWO1) - ~-

1 - a;p 1 - a;

(9)

(10)

The left side of eq. (9) is bounded while the right side gces to infinity as (a;, p) goes

to (1, 1); therefore, there is a set of values of (a;, p) E(0, 1)~ for which eq. (9) holds. In

addition, if eq. (9) holds for (a;, p) E(0, 1)2 and (a;, W') E(0, 1)2 satisfies (a„ W7 Z(a;, p),
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then eq. (9) holds for (ai, ll'). Denote by A' c(0, 1)"" the set of values of (a, ~1) for which

eq. (9) holds for all i E N.

To see that eq. (10) holds for some (a;, p) E(0, 1)2 no[e, first tha[ the left side of eq.

(lU) is bounded above by a(W) for any given value of W E(0, 1). Let A" c(0, 1)"" be the set

of values of (a, p) for which eq. (10) holds for all i E N. Clearly A" is not empty because, for

given W, the left side is bounded by a(~1) irrespective of a; while the right side goes to infinity

as a; goes to one. Finally, let A- A'(lA". Then A is clearly nonempty and eq. (8) holds for

any (a, W) E A, proving the theorem.0

To provide some idea of what can happen in this framework, consider Figures 4 and 5.

Figure 4 is the situation that is intuitively expected. The payoff to both players is lower when

(place Figures 4 and 5 here)

one is being minimaxed (~o - 0) than when So - 1, irrespective of the values of~, and i4Z.

To see how the game proceeds, suppose that S, - 1 and ~z - 0, so that player 1 is the

defector. Then, depending on the value of ~o the players will randomiae between w' and s',

with the expected payoff lying on the edge going from P(s') to P(~'). If Sa - 1, then "full

l'UUPCI31llUll' IJ IIÍ Cllel'l, ~1VCIl t11C LCIaUVC UCÍeI'LUr JUftW Ul lÍle playelJ, allU play wiii proceed

at w' for payofffs of P(w'). If ~o - 0 the players will receive payoffs of P(s') and if they

continue [o play with no defections, the expected payoff will proceed on the straight line to

P(rv').

Now suppose S, - y3 and ~, -'I3. The expected payoff would then be somewhere on

the broken line in Figure 4 running from A to B. The closer is ~o to unity, the closer will the

expected payoffs to A.

Next consider Figure 5. Here, the actions required to minimax player 1 provide player
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2 with a higher payoff than player 2 receives at c,~~. To see the potential difficulties which

then arise, suppose that ~, - 1 and that the players are currently randomizing between ~'

and s' so as to give an expected payoff at A. If player 2 should defed, then ~" decreases,

signaling a reduced degree of cooperation and ~2increases, signaling an increase in player 2's

defedor status. It is possible that the net effect of these two changes is to move the game to a

point such as B, wi[h 2's payoff rising. It is thus possible for ~" [o fall and ~2 [o rise, as

shown, with the ensuing payoff to player 2 still going up in the "punishment" phase as a

mnsequence of his defection. It is obvious that such a"punishment" will not deter player 2

from deviating. To rnnstitute an equilibrium, the strategies must be devised so that the payoff

to a defector falls after any defection. In Figure 5, this must be accomplished by ensuring

that, in the event of a deviation by player 2, ~, rises suffiriently rapidly relative to the fall in

~a. Much of the proof of Theorem 1 is mncerned with establishing this property.

4. Uncorrelated Strategies

The strategies used in the proof of Theorem 1 are constructed with the help of [he

assumption that players can rnrrelate their mixed strategies. In some games, this may not be

required.

Fix an outcome x' and fix e. Recalling the definitions of m' and s` in (2.4), let

H(x', e) -{x E R"~x -~-c.~~C~oP(~') } íl -~~p(s')l. ~ E Y}.

H(x', e) is thus the set of payoff vectors that rnuld be chosen by the strategy mmbinations

given in (5). Let H~ E R"" be the set of n t 1 tuples, (x',e), such that x' ~~ v and such that

there is a mnnected subset of S, denoted S(x', e), that P maps one-to-one onio H(x', e).

Hence, if (x', e) E H~, then every payoff in H(x', E) can be achieved by a pure stra[egy in
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S(x', e). Let x(~) -(x,(~),..., x"(~)) E S(x', e) denote the action combination that achieves

the payoff vector ~ E H(x', E). Thus, for ~ E Y, ~.(~) E S(x`, e) satisfies

P(Jl(Q)) - ~~iÍ~oP(~~) f (1 - ~o)P(s~)I (11)

Then let equilibrium strategies be given by

o~ - (~~(Ro). CJ

where

C~(R~) - ~~(R~) - x~(V~(~~-~. s,-,))-

(12)

(13)

1fie function ,l plays a central role in the cons[ruction of the equilibrium strategies and

important properties of ~L are established in the following lemma.

LEMMA 2 Let ( x`, e) E H~ and, for~ E Y, let x(~) E S(x`, e) be defined by eq. (11). Then x

is defined, single-valued, and rnntinuous.

PROOF By construdion, for each ~ E Y there is a unique s E S(x', e) that satisfies eq. (11);

thus .l is defined on Y and is single-valued. Continuity of P, rnnnectedness of S(x', e), and

ci., ~i r,A a-.,.-,..,a ,..,.,, ui.. ~~ ..i., ~~.,. ~ r,. , , .....no .... ... ...... ....... ..~.. , ~~ `::r.~ ...... .. .., .,.,............... "

The statement of the folk theorem extension is now:

THEOREM 2. Under Assumptions 1 to 3, and given ~o E Y, if (x;, e) E H~,

then there exist values of (a, W) E(0, 1)"" such that ó is a rnntinuous subgame perfed

equilibrium strategy combination for the repeated game.
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To prove Theorem 2, replace the definition of z;, given in eq. (2) by

~, - max ~ P'(D (á~)`su) - P;(x(~~)) Ol
P~ (A(Q~)) - Pi(1(~,)) J

(14)

and replace P;(c(~~) in eqs. (6) to (10) with Pi(~(~~). The proof of Theorem 2 then precisely

matches that of Theorem 1. Now, however, movements in payoff space are accomplished not

by varying the probabilities in a joint mixture over fixed strategies but by changing pure

stra[egies.

The question now naturally arises as to when H~ will be nonempry, so that Theorem 2

is not vacvous. H~ will be nonempty if (1) each payoff fundion P; is quasimncave on S, (2)

P~' is single-valued for all x in the range of P, and (3) v is interior to the payoff space.

Condition ( 1) assures that all payoffs in the set H(x', e) are attainable, mndition (2) assures

that there is a rnnnected subset of S that maps one-to-one onto H(x', e), and condition (3)

guarantees that nonempty sets H(z , e) exisL These are dearly quite strong rnnditions It

remains an open question as to what weaker assumpiions might imply or be equivalent to the

assumption that H~ is nonempty.

5. Concluding Cotnments

7heorems 1 and 2 present variant versions of the Fudenberg and Maskin (1986)

extension of the folk [heorem for repeated games. Similar to Fudenberg and Maskin, we give

sufficient conditions for the existence of subgame perfect equilibria that support virtually any

individually rational payoff vector of the single shot game. Our equilibria differ in two key

ways. First, the supported points (x; f(1 - i~n)e, ..., x~ t(1 - t~n)e) may not include points

on the payoff frontier, although they can get arbitrarily close. Semnd, the equilibrium

strategies utilize mntinuous decision rvles.
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Friedman and Samuelson ( 1990a) examined analogs of trigger strategy equilibria

which potentially possessed a particular appeal as strategies that might arise without e~tplicit

coordination or preplay communicadon by the players. It is not so clear that the same

justification holds in the present mntext, because the strategies we develop are much more

complicated than their earlier munterparts. This is particularly true for those of Theorem 1,

which rely on correlated mixed actions. Nonetheless, we believe the exploration of mntinuous

strategies helps to round out the smpe of the resulu in the folk theorem family.
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Notes

1. Finite reversion trigger strategies require a reference point that indicates whether a

defection has taken place within the preceding K periods where K is the number of

punishmen[ periods. Such a reference point would require more than two values; probably K

f 1 from the set {o, 1,..., K} where the value indicates the number of punishment periods that

remain.

2. Our results do not depend on the initial mndition ~i - I~n; however, a mmplete

description of the game requires that initial values be specified.

3. Clearly, if each p, is mncave in s and P maps S one-to-one onto the range of P, our

construction is assured. Suc2t rnnditions are extremely restrictive; they even exclude Cournot

duopoly with linear demand and constant marginal rnst.

4. In defining v, we implicitly assume N`{i} does not use mixed or mrrelated actions. If

N`{i} did, then the v~ might be smaller, but there would be no material change in the results.

The exposition is simpler this way. Correlated actions do play a critical role at another stage

of the development, so we use them there.

S. This is our rnunterpart of the full-dimensionality requirement of Fudenberg and Maskin

{7 OAf.~
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