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ABSTRACT

This paper describes a method for testing a parametric model of the mean
of a random variable Y conditional on a vector of explanatory variables X
against a semiparametric alternative. The test ia motivated by a conditional
moment test againat a parametric alternative and amounta to replacing the
parametric alternative model with a aemiparametric eatimator. The resulting
semiparametríc teat ís consistent against a larger set of alternatives than are
parametric conditional momenta teats based on finitely many moment conditions.
The results of Monte Carlo experiments and an application illuatrate the
uaefulness of the nev teat.
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TESTING A PARAMETRIC NODEL AGAINST A SEKIPARANETRIC ALTERNATIVE

1. INTRODUCTION

Conaider a parametric model for the mean of a scalaz random variable Y

conditional on a random variable X e!L (L 2 1):

E(Y~X-x) - f(x,B), (1)

whera f is a known function and B E fz (K Z 1) is a parameter whoae value muat

be estimated from data. For example, f might be the mean function in a linear

or nonlinear regreeaíon model, or ít might be the probabílity that Y- 1

conditional on X- x in a parametríc binary response model. The problem

addressed in this paper is to teat the hypothesia that (1) ia trua for the

specified function f and some B.

One way of testing (1) ia to apecify a parametric alternative to !t and

teat f(x,B) against the alternative. Most familíar methoda for testing (1)

againat a parametric alternative belong to a large class called conditional

moments tests (Newey 1985). These teats can have hlgh power against specific

alternatives, but a parametric conditional moments test based on finitely many

moment condítions is not consistent against all alternatives. In particular,

a test of f(x,B) against a parametric alternative model may be lnconsistent if

the alternative is misapecified.

A second possibilíty is to compare the parametric model with a

nonparametric estimate of E(Y~X-x). Let 8„ denote a nl~~-consistent estimator

of B ín (1) based on a random sample of the distribution of (Y,X). If (1) is

true, the nonparametric estimate and f(x,8p) are equal up to random sampling

error. See Hërdle and Nammen (1990), le Cessie and van Houwelingen (1991), and

Whang and Andrews (1991) for specification teats based on thís idea. Bierens
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(1990) givea a conditíonal moments test of a parametric model against a

nonparametric alternative. These testa are consistent in all dírections but

have characterietica that can causa them to have low power or other kinda of

poor behavior in finite samples. For example, the tests of HXrdle and Itammen

(1990) and le Cessie and van Houwelingen (1991) loae power through the so-called

curse of dimenaionality (Huber 1985) if L~ 1. The teat of Whang and Andrews

(1991) requires splitting the sample into two equal parts, which reducea power

and can result in poor small-sample behavior.

This paper describes a test that aims at avoiding these problems while

achieving consístency against a larger set of alternatives than is the case with

parametric conditional moments tests based on finitely many moment conditions.

The intuition behind the test is simple. If E(Y~X-x) - f(x,B), then

E[Y~f(x,B)-fj - f. (2)

Therefore, a nonparametric estimate of E[Y~f(X,8„)-f], considered as a function

of f, differa from a 45` line only by random sampling error. One can test (1)

by determining whether the difference between the nonparametric estimate and

the 45" line ia larger than can be explained by random sampling error.

Hore generally, consider the model

E(Y~X-x) - F[v(x,B)), (3)

where F and v are known functions. If (3) is correct, nonparametric estimation

of E[Y~v(X,Bp)w) givea an estimate F(v). Thus, (3) can be tested by comparíng

the nonparametric estimate of E(Y~v(X,8„)-v] with F(v). One way of obtaining

(3) is to apecify v(x,B) - f(x,B) and F(v) - v, but other specifications may

be uaeful in applications. For example, suppose the parametric model to be
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tested has the forn (3) with F a nonmonotonic function. If the model is

míaspecified, it is poasible that

EIY~F[v(X,B)] - fl - f í4a)

whereas

E[Y~v(X,B)w] r F(v). (4b)

In this case, comparison of a nonparametric eatimate of E(Y~F[v(X,B)]-f) vith

f yialds an inconsiatent teat, afiereae compariaon of a nonparametric estimata

of E[Y~v(X,B)-v] with F(v) yielda a consiatent teat.

A test of (1) obtained by co~aring a nonparanetric estimate of

E[Ylv(X,Bo)w] with F(v) avoids the curse of dimensíonalíty by uaing the index

function v(z,B) to aggregate a multidimensional x. Because one can always set

v(x,B) - f(x,B) and F(v) - v, any model of the form (1) can be placed into the

aingle-index form of (3). Thus, the test ia not reatrícted to models that can

be estimated in single-index form.

The remainder of this paper describes a formal teat of (1) that consists

of comparing a nonparametric estimate of E(Y~v(X,éo)w] with F(v). We call

this a test of the parametric model (1) against a semlparametric alternative

because the alternatives agaínst which the parametric model Ls tested and

againat which the test is consistent have the form E[Y~v(X,B)rv] - H(v), where

H is an unknown function but v(x,B) is known up to the finite-dimensional

parameter B. Because the semiparametrlc alternative may not include the true

mean of Y conditional on X, there are directions in whích the aemiparametric

test is inconaistent. However, in a aense that ia defined in Section 2, the

test is consistent against a larger set of alternatives than are parametric

conditional moments tests based on finitely many moments. The results of !lonte
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Carlo experisants and an epplication based on real data illustrate the

usafulneaa of the semiparametric teat.

The paper is organized as follows. The teat atatiatic is presented in
Section 2, and ita asymptotic diatrlbutions under the null hypothesis and local

alternatives are derived. Section 3 preaenta the reaults of the Monte Carlo
experimenta and the application. Concluding comments aze preaented in Section
4. The proofa of theorems are in the appendix.

2. THE TEST STATISTIC AND ITS ASYHPTOTIC DISTRIBUTION

a. The Null and Alternative Hypotheses

Formally the null hypothesis that we teat is

H0: E[YIv(X,B)-vJ - F(v), (5)

where Y i s a scalar random variable, X E aL, F and v(~,~) are known, real

functions, and B e 71z is a parameter whose value is unknown and estimated from

data. For example, if Y follows a linear-índex binary probit model under Ho,

F and v(x,B), may be specified as the cumulative nozmal distribution function

and 8'x, respectively. As was discussed in Sectíon 1, (1) can always be put

into the form (5). The alternative hypotheais is

H1: E[YIv(X,B)-~] - H(`~). (6)

where H is an unknown function.

E[YIv(X,B)wJ - F(v) is a necessary but not sufficient condition for

E(YIX-x) - F[v(x,B)]. It is possible that E(YIv(x,B)w] - F(v) but E(YIX-x)

r F[v(x,B)], in which case the test of (1) presented here is inconsistent. This

possibility is discussed further in Section 2d.
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b. Motivation

Suppose for the moment that H and B were known. Conaider a conditional

moment test of Ha against H1 based on the following moment condition, which is

assumed to hold under Ho:

Ep(X,B)IY - F(v(X,B)]1 - 0,

where p is a scalar function. Let (Y1,Xi: i - 1,...,n) be a random sample of

(Y,X). Following Newey ( 1985), the conditional moment test statiatic ie

proportional to

Sn - n-l,z ~ p(Xi,B)lYi - FIw(Xi.B)]1-
i-1

Under Ho, E(S„) - 0. Under H1, E(Sa) - n1~~Ep(X,B)(H[v(X,B)] - F(v(X,B)]) ~ p.

The test can be expected to have power against H1 only if p.~ 0. This happens

if

p(x,B) - w[v(x,B)](H[v(x,B)] - F[v(x,B)]),

where w(~) is a non-negative weight function that i s chosen so that

Ew[v(X,B)](H[v(X,B)] - F(v(X,B)])2 ~ 0.

Thus, the conditional moment test in this simple case can be based on the

statistic

n
Sn~ - n 1~2 E w[v(Xi,B)]IYi - FI~(xi.B)111H[v(Xi.B)1 - F[~(xi,B)]l. (e)

i-1

Since H and B are unknown, one might consider forming a test of Ho against

H1 by replacing H and B in (8) with consístent estimators. This is the approach

taken here. Qe replace B with the nl~Z-consistent estimator 8, and H[v(X1,B)]
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with a kernel nonparametric regreaeion estimator of E[Y~v(X,Bn)-v(XL,~p)].

Denote this eetímator by ipi[v(X1,8„)]. The teat atatiatic ia

Tn - h1,2i~1w[w(X1.8n)]IYi - F[w(X1.8n)])IFni[v(Xi.,n)] - F[w(X1.8n)]1.

where h is the bandwídth uaed in the kernel nonparametric regression. The

normalization factor is hl~Z rather than n1~2 for technical reasons associated

with the rate of convergence in probability of the nonparametric regression

estimator. It ía ahown below that, like the teat based on ( 8), To is consistent

against H1 Sf (7) holds. In contrast to (8), however, T~ does not require a

priorl knowledge of H and B.

c. The Kernel Nonparametric Regression Estimator

Our methods for proving the theorems in Section 2d require Fal(~) to be

independent of Y1 and asymptotically unbiased. Independence is achleved by

omitting the obaervation (Y1,X1) from the computation of éi1. Asymptotic

unbiasednesa is achieved through the use of the jackknife-like method proposed

by Bierens (1987). The resulting estimator is as follows.

Let K(~) be the kernel function used in the nonparametric regression.

Assume that K is an order r kernel. That is, for each integer i between 0 and

r z 2

J ~u1K(u)du
-m

1 if i-0

- 0 if 1 5 1 5 r- 1

dKrO if i-r

Let h - cn-1i~2`' l i, where c 1 0. Let s- cn~~~2" 1 ~, where 0 G á c 1. Define
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r~-„cx a) l r~-~(X a)
é~i(`~) -~ YjK L j.~ n J I~ KI j ~ n~~ (9)

j-1 h j-1 ll h
jri jri

and

n ~- ~(x a ) ~- ~(x a)
Fnsi(`~) -~ YjK[ 1~ n] ~~ K[ j~ n]-

j-1 8 j-1 8
jri jri

The kernel nonparametríc regression estímator used in Tp is

Fni(v) - [Fnhi(~) - (hIs)rFnsi(~))I[1 - (hIs)rl

(10)

Bierens (1987) derivea the propertiee of this estimator and proves that it is

asymptotically unbiased and has the optimal rate of convergence.

d. The Asymptotic Distribution of T„

Define o~(v) - var[Y~v(X,B)w]. The following theorem gives the asymptotic

distríbution of T„ under Ha:

Theorem 1: Under Ha and assumptions 1-8 of the appendíx, T„ ís

asymptoticalIq distríbuted as N(O,or~), where

oT2 - 2CKJ mw(~)ZIo2(w)]2dv-m

and

CK - r ~K(u)2du.

The proof of Theorem 1 is lengthy, but the concepts on which it is based

are easily deacribed. First, the rate of convergence in probability of the
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nl~~-consiatent estimator 8p is faster than the rate of convergence in

probability of é~, which ia (nh)"1~2. Aa a reault, tha asymptotic distribution

of T„ is unaffected by replacing ~e with B. Thus, To - Ta~ t op(1), where

Tn~ - h1~2i~1w[v(Xi.B)jlYi - F(v(Xi.B)]llFnilv(Xi.B)] - F[v(Xi.B)])

and Fn1(v(Xi,B)] ia the nonparaa~etric regresaion estimator obtained by replacing

v(Xl,Bo) with v(X1,B) in (9)-(11). See Le~as 1-6 of the appendix for the proof

of thia reaul[. Second, it can be ahown that To~ is asymptotically equivalent

to a certain degenerate U statistic. See Lemma 7 and the proof of Theorem 1

in the appendix. Although degenerate U statistics ordinarily are asymptotically

distributed as linear combinations of ~ variates (see, for example, Serfling

1980), the one correaponding to To~ has a special form that causes it to be

asymptotically normally distributed by a central limit theorem of Hall (1984).

Theorem 1 is a consequence of the asymptotic normality of this U atatistic.

Let ót~ be a consistent estimator of or2, and let ór -(árz)liz. It follows

from Theorem 1 that Ho can be accepted or rejected at the s level according to

whether ~T~ór~ exceeds the 1- S~2 quantile of the standard normal

diatributíon. L.et ó2(v) be a consistent estimator of o2(v). Then, under

assumptions 1-8 of the appendix oTZ is estimated consístently by

~T2 - (2CK~n)i~lw[v(Xi.Bn)]21ó2[v(Xi.Bn])2IP~iI~(Xi.9n1.

where pi1i1 is the following nonparametric estimator of the probabílity density

function of v(X1,B):
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p~i(v) - (nh)-1'~1Krw - whXl'8n)l.

jMi L
J

Methoda for eatimating oZ(v) are diacuased in Section 2e.

The next theorem establishes conslstency of T, under H1.

Theorem 2: Let assumptlons 1-8 of the appendlx hold. Suppose that H3 is

true and that Ew(V)([H(V) - F(V)]z) ~ 0, where V- v(X,B) and B!a the

probebilttq limtt of Bo. Then plim a.. To - m.

Suppose that iip is false and that E(Y~X-x) - H~(x) for aome function H~.

Let Ex~„ denote expectation relative to the distribution of X conditional on

v(X,B) - v. It followa from Theorem 2 that the test based on Tp ia conaistent

if Ex~~ H~(X) ~ F(v) on a subset of the support of w[v(X,B)] that has positive

probability. The test is inconsistent if P(H~(x) - F[v(x,B)]) c 1 but

Ex~„ H~(X) - F(v) almost everywhere on the support of w(~).

Although T„ is not consistent against all alternatives, there ia a aense

in whích it is consistent against a larger set of alternativea than are

parametric conditional moments tests based on finitely many moment conditiona.

Specifically, Tp is consistent against all alternatives H(v(x,B)] such that

Ew[v(X,B)jIH[v(X,B)] - F[v(X,B)])~ ~ 0, whereas a parametric conditional moments

test is not. To see this, observe that if (3) is true, then

Ep(X,B)(Y - F[v(X,B)]1 - 0 (12)

for any function p E Xa for some fínite q~ 0. Accordingly, consider uaíng the

moment conditions (12) to test (1). Suppose that E[Y~v(X,B)w] - H(v), where

H satísfies Ew(v(X,B)]íH[v(X,B)] - F[v(X,B)])2 ~ 0 and Ep(X,B)IH[v(X,B) -

F(v(X,B)]) N 0. Then T„ and the conditional momenta teat based on (12) are both
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consiatent againat the alternativa H. Now lat A(v) be a scalar-valued function

auch that Ep(X,B)A[v(X,B)] - 0. Assune that Ew[v(R,B)]A[v(X,B)]2 1 0. Since

p is finite-dimensional, there are infinitely many such functions A. Set H~(v)

- F(v) t G(v). Then T" is consiatent againat Ht but the conditional moments

teat based on (12) is not.

We now conaider the diatribution of To under local alternetive hypotheses.

Define tha aequance of local alternatives iin[v(x,B)], by

Hn[`~(x,B)1 - F[v(x,B)1 t n-1,2h-1~40niv(x,B)],

where ( A,,: n- 1,2,...) is a sequence of uniformly bounded functions that
comerges uniformly to a limit function A(v). Note in this sequence ~i~,(v) -

F(v) I- 0(n l ~~h-1J~) uniformly over v, whereas in tests of parametric models

against local parametric alternatives the "distance" between the null and local
alternatíve hypotheses is O(nl~Z). Let ~a be an estimator of B that is n1~2-

consiatent under the sequence (E~).

Theorem 3: Let assumptfons I-5 and 8-12 of the appendlx hold. Under the

sequence of 1oca1 alternatfve models Fi", T" is asymptoticaZIy dístrfbuted as

N(y,or2), where p - E[w(V)A(V)z].

Theorem 3 implies that T„ has power against alternatives whose distance
from Ho ia O(n l ~Zh-1~~). If K ia a second order kernel, this distance is

0(n-9120), which is close to the diatance 0(nl~Z) that holds in tests agaínst

parametríc alternative hypotheses. Subject to the regularity conditions given

in the appendix, the distance O(n3~Zh-1~~) can be made arbitrarily close to

0(n1~2) by using a kernel K of sufficiently high order.
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e. Chooaing w(~) and ó~(v)

The regularity conditiona in the appendix require w(") to be continuoua

and independent of the sample (Yi,XI). They also require the aupport of w(~)

to be contained within that of v(X,B). The continuity requirement is not

important in applicationa; with a finite sample there ia no dífference between

the valuea of T„ obtained with a w(~) that has jump diacontinuities and a w(~)

in which the díacontinuities have been "alightly" amoothed. The reatriction

on the support of w(") can be important. Depending on how orZ ia estimeted, uae

of a w(~) whoae aupport exceeda that of v(X,B) may cause aubatantial

overestimation of otx and a corresponding loss of power. In practíce it can be

difficult to choose a w(~) that satisfies the condition on support without

lookíng at the data. We auggeat uaing the observed values of v(Xl,Bn) to choose

the support of w(~) but not otherwise adjusting w(~) to the data. In the Nonte

Carlo experinents and applicatíon described in Section 3, we found that the To

test works well if w is choaen to be 1 over an interval that contains 95-998

of the observed valuea of v(X,8") and 0 elsewhere.

Another possibility is to choose w to maximize power against a specified

sequence of local alternatives. There seems to be little advantage in doing

this, however. If hígh powar against a specific alternative ia desired, one

should use a parametric conditional moments test that has high power against

this alternative.

The main consideration involved in eatimating o2(v) is that the estimator

must be consistent under Ho and, to avoid loss of power, should not become

excessively large under H1. For example, auppose that Y ia homoskedastic so

that var[Y~v(X,B) - vJ - o~, where o2 is a constant. Two posaible estimatora

of o2 are:
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~12 - n 1 ~ (Yi - FI~(Xi.én)112
i-1

and

n
v22 - n-1 E (Yi - Fni[~(X1,8n)112

i-1

(13)

(14)

Both of theae estimatora are consistent under Fio, but ól~ may be very large

under Hy. Accordingly, the test based on T„ is likely to have higher power if

óz~ is used.

If Y has heteroskedasticity of unknown form, oz(v) can be estimated by the

nonparametric regression of (Y1 - Fn1[v(Xi,B„)J~Z on v(XL,B„). In some cases the

form of heteroskedasticity of Y may be known, and this information can be uaed

to estimate a~(v). For example, if Y is a binary variable, var[Y~v(X,B)wj -

P[Y-l~v(X,B)wjll - P[Y-l~v(X,B)w]~. Therefore, o2(v) can be estimated by

F[~cx~. ao) j(1 - Fa~[~cxl. aa) j ~-
3. MONTE CARIA EXPERIMENTS AND AN APPLICATION

a. Nonte Carlo Experiments

The purpose of the Monte Carlo experiments was to inveatigate the small-

sample size and power of the test based on To. To provide a basis for judging

whather the performance of the teat is good or bad, we also computed the size

and power of Bierens' (1990) test against a nonparametric alternative and of

the most powerful test agaínst the correct parametric alternative model.l

The hypothesis iío teated in the Monte Carlo experiments is
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E(Y~X-x) - BO t Blx, (15)

where X Ls a scalar random variable and the B's are constant parametera. The

data were generated by random sampling from the model

Y- BO t B1X t IOb~(lOX) t u (16)

where ~ is the standard normal density function, Bo - B1 - 1, b!s a parameter

whose value varies according to the experiment, X- N(0,1) and u- N(0,0.25).

If b- 0, iio is true. Otherwiae, No is falae and E(Y~X-x) has the shape of a

straight line with a bump centered at x- 0. The height of the bump is governed

by the valua of b. Figura 1 illustratea the shape of E(Y~X-x) for b- 1 and

b- 2. The mean function E(Y~X-x) in (16) is poorly approximated by the

parametric models typically used in applications (e.g., low-order polynomials

in x), so it is unlikely that a most powerful or nearly most powerful parametríc

test of (15) would be carried out in an application if (16) were the true data-

generation process. Nërdle (1990) gives aeveral applications in which the ahape

of E(YIX-x) is simílar to Figure 1.

In the computation of T„ in the experimenta, K is the standard normal

density, v(x,B) - B'x, F(v) - v, h- 0.1, and s- 0.8. Bo and B1 were computed

from (15) by ordinary least squares (OLS), w(~) - 1 on an interval containing

988 of observed values of éo t 81X and 0 elsewhere, and o2(v) is given by (14).Z

Implementation of the test of Bierens (1990) requires chooaing several

parameters of the test statistic and a function. We made choices similar to

those used in Bierena' (1990) Nonte Carlo experiments. In his notatlon, ve set

ry- p - 0.5, T-[1,5], K„ - 10, and ~(x) - tan1(x~2). Note that Bierena' m

is different from m in (16).
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The moat poverful parametric tast of the null hypothesis (15) againat the
alternative (16) ia the t teat of b- 0 based on OIS astimation of Bo, B1, and

b in (16).

The experiments were carrled out at the nominal 0.05 level using a sample

aize of n- 50. There were S00 replications in each experiment. Random nunbera

were ganerated with the pseudo-random number generators of GAUSS.

Table 1 shows the results of the experiments. The emplrical aizes of tha

testa are not statistícally significantly different fron the nominal size of

0.05 (p ~ 0.10). The test based on To i s conaiderably more powerful than

Bierens' teat. Not surprisingly, T„ has less power than the most powerful

parametric test. Of course, the power of the parametric test would be available

in an application only in the unlíkely event that (16) were known to be the

correct alternative model, whereas T„ does not require a prtori knowledge of the

alternative.

b. An Application

Hozowitz (1991) estimated a binary probit model of the choice between

automobile and transit for the trip to work. The estimation data set consisted

of 642 trip recards drawn from the Washington, D.C., area transportation study.

The apecification of the probit model ia

P(Auto~X-x) - ~(B'x), (17)

where ~ is the cumulative normal distribution function, X is a vector of

explanatory variables, and B is a conformable vector of estimated parameters.

The components of X are an intercept, the number of automobiles owned by the

traveler's houaehold, the difference between automobile and transit out-of-

vehicle travel tíme, the dífference between automobíle and transit in-vehícle
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travel time, and the difference batwean autoarobile and translt travel cost.

Horowitz (1991) carried out parametric likelihood ratio, Wald and Iagrangian

multiplier tests of (17) against a random-coefficlents probit sodel. Thie model

is obtained from (17) by replacing á(Q'x) with ~(~'x~(x'i7c)l~Zj, where S is a

poaitive-definite matrix. All of the teats re]ected (17) (p ~ 0.01).

To imeatigata the pezformance of To in an application, ve teatad (17)

using both T„ and Bierena' (1990) teat. Bierena' teat was carried out uaing tha

paraneter and function choices described in Section 3a. The value of the test

atatístic vas 0.43. Under the hypotheais that (17) !a correctly speclffed,

Bierens' test atatistic ia asyaptotically distributed as X~ with 1 degree of

freedom. Therefore, Bierens' test doea not re]ect (17) and, thus, does not

detect the misspecification of (17) found by the teats against the random-

coefficients probit model.

In computing tha T„ test statiatíc, 8„ was eatimated by maximum likalihood

using (17), v(x,B) - B'x, w(~) - 1 on an interval containíng 988 of the observed

valuea of Ó„'X and 0 alsewhere, and ó~(v) - ioi(v)[1 - éns(v)]. Aa ia explained

in footnote 2, there 1a no known syatematic method for aelecting bandwidth

values for éi1. IJe used several bandwidths that were found through graphical

examination of iol to apan the range of reasonable choices. Valuea outside of

this range caused the graph of Fol to be either excessívely wiggly or

excesaively flat. Tha value of the Tn test atatistic was in the range 2.45-

3.26, depending on the bandwidth. Thua T„ re]ects (17) (p - 0.001 to 0.015,

dependíng on the bandwidth). Thia ia consiatent with the reaulta of the teata

against the candom-coefficients probit model.
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4. CONCLUSIONS

Thie paper has deacribed a method for testing a parametric oodel of the

condltional mean againat a aemiparametric alternative. The test is motivated

by a parametrlc conditlonal momenta teat and amounts to replacing the parametríc

alternative model ín the conditional momenta test vith a semiparametric

estimatoz. The reaulting aemiparametrlc test is not consistent againat all

alternatives, but in a sense that has been explained it is conaiatent against

a larger aet of alternatives than are parametric conditional momenta testa based

on finítely many moment conditions. The results of Monte Carlo experiments and

an application uaing real data illustrate the usefulness of the semiparametric

test.
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FOOTNOTES

1. We originally intended to include the test of Whang and Andrews (1991) in
tha coaiparison. This teat ia based on coa~paring the aiean square residual
frou paraatetric and nonparametric estimatea of tha conditional aiean of Y.
Wa dropped tha teat froa conslderation aftaz findíng that, in our Nonte
Cazlo axparisents, Sts es~pirical sizs at the nosinal 0.05 levsl was betwean
0.24 and 0.50 for a wlda range of bandwidtha in the nonparametríc
regresaion.

2. A syateuatic proceduze for choosing h and s for ép1 with fíníte sasplea
has not been developed. Becauae the estioator ia asymptotically unbiased,

the tradeoff between asymptotlc bias and variance that underliea bandwidth

aelection oethods auch aa croas validation does not exiat. We selected
h and s graphically. With the valuea ve used, the graph of Fo1 ía neither

axcessívely wiggly, as happena when h and s ara too auall, nor axcessively

flat, as happens when they are too large. The regularity conditions in
the appendix requira K to have bounded support, but thls is not esaential,

as is noted there.
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TABLE 1: RESULTS OF THE MONTE CARIA EXPERI![ENTS

Pr(Reject é1o at Noulnal 0.05 Lavel)
Most Powerful

b Parasetric Test Tp Biere~' Test

0 0.05 0.04 0.05
0.25 0.90 0.37 0.18
0.50 0.99 0.90 0.42
0.75 1.00 0.96 0.56
1.00 1.00 0.98 0.73
1.25 1.00 1.00 0.78
1.50 1.00 0.99 0.78
1.75 1.00 L.00 0.81
2.00 1.00 1.00 0.87
2.25 1.00 0.99 0.89
2.50 1.00 1.00 0.89

The fluctuationa in the rejection probability when b z 1.25 are not
statiatícally aignificant at the 0.10 level.
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NATNENATICAL APPENDIX

A1. NOTATION

In addition to the notation defined in the taxt:

NB - A neigborhood of B.

Sx - The support of X.

S„ - An open subset of tha aupport of v(X,B).

So - A compact subset of S~

Sx - (x: v(x,B) e 5~1.

h- cn1~~~`' 1~, vhere c~ 0 and r t 2 is en ínteger.

s- cn~~~Z`' 1~, vhere 0~ 6 ~ 1.

K(~) - an r'th order kernel function.

ForE-hors:
n

pn{i(~) - (nf)-1 ~ K[~ - ~(X~~B)]j-1 ~
jri

n
Pnf(~) - (nf) 1 ~ K[~ - ~(X~B),j-1 {

Fn{i(~) -~ YjKlv - v(Xj,B)] ~~ K Iv - v(Xi,B
j-1 L f j-1 L f
jri jri

Fni(~) - [Fnhi(~) - (hI8)rFnsi(")1I[I - (hIs)r1

Bnfi(`~) - Pn{i(~)Fn~.i(~)
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A2. ASSUMPTIONS

1. Sx is compect. At least one component of X has a probab111ty dlsttibution
that Ss abaolutely continuous with reapect to Lebesgue measure.

2. For every r E Ne and x E Sx, v satisfiea:
a. ~v(x,r)~ ~ K for some M G m that doea not depend on ~ or x.
b. The probability distribution of v(R,r) is abaolutely continuous with

respect to Lebeague neasure.
c. v(x,~) is continuoualy differentiable with reapect to r, and

~8v(x,r)~8rk~ G M(k - 1,...,K) for eome !i t m that does not depend
on r or x.

3. L.at pr denote the probability density function of v(X,r). For each r E Ne

a. ~ 5 p,(v) s tip for some ab 1 0 and Mp G m that do not depend on r.

b. p~ has r continuous, derivatives that are uniformly bounded over r E

NpandvE So.
4. w(~) has compact aupport S„ c int(S~) and eatísfiea:

a. 0 5 w(v) t M„ for some !~, G m and all v E 5,,.
b. ~w(vz) - w(vl)~ 5 N„~~v2 - vl~ for some l~,~ G~ and all v2, vl.

5. a. ~F[v(x,r)]~ and IH[v(x,r)]I are uniformly bounded over x E SX and ~

E Ng.
b. F(v) and H(v) have r continuous derivatives that are unlformly bounded

over v E S,,.
6. l.et Ex denote the expectation over the distribution of X. Define

I'(x,v,~) - EX(F[v(X,B)](8v(x,~)~a~ - av(X,r)~êr]~v(X,~) - v~.

Let I'k ( k - 1,...,K) denote the k'th component of P. There i s a finite
number [~, not depending on r or x, such that for all r E Na, x E Sx, vl,
vz E S,,, and k - 1, ...,K

~rk(x,~2,r) - Ck(x,vl,r)~ 5 ~.~~2 - wl~

7. aZ(v) - Var[Y~v(X,B) - v] is a uniformly bounded, continuous function of
v E S~. E(Y - E[Y~v(x,B)])~ is uniformly bounded over v E So.

8. K ia an r'th order kernel vith bounded support. Also, K is uniformly
bounded, continuous, and symmetrical about 0. The derivative of K, K',
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is uniformly bounded, has an abaolutely integrable Fourier transform, r(~),
and satisfies

~uK'(u)~du G m.1~-m
Comments:
Although theaee assumptions are notationally complex, they are mainly

boundedneea and smoothnesa conditions. The requlrement that K has bounded
aupport can be ramoved at the coat of additional technical complexlty in the
proofs.

Several factors make it necessary for tha asaumptions to ínvolve the nested

sets S„ c S~ c S~ in addition to Sx and Sx. Firat, the model being teated ia
formulated in terms of v(X,B), not X directly. Second, it ie necesaary to

estimate B. Third, the derivation of the asymptotic diatributíon of T„ involves
showing that this diatribution remaina unchanged if B replaces 8,,. To do thia,

it is necessary to have a way of ínsuring that for all r sufficiently cloae to

B, v(X,r) stays away from pointa on the boundary of ita aupport at which ita

probability density ls discontinuous. The neated sets enable this to be done.

A3. THE ASYMPTOTIC DISTRIBUTION OF To UNDER èia
Preliminarv Lemmas:
Lemoas 1-6 ahow that asymptotically 8„ can be replaced by B in To. Lemsa

7 gives a result that ia used in deriving the U-statiatic form of Ta.
Lemma 1: Define

G~i(~) - I6~1(~) - F(~)P~i(~)~~PB(~) (Al)

and

(A2)

~P~i(~) - PB(~)~I~g~i(~) - F(~)PB(~)) - F(~)~P~i(~) - PB(~)~1~(PB(~)~2.

As n ~ m,
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aup sup IP~i(v) - PB(V)I ~ OII(log n)~(nh)I1j21~ (A3)
lsisn vES~

almost surely,

aup aup IB~i(v) - PB(v)F(v)I - OpI(nh2)-1~21~ (A4)
15 i5n vES~

and

aup sup IFnhi(v) - F(v) - Gnhi(v) t J~i(v)I.
1 5 i 5 n v E Sv

- Op~(lo8 n)~(n3,2h2)). (AS)

Theae relatíona also hold if h is replaced by s.
Proof: Only (A3)-(AS) are proved. The proofs for the relations with h

replaced by s are identical.
(A3) follows from

sup
1 5 1 5 n

suP IP~i(~) - P~(~) I 5 M~nh.

VV E S

for some M~ m(by assumption 8) and

suP IP~(V) - PB(~)I - Ol~(loB n)~(nh)]1,21
v E Sv

almost surely (Silverman 1978).

To prove (A4), define

g~(~) - (~)-1~~lYjKrv - vhX B l.n ( j. )

Observe that

eup sup
15 isn vE S~

I8~1(V) - PB(v)F(v)I 5

sup Ig~(v) - PB(v)F(v)I f M(nh)-1 aup IYiI (A6)
v E S 1 5 i 5 nv
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for some !I c m becauae K ía bounded uniformly. The first term on the zight-
hand aide of (A6) is Op[(nhZ)-1~~) (Bierens 1985). Now conaider the aecond term.
Let Pr denote the marginal CDF of Y. Given any c ~ 0,

log PI sup n-lI2~Yi~ ~
cJ

- n log(1 - I1 - PY(n1I2E)[) (A2)
L 1 5 1 5 n

A Taylor aeriea expanaion of the right-hand eide of (A7) yields

log PI sup n-lI2~Y1~ G c~ --nSn-1(1 - PY(n1I2c)J
L 1 5 i 5 n

- -(n1I2i)2fn lIl - PY(n1I2f)]IE2.(AB)

where S~ ia between PY(n112a) and 1. By asaumptíon 7, E(YZ) t m, ao lím ~.~

uZ[1 - PY(u)] - 0. Therefore, the right-hand aide of ( A8) converges to 0 as n

-.mand

aup ~Yi~ - op(n1I2).
1 5 i 5 n

(A9)

Equation (A4) now followa from (A6) and (A9).
To prove (AS) , expand Fi1i1 - g~llp~i in a Taylor seriea about g,h1 - Fpy and

p~s - pB, thereby obtaining

F~i(w) - F(w) - Gnhi(~) - Jnhí(~)

4 [gnhi(~) - F(~)PB(w)1[P~i(~) - PB(~)12IPB(w)3

} gnhi(v)01[P~i(~) - PB(v)~3).

The result now follows from (A3) and (A4). Q.E.D.

~: Let IB,,: n- 1,2,...) be a nonstochastic sequence ín !R such
that nl~Z(B„ - B) - 0(1). For each R- 1,...,n

X E S
auP- (~)ll2lfnht[~(x,Bn)1 - Fnhl[v(x,B)]~ - Op(h1IZ) (A10)

X



26

as n y m. The saae relation holda when h is replaced by s.
Proof: Only (A10) ie proved. The proof vith s 1n place of h is identical.

Define g~(~) and p~(~), reapectlvely, by replacing B vith Bo in the
definitíons of g~i(~) and p~(~). It aufficea to prove that

suP- (nh)1~2Ig~f~~(x.Bn)1 - gnhll~(x~B)1I - OP(h1j2) (All)
XE SX

and

suP- (nh)1,2IP~lI~(x.Bn) - P~flv(x,B)1I - Op(h1~2) (A12)
xESX

We prove only (All). The proof of (A12) is similar.
Define

Dn(x) -(~) 1'2j~lYj~KLV(x.Bn) h V(X~,Bn)J - KLv(x,B) h V(Xi'B)JJ~
j.l

Onl(x) - Dn(x) - EDn(x).

and

An2(x) - EDn(x).

Then

(nh)1j2~Bnh1(x) - gnhl(x)~ ~ Anl(x) t Gn2(x).

Conaider Ai1. By a Taylor series expansion

Krv(x,Bn) - v(Xj,Bn)1 Krv(x,B) - v(X~B)1 .
l h J L h J

(A13)

h-1(Bn - B)'2nj(~)K'I~(x~Bne) - ~(X~~Bn~)J, (A14)
` h

vhere B„~ is betveen B and B,,, and



Zn~ - Znj(v) -[8v(x, .)~a. - a~(x~ .r)~er]T - B a,.
n

Define

BnR(x) - n-lI2'~lYjZn~K,r~(x.en~) h ~(X1'Bn~)J
~~~ L

Then

Dn(x) - n1,2(Bn - B)'(nh3)-1,ZBn.t(x)

By asaumption B,

K'(u~) - (h~2x)-lj oe-itu~(ht)dt
J „

for any u. Therefore

Bn~(x) - (h~2x)J mexPl-itv(x,6n~)j~6(ht)n-1~2 ~ YjZnjlexp[itv(ltj 6 ~)])dt
m j-1 ~ n

jrt

Let B,,,p[(x) and Z„~~, respectively, denote the k'th componenta of B~(x) and Zo~.

Then for each k,

~Bn.Qk(x) - EBn,fk(x)~ ~ (h~2s)J ~I1~(ht)In-1,ZIj~11YjZnjkexp[itv(Xj.Bn~)]
j.x

- EYjZn~kexp[ítv(Xj,Bn~)))~dt.

By assumptíons 2 and 7

n
E~ ~ IYj2njkexp[itv(X~,Bn~)J - EYjZnjkexp[itv(X,,Bn~)]1~

J-1
jrt
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S (n - 1)1j2(Var~Y~Zn~kcos[tv(X~,Bn~)]1

t Var(Yj2n~kain[tv(Xj,Bnf)]))1~2

s M~(n - 1)1~2(~2)1~2

5 Mn1~2

for eoue finite M~ and M. Therefore,

E~Bnik(x) - EBnik(x)I 5 (~~2x)J ~~1~(ht)~dt
-m

- (M~2x) J m~ib(t)~dt-m

and, because I ~6~ is integrable and nl~Z(B„ - B) - 0(1),

E~~nl(x)~ 5 0[(nh3)-1~2]

uniformly over x E Sx. It follows from equation (3.2.5) of Amemiya (1985) that

Anl(v) - ~p[(nh3)-1~2]

uniformly over x e SX.
Now consider A„Z. By (A13) and (A14)

(A15)

An2(x) - (n - 1)II(nh3)1j2](an - 9),EfYZn~K,lw(x.Bn~) - ~(x.an~)J~
l L h

- (n - 1)~I(nh3)]1,2(Bn - B),E{p["(X~B)]Zn~K,r~(x.Bn~)- w(X~Bn~)J~
L h

r m ( ~ l
- (n - 1)II(nh3)]1,2(Bn - B)' J t(x,u,Bn~)K'1`~(x'dn ) - uJ pe ~,(u)du

m L h n

L.et ~-(u - v)~h. Then since K is sy~etrical about 0
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nn2(x) - -(n - 1)II(nh)II2I(Bn - B),

.~ m[x,v(x,Bn~) t hE,Bn~IK~(E)pBn~Iw(x.Bn~) t hflaE (A16)

By assumption 2, v(x,Ba~) E So and v(x,Bp~) t hf E S~ for any ~, any x E Sx and
all aufficiently large n. Therafore, by asaumptlona 2, 3, and 6

Nr[x.~(x.Bna) f hf.Bn~IpB ~[v(x,Bn~) t hfI
n

- r[x.w(x.Bn~).Bn~jpB ~[v(x,Bn)1N 5 ~~E~ (A17)
n

for each f, all sufficlently large n, and some N G~, where N~~~ denotea the
Euclídean norm. Noreover,

J mK'(~)dF - 0
-m

by symmetry of K. Therefore, i t follows from (A16), (A17), and Lebesgue's
dominated convergence theorem that

An2(v) - U(h1I2) (A18)

as n y m uniformly over x E Sr. Equation (All) follows by combining (A15) and
(A18). Q.E.D.

Lem,na 3: l.et ( Br: n- 1,2,...) be a nonstochastic aequence in !L such that
n11z(B~ - B) - 0(1). As n y~,

sup suP- (nh)lI2lFnhilw(x.Bn)I ' F~1[v(x.B)I~ - Dp(h1I2)
1 5 i 5 n x E SX

The same relation holds with h replaced by s.
P o: It suffices to prove that
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sup suP. (nh)1~2I8~iIv(x,Bn)) - gnhil~(x.B))I - Op(h1,2). (A19)
1 5 1 5 n x E SX

sup suP- (nh)1~2IP~1I~(x.Bn)) - P~i~v(x.B))I - Op(h1~2). (A20)
1 5 1 S n X E SX

and that (A19) and (A20) hold with h replaced by s, where g and p are defined
as in Lema 2. The proof is given only for (A19). The proofa of (A20) and the
relations for s are ídentical.

Define

d~i(x) - (~)-1~2YifKr`~(x,Bn) - ~(Xi.Bn)1 - K(~~(x.B) - ~(Xi'B)J~il h J L h
Because of (All) and (A12), to prove (A19) it suffices to show that

sup sup- Idnhi(x)I - op(h1j2)1 5 1 5 n x E SX

By a Taylor aeries expanaion

d~i(x) - - .(nh3)-1,2(Bn - B)~YSZniK,[V(x.Bn~) - ~(Xi.Bn~)l.
h J

(A21)

where 2,,i is defined as in Lessua 2 and Bó ia between Bo and B. Therefore, by
assumptions 2 and 6

sup aup- Ih-1j2dnhl(x)I 5 N(~2)-1 aup IY1I (A22)
1 5 i 5 n x E SX 1 5 1 5 n

for sos~e N G m. But sup l s is ~ IYiI - oP(n1~2) by (A9). Therefore the right-
hand side of (A22) is oP(1), and (A21) holds. Q.E.D.

I.emma 4: Let ~8,,: n- 1,2,...1 be a nonstochastic sequence in A~ such [hat

n1~2(Bo - B) - 0(1). Define Goi1 and Jo,i by replacing h with s in the

defínitions of G,til and Jo,i. Define

Gni(~) - IGnhi(~) - (hIs)rGnsi(~)]II1 - (hIs)rI
nnci
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Jni(~) - [Jnhi(v) - (hIs)rJns1(~)~I[1 - (hIs)r~.

As n ,

aup sup (nh)1j2IFni(~) - F(~) - ~ni(v) t Jni(v)~
1 5 i 5 n v E S~

- ~p[(log n)I(n3I2h2)~.

and

sup suP- (nh)lI2l~ni[~(x.Bn)) - Fn1[v(x.B)~~ - Op(h1I2).
1515 n xE SX

Proof: These results follow by combining the definítions of é„L and F,i

with the results of Lemmas 1 and 3. Q.E.D.

Lemma 5: Let (Bo: n- 1,2,...) be a sequence in f~ that convergea to B.
For all sufficiently large n and x E SX, v(x,B,) E S„ i~lies that v(x,B) E S~.

Proof By assumption 2, Iv(x,Bo) - v(x,B)~ 5 H~Bo - B~ for some H G m that
does not depend on x. The result now follows from the fact that S~ C Snt(So).

Q.E.D.
Lemma 6: Define

Tn,t - h1I2 ~ w[v(R1.9))(Y1 - F[v(Xi.B)~)lFni[v(R1.B)~ - F[v(R1.9)[)
i-1

Then as n ~ m,

Tn - Tn~ t op(1).

Proof: Some algebra shows that

6
T - T ~ t ~ Rn n nj'j-1

where

Rnl - h1I21~1w[v(X1,8n)~lYi - F[v(X1.B)~)léni(v(Xi.An)~ - Fnilw(Xi.B)))
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, n
hl 2~(w(v(xi.én)] - w[v(Xi,B)])!Yi - F[w(Xi.B)])lFnilw(Xi.B)] - F[~(X .B)])

i-1

Rn3 - -h1~21E1v[v(X1.8n)](Yi - F(v(Xi.B)])IFI~(X1.8n)1 - F(v(Xi.B)])

-h1~2 ~ w(v(X1.8n)IIFI~(Xi.Bn)] - F[v(Xi.B)])(Fni[v(X1.8n)1 - Fnil~(Xi.B)])
i-1

Rn5 -

-h1~2 ~ w[v(X1,8n)]IF[v(X1,8n)] - F[v(Xi,B)])IFni(v(Xi,B)1 - F[v(Xi,B)]1
i-1

Rn6 - h1~2 E w[v(R1.8n)](F[v(Xi.Bn)1 - F[v(Xi.B)]12.
i-1

We now show that Fsn~ - oP(1) for each j. In what follows, (Bp: n- 1,2,...1
denotea an arbitrary nonstochastic sequence in A~ satisfying n112(B„ - B) - 0(1)
as n ~ m.

a. Define

Rnl - h1,21E1w[v(Xi.Bn)]lYi - F[~(Xi.B)])(ini[v(Xi.Bn)I - Fni[~(Xi.B)1)

Since IBo) is arbitrary, it sufficea to ahow that R~ - op(1) . Given any E~
0, lat P~u denote the intersection of the events p~i[v(x,Ba)] ~ c uniformly over
x E Sx, po,l[v(x,Bo)] 1 c uniforuly over x E Sx, and

suP- (nh)1,2I~ni[~(x.Bn)] - Fníl~(x.B)]) S E.
XE SX
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where pd,l is as defined in l.euma 2. Define

n
Ane - iulAnic'

Let 1(~) - 1 if the event in parentheses occurs and 0 otherwise. By (A3),
(A12), and Lemma 4, P(Ati) - 0(1). By Lenwa 5, x E Sx if w[v(x,B~)] 1 0 and n

is sufficiently large. Therefore,

Rnl - Rnl~ t op(1),

where

(A23)

h1,2 ~ 1(Anie)w[v(Xi.Bn)1(Yi - F[v(Xi~B)]1(Fni[v(Xi.Bn)] - Fnil~(X1.8)])
i-1

E(E~i3~) - 0 because the event Ay,U does not depend on Y1 or X1. Define U- Y-

F(v(X,B)]. Then

Var(Rnl~) -

n lE ~ 1(Anic)w[~(Xi.Bn)]2o2I~(Xi~Bn](nh)linil~(Xi.Bn)] - Fni[v(Xi.B)]12
i-1

r n n
t n lEl ~ ~ 1(Anic)1(Anj~)w[~(Xi.Bn)]w[~(X~.Bn)]U1U~

ll-1 j-1
jri

~(~)(~ni[~CXi.Bn)1 - Fni[~(Xi.e)I)(Fnj[~(xj.en)1 - Fnjl~(Xj.B)]1)

It ís shown below that for any x

(nh)1~2E1(An~f)wI~(x,en)]U1(Fnj(v(x.dn)] - Fnjl~(x.e)]1 - O[1~(~1,2)].

uniformly over x. Therefore, since U1 is independent of U~, é~i, and Fpl,

Var(Rnl~) -
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n
n-lE ~ 1(AniE)w(v(Xi.Bn)12oZI~(Xi.Bn1(nh){fni[w(X1.Bn)1 - Fni[~(X1.B)112

i-1

t o(1)

n
S n-IM E2 ~ E1(AniE) t o(1)

i-1

S ![EZ

for some N G m. Since E is arbitrary, it follows from Chebyshev's inequality
that R„1~ - oP(1) and from (A23) that K,u - op(1).

To ahow that ( nhll2)El(14,~)w[v(x,Bn)JUt{Fn~[v(x,Bn) - F„~[v(x.d)J] -

0[1~(nhl~Z)J, observe that conditíonal on X,

~EUi(nh)1j2(i~j[v(x.Bn)I - F~j[v(x.B)j)~1(AnjE)w[v(x,6n)]

- (nh) I'2o2[~(Xi.BJ~K{I~(x.Bn) - ~(X1.Bn)IIhIPnh~[~(x.Bn)]'1

- KI[~(x.B) - v(Xi,B)1~)P~~[~(x.B)1 lIl(An~E)w[~(x.Bn)l.

By a Taylor series expansion

~EI11(nh)1,2(F~j[~(x.Bn)J - F~j[~(x.B)J)~1(An~E)w[~(x.Bn)1

- (nh)-1,202[`~(Xi.B)1~K~{[~(x.Bn~) - v(X1.Bn~)IIh]0[lI(nl,?h)J

t KI[`~(x.B) - ~(xi.B)Jlhl(p~j[~(x,Bn)]-1 - p~j[v(x,e)1-1)~

~1(AnjE)w[~(x.Bn)J

conditional on X, where Bn~ i s between B and Bo. Integration over the
distribution of X yields E~K'([v(x,Bó)- v(XL,Bn~)J~h)~ - 0(h) uniformly over
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x. Simílarly, E~K~[v(x,B) - v(X1,B)]~h~~ - 0(h). In addition, a Taylor seriee
expansion of p~~[v(X,B„)] - pd,~[v(x,B)] followed by taking the expectation with
respect to X yields E~pd,~[v(X,B„)] - p„~,~[v(x,B)j~ - 0(~B„ - B~~h) - 0[1~(n1~Zh)
uniformly over x. Therefore, ít follows from the Cauchy-Schwartz inequality
that

E~K([~(x,B) - w(Xi,B)]~I(P~jI~(x.Bn)] - P~jI~(x,B)]-1)~

'1(An~f)wI~(x,Bn)] - 0(n 1j2).

uniformly over x. Combining resulta yielda

(nh)1j2E1(Anjf)w[~(x.Bn)IUiIF~~I~(x,Bn)1 - F~j[~(x.B)] - G[1~(nh1~2)]

uníformly over x. A símilar argument applíes when h is replaced by s, so

(nh)1~2E1(Anjf)wI~(x,Bn)lUi(Fnj(v(x,Bn)] - Fn~[`~(x,B)1 - G[1~(nh1~2)]

uniformly over x.
b. R„~: Define

Rn2 -

hI,2 E(w[`~(Xi.Bn)] - w[~(Xi.B)]1(Yi - F[v(Xi,B)])lFnil`~(Xi.B)) - F[~(Xi.B)])
i-1

It sufficea to show that LZ~ - op(1). It follows from Lemma 4 that
Fpl[v(x,B) - F(v(x,B)] - Gi1[v(x,B)] - J„i[v(x,B) t Op[(log n)~(n~~2h2)] unlformly
over i and x e Sx. By Lemma 5, x e Sx íf w[v(x,Bo)] ~ 0 and n ís sufficiently
large. Therefore,

Rn2 - Rn2~ t op(1), (A24)

where

-1

n
Rn2~ - h1j2 E (w[v(Xi,Bn)] - wI~(Xi.B)])

i-1
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~lYi - F[~(Xi.B)]]{Gni[v(Xi.B)I - Jni[~(Ri.B)]).

E(R~~) - 0 because Gai and Jnl do not depend on Y1. It is not difficult to show
that EU1Gv~[v(X~.B)J - 0(n-1) and EUiJp~[v(x,I)] - o(n1) uniformly over x.
Therefore, since U1 ie independent of U~, Ge1 and J~,

Var(x~e) - hE ~ (w[v(Ri.Bn)] - w[v(Xi,B)]12
i-1

'ó [~(7~i.B)](Gni[~(Xi.B)1 - Jni[~(Xi.B)]12 t o(1)

5(h~n)M ~ EIGni[w(Xi.B)] - Jni[~(xi.B)]12 f o(1) (A25)
i-1

for some M t m, where (A25) follows from assumptions 2, 4 and 7. Arguments
similaz to those of Bierens (1987) yield the result that the expectation ín
(A25) ia o(1), so Var(It~~) - 0(1). R„z~ - op(1) now follows from Chebyshev's
inequality. This result and (A24) imply that R~ - op(1). Therefore, I~ -
op(1).

c. I~: Define

Rn3~ - -h1~2i~1wI~(Xi,Bn)]lYi - FI~(Xi.B)](F[v(Xi,Bn)I - F[~(Xi.B)]1

It suffices to show that R,a~ - op(1). To do this, observe that E([~~) - 0.
In addition,

Var(Rn3~) - hEi~1wI~(Xi.Bn]ZoZIw(Xi.Bn)lF[~(Xi.Bn)] - F[v(Xi.B)]12

5 hM ~ Ew[v(Xí,Bn)]21F[v(Xi,Bn)] - F[v(Xí,B)]12
í-1

for some M t m by assumptions 4 and 7. By assumptíons 2 and 5,

(F[~(X.Bn)] - FIw(X.B)1)2 - 0(NBn - B~2)
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- ~(n-1).

uniformly over X. Therefore, Var([~s) - 0(1), and I~~~ - op(1) follows from
Chebyshev's inequality.

d. 1~,~: Defíne

Rn4~ -

-h1,2 ~ wÍw(Xi.Bn)JlF[w(Xi.Bn)] - F[v(Xi.B)])léni[v(Xi.Bn)J - Fni[v(Xi.B)])
i-1

It suffices to show that R„~~ - oP(1). To do this, observe that by assumptiona
2, 4, and 5 and a Taylor series expansion

~Rn4~~ 5 ~1,2pBn - B~Ni~lw[~(Xi.Bn)]IFn1[v(Xi,Bn)] - Fni[v(Xi,B)]~ (A26)

for some M t m. By Lemnas 4 and 5, the summand in (A26) is OP(n-1~2) uniformly
over i and Xi for which v[v(Xi,B„)] ~ 0. Therefore, since qBa - BN - 0(n-1~2),

~~ - Op(hi~x) .
e. E~y: Define

Rn5 -

-hl,Z ~ w[v(xi,Bn)1(F[~(xi,Bn)] - F[v(xi.B)])(Fnilw(xi,B)] - FI~(xi,B)1)
i-1

It suffices to show that R„s - oP(1). Since F[v(x,Ba)] - F[v(x,B)] - 0(n"3~2)
uniformly over x E Sx, it follows from Lemmas 1 and 4 that

Rn5 - RnS,t t op(1) .

where

(A27)

Rns~ - -h1~2iElwl~(Xi,Bn)11F[~(xi,Bn)] - F[~(Xi.B)]~~ni[~(xi,B)].

Let F' denote the derivative of F. By a Taylor series expansion



38

n
RnS~ - -h1,2(Bn - B)'i~1wl~(Xi.Bn)]F'[~(Xi~Bn~)]`~B(Xi'Bn~)Gni[v(7t1.B)]

where Bna La between B and Bo. By arguaienta identical to thoae of Bierens
(1987), EGoi[v(x,B)] - o[(nh)-1f2] uniforuly over x. Therefore, E(R„~~) - 0(1)
by asauaptiona 2, 4, and 5. In addltion

(R~~)2 S MhNBn - BI2E ~ ~ ( UniI~íX1~B)]Gn~[v(Xj,B)]].
1-1 j-1

By the argunenta of Bierens ( 1987), the expectatlon is 0(h-1) uniforuly over
X. Therefore E(R~~)Z - 0(1). It follows frou Chebyshev's inequality that R„s~
- op(1) and fros this reault and (A27) that I~ - op(1).

f. I~6: By assumptions 2 and 5, ( F[v(X,éo] - F[v(X,B)])2 - Op(n-1)
uniforuly over ~X: v E So). Since, in addition, w is bounded uniformly, Rr6 -
~p(hi~s). Q.E.D.

L,e~a 7: Define Vi - v(X1,B). Then

n
Tn - h1~2 E w(Vi)IYi - F(Vi)]~ní(vi) } op(1)'i-1

Proof: By Lenmas 4 and 6

Tn - h1~2 ~ w(Vi)[Yi - F(Vi)l~ni(Vi) - Tnl t op(1).
i-1

where

Tnl - h1,2 E w(Vi)[Yi - F(Vi)]Jni(Vi)'i-1

(A28)

To prove the lemma 1t suffices to ahow that T„1 - op(1). E(T„1) - 0 because
Jn1(Vi) does not depend on Yi. In addítion, aince EU1J~~(v) - o(n~l) uniformly
over v,

E(Tni2) - h ~ Elw(Vi)2o2(VI)Jni(Vi)2) } 0(1)i-1
(A28)

But for any v E S~
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(1 -(hI8)r]Jní(~) 5 Ignhi(~) - PB(~)F(~)IIP~i(~) - PB(~)IIPB(~) 2

t F(v)IP~i(~) - pB(~)I2~PB(~)2

t (hIs)rll8nsi(~) - PB(~)F(~)IIP~i(~) - PB(~)IIPB(~)

t F(v)IP~i(~) - PB(~)IZIPB(~)2].

By (A3) and the fact that h~a c 1

[1 - (hIs)r]Jni(~) 5 [Ig~i(~) - pB(~)F(~)IrPa(~)2

t(h~s)r t 1~2lgnsi(~) - PB(~)F(~)IIPg(~)Z]OlI(1og n)I(nh)]1~2)

t 0((log n)~(nh)] (A30)

almoat aurely. By argumenta aimilar to thoae of Bierena (1987), E(gaei(v) -
pB(v)F(v)]~ - 0(1~(nh)j uniformly over v E S~. Tharefore, by the Cauchy-
Schwartz inequality, EI[g„til(v) - pe(v)F(v)I - 0[1~(nh)l~Z] uniformly over v e S~.
Therefore, squaring (A30) and taking expected values on both aides of the reault
yields

[1 - (h~s)r]2E[Jni(~)Z] - Ol[(loB n)I(~)]2) (A31)

uniformly over v e 5,,. Substituting (A31) into (A28) and making use of

assumption 4 yields E(T„1~] - 0(1). Tn1 - op(1) now follows from Chebyshev's

inequality. Q.E.D.

Proof of Theotem 1
For i- 1,...,n, define Ui - Yi - F(V1) and 21 -(Ui,Vi). Also, for v e S„

and í,j - 1,...,n define

tch (v) - I1 -(hIa)r] 1[K(~Ih) -(hIa)r t 1K(~~a)1.s
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An(zi~zj) - I1I(nh1,2)]w(~i)U1IP0(~1)] 1(Uj t F(Vj) - F(Vi)I~8(Vj - Vi)1.

v(zi) - EIAn(zi.zj) t An(Zj,Zi)~zil.

Hn(zi~zj) - An(Zi.Zj) t An(zj~zi) - v(zi).

and

t - E ~ H (z ,zj).
n 1 5 i t j s n n i

It followa from (A28) that

Tn -~n f ~ ~ l~(Zi) t op(1).
lsi~jsn

Observe that

(A32)

v(zi) - (lI(nh1,2)lw(Vi)U1IPB(Vi]-LE((F(Vj) - F(Vi)]xha(Vj - Vi)~V11.

Sínce E(Ui) - 0 for ell i- 1,...,n and the U1 are independent, E[y(Z1)] - 0,

and E(N(Z1)y(Z~)] - 0 if i r j. Noreover, arguments similar to those of Bierens

(1987) yield

P(Zi) - (1~(nh1~2)lw(Vi)U1(PB(Vi)]-lo(hr
t 1). (A33)

uníformly over Z1. Therefore, E[p(Z1)2] - o(h2r ' l~nZ), ao the second term on
the right-hand aide of (A32) has mean 0 and variance o(hZ`'1). It follows from
Chebyshev's inequallty that the second term on the right-hand side of (A32) is
op(1) so that Ta - io t oP(1). Therefore, to prove the theorem it suffices to
show that fa ~ d N(O,orZ). Define

~(zi.zj) - EIHn(z~.zi)Hn(z~.zj)~zi.zjl.
By Theorem 1 of Hall (1984), i„ y d N(O,or2) if

EIQn(zi~Zj)21I(EIHn(Zi~Zj)2112 y 0.

n-lEIHn(zi~zj)41IIEIHn(zi.Zj)2112 ~ 0~

(A34)

(A35)
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and

(lI2)n2E(Hn(Zi.Zj)2l ~ oT2

aa n ~ .

Analyais of E(Qa(Z1,Z~)~]: By (A33) and the definition of i~

Hn(Zi.Zj) - IlI(nh1j2)1lU1UjIw(Ví)IPg(Vi) t w(V~)IPa(uj)]

(A36)

t (F(~j) - F(Vi)][w(~i)UiIPB(~i) - w(uj)UjIPB(~j)l

~l~s(Vj - Vi)) - w(Vi)Ui(P(Vi)1 lo(hr t lI2In) (A37)

uniformly over (Z1,Z~). Some algebra yields the reault that

Qn(Zi,Zj) - Qnl(Zi,Zj) t Uio(hr t lln2) t Ujo(hr t lln2)

t o(h2r t lln2)

uniformly over (2i,Z~), where

Qnl(Zi'Zj) - El~i.jlo2(wf)U1UjIw(vf)IPB(Vf) t w(Vi)IPB(Vi)1

~(w(~f)IPg(V~) t w(~j)IPg(~j)] t IF(uj) - F(V1)~o2(~.E)Uí

(A38)

~(w(u1)IPB(Vp]Iw(V~)IPB(V1) t w(Ví)IPg(~i)1 t (F(Ví) - F(V~)]

.aZ(~~)Ujlw(~~)IPB(~p)]Iw(~p)IPB(Vt) f w(~j)IPa(~j)1

t (F(~R) - F(~i)1[F(~~) - F(~j][w(~~)IPB(~~)1202(~~))
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~Khs(V1 - Vl)Khs(V~ - V~), (A39)

and E,~~i,~ denotee the expectation over V,~ conditional on Vi and V~. Equation
(A39) has the foru

~,1(ZL'Zj) - (n2h)-lf [U1U~R1(V~,V1,V~) i U1R2(V~,Vi,V~)

t U~R2(V~,Vj,Vi) . R3(Vt.Vi.V~)]IK[(V1 - V~)Ihl

- (hI8)r t 1KI(V1 - V~)I8111KI(Vj - V1)IhI

- (h~s)r
t

1KI(Vj - V~)I81)PB(V~)dV~.

where R1, Rz, and R~ are bounded, continuous functlons. Let S-(V,~ - V1)~h.
Then

Qnl(Z1,Zj) - n-2J [U1UjR1(hS t VL.V1.V~) t UiR2(h~ t V1.V1.V~)

t U~R2(hs t Vi.Vj.Vi) t R3(hf t ~i.Vi.Vj)]íK(S)

- (h~s)r t 1KI(hIs)S~1lK[S t (Vi - V~)~1

-(hI8)r
t

1KI(hI8)S t(V1 - V~)IS)IPB(hS t VL)dB

n-2r [U1UjR1(hS t VL,V1.Vj) f ULR2(hS t V1.V1.Vj)

t UjR2(hS t Vi.Vj.Vi) } R3(hS t v1.Vi.Vj))K(S)

'KIS t(~i - Vj)Ih1PB(hi' t ~i)dS t UiUjo(n 2)

t Uio(n-2) t U~o(n-2) t o(n-2). (A40)
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It follows from (A38) that Q„(Z1,Z~) has the form (A40). Therafore,
E[Q„(Z1,Z~)2] has the form

E[Qn(Zi,Z~)21 -

n-2J R(hsl t Vi,hf2 t Vi.Vi.V~)K(9I)R(f2)K[S1 f(Vi - Vj)~1

'K[i2 t(Vi - Vj)IhIPB(hSl t Vi)PB(hs2 t Vi)pB(Vi)PB(V~)dS1dS2~i~~

t o(n-4)

- o(n-4),

Therefore

E[Qn(Zi~Zj)21 - o(1~n2).

Analysis of nlE[Ha(Zi,Z~)~]: By (A37) Fio(Zt,Z~)~ has the form

Hn(Zi'Z])4 - n 4h 2Rn4(Zi~Z').

(A41)

where R„~ has the property that E([~~) is bounded uniformly over n. Therefore,

n-lE[Hn(Zi~Zj)41 - 0[lI(n5h2)1.

Analysis of E[H„(Zi,Z~)Z]: By the definition of Fio

(A42)

Hn(Zi,Zj)2 - An(Zi,Zj)2 t An(Zj~Zi)2 t l~(Zi)2 t 2IAn(Zi.Zj)An(Zj~Zi)

f v(Zi)An(Zi,Zj) } v(Zi)An(Z'.Zi)].

But

(A43)

An(Zi~Zj)2 - IlI(n2h)]w(Vi)Ui2[PB(Vi)-211Uj2 t 2Uj[F(Vj) - F(Vi)1
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f [F(V~) - P(Vi)]211Cha(V' - Vi)2.

Therefore,

n2E[An(Zi.Z~)2l - [1 - (h~s)r]h-lj w(Vi)2(PB(Vi)-21ó (Vi)

~(o2(Vj) t [F(Vj) - F(Vi)]2)[KI(Vj - Vi)Ih1

- (hIa)rKI(vj - vi)~a])2pB(vi)pB(vj)dv~dvi.

Defíne S - (V~ - V1),h. Then

nZE[An(Zi.Z')21 - I1 - (hIe)r]J w(Vi)2IPB(Vi)-2]o2(Vi)

'loZ(hS t Vi) f[F(hi t Vi) - F(Vi)]21(K(S)

- (h~s)rK((hIs)S112PB(Vi)pe(hS t Vi)dfdVi

- C„I w(v)Z(o2(v)]2dv f o(1). (A44)

By the Cauchy-Schwartz inequality

EIAn(Z1.2~)W(Zi)] S IE[An(Zi.Zj)2EIl~(Zi)2)1~2.

It now followa frou (A43) and E[y(Z1)2] - o(l~n~) that

EIAn(Zi.Zj)P(Zi)) - o(1~n2).

In addition, it is easily seen that

EIAn(Z'.Zi)P(Zi)] - 0.

(A45)

(A46)

Finally,

nZEIAn(Zi,Z~)An(Zj.Zi)1 - (1 - (hIs)rlh-lf w(Vi)w(Vj)o2(Vi)o2(V~)
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~IChs(Vj - Vi)2dV~dVi.

By argumenta similar to those used to obtain (A43)

n2E[An(Zi,Zj)An(Zj,Zi)] - C..I v(v)2[o2(v)]2dv t o(1). (A47)

Combining (A43)-(A47) yields

n2E[Hn(Zi,Zj)2] - 4CKj w(v)2[o2(v)]2dv t o(1) (A48)

Conditions (A34)-(A36) now follow by combining (A41), (A42), and (A48). Q.E.D.

A4. PROPERTIES OF Tp UNDER Hi

Proof of Theorem 2
Let (Bpl be a nonstochastic sequence such that nl~Z(Bo - B) - 0(1). I.et Te

be defined as T„ with 8„ replaced by 8,,. It sufficea to ahow that plím „ ~e
T„~(nh1~2) ~ 0. To do this, let U - Y- H[v(X,B)] and ve - a~~ae. Let B„~

denote a point between Bn and B (not necessarily the same point ín each usage).
Some algebra and Taylor series expansions yield

11
Tn~(nh1,2) - ~ Rnt~1-1

where

Rnl - n-li~lw[v(Xi.Bn)]Uilgni[v(Xi.Bn)] - Fni[w(Xi.B)]),

Rn2 - n-li~lw[v(Xi,Bn)]Ui(Fni[v(Xi,B)] - H[v(Xi,B)]),

Rn3 - n-1 ~ w[v(Xi,Bn)]Ui(H[v(Xi,B)] - F[v(Xi,B)J),
i-1

n
Rn4 - -[(Bn - B)'~n]i~lw[v(Xi,Bn)]UiF'[v(3Ci,Bn~)]wB(Xi,Bn~).
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Rn5 -

n
n-1 ~ v[v(Xi.Bn)1lN(v(Xi.B) - F[~(Xi.B)11lFni[v(Xi.9n)] - Fnil~(Xi.6)]).

1-1

n
Xnb - n-Li~1vI~(Xi.Bn)]IHI~(Ri.B)1 - Fjv(Xi.B)1)lFni[~(Xi.9)1 - H[v(Xi.B)11.

n
Bn~ - n-1 E w[v(Xi.6n)IIF[v(Xi.6)] - R[v(Xi.9)1)2.

i-1

n
Rn8 - -2[(6n - B)'~nl ~ w[~(Xi.9n)1F'[~(Xi.6n~)1~B(Xi,9n~)

i-1

~lH[~(Xi.B)] - F[v(Xi.B)]l.

n
Rn9 - -[(9n - B)'~n] ~ ~[~(Xi.6n)1F'[v(Ri.Bn~)]~B(Xi.Bn~)

i-1

~(Fni[~(Xi.Bn)I - Fnil~(Xi.B)1).

n
Rn 10 - -[(Bn - B)'InliElw[~(Xi.Bn)]F'[~(Xi.Bn~)]~B(Xi.Bn~)

~IFni[v(Xi,B)] - H[v(Xi,B)]1,

and

[(Bn - B)'In]i~1wl~(Xi.Bn)1F'(v(Xi.Bn~]2~B(Xi.Bn~)~B.(Xi.Bn~)(Bn - B).
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R„I is n i tímes the analogous quantity in lemma 6. Therefoze, R~ - oP(1).

By lemmas 4 and 6

Rn2 - n li~lw[v(Xi.Bn)]Ui(Gni[v(Xi~B)] - Jni[w(X1.B)]) } op(1)

R„~ - op(1) now follows from a proof similar to that of lemma 7.
Because w[v(x,Bo)] - w[v(x,B)] - 0(n1f2) uniformly over x,

Rn3 - n 1~ w[v(Xi,B)jUilH[v(Xí.B)1 - F[v(Xi.B)11 t opíl).
i-1

E~,~ - op(1) now follovs from the strong law of large numbers.
By asaumptions 2, 4, and 5 as well as Bo - B - 0(riliZ)

Rn4 -(K~n)o(n 1~2) E IYi - HI~(xi.B)]~.
i-1

The summand has a finite mean by assumptiona 5 and 7, so R„~ - op(1) follows

from tha strong law of large numbera.

By lemma 5,

IRnS~ 5 n-lOp(n-1~2) E ~H[v(Xi,B) - F[v(Xi,B)]~,
i-1

so R~ - op(1) follows from the strong law of large numbera.
By lemma 1 and assumption 5

~Rn6~ 5 op(1)n-1 E IH[v(Xi~B)] - F[v(Xi~B)]~~
i-1

so F~,6 - op(1) follows from the strong law of large numbers.

R„~ ~ P E(w(V)[H(V) - F(V)]21 by the strong law of large numbers and the

fact that w(v(x,B„)] - w[v(x,B)] - 0(n-1~2) uníformly over x.

By assumptions 2, 4, and 5 and B, - B - 0(nI~Z),

Rn8 5 0(n-1~2)n 1~ ~H[v(X1,8)1 - F[v(Xi,B)]~,
i-1

so R„s - op(1) follows from the strong law of large numbers.
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R,q - op(1) by lemma 4, assu~tiona 2,4, and 5, and Bo - B - O(n"1rz)

Ro.lo and R,,,yl are op(1) by lemma 1, asaumptíons 2, 4„ and 5, and Bn - B
- 0(n irz) .

Collacting resulta ylelda T,~(nh3rz) y o Ew(V)([H(V) - F(V)Jz) 1 0. Q.E.D.

Additional Asaumotiona and a Lemma Uaed in Proving Theorem 3
9. i~ has r continuous derivatives that are uniformly bounded ovez v E S~.
10. Define

I'n(x,v,r) - EX~Hn(v(X,B)][8v(x,r)8r - 2v(X,r)~8r]~v(X,r) - v).

Let I'~ (k - 1,...,K) denote the k'th component of I'o. There is a finite
number !~, not depending on r or x, such that for all r e Na, x e Sx, vl,
vz e S~, and k- 1,...,K

Irnk(x.~2.r) - rnk(x.~l.r)~ 5 Kr~~l - ~2~.

11. oz(v) is a continuous functlon of v e S~ and is bounded unifozmly over v
E S„ and all sufficiently large n. EIY - E[Y~v(x,B)])~ is bounded
unifornly over v e S~ and all sufficiently large n.

12. Define

Qnr(~.f) - (àrldfr)IIHn(v t hf) - Hn(~))pB(~))

a. For some a ~ 1~(4d) and finite constant C~ 0

~Qnr(~.hf) - Qnr(v,s~)I s C~hf - SE~a.

b. The kernel function K satisfies

m

1-m~ ur t oK(u)~du G m.

Asaumptiona 9-11 extend asaumptiona S-7 to the local alternative mean

functiona H,,. Assumption 12 insures that the bias of (nh)lrz[Fpt(v) - iio(v)]

relative to its asymptotic distribution ia o(hlr~). Thia bias must be o(hlr~)

to make the result given in Theorem 3 hold,

l.ema 8: Let assumptíona 1-5 and 8-12 hold. Under the aequence of models
F~„ the concluslona of Lemas 1-3 and 7 hold when F ia replaced by Hr.
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Proof: It may be verified that the proofs of Lemmas 1-3 and 7 hold line

by line. Q.E.D.
Proof of Theorem 3
I.et (B„) be s nonatochastíc aequence such that n'~z(Bo - B) - 0(1). Let ?p

be defíned as Tp vith 8~ replaced by Bn. It auffices to ahow that the

conclusion of this theorem holda for T,. To do this, let U- Y- Ho[v(x,B)J,

V- v(X,B), ~B - a~~aB, and w~i - v(v(X1,B„)J. I.et B„~ denote a point btween B„

and B (not necessarily the same point in
aeries expansions yield

Tn
il

- (nhl~Z) ~ R ,
i-1 nl

each usage). Some algebra and Taylor

where R,,i (t - 1,...,11) i s obtained by replacing H with kip in the correaponding
terms in the proof of Theorem 2.

1 (~irz)~1: (~liz)~1 - oP(1) follows by a proof identical to that given

for 1~i1 in Theorem 1.

2. (nh11z)R,z- By Lemma 8,

n
(~1j2)Rn2 - h1j2 ~ wniUiGni(Vi) t op(1),

i-1

where tio is used in G„i instead of F. Convergence in distribution of (nh11z)Riz

now follows by arguments identical to those used in proving Theorem 1.

3. (~iiz)R,3- E(nh11~I~3) - 0 because E(U) - 0.

Var(nh1,2Rn3) - hE ~ wni2o2(V1)n 1,2h 1,4~n(Vi)2 - G(h1,2)-
i-1

4, (nhl~z)I~,~: E(nhl~z[~,~) - 0 because E(U) - 0. In addition,

n
Var(nh1,2Rn4) - (Bn - B)'hEiElwni2o2(Vi)F'[~(Xi~Bn~)J2wB(Xi~Bn~)

~ ~B,[~(Xi,Bn~)J(Bn - B) - G(h).

5. (nhl~z)R„y: (nhl~z)R„y - ~p(h3~~) because Hn - F- 0(n l~zh-1~~) and, by

Lemma 8, Fnt(v) - Fa~(v) - Op(rt l~z) uniformly over i and v.
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6. (nhilz)I~: By Leoma 8

n
~1,2an6 - h1,2 ~

wnin-ll2h-1~4sn(V1)Gni(Vi) t op(1)'
i-1

where iio replaces F in the definition of Gp1. Under assumption 12, E[Gi1(v)] -
o[hil~~(nhllz)j Var[Gnl(v)] - 0[(nh)-1], and Cov(Ga1(v).Goz(v')] - o(hIn).
uniforsly over v e S~, by arguoenta siuilar to thoae of Bierens (1987).
Therefore, nhllzi~ - oP(1).

7. (nhilz)~i:

n
~1,2Rn7 - n 1~ wni0n(~i)2 - v f op(1)

i-1

by uniform convergence of A„ to A and the strong law of large numbers.
8. (~ilz)~:

(nh1,2)RnB -

-2(Bn - B)'h1,21E1wniFl[w(Xi.Bne)1wB(Xi.ene)n-1,2h-1,4~n(Vi)

- Op(h1~4),

9. (~ilz)R„s:

(nh1,2)Rn9 - -(9n - 6)'h1~2 ~ wniF~[v(X1,9n~)ve(Xi,9n~)
i-1

~(Fni[v(Xi.6n)] - Fni[v(7C1~9)]) - op(h1~2)

by L.e~a 8.

10. (nhllz)~,io

(~1~2)Rn,10
-

(Bn - B)'h1~2i~1wniF'[v(Xi~Bn~)1~B(Xi.Bn~)[Fni(Vi) - Hn(Vi)]'
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- Rn,10~ t op(1).

by Lemma 8, where

Rn,10~ -

n
(Bn - B)'h1~Zi~lmniF'I~(Xi.Bn~)~~B(Xi.en~)IOní(Vi) - Jni(Vi)1

Also by Lemma 8, E(R,,,lo~) - 0(1). Argumenta similar to thoae made for
Var(nl~Zhl~~I~b) yield the result that Var(I~,lo~) - 0(1), so R„ lo - oP(1) by
Chebyahev's inequality.

11. (nh3lz)~.ii:

(nh1~2)Rn,ll
~

(Bn - B)~hi~lwniFl~~(Xi.dn~)~Z~B(Xi.en~)~8,(Xi,Bn~)(Bn - B) - Op(h).

Q.E.D.
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