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ABSTRACT

Aaron (1966) compared the capital reserve (CR) and the pay-
as-you-go (PAYG) social insurance systems in a special
model with two overlapping generations and many cohorts. He
found that PAYG yields higher welfare than does CR if and
only if the output growth rate is qreater than the interest
rate. The paper reconsiders this result by relaxing several
homogeneity assumptions and deriving optimal quasi-
stationary paths from a homogeneous utility function (a
specific homothetic function). A further specification with
constant relative risk aversion or equivalently, with
constant elasticity of substitution shows that "everything
goes". In particular, PAYG may be preferred to CR even if
the output growth rate is smaller (rather than qreater)
than the interest rate for youthful (mature) profiles with
high (low) risk aversion. This revision calls into question
the conventional explanation of the recent crisis of PAYG
Social Security system.
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1. INTRODOCTION1

Since the publication of the seminal paper by Samuelaon
(1958) economists, dealing with social insurance, have
devoted much attention to the comparison of the pay-as-
you-qo (PAYG) system to the capital reserve (CR) system.
(At the end of the paper a list of abbreviations can be
found.) In an influential quasi-stationary model (where all
growth rates are constant), assuming two overlapping
generations and many cohorts Aaron (1966) found that PAYG
is better than CR (in a sense to be defined below) if and
only if the output growth rate is greater than the interest
rate: Aaron's condition. (A modern treatment is to be found
in Blanchard and Fisher (1989, Section 3.2) under the
heading of dynamic inefficiency.) This result is widely
used to explain the recent crisis of PAYG Social Security
system: the growth rates are sinking while the (real)
interest rate is rising, reversing the earlier order of
PAYG and CR systems (e.g. Verbon (1988) and Peters (1991)).

The present paper reconsiders Aaron's study and its
follow-up. For the record we list the following intercohort
ho~ogeneity assumptions used by Aaron: (Da) there is no
death risk, (Ka) there are no child (student) cohorts,
(Wo)-(Co) cohort wage and consumption profiles are flat. We

1 This research was financed by the Dutch Hational science
Foundation ~Nwo), the Center for Economic Research at Tilburg
University and was complemented by the financial support of the
Hunqarian Science Foundation (OTKA). In April 1992 Eduardo Siandra and
I started to work on two joint papers, but in March 1993 we agreed to
divide the papers between us and write two one-author papers. As a
result, this paper owes much to E. siandra. I express my intellectual
debt to M. Augus2tinovics and thanks to E. Dierker, F. IC. Hof, P. Rop

Jansen, B. Martos, Gy. Molnar, W. Peters, H. Verbon and an anonymous

referee for their comments on earlier versions. None of them is

responsible for the content of the paper.
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shall replace them with assumptions allowing for
intercohort heterogeneity: (D) there are death risks, (K)
child (student) cohorts either have their own consumption
or the corresponding consumption is included in the
parents' consumption, (W)-(C) qeneral wage and consumption
profiles. We retain, however, a basic assumption of Aaron,
namely, the profiles are time-invariant. (With a slight
abuse of terminology under a cohort consumption or wage we
mean per capita rather than total consumption or wage of
the given cohort. Profile and path refer to cross-sectional
and longitudinal description, respectively.)

Our assumptions are quite customary in certain
segments of life cycle modelling. Critically developing
Modigliani and Brumberg (1954), already Tobin (1967)
introduced a similar framework. In addition to the
seemingly technical assumptions D, W and C, he initiated
the striking assumption K.

"The Modigliani-Brumberg life cycle model does not allow for
children. Presumably, their consumption is assumed to be squeezed from
parents' consumption. In this case, however, it is implausible to
assume that parents spread their consumption evenly over adult life,
independently of the number of mouth to feed. A mechanical amendment
to the model, which continues to treat individuals as individuals and
ignore their grouping into households, would simply tack the childhood
years without income on the beginning of the life cycle. Each person
would then be consuming from birth in anticipation of his future adult
earnings. xe would accumulate debt during his childhood years and he
would have to use his earnings to pay back the debt as well as provide
for his second childhood~ (p. 247).

In his illustrative calculations Tobin introduced
households as well, but we stay with his "mechanical
amendment". Using Tobin's framework, Arthur and McNicoll
(1978, p. 242) criticized Samuelson (1975) for analyzing
life cycle problems without taking into account child-



dependency.z Augusztinovics (1989), (1992) also applied
this framework in her synthesis.

Overlooking this approach, two-generation, two-cohort
models with scalar consumption still dominate the field of
pension systems. We quote an economist, who analyzed
excellently the connection between child dependency and
pension systems in another paper, but he claimed the
following: "For a theoretical analysis it is sufficient to
model an overlapping generations framework with two
generations only, the old and the young." The usual
explanation is as follows: "Balasko et al. (1980) present a
simple procedure for redefining periods and generations
that converts a model in which consumers live for any
finite number of periods into one where they live for only
two", (Peters 1991, p. 158 and itn. 1)3. Unfortunately,
many users of this theorem forget about the second part of
the theorem: in the redefined model the number of the goods
increases in proportion to the original number of cohorts
(Reichlin (1992) also makes this point).

At this point we make a semantic remark: We prefer the
neiitral word cohort to the more colorful expression
generation. In fact, we shall consider many (up to a
hundred) age groups living together, while in the original
meaning of the word only three or four generations may
overlap.

Having exposed the role of assumption K, we turn to
the issue of assumption C and optimization. We assume that

2 In his last sentence samuelson (1975, p. 337) at least
acknowledged the existence of the problem, but added: ~childhood
dependency is intrinsically less costly relative to old-age
dependency".

3 It should be noted that in footnote 15 below his statement
Peters ~1991, p. 169) also remarks that 'a more realistic analysis
should include an OLC framework which deals with more than two
generations..." (cf. Auerbach and Kotlikoff, 1987).
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the members of the society have common tastes, and our
welfare criterion will be the lifetime utility of a
representative agent. A utility function is maximized under
CR and PAYG budget constraints one after the other. We say
that PAYG is better than CR (w.r.t. the utility function)
if the first maximum is greater than the second.

Note that Aaron assumed rather than derived assumption
Co from any optimization framework. However, it can be
shown that his result can be deduced from the constrained
maximization of the Leontief-Rawls utility function. (This
is not the case with the very general model of Verbon
(1988, Appendix 7A), where the assumption of common
contribution rate for PAYG and CR excludes optimization.)
Other researchers applied Cobb-Douglas utility functions
(e.g. Verbon, 1988) or ACRRA (Additive Constant Relative
Risk Aversion) utility functions (Blachard and Fisher,
1989) or general ones (Arthur and McNicoll, 1978).

Unfortunately, the use of general homothetic utility
functions are undermined by the presence of death risks.
Thus in this paper first we shall consider hoaogeneons
utility functions (special homothetic functions), then
specify them as ACRRA. Homogeneous functions are not only
more general than ACRRA functions, but do not require
parametrization. Note that the family ACRRA, i.e. CES"
contains both the Leontief-Rawls and the Cobb-Douglas
utility functions.

In an optimization framework Aaron's condition is
transformed by the indirect utility function: the value of
the function at the output qrowth factor is greater than
the corresponding value at the interest factor. (Factor is
equal to rate plus unity.) Since this function is generally
not increasing for all positive values, there may be

4 obviously an ACRRA function is a non-linear but monotone
transformation of a CES (COnstant Elasticity of Substitution)
function. We shall use both terminologies.
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intervals where PAYG is worse than CR though Aaron's
condition holds. In contrast, in the two-cohort scalar
model the indirect utility function is íncreasing,
independently of the utility function.s

In addition to the assumptions D, K, W, C and the
macroparameters, the ranking generally also depends on the
chosen utility function. The coefficient of relative risk
aversion, or equivalently, the elasticity plays a decisive
role.b For example, for utility functions yielding Co, the
indirect utility functions, as functions of the interest
factor, are locally concave and convex functions around the
growth rate for lower and higher elasticities,
respectively.

The paper is closely related to Augusztinovics (1992).
Our frequent references to her work only serve as
acknowledgment of priority but its prior knowledge is not
requested. In a related paper Siandra (1993), considering
thr~~e cohorts, no death risks and homothetic utility
functions, obtained similar results.

Table 1 displays the different sets of assumptions
made by foregoing authors. We only underline the most
important three dimensions: (i) realism, (ii) generality of
the utility function and (iii) globality of the analysis.
The present paper combines the advantages of all the three
directions: a rather general utility function is analyzed
globally in a realistic framework.

5 The situation is quite similar to that arising during the
capital controversy when neoclassical economists overlooked
complications ~like reswitching) appearíng when vintages in capital
are distinguished.

6 This fact contradicts the ambivalence of numerous writers
(e.g. Tobin, Arthur and McNicoll and Augusztinovics) as to
optimization.
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Table 1

Finally, we remind the reader to an implicit
assumption: the growth rates of population and
productivity, the real interest rate and the activity rate
are not only time-invariant but independent of the ruling
social insurance system, too. We also confined the analysis
to the (unique) quasi-stationary paths, neglecting
stability problems studied by Gale (1973) and others. A
couple of researchers do not accept this approach (referred
to as the case of a small open economy), but we have found
it a useful first approximation.'

The structure of the paper is as follows. Section 2
presents the model of optimal social insurance systems. In
Sections 3 and 4 PAYG and CR are compared for homogeneous
utility functions, and the more special ACRRA utility
functions, respectively. Sections 5 and 6 contain special
local and global results, respectively. Section 7 draws the
conclusions. Proofs are relegated to the Appendix.
Sacrificing simplicity, we have tried to obtain sharp
results, and display their complex relations to the
literature. Following Tobin, we aim at numerical and
graphical illustrations as well.

2. OPTINAL SOCIAL INSIIRANCE SYSTBNS

In this section we shall consider an optimization model of
the social insurance systems.

Gener.ations and cohorts

Following Aaron (1966), Gale (1973), Arthur and McNicoll
(1978), Augusztinovics (1989) and (1992), we shall consider

7 For a combination of classical growth theory and overlapping
cohorts models, see Auerbach and Kotlikoff (1987), Blanchard and
Fisher (1989) and Peters (1991).



Table 1. Nodels and assu~ptions
Tobin,

MODELS Samuelson Aaron McNicollerbon
Auguszti- Siandra,
novics Simonovits

ASSUMPTIONS

Number of
generations 2 2 23 z 3 3
Number of OI1~2 0~2~3cohorts 0~2~3 O~R~D L~R~D 0~1~2 L~R~D LIR~D
Death
risk

Time-variant
factors t t

t

Productivity - t
increase

Non-flat x
wage profile

t t

t x t

t

t

Utility G LR CD CD LR HT, CESfunction G CD HG, CES
Global
analysis t t - t f t
Re~arks. Signs t and - mean that the foreqoinq assumptionor its negation is valid, respectively. Sign x refers to acase where the assumption is either automatically satisfiedor not used. Concerning utility functions, G, HT, HG, LRand CD refer to general, homothetic, homogeneous, Leontief-Rawls, Cobb-Douglas functions, respectively. In the lastcolumn the upper signs refer to Siandra (1993), while thelower ones to the present paper.



a model with overlapping cohorts rather than generations.
A multi-cohort model is a much better description of the
economy and is capable to check the validity of results
obtained for overlapping generation models.

At time t the population consists of three age-
groupsa: children, workers and pensioners. Each age-group
consists of several cohorts, L child cohorts, R-L working
cohorts and D-R pensioner cohorts, altogether D cohorts
numbered as k-0,1,2,...,D-1.' To. reproduce traditional
childless populations, we shall not exclude L-O. Since we
concentrate on pension systems, we shall assume that at
least one working and one pensioner cohorts exist: R?1,
D~2. Suppose that in time t Bt "babies" are born, and
Nk,t4k-skB[ persons of them survive age k: 1?so?sl...
~so-1~sp-0'o. (The survival probabilities are time-
invariant.) Total population Nt is given by

Nt-E05k~DSkBt-k~
We assume that the growth factor of the number of

newborns is time-invariant and is equal to b: Bt-bBt-1.11

8 Following Augusztinovics (1992), we shall not identify
generations with childhood, working age and retirement. For a
technical definition, see Section 6.

9 we assume that every member of every working cohort works and
no member of any child and pensioner cohort does so. Arthur and
McNicoll (1978) and Lee (1980) introduce age-specific participation
rates, but in the context of pensions it would raise other questions.

10 In a related model, Blanchard and Fisher (1989, section 3.3)
assumes D-W and ak-(1-n)Rk, k-0,1,2,..., O~n~l. Although life
expectancy is finite, (l~n), the assumption of unbounded random length
of life is quite unrealiatic.

11 of course, in a time-variant demographic system working with
cohorts rather than generations, a birth-law Bt-btst-1 should be
replaced by Bt-EMSksK~k,[sk,tB[-k. where ok~s are the age apecific birth
coefficients. However, in our time-invariant system, b can be uniquely
determined from 1-EM~k~KOkakb-k.
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Then the growth factor of the population12 is also equal to
b and
( z. 1) Nt-BCEO~kcDpk where pk-Skb-k.

Here pk shows the weight of cohort k in the population, and
we shall refer to {pk} as P profile.

Having defined the demographic relations, we turn to
the economic relations. We assume that the wage share in
output is time-invariant. Then per capita (real) average
wage wt grows parallel with per-capita output
(productivity), their joint time-invariant growth factor is
denoted by g: wt-gwt-1.13

It is well-known that wages significantly differ
across cohorts (Mincer, 1974). We assume that their profile
is time-invariant, i.e.
(2.2) wk,t-gwk,t-1, k-L,..,R-1.

For convenience, we shall sometimes use the convention that
children and pensioners earn zero "wages":

wk,c-0, k-0,..,L-1 and k-R,...,D-1.
We shall denote the per capita (real) consuaption of

cohort m born in time t(in time ttm) by c.,,c,~.

Utility function
To derive and rank optimal consumption paths for different
social insurance systems (represented by different budget
constraints), we need a utility function. To be precise,
we shall denote the variables of this function as co,.,cD-1,

12 Considering a two-cohort time-variant system, verbon (1988,
p. 58) identifies population growth factor nt and qeneration qrowth
factor bc. Even if we neglect children and cohorts, nc-bt-1(bttl)
~(bt-ltl) generally differs from bt and bt-1. of course, in a time-
invariant system n-b.

13 The neglect of productivity growth (e.q. Samuelson, 1975)
might have a strange consequence: it reduces Aaron's condition to
"population growth rate is greater than real interest rate", which is
much less likely to hold than the original one.
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dropping the calendar time. Since the length of the life of
our representative agent is a random variable ( n), we have
to introduce his conditional utility Un(cD,...,cn-1). Then
the expected (Neumann-Morgenstern) utility function is

U( CO i'` i CD-I I-EO~n~DnnUn ( CO i.. ., Cn-1 )

where lín-sn-Sn-1 is the probability of death at age n.
We assume that all Un's are locally insatiable and

strictly concave, thus U is also locally insatiable and
strictly concave. To obtain homotheticity of U, we have to
assume more than homotheticity of Un's; namely
homogeneity: there exist constants a(-oD~a~O or O~asl) and
eo,...,eD-1~0 such that for any ~i~0 either
(2.3a) Un(~co,..,ljcD-i)-~oUn(co,. ,cD-i), n-1,...,D,
or
(2-3b) Un{YCOi~~iYCD-1J-Un(C0~-~rCp-1)tEnlOg{Y)i n-1,...,D.

Remark. In Section 4 we shall see why we separated
the zero-homogeneity case and added the logarithms in
{2.3b).

By (2.3), the expected utility function satisfies
(2.4 ) U(~ico, .. r~cD-t)-~aU(COr ~ ~ iCD-3)fEOSn~D~nEnlog(~) .
Hence U is homothetic.

The objective function of a person born in period t is
U( C0, t i ~~ i CD-1, tFD-1 )-ED~n~DRnUn ( C0, t r ~~ ~ r Cn-1, [tn-1 )~

CR systea (r)

We first consider a capital-reserve (CR) system.
Heroically, we assume a perfect annuity market, namely
where any baby can sell his stream of future income to an
insurance company which pays him a (possibly non-
homogeneous) income stream, while he is alive. At the end
of his life his expected total net wealth, his bequest
will be zero." Although a 6aby cannot write an insurance

14 alanchard and Fisher ~1989, section 3.1) demonstrate that in
a steady state with positive bequest the interest rate is equal to the
modified golden rate.
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contract, we assume here that his parents manage his asset.s
until he becomes independent (cf. Tobin (1967), Blanchard
and Fischer (1989) and Augusztinovics (1992) .

Considering a cohort born in t, we have the followinq
budget constraint (indexed by r):
(2.5r) NO,tE05ncDSnr-~o,tfn~NO,tEL~kcRgkr-kWk,ttk.

In fact, the L.H.S. and the R.H.S. of the inequality
represent the expected present values of the lifetime
consumption and earning taken in time t, respectively.

We shall call a consumption path optimal CR path if
it maximizes the expected utility function under CR budget
constraint (2.5r). Observe that because of concavity, there
is a unique optimum, and equality holds in (2.5r).

Taking into account (2.2), (2.5r) can be rewritten as
(2.6r) EOSncDSmr-nCn,t.o-~ItEL~kcRSkr-kWk~k.

Since the utility function is homothetic, the optimal
CR consumption profile is time-invariant, or equivalently,
the age-controlled consumption vector increases at a rate
q-1:
(2-7r) Cn,ttn~r~-gCn,t-lrn~z~.

Using (2.7r), we shall mostly confine the analysis to
t-0 and introduce the notation
(2.sr) Cn(r)-Cn~n~r~.

Then

(2.9r) cn,t.o~`~-giCn(r) -

PAYG system (h)

The study of the pay-as-you-go (PAYG) system is more
involved. We have the following intercohort ( cross-
sectional) budget constraint (indexed by h):
(2.5h) Np,tEp~ncDSnb-~n,t~NO,t~LSkcRSkb kWk,t-

To replace the cross-sectional social constraint by a
longitudinal (intertemporal) individual one, we assume that
the consumption profile is time-invariant, or equivalently:
(2.7}1) Cm,t.n~h~-~JCn,t-l.n~h~.
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Note that while (2.7r) is a result, (2.7h) is an
assumption. Furthermore, while (2.7r) refers to an optimum,
(2.7h) applies to any feasible path to be considered.

By taking wk,c-gt-kwk,k for k-L,..,R-1, c.,c-g-~.,c..
[(2.7h)] for m-0,1,...,D-1 and substituting the newly
gained expressions into (2.5h), we obtain

EosncDSnb-~g-"cn, c.n`-ELSk~RSkb-kgc-kwk, k -
Introduce the output growtL factor

(2.10) h-bg

and simplify the budget constraint:

(2.6h) Eo~m~~snh-occ.n,.'9tEL~kcRSkh-kWk,k.

The optisal PAYG path maximizes the expected utility
function under PAYG budget constraint (2.6h). Note that the
PAYG optimum is obtained from the CR optimum by replacing r
by h. Hence
(2.9h) c~,c..~"~-gic.(h).

3. CONPARISON OF PAYG AND CR

In this section we start the comparison of the two optimal
social insurance systems.

Welfare ranking

As usual, we shall evaluate each insurance system through
the indirect utility function defined as the value of the
utility function at the optimum. Because of homotheticity,
we can confine our attention to t-0.
(3.1) A(x)-UÍx~co(x),...,co-i(x)1.
Accordingly, we say that PAYG is better than CR with
respect to the utility function U if
(3.2) A(h)~A(r).

Aaron's qeneralized proposition

As was already remarked above, in his pioneerinq paper
Aaron (1966) had not derived the optimal PAYG and CR
consumption path from a utility function. Nevertheless, we
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can attribute him an appropriate utility function and show
(see Theorem 5 below) that the corresponding A(x) is an
increasing function on the entire interval (0,~). Thus
(3.2) is equivalent to the so-called Aaron condition:
(3.3) h~r.

In the remaining part of the paper we shall analyze
some conditions under which (3.2) holds or (3.2) and (3.3)
are equivalent.

First we give two formulations of Aaron's proposition:
Theorem 1(Aaron's strong qeneralized proposition).

If the indirect utility function A(z) is increasing on
the interval ( O,m), then PAYG is better than CR if and
only if h7r holds.

Remarks. 1. This conclusion appears in the literature
for the celebrated but somewhat abused two-cohort scalar
case (L-O, R-1, D-2). In fact, now the budget sets (2.6r)
and (2.6h) collapse to

soco.c~x~tsix-lci,c.t~x~-qisowo.o. x-r,h.

It is obvious that the PAYG budget line is higher than
the CR budget line if h~r. Assuming that c~,~,~~xi~0,
A(h)~A(r). However, inserting a second worker cohort or a
child cohort, the simplicity disappears.

2. In practice we calculate a consumption path from an
underlying profile with the help of the growth factor g.
The same applies to the demographic parameters sk-pkbk.
Therefore we often fix b and g, hence h, and vary r. This
leads to

Theorem 2(Aaron's weak qeneralized proposition).
Suppose h is fized and the indirect utility function
satisfies
(3.4) A(r)~A(h) if r~h and A(r)~A(h) if r~h.

Then PAYG is better than CR if and only if h~r
holds.

Remark. Note that for fixed h, it is conceivable that
Aaron's proposition holds but A(x) is only locally
increasing around r-h. Figure 1 illustrates Theorems 1 and
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2: the increasing A curve represents the former; the non-
monotone curve, crossing line A-A(h)-1 at the trivial root
r-h, corresponds to the latter. (Computer simulation shows
that there is no crossing in the interval (0,0.95), which
is not shown in the Figure ). Note that the non-monotone A
curve, also crossing A-1 at a non-trivial root, displays a
case where neither the strong nor the weak version holds.
(For reasons to be discussed below, transformations of A
and r are displayed in Figure 1.)

Figure 1

Youthful and sature profiles

We shall refer to r-h as the golden root. In fact, in this
case not only the two optimal solutions but also the budget
sets coincide. Note that the optimal golden CR path
(profile) is the PAYG path (profile).

To clarify the behavior of A(x) at least in the
neighborhood of h, we shall introduce Auqusztinovics'
youthful and mature profiles (cf Gale's Samuelson and
classical cases, respectively). First we shall define the
~ean age of earning as average age of workers weighted by
the cohorts' shares15 and wages:

EL!k~Rpkwk, Ok
(3.5) S2- .

EL~k~Rpkwk, 0

Now define the sean age of consuai.ng as weighted
average age of consumers:

EOSk~Dpkck,Ok
(3.6) r- .

EO!k~DpkCk, 0

15 In Auqusztinovics (1992) there are no cohort sharea, because
she neglects individual (per capita) consumption and wages.



Figure . 1
Three types of indirect utility functions

Monotone --- Non mono- --- Non Aaron
tone Aaron

Relative interest factor
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Next we shall call a PCW profile either youthful or
sature or syaetric if the mean age of earning is higher
or lower than or equal to the mean age of consuming,
respectively:

( 3. 7) either S2~P or S2~P or 52-P.

Local validity

We shall analyze the validity of Aaron's proposition
locally, around r-h. We shall prove

Theorea 3(Local version of Aaron's proposition, cf.
Arthur and McNicoll ( 1978)). Assnae that the eapected
utility function D is differentiable and the opt~~~m is
an interior point and rah. a) For Hature PAYG profiles
PAYG is better than CR iff h~r. b) For youthful PAYG
profiles PAYG is better than CR iff h~r. c). For
sy~etric PAYG profiles, if A(r) is concave at h, then
PAYG is locally better than CR; if A(r) is convex at h,
then PAYG is locally worse than CR.

Remarks. 1. The following observations (cf
Augusztinovics, 1992, Proposition 10 and Siandra 1993,
Propositions 3 and 4) may illuminate Theorem 3: If a PCW
profile, which is optimal under PAYG, is mature, then the
expected bequest for any person is positive when h~r and is
negative when h~r. Similarly, if a PCW profile, which is
optimal under CR, is mature, then the expected social
saving for any period is negative when h~r and is positive
when h~r. For youthful profiles, both statements are
reversed.

2. In practice, profiles are youthful (cf Arthur and
McNicoll.) Even an aging population may yield a youthful
PAYG profile.

3. Although the Neumann-Morgenstern utility function
is determined up to affine transformations, at least in the
special case of no-death-risk, the monotone transformations
of U-Up.1 become legal. Unlike monotonicity, convexity is



15

not invariant to monotone transformation T. However, for
A'(1)-0, [TA]"(1)-T'(1)A"(1), i.e. sgn(TA]"(1)-sgnA"(1).

Iso-utility roots

Obviously, comparing PAYG and CR, it is very important to
know at what interest factors they yield the same indirect
utility. By definition, this happens if and only if
(3.8) A(r)-A(h).
Since we are not interested in the trivial root rzh, we
exclude it, unless it has a multiplicity 2: A'(h)-0. Under
this restriction, the roots of equation (3.8) will be
referred to as iso-utility roots.

We have no results on the number and location of iso-
utility roots for general utility functions. Let us denote
the iso-utility roots closest to h from the left or from
the right by r~ and rR, respectively. If rL or rR do(es) not
exist, then write r~-0 or rR-~, respectively.

Combining Theorems 2 and 3 we obtain
Theorem 4(Iso-utility roots). The local results of

Theorem 3 can be eatended to the interval rL~r~ra.

4. ACRRA UTILITY FUNCTIONS: E7LPOSITION

Having finished the comparison of PAYG and CR for
homogeneous utility functions, we turn to the analysis of a
special class. In this way we can sharpen the more general
results obtained in the previous section.

Constant relative risk aversion

Additive constant relative risk aversion (ACRRA) utility
functions are still quite general and they play an
outstanding role in the analysis of life cycle problems.
Let o be a real number, -~sa~l, 1-a is referred to as the
coefficient of relative risk aversion. We shall need two
series of weights in the utility function. Let ~o,~l,...,
~p-~ and to,r,,...,to-, be positive numbers. Call their
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double series an FT path. Then the conditional utility of
a consumption path co,..,c„-1 is given by
(4.1d) Un(CDi...,Cn-1)-EO~m~n~ma-1(Lo-lCn)a lf a-0i-mi

(4.1b) U~(co....,Cn-1)-E05mcn~nlog(cm) if a-0.16

Note that in (4.1a) ~mzm-o shows the relative weight of
utility due to cm. Note that in (4.1b) 45m's are cnaulated
disconnt factors, if 4?m.ls~„ for m-0,...,D-2.

Now we can also define the conditional no-risk
utility function:
( 4. lc ) U~ ( co. .., cn-1) -mino~m~~ ( Lm-lcm ) if a--~. i~

Remark. Note that (4.1a) and (4.1c) satisfy (2.3a);
(4.1b) satisfies (2.3b) with e„-Eosm~n~m. Hence ACRRA utility
functions with joint coefficients are homogeneous. The
example of Uz(co,cl)-cotcltmin(co,c,) shows that there are
homogeneous function beyond the ACRRA family.

Observe that formulas (4.1) can be simplified to
(4.2d) U(Cp..,Cp-1)-F,p~maDSm~ma-1(Lm-lCm)o lf ac~-~, a-~--ppi

(4.2b) U(COi~iCD-1)'EOSm~DSm4'mlOg(Cm) if a-0;

(4.2c) U(co,..cD-i)-mino~m~D(Lm-`cm) if o--~.
We can normalize and unify the three branches of (4.2)

as follows [CES utility]:
(4.3) Eosm~DSm~m-1, Z-UI~o, i.e. G-AI~o

(4.4 ) 7.(CDi ~ ~ iCD-1)-[E05mcDSm~m(Lm-lCm)o]lIo

As is known, the R.H.S. of (4.4) is not defined for

either a-0 or -~, but both limits exist and yield (4.2b)

(in fact, less Ep~m~DSm~mlog(tm)) and (4.2c), respectively.

We shall frequently use the following transformation
of a:

16 According to Peters (1987), this is the unique utility
function which would be consistent with our framework, if the labor
participation rate were also endogeneous and time were continuous.

17 Note that this utility function is not strictly concave but
has a unique maximum. Similarly, it is not differentiable, but the
corresponding A(x) is smooth.
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a
N-á-1 (-~sa~l)

where 1-N is the intertemporal elasticitp of
substitution.

Rxplicit foroulas

Here we shall display optimal paths and indirect utility
functions for ACRRA functions. To do so we need the
following notations:

( 4 - 5 ) bn-~o'-~ZnN i

( 4. 6) W( X )-EL~k~RSkwk, kx-k i

( 4. 7) C( x I-EOSk~DSkbkx-Nk,

(4.8) H(x)-~-~~.

Le~a 1. For utility function ( 4.4) the optisal
consumption paths are
(4.9) co,.,~x~-ó~xl1-v1~H(x)~ x-r~h
and the indirect utility function belonging to (4.4) is
(4.10) G(x)-w(x)C(x)-'~N.

Resark. Although the ACRRA utility functions are
concave for the entire parameter interval ae(-~,1), we
shall drop the interval (0,1), i.e. we shall exclude }~t0
and maintain 6~ as a logarithmic convex combination of ~o
dnd L~.

Path versus profile

To simplify exposition, we shall replace intertemporal
paths with cross-sectional profiles in (4.6)-(4.7):
( 4 . 11 ) W ( x ) -iLSk~RSkb-kwk,Ol~k(jkx-k,

( 4 . 1 2 ) C ( X ) -EOSk~DSk ( ~k' Yk1-Nk ) ( LkC]-k ) N ( tikC]kx-k ) N .

'Pu simplify t.hese exprestiicins, in addition to the P
profile, we shall introduce the PT profile, its aiature
profile
(4.13) ~k,o-~kbki Lk,o-Lk9~ki ók,o-~k,o'-NLk,oN

and the relative interest factor
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(4.14) u-~.

Now (4.11)-(4.12) can be rewritten as
( 4. 15 ) Wo ( U)-EL~k~RPkwk, Oll-k i

( 4 . 16 ) Co ( ll ) -EO~k~DPkSk,ou-~k .
We shall normalize the W, F and T profiles by EL~k~RPkwk,o-1,
Eo'k~DPk~k,o-1 and Eo~k~DPkLk,o-1, i.e. Wo(1)-1 and CNo(1)-1, N-1
and 0. Introducing Ho(u)-Wa(u)~Co(u), HN(1)-1 for u-1 and
0.

Here are the optimal consumption profiles:
(4.17) Cm,o~~~-áo,ou(i-v1oHo(u),

Using profiles, Go(u)-Wo(u)Co(u)-1~~ and the relation
'PAYG is better than CR' can be restated as
(4.18) Go(u)~Go(1).

Special cases

We record the optima of two distinguished special utility
functions.

a) Leontief-Rawls, V-1:
(4.19) c,~,0~~~-Lm,oHo(u) and Gl(u)-H(u).

b) Cobb-Douglas, N-O, then we can use the fact that
the limit of the power means is equal to the geometrical
mean, when the exponent converges to zero:
(4.2~) Cm,o~~~-~~.oumHo(u)i GO(u)-~nOSk~DLkOk) W(u)uC0

where

ro-Eo~m~DSm~min-EoSn~DPm~m,om.
Remark. It can be checked that the optimal solution

under N-1 is the limit of the optima under NP~1, limPNP 1.
The same applies to N-0.18

18 Augusztinovics (1992) refers to the solutions occurring in
cases a) and b) as the direct and the indirect approach, respectively.
Note that the profile is independent of u in the direct approach. At
this point we also underline that her notion of path has a special
meaning: in our notations it is {cm,DU-~}, which is independent of u in
the indirect approach.
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As a benchmark, we shall consider very special
profiles studied by Aaron. Under a flat SCW profile we
mean if cohort survival probability, consumption and wage
profiles are flat:
(4.21)
(4.22)
(4.23)

we
(4.24)
(4.25)

Sk-1r
Ck,0-C0,0i

wk,0~0,Li
shall speak

~k,o-~0,oi

k-0,...,D-1,
k-1,...,D-1,
k-Lf1,...,R-1.
of a flat FT profile if
k-1,...,D-1,
k-1,...,D-1,

and of a flat SFTW profile if the FT and SW profiles are
flat, i.e. (4.21), (4.23)-(4.25) hold. Note that ( 4.24)-
(4.25) imply ók,o-óo,o for k-1,...,D-1, regardless of N.

By (4.17), a flat FT profile implies a flat C profile
for any u if u-1 or for any N if u-1. Of course, a flat FTW
profile results in a flat CW profile under the same
conditions.

First we present a basic result for flat SFTW
profiles.

Theorem 5 (Aaron's original proposition
reformulated). Por every childless flat SFTfi profile and
N-1 PAYG is better than CR if and only if Aaron's
condition h~r holds, or equivalently
(4.26) u~l.

Remarks. 1. Aaron (1966) proved an equivalent
statement without explicit optimization: For every
childless flat SCW profile (3.2) and (3.3) are equivalent.

2. We shall prove a generalization of this Theorem (cf
Theorem 7) below.

S. I,OCAL ANALYSIS IjOR ACRRA

We return to the local analysis started in Section 3, but
now confining the attention to special utility functions
ACRRA.
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Mean age of consu~ing

According to Theorem 3 local behavior is determined by the
difference between mean ages of consuming and of earning.
Since the latter is given, we shall study the former,
namely, the mean age of consuming at the golden profile
{co,o~l~}:

EOSk~Dpkók,ok
r,,-

EO~k~Dpkók,o .

Note that our definition still depends on the partial
elasticity of substitution, at least for non-flat FT
profiles, and on the P profile.

As an illustration, we shall consider flat PCW
profiles, or equivalently, deter~ainistic and stationary
(b-1) flat PAYG profiles. Evidently
(5.1) S2-(LtR-1)I2,
(5.2) r-(D-1)~2.

A flat PAYG profile is mature if and only if the
retirement period is longer than the childhood period:

D-R~L.
Remark. (5.1)-(5.2) highlight a deficiency of two- or

three-cohort models: the mean ages of consumption and
earning are too low. For example, for D-2 periods ( say 60
years) r-1~2 period (15 years), although the correct result
would be 1 period (30 years)! This distortion is weaker in
multi-cohort models and disappears in Arthur and McNicoll's
continuous-time model.

Sy~etric elasticity

If I'N depends on N, we want this dependence to be monotone.
First of all we need

Le~a 2. Let ak,~r,xk be non-negative real numbers,
k-0,...,D-1 and let
(5.3) {J3klak} and {xk} be non-decreasing series.
Then



zl

(5.4)
Ekakxk Ekl~kxk~
Ekak - Ek~k -

Remark. If neither {ak~F3k} nor {xk} is constant,
strict inequality holds in (5.4).

We shall speak of a non-decreasing FT profile if

~o,o ~ntl,o

(5.5) -~ , m-0,1,...,D-2.
Ln,o Tnal,o

then

Remarks. 1. Flat FT profiles are non-decreasing.
2. Condition ( 5.5 ) can be replaced by a stronger and

simpler one:

( 5. 5' ) Tn,lsgtn and 4'ntl~~n~b, m-0, ..., D-2.

Indeed, (4.13) and (5.5' ) imply Ln.l,ostn,a and 450.1,ó ~n,o,
which in turn imply (5.5).

Now we can present
Leaa 3. If the FT profile is non-decreasing

[(5.5)], then rN is a non-increasing function of }i.
For non-decreasing FT profiles with rlcf2~ro we can

define the symmetric elasticity 1-No by
( 5 . 6 ) rNO-S2.

In fact, rN is a continuous function of N, thus by
Bolzano-theorem, N~ exists if r,~S2~ro. Furthermore, NazO-0
if ro~4, and No-1t0 if r,~S2.

Combining Theorem 1 and Lemma 3, we obtain
Theorem 6(Sym'etric elasticity). Consider a non-

decreasing PT profile. a) For N~No PAYG is locally better
than CR iff h1r. b) For N~No PAYG is locally better than
CR iff hcr.

Bxample 1. The simplest non-flat FT profile arises
for a flat FT path: sk-1, ~k-4'o and tk-to. Note that
~k,Lk-h~k-I,Lk-1, i.e. if the economy grows (h~l), then the
FT profile is non-decreasing and (by Lemma 3,) rN
decreases.

As a numerical illustration, let us consider L-15,
R-55, D-75, and b-1, h-g-1.03. Numerical calculations yield
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No-0.14. Figure 2 displays three curves for }r-0.28; 0.14
and 0. We shall see later that Go, l4 is a separatriz, and
curves below and above it resemble G1 and Ga, respectively.

Figure 2

Critical elasticityl'

Until now we have struggled with the complications arising
from the dependence of P on N. However, for flat PAYG
consumption profiles P~ is independent of N. Thus we can
speak of youthful, mature and symetric PFRf~l profiles, if
the FT profile is flat and the resulting PAYG profile is
youthful, mature and symmetric, respectively. Note that in
practice the C profile is much flatter than the P and W
profiles, thus this assumption is acceptable.

Under normal conditions, for every flat FT profile and
arbitrary PW profile there exists a real number N~, O~N~~1,
such that around the golden root (u-1) for N~N~ GNo
resembles Glo (both are concave) and for N~N~ GNo resembles
Goo (both are convex). We call 1-N~ critical elasticity,
and it is implicitly defined by

GN.o.. ( 1 )-0.

Remark. Leaving the realm of symmetric profiles,
where sign[TAj'(1)-signA'(1), the invariance to monotone
transformations becomes problematic. With Lemma 5(below)
we shall demonstrate that Z-Ul~o is the natural
transformation, hence G is the appropriate indirect utility
function.

Before embarking on its analysis, we combine Theorem 3
c) and this concept in

Theorem 7(Sy~etric profiles). Consider a sy~etric
PFTW profile, where PT is flat. (i) If N~p~, then PAYG is

19 This part may be skipped at first reading and taken up only
at the end of the next Section.



Figure 2
Utility, elasticity: non-flat FT profile
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locally better than CR; (ii) if u~p~, then PAYG is
locally worse than CR.

The value of the critical elasticity can be determined
in terms of the fírst and second moments of the consumption
and wagé distributions. We shall need the notations
(5.7) WO-Ekpkwk,0-1r W1-Ekpkwk,Oki W7-Ekpkwk,OkZ~

(5.8) Co-óEkpk-1. Ci-óEkpkk. Wz-óEkpkk2.
Le~a 4 ( Critical elasticity). Por any flat FT

profile and any PF1 profile the critical elasticity 1-p;
(if eaists) is given by

W2tWi-(2W1-Citl)Ci
(5.9) N~-12

D~-1

Reaarks. 1. For every flat PFTW profile (5.7)-(5.8)
reduce to

(5.10)

(5.11)

Wo-1 Wi LtR-1~ W2-(R-1)R(2R-1)-(L-1)L(2L-1)
2 6(R-L) '

Co-1. Ci ~21, Ca-~D-6)(2D-1j-

2. Table 2 displays the dependence of critical
elasticity on the triple (L,R,D) for flat PFTW profiles.

Table 2

3. Probably critical elasticity also exists for non-
flat FT profiles without symmetric elasticities, but its
definition seems to be difficult.

To illustrate the situation, in Fiqure 3 we shall
consider a youthful flat PFTW profile and depict three
indirect utility curves of low, critical and high
elasticities, respectively. We assume that L-20, R-60 and
D-73, where N~-0.336. We shall choose N1-1 and N2-0.

Figure 3



Table 2. Critical elasticities for flat PPTW profiles
Entering Leaving Death 1-Critical

the labor force elasticity
L R D ~~

0 40 50 0.736
0 40 60 0.744

10 50 60 0.444
10 50 70 0.375

20 60 70 0.400
20 60 80 0.250



Figure 3
Utility, elasticity: flat FT profile

~r, ~ G`Í0.336] G[O]

Relative interest factor



24

Continuous ti~e

To avoid absurd results which arise with insufficient time-
desaggregation (e.g. for 0~2~3), at this point we introduce
continuous ti~e modeling.

Let x-k~D, a-L~D, ~i-R~D, O~ac1~2~(3~1, f(x)-p(x)wo(x)
where D is large. Then (5.7)-(5.8) reduce to

(5.7') Wo- J pf(x)dx-1, W1- J zf(x)dx, W2- J px2f(x)dxa a a

(5.8') Co-1, C1-1~2 and Ci-1~3.
Substituting (5.7')-(5.8') into (5.9), and droppinq the
negligible terms, we obtain
(5.9') p~-12Wz-12W1t3.

It can be shown that N~ lies between 0 and 1.

6. GLOBAL ANALYSIS FOR ACRRA

Having finished the local discussion for ACRRA utility
functions, we turn to their global analysis.

To begin with, we reformulate the iso-utility root rt
as u~-r~Ih, which satisfies
(6.1) Go(u~)-Go(1) if u~-~-1 unless Go'(1)-0.

Generations

To avoid complication in the global analysis, we shall
introduce the notions of generations and further special
profiles (Augusztinovics, 1992, Section 5).

A set of subsequent cohorts k-K1,....,K1 is called a
generation if each of its cohorts either saves (wk,,~ck,,)
or dissaves (wk,csck,c) and both cohorts K1-1 and Kztl (if
exist at all) make the opposite than K1,....,KZ do.

A CW profile is said to have the GBR propertp if it
has the following three generations: 1. gestation
(including children and junior workers), 2. breeder
(including senior workers) and 3. retirement (including
old part-time workers and pensioners).
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A CW profile is said to have the BR property if it
has the following two generations: 1. breeder and 2.
retirement (no gestation).

Remark. It can be shown that a CW profile with the BR
property always satisfies the so-called cash-constraint:
the corresponding wealth is positive for any time except
for death.

Leontief-Rawls utility function

To begin with, we shall study the simplest case, that of
Leontief-Rawls utility function. Now Glo(u)-H(u), i.e.
(6.1) is equivalent to Ho(u~)-Ho(1), which implies zero
bequest for PAYG systems. Augusztinovics (1992) calls the
corresponding roots singularity roots and presents several
propositions concerning them which we generalize below.

For Y-1, using (4.19) and Ho(1)-1, GBR and BR
properties can be transferred from PAYG profiles to TW
profiles: A PAYG profile has the GBR property if there
exist positive integers L~ and R' (LSL~cR~~R) with the
following conditions:
(6.2) wk,a~rk,o for k-0,...,L` or R",...,D-1;

(6.3) wk,O~Lk,o for k-L~,...,R~-i.

A TW profile has the BR property if (6.1)-(6.2) hold
for L~-O.

Reaarks. 1. In the definitions of GBR and BR, the P
profile does not play any role.

2. It is evident that any flat TW profile has the GBR

(or BR) property where L'-L(-0) and R"-R.
3. The celebrated two-cohort case (Olll2) has the BR

property.
The example below will illustrate the meaning of BR

profiles in the simplest non-trivial case:
Rxample 2 ( BR TW-profiles in three-cohort aodels~.

L-O, R-2, D-3. The TW profile has the BR property if and
only if Ho(~)?1, i.e. wo,o~LO,o'-1.
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If the T profile is flat, then wo,o~ll3, wl,o-1-wo,o.
(Since in practice wo,o`-wi,o, the condition is 1~35wo,o`1~2

~wi.o~2I3. )

However, a childless flat T profile would assign zero
consumption to children living with their parents. It is
more realistic to assume that Lo,óL1,o~L2,o, for example,
Lp,o-L1,o-1.5LZ,o, i.e. To,óL1,o-0.375 and LZ,o-0.25. Then
wo,o'-0.375 or in a practical setting, 0.375~wo,o50.55
w1,o50.625.

If wo,o~Lo,o~l, then we obtain a GBR TW-profile in a
childless population, what Augusztinovics (1992, p. 45)
calls trick of conqruence.

Specifying Theorem 4 we have
Theorem 8. (cf. Augusztinovics, 1992, Section 5).

Leontief-Rawls utility function: a) For every GBR TW-
profile PAYG is better than CR if and only if one of the
following three alternative conditions holds:
(6.4i) either u~l or u~u~(~1) for a mature profile,
(6.4ii) either u~u~(~1) or u~l for a youthful profile,
(6.4iii) u-~-1 for a symmetric profile.

b) Every BR TW-profile is matnre and ( 6.4i) holds
with ut~.

Remarks. 1. Theorem Sb is a generalization of Theorem
5 from flat childless STW profiles to BR TW-profiles, which
can be further extended to N's close to 1.

2. In his multi-cohort model Verbon (1988, Appendix
7A) assumed flat contribution rates which were also
independent of the type of social security system. In our
notations: cm,o~~~-(1-9)w,,,o, m-L,...,R-1. In this framework
he found a generalization of Aaron's condition. We only
note that his assumption is inconsistent with optimization
in general. Indeed, substituting it to (4.17), B-1
-6,,,ouj1-y~mHo(u)~wm,o is obtained. To have a flat B, 6.,,o-nwe,o
and N-1, i.e. Lo,o-~Wn,o (m-L,...,R-1) should hold. The
resulting B-1-S2Ho(u) still depends on u, i.e. on the type
of social security.
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Cobb-Douglas utility function

Now we shall consider the other extreme case, the Cobb-
Douglas utility function. We shall assume that Po~L. (This
assumption is automatically satisfied for childless
profiles and reduces to D-1~2L for flat PF profiles.)

Re~ark. Note that in the border-line case Po-R-1-L
Go(u)-1 for every u. The simplest realization of this case
is the flat FT profile 1~213.

Specifying Theorem 4 again, we have
Theorem 9. (cf. Gale, 1973) Cobb-Douglas utility

function: a) For every PFW-profile, satisfying LcPocR-1,
PAYG is better than CR if and only if one of the two
alternative conditions holds:
(6.5i) u"~u~l for a mature profile,
(6.5ii) l~u~u~ for a youthful profile.
PAYG is never better than CR for a sy~etric profile.

b) Bvery PFW-profile, satisfying I'o~R-1~L, is ~ature
and (6.Si) holds vith u~-0.

Re'arks. 1. Note the duality between the Leontief-
Rawls and the Cobb-Douglas case.

2. Observe that the validity of Aaron's proposition,
considering the original childless flat SFTW profiles,
depends on the elasticity. While by Theorem 5, Aaron's
proposition holds for N-1; by Theorem 9, this is not the
case for N-O. Indeed, for L-O, Po~R-1 reduces to (D-1)I2~R-
1, which is satisfied for R-3, D-4, and O~u~ut is not
empty.

Because of its importance, we present
Example 3. For a flat PFTW profile 0~314 and Cobb-

Douglas utility, CR is better than PAYG not only for high
but also for sufficiently low relative interest factors.

Numerical calculation yields the iso-utility root
u~-0.15 which is around 0.89 per annum, assuming that each
cohort consists of 13 year-groups. Note that Figure 1 above
depicted almost this situation (0~40~53).
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Table 3 displays the iso-utility roots for certain
flat PFTW profiles and N-1 and 0, respectively.

Table 3

General elasticity and flat FT profile
Having analyzed the two extreme cases of N-1 and 0, we turn
to the general case Osvsl. Unfortunately, we have to
confine the analysis to flat PAYG consumption profiles
(with general PW profiles) already used in connection with
critical elasticity.

We first prove
Le~a 5 (Monotonicity). Suppose that FT is a flat

profile, u-~-1 and Nz~Nl~l. Then
(6.6) GNlo(u)cGvZO(u).

We close this Section with a
Conjecture. For flat FT profiles and reasonable u's,

the critical elasticity Nt divides the interval (0,1)
into two parts: any function GN with low }.i resenbles Goo,
while any function with hiqh N resembles Gi.

The analysis is confined to a reasonable interval, J,
say 0.95~us1.15. There are two reasons to do so: (i) In
practice the relative interest factors are in J. (ii) GNo
has a jump in N-O: GNO(O)-0 for y~0 and Goo(0)-~. Thus for
youthful PFTW profiles there are at least two iso-utility
roots in the interval (0,1), one in the vicinity of uo~,
and the second in (O,uo"), since GN '(uo~)~0, and GN (0)-0.

G~ (u) may have two iso-utility roots even for N far
from 0, however, we think that between them the indirect
utility function hardly changes, i.e. they are inessential
roots. (For example, for L-9, R-50, D-60 and N-0.4 there
exist two inessential iso-utility roots: 0.91 and 0.93.)

Returning to Figure 3 we can check our conjecture that
the critical case separates two worlds. For N1 (zero
elasticity) PAYG is preferred to CR if uc0.975 or lcu; for



Table 3. Iso-utility roots as function of L, R and D,
for p-1 and 0.

A G E a t Iso-utility
Starting Retiring Death root for
to work

L R D N~1 N~0

15 55 65 0.976 1.059
15 55 70 1.000 1.000
15 55 75 1.016 0.958

20 60 70 0.961 1.108
20 60 75 0.984 1.059
20 60 BO 1.000 1.000

25 65 75 0.949 1.178
25 65 80 0.974 1.108
25 65 85 0.988 1.059
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Nz (unit elasticity) PAYG is preferred to CR if u~l or if
1.0565u.

For additional illustration, Table 4 displays the íso-
utility roots lying in the relevant interval, for La15 and
25, R-55, D-75, for Y-O, 0.1,...,0.9, 1.

Table 4

7. CONCLOSIONS

We have analyzed the status of Aaron's proposition in a
rather general framework. It turned out that loqically the
validity of Aaron's proposition is quite limited, since it
is based on a number of additional assumptions like a
Leontief-Rawls utility function, a BR TW-profile (implying
the neglect of children). The empirical validity is quite
another question. The traditional argument prefers CR to
PAYG because of aging population and high relative interest
factor and implicitly, low elasticity (Verbon, 1988). In
our framework this may be reversed: PAYG is to be preferred
to CR because for youthful PFTW profiles and high
elasticity Aaron's generalized condition may require high
rather than low relative interest factor, when the problem
of dynamic inefficiency (Blanchard and Fisher, 1989) is
ruled out.



Table 4. Iso-utility roots for flat PP1W profiles
(R-55 and D-75)

Lntering 1- Iso-utility
the labor elasticity roots
force

L ~ u~

15 0.0 0.96
0.1 0.93

0.4 1.10
0.5 1.06
0.6 1.04
0.8 1.03
1.0 1.02

25 0.0 1.08

0.3 0.92
0.4 0.95
0.5 0.96
0.6 0.97
0.8 0.98
1.0 0.98
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APPBNDIX: PROOFS

Proof of Theorea 3. Now the utility function is
differentiable and the optimum is an interior point, the
method of Lagrange multipliers (where a(r) denotes the
multiplier) yields the following D optimality conditions:

(A.1) En~n~D~Tnd Un ( c0, 0 r --- i cn-l,n-1 )SCm,n

-a ( r ) r-nEn~n~onn , f or m-0 , . . . , D-1.
Take the total derivative of the indirect utility

function according to r:

A' ( r ) -Eu~n~DnnEo~m~n bC Un ( Co, o r . . . , C~-l~n-1 ) Cn' ( r ) .
n,n

Reversing the order in the double summation

A' ( r)-Ep~mcD I EmSn~Dnn óC Un ( co, o i... , Cn-1, n-1 )] Cm' ( r)
n,n

and making use of (A.1), we obtain
A' ( r ) -Eo~m~Da ( r ) snr-mcm' ( r ) .

Taking the derivative of the budget constraint (2.6r) at
t-0, we obtain

EOSm~DSnr-m { -mr-1 [ cm ( r ) -wn,n ] }cm' ( r ) } -0 .

Combining the last two formulas yields

A' ( r ) -a ( r ) r-'Eo~n~osmr-nm[ cn ( r ) -wn,n ] .
Taking into account that a(r)~0, (2.5r),

A' ! h ) -a ( h ) h-lEo~m~opmm I Cm, 0 ( ~ ~ -Wn, o ] -
Thus A'(h)~0 if and only if P~52, etc.

Proof of Le~a 1. a) Specifying the optimality
conditions for (4.1a), we obtain

~mtm-"cn.~ -1- a ( r ) r-n-D .
or

(A.2) Cn~m'1-á(r)~n-iLnr-n.

Taking into account that a--N~(1-N), 1-a-11(1-N), ll(1-a)
-1-N, (A.2) results in
(A.3) cm(r)-a(r)v-lómrii-Nin
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where ó., is the weighted geo~etrical ~ean of a'o and Le.
Although for any given N, {~„} and {t.} are replaced by
{ó„}, ó., generally depends on N.

Substituting (A.3) into (2.6r) yields

(A.4) a(r)N-1-
ELSk~RSkwk,kr-k

EO~kcDakókr-Nk '

Using the notations ( 4.6)-(4.8), (A.3)-(A.4) yield
(4.9).

b) Inserting the definition of óo into (4.9),
substituting the new form into (2.4) and separating the
common factor H(r) yields the indirect utility function

Glr)-H(r) [EoSO~DSo~~"~i-NioLo-ii-v~arii-vioe}iia,

By -(1-N)a-N, the base of the second factor is equal to
C(x), i.e. the second factor is equal to C(x)~N-1~~N. Taking
into account H-W~C yields (4.10).

Proof of Le~a 2. With rearranging, (5.4) is
equivalent to (Ekakxk)(E~~i~)-(Ekak)(E~,Omxj)~0. If k-j, then
ak~i~xk appears with plus and minus, cancelling each other.
If k-~-j, then akf3~xk-ak~3~xj can be combined with a~~3kxj
-a~~ikxk, their sum is egual to (ak~i~-a~~ik) (xk-xl), which is
non-positive by assumption (5.3). If neither of the two
series is constant, then (aD-i~o-aoRD-1)(XD-1-Xp)1O, etc.

Proof of Le~a 3. Let vz~N, and apply Lemma 1 with
ak-Pk4'k,o1-y1Lk,o~li F~k-pk~k,o1-yzrk.oNZr Xk-k, lt 1S (~J.S) thdt

implies the conditions in (5.3), and by the formula of P~,
(5.4) results in rN,srNZ.

Proof of Le~a 4. Calculate Go'(u) and Go"(u):
(A.5) Gp'(u)-Co(u)-vv-i{Wo,(u)Co(ul-v-,Wp(u)Co'(u)},
(A.6 ) Go..-Co-lw-2{Wo..Coz-Zp-iWoCoCo'tN-1 ( 1tN-1 )y~7oCo' z-N-1WDCoCo" } .

Substituting (A.6) into GN.o"(1)-0 and using the
abbreviations (5.7) and (5.8i, we obtain (5.9).

Continuous tiae. Combining (5.7') and (5.9') yields
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(A.7) N~-12 J p(x-ll2)zf(x)dx.a
By (A.7), N"~0. To prove Nt~l, we have to prove that the
integral in (A.7) is less than 1112. Taking into account
that cross-sectionally wages increase till the middle of
life ( x-1~2) and then stagnate, while survival
probabilities stagnate till x-1~2, then start to diminísh,
we may assume that f(x) increases till 1I2, then decreases.
Replacing f(x) by II(~3-a), the integral increases, i.e.

N~~4 ( azta~it(3~ ) - 6 ( at~3 ) -3 .
By an elementary calculation, one can show that N~cl.

Proof of Theorem 8. Relying on Theorem 4, we have to
determine the location of the iso-utility roots.
Introducing the notation Do(u)-Wo(u)-Co(u), we have Ho(u)-1
is equivalent to Do(u)-0. As is evident, the number of
changes in signs of coefficients of polynomial Do(u) is at
most two, hence, by Descartes-rule ( Pólya and Szegó, 1976),
this polynomial has at most two positive roots ( cf. Gale,
1973 ). On the other hand, Do( 1)-0, Do( O )-wD-1,o-LD-1,o~O and
Do(~1-wo,o-LO,o is (a) negative if L"~0 and ( b) positive if
L~-O. In case ( a) Do and Ho have two roots, in case (b)
they have one root. Dropping the golden root, there is one
or zero iso-utility root, respectively.

a) GBR: ( i) By Theorem 3, if a TW profile is mature,
then Ho'(1)~0. Thus u~~l, i.e. PAYG is better than CR if
and only if either u~l or u~u~ holds. Cases ( ii) and (iii)
are similar.

b) BR: Ho(0)-0, Ho(1)-1, Ho(u)-1 has no other root,
i.e. Ho'(1)~0, thus by Theorem 3, the TW profile is mature.
etc .

Proof of Theorem 9. Similarly to the proof of Theorem
6, first consider

GDo r( u)- EL~k~R ( r~0-k ) pkwk, Our~-k-1 .

a) If L~Po~R-i, for small u's uro-R-' dominates Goo' (u)
(with a negative coefficient) and for large u's uro-L-i
dominates Goo'(u) (with a positive coefficient): Goo(u) is
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U-shaped. In addition to the trivial golden root, equation
(6.1) has at least another
Descartes-rule, this polynomial
roots, etc.

b) If Po?R-1~L,
increasing, etc.

Proof of Le~a

then

root. Again relying on
has at most two poaitive

Goo'(u)~0, hence Goo is

5. The proof is based on the well-
known theorem: the power mean is an increasinq function of
the exponent N(Pólya and Szegó, 1976). (4.10) implies
GNo(u)-Wo(u)ICNo1~N, where the denominator [cf. (4.16)] is
the N-th weighted power mean of {u-k} with weights {sk~I'0}.
(Note that for a non-flat FT profile, the weights would
change with N.) Thus CNo1~N is an increasing function of N
and GNo(u) is an increasing function of 1-N.



LIST OF ABBREVIATIONS

CR-capital reserve system
PAYG-pay-as-you-go system
ACRRA-additive utility function with constant

coefficient relative risk aversion
F-weight path in the utility function
T-weight path in the utility function
S-survival path
C-consumption path
W-wage path
P-population profile
GBR-gestation-breeding-retirement (property)
BR-breeding-retirement (property).
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