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1 Introduction

Many complex real world systems can be modeled as discrete-event systems (DES).

Examples are computer-communication networks, flexible manufacturing systems,

PERT-project networks, and flow networks. These systems are typically driven

by the occurrence of discrete events, so their states change with time. In view of

the complex interactions among such discrete events, DES are typically studied via

stochastic simulation.
In designing, analyzing, and operating such complex DES we are interested, not

only in perjormance evaluation but also in sensilivity analysis and optimization.

Consider the following examples.

(I ) Traffic light systems. ( i) The performance mcasure may be a vehicle's aver-

agc dclay as it procecds from a given poinL of origin to a given destination, or

the average number of vehicles waiting [or a grexn light at a given intersection

in the system; ( ii) the sensitivity and decision parameters may be the average

rate at which the vehicles arrive at the intersections in the system, and the

rate at which the light changes from green to red.

(2) Manufacturing systems. ( i) The perforrnance measure may be the aver-

age waiting time of an item to be processed at several workstations ( robots)

according to a given schedule and route; ( ii) the sensitivity and decision pa-

rameters may be the average rate at which the workstations (robots) process
the item. In such systems we might be interested in minimizing the average
make-span ( consisting of the processing time and delay time), accounting for

some constraints (for example, cost).

Until about a decade ago, sensitivity analysis and optimization of DES was asso-

ciated with the classic statistical design of experiments. Compared with naive, com-

mon sense approaches, statistical designs require less computer time and give more

general and accurate results; see Kleijnen ( 1987, 1994). However, these designs as-

sume that the simulation model is run repeatedly, namely for different combinations

of `factor levels'; these levels correspond with the values of the (say) n parameters of

the simulation model of the DES. In Section 4, we shal) return to these experimental

designs.
In the last decade, two new methods for sensitivity analysis and optimization

of DES have been developed. They are called infenitesimal perluróation analysis

(IPA) (e.g., Glasserman ( 1991) and Fu ( 1994)) and score junction ( SF) (also called

likelihood ratio) ( e.g., Glynn ( 1990), L'Ecuyer ( 1990), and Reiman and Weias ( 1989)).

This paper is about the SF method. We shall show that this method allows us

to evaluate, simultaneously jtnm a séngle sample path ( simulation run) not only the

performance and all its sensitivities ( gradient, Hessian, etc.), but also to solve an

entire optimization problem. Today, the SF method allows us to pertorm sensitivity

and optimization of hundreds of decision parameters. The SF algorithms and pro-

cedures are implemented in a simulation package called QNSO ( Queueing Network

Stabilizer and Optimizer); they can be readily adapted to any existing discrete-event
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simulation language, such as SLAM , SIMAN, and GPSS. The extra computational
time required by SF is about 10-50010 of the tirtre of the underlying aimulation run.

To the best of our knowledge the SF method in a simulation context was in-

troduced independently in the late 1960s by Aleksandrov, Sysoyev, and Shemeneva

(1968), Mikhailov (1967), Miller (1967), and Rubinstein (1969). Related references

in the early 1980s are Ermakov and Mikhailov (1982), Kreimer (1984), and Rubin-

stein and Kreimer (1983). In 1986 Glynn and Reiman and Weiss independently

rediscovered the score function method, and called it the likelihood rntio method,

(see Glynn (1990) and Reiman and Weiss (1989) and referencea therein).

Sections 2 and 3 deal with sensitivity analysis of discrete-event static systems

(DESS) and discrete-event dynamic systems (DEDS), respectively. The main differ-

ence between these two types is that DESS do not evolve with time, whereas DEDS

do. Examples of DF.SS are stochastic PERT networks and CI~C~oo queuea; an

example of DEDS is a queueing network. Section 4 shows how to combine the SF

method with classic experimental design. Section 5 discusses optimization of DEDS

from a single simulation run. Finally, Section 6 gives conclusions.

2 Sensitivity Analysis of Discrete-Event Static
Systems

Assume that the expected performarrce f(v) can be represented in the form

[(v) - E~L(Y) - I L(y)dF(y,v), (2.1)

whe,re L(Y) is the sample pcrformance of the simulated DESS, driven by an m-

dimensional input vector Y with a cumulative distribution function (cdf) F(y,v),

v is a vector of parameters lying in a parameter set V C R", and the subscript v

in EvL means that the expectation is taken with respect to F(y,v). A technical

assumption is that F(y, v) bclongs to a family of distributions that are absolutely

continuous with respect to the Lebesgue measure. The treatment of the case where

F(y, v) belongs to a family of discrete or mixture distributiona is similar.

Suppose first that the parameter v is a scalar v and the parameter set V is

an open interval of thc rcal line. Suppose also that for all y the pdf (probability

distribution function) f( y, v) is continuously differentiable ín v and that there exists

an integrable ( with respect to the Lebesgue measure) function h(y) such that

~L(Y)af(Y,v)~~~ C h(Y) (2.2)

for all v E V. Then by the Lebesgue dominated convergence theorem the operators

of differentiation and expectation ( integration) are interchangeable, so (2.1) yields

ae(v) - d r aI(Y,v)ï(Y,v)dY
dv dv l L(Y)f(Y,v)dY - J L(Y) ~ f(Y,v)

- I L(Y)dlog~(Y,v)f(Y,v)dY - E„ j L(Y)81og~(Y'v)~
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'I'he extension to the multidimensíonal case where v E R" is atraightforward. In-

decd, by similar arguments we can write the gradient of C(v) in the form

vP(v) - IE:v{L(Y)vlog f(Y,v)} - fEv{L(Y)S~r~(Y,v)}, (2.3)

wherc

S~'1(Y,~) -
pf(Y,w) - vloB!(Y,w) (2.4)
f(Y,~)

is called the efficient score funclion. Similarly, the higher order derivatives can be

written as
v~klP(v) - lEv{L(Y)S~kl(Y,v)}, (2.5)

where

S~kl(Y, ~) - p~klf ( Y, ~) (2.6)
f(Y,~) ~

Let Yr,... ,YN be a sample of size N from f( y, v). Then vkC(v) can be estimated

simultaneously from a single simulation run by

N

~Ik~PN(~) - N-' ~ L(Y~)S~kl (Y:, ~). (2-7)
.-r

Formula (2.7) is also valid for k- 0 if we define voP(v) - F(v) and S~o~(y,v) - 1.

Since the estimator, ~CN(v) is based on the e,fficient scone defined in (2.4), the

proposed method is called ttre score function (SF) method.

Example 2.1 (Exponential family) Let Y be a random vector distributed ac-

cording to an exponential family, i.e.,

f(Y, ~) - a(v) exP (~ 6k(v)tk(Y) 1 h(Y) , (2.8)
lk-1

where a(v) ~ 0 and bk(v) are real-valued functions of the parameter vector v, and

tk(y) and h(y) are real-valued functions of y. Then

,
S~'~(Y,v) - a(v)-'va(V) -~ ~ tk(Y)pbk(~).

k-1

Notice Lhat in Exarnple 2.1, the function f(v) is differentiable and its derivatives

can be taken inside the expected value, so that the corresponding expectations do

exist.
IL is important to note that the estimator vkeN(v) given in (2.7) allows us to

evaluate the performance E(v) and its sensitivity vkf(v) only at a fixed point v. We

present now an extended version of the above estimators that allows us to evaluate

P(v) and vkf(v), essentially everywhem in v, provided some regularity conditions

are met (see Rubinstein and Shapiro (1993)).

Let C be a probability measure (distribution) on R"` having a density function

g(y), so that dG(y) - g(Y) dy. Suppose that for every permissible value of the

parameter vector, the support of f(y, v) lies within the support of g(y), that is

supp{f(y,v)} C supp{g(y)}, v E V (2.10)
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(reca.ll that supp{g(y)} is the set o[ those values of y[or which g(y) is strictly
greater than zero). Let further f(y, v) be differentiable in v. Define vkW (y, v) -
vk f(y,v)~g(y). Then we can write vke(v) in ( 2.5) as follows:

vke(~) - f L(y)vkt(y, ~) dy - f L(y)v`W(y, ~) dG(y)
- ~,,{L(z)vkrV(z,v)}, (2.11)

whcre Z~ g(z) and we definc voe(v) - e(v) and voW(y,v) - W(y,v) (by

definition, zero divided by zero is zero). Notice that the function W(y,v) is well

defined for all v E V because of the assumption (2.10). In the statistical literature,

W(Z, v) is called the likelihood mtio or the Radon-Nikodym derivative; in simulation,

W(Z,v) is the basis of importancc sampling.

It is irnportant to note that the original expectation of L(Y) in (2.1) is taken with

respect to the underlying pdf f(y,v), whereas that given in the last expression of

(2.11) is taken with respect to the pdf g(y). It follows that changing the probability

density from f(y, v) to g(y), we can express the performance measure e(v) for all

v E V as an expectation with respect to g(y) and then estimate it accordingly. We

shall call the pdf g(y), satisfying condition ( 2.10), the dominating pdf.

Note that the sensitivities v~e(v) - ~~{LSlkl} in ( 2.5) represent a particular

case of ( 2.11), namely with g(y) - f(y, ~) so W(y, v) - 1.

An unbiased estimator of vke(v) analogous to (2.7) is:

N

vkeN(v) - N-~ ~ L(z;)vkw(z;,v), (2.12)
:-~

k- 0,1, ..., where Z~, ..., ZN is a sample from g(z).

We shall call vkW(Z,v), k- 1,2,..., the genemlized scores; W(Z,v) -

voW(Z,v) we called the likelihood ratio.

For a given dominating pdf g(z), we can write the following algorithm for esti-

mating vke(v) from a single simulation run for (say) s dijjerent values of v, namely

vl, . . . , v,.

Algorithm 2.1 :
Select the simulation runlength N.
Fori:-1 toNdo
I3EGIN

genemte Z; from lhe dominating pdf g(z);
calculate the performance L(Z;);
for j:- 1 to s {s denotes ~ values ojv} do

BEGIN

calculate the generalized scores vkW(Z;,v~)
update L(Z;) t vkW(Z~,~i)

END { of j}



h,'ND { oj i }
for j:- 1 to s do {compute fina( values: divide 6y N}

compute L(Z;) s 04W(Z;,v~)~N

The accuracy ( variance) of the estimators ~k[N(v), k- 0, 1,... , depends on
the particular choice of the dominating density g(z); see Rubinstein and Shapiro
(1993). Actually thc optimal y(z), say g'(z), is g'(z) -~ L J ~ ~1F,(l,), but we do

not know IC(L). We restrict ourselves to g(z) - J(z,va), which denotes the same
[amily of distributions as the original one, but with a different parameter va, where

vu is called the rejerence parameler.

3 Sensitivity Analysis of Discrete-Event Dy-
namic Systems

Let Y~,Yz,... be an input sequence of independently and identically distributed

(iid) random input vectors, generated from a pdf j(y, v) with the n-dimensional

parameter vector v. Consider an output procc~ss {I„ : t~ 0} driven by the input

sequence {Yi}, that is, l,i - L,c(}~), where the vcctor ~ -(Y~,YZ,...,Yi)

represents a history of the input process up to time t and Li(.) is a sequence of

real-valued functions. Assume that {Li} is a discrete-time regenemtive process. It

is well known in the theory of regenerative processes (see, for example, Asmussen

(1987)) that the expected steady-state performance l(v) of a regenerative procesa

can be written as

[(~) - wX, (3.1)

where X - ~~ L~ and r is the length of the regenerative cycle. Similar results hold

when {Lc} is a continuous-time process where the sum in the definition of X is

replaced by the corresponding integraL If not stated otherwise, we assume that Lc

is the stcady-state waiting proct~s in the CI~C~1 queue with FIFO discipline.

Beiore proceeding wíth the calculation of Ok[(v) we first consider [~(v) - E~X.
[t is shown in Feuerverger, McLeish, and Rubinstein ( 1986) that the gradient of
~~X can be expressed as

~k[i(~) - ~v S ~ Las~k~} ~ (3.2)
li-i

where, analogous to (2.6), wc have S~k) - OkJe(Y ,v)~Jc(Y ,v). In particular,

bccause the Yi are i.i.d., we have

S;'~ -~ ~ log I(Y;, v).
~-i

(3.3)

Example 3.1 (Gamma distribution) Let Y bc, distributed gamma, that is,

lpyp-~e-~v
j(y, ~ , Q) - r(A) ' y 1 0.
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Assume that we are interested in the sensitivities with respect to a only ( not Q).

We have then that

si~~(Ye,~) - a~ lo8ji(L't,a,Q) - tQ~-' -~Y;.
:-1

Clearly, vkP~(v), k- 1, 2,... , can be eatimated as

where r and N are the length of the i-th cycle and the number of generated cycles,
respectively ( so the corresponding sample is Y1~,...,Y„i,...,Y,N,...,YrNN).

Differentiating P(v) defined in (3.1), taking into account (3.2), and noting that

D;~T and vfG~T represent particular cases of )E~X and vIE~X, respectively, with

Li - 1, we obtain

ve(~) -

llefining

N r, k
vke1N(V) - N-1 ~~ LtiSti'i

~-~ e-1

vlE„x lE~x vIE~T
]EVT - ~iVT ~iVT

lEv{~i L~Se~I} -)EV{~i Le} lEv{~i Si~~}.

]F.VT 1C'iVT ~iVT

IE~{~~ S;'~}
í~'~ - ,~vT

Qi~~ - (L, - P(v)) (Si~~ - "si'~) ,

(3.5) can be rewritten (according to Rubinstein and Shapiro, 1993, p. 89) as

{ T Q~~l}
vf(v) - ]E~{Q~~~} - Cov~{L,Si~~} - ~v ~~T t

Similarly, we obtain

vkP(V) - EV{Q~k~} - C~iOVV{L,SIk)}
- ~V{~1 Qtkl}

IE~T '

where
{ ' S~k~ }

Q~k~ - (Li - e(v)) (Siki - e~k~) , é~k~ - ~ro El e
)Evr

(3.5)

'Thus, vkf(v) can be expressed as the covariance between the steady-atate procesa

{L,} and {S~k~}. The variable {Sik~} is based on the score function vlog j(Y,v);

see (3.2).
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Example 3.2 Let L, be the steady-state sojourn time of a customer in the

CI~G~1 system, where Y,; is the aervice time of the j-th customer, Yz; - 0 for

j- 1, Y~; - A; - A,-, for j? 2, A; is the arrival time of the j-th customer and

r- mia {t :~~(Y,; - Y~;t,) C 0} is the number of customers aerved during the

busy period. In this case we obtain

IE~.{~i Li} Ev {Ei-t E~-t Yti - Eis E~-s YriJl(r) - EVr - Eyr .

llenoting U; - Y,; - Y~; we can rewrite 1(v) as

C(r) - Ey{~ést ~~-, U;}

EVT

ln this case

~C(v) - Ey{Ei Qi~~},
lE~r

where i
Qi') - ~ Ui - e (S~') -;`t')

;-t

and
s"' - ~vlosf(Yi,v), J(y,w) - It(1lt,vt)Is(dls,vs),

;-t
r-(Y~, Y~), Yt ~ l~(yt,vt), Y~ ~ I~(yz,v~).

Take a sample of N regenerative cycles [rom the pdf J(y, v). Then, taking into

account ( 3.8), we can estimate all the quantities Okl(v), k- 0, l, ... , from a aingle

simulation run by

where

N t. (4)

QklN(V) -
~i-~~t-;Qti ' k - 0,1,...,

E:-t E~-, 1

k

Qcoi - La, Qtk~ -~Lt: - CN~ (Sti l - 8~y~ , (3.10)

and lN and áN~ are the sample estimators of C- lE~{~k L,}~E~r and 'a~t`i -

Ev{~ksik~}IEVr, respectively.

We now present the extended version of the above estimators which allow ua to

estimate ~kl(v), k- 0,1, ..., at any point v, provided some regularity conditiona

hold. Assume, as in section 2, that g(z) dominates the densitiea j(z, v) in the aense

of (2.10). It can then be shown (Rubinstein and Shapiro (1993)) that (analogous to

(2.11))

o`e,(~) - ~,. {E L~(z )okW~(~,~)} , k - 0,1,..., (s.ll)
~-t
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where Wi(Z ,v) - jj~-~ W~(Z„v) with W~(Z„v) - j(Z„v)~g(Z~).
Taking into account ( 3.11) we estimate (( v) simultaneous(y jor diffenent values

oJ v by

PN(v) - ~CiEi' Li:We: (3.12)
L.i' ~ Í W t:

Note that (3.9) with k- 0 is a special case oÍ ( 3.12), namely j(z, v) - g(z) so

W~; - 1. Similarly, we estimateÓf(v) by

~N ~i' Li:~W e: EiV Ei' Le:W ~: ~iv ~i' 0'Wi;
(3.13)~PIV(V) - N ~~ Wti - ~.~ ~.1' Wei .~..~ ~..1'

.

~1 ~1 Wti

Note that OWi - Wi Si~l. Similar estimators can be derived for ~kC(v), k-

2,3..., by differentiating éN(v) k times.

The algorithm for estimating the gradient ~l(v), based on the sensitivity esti-

mator (3.13), can be written as follows.

Algorithm 3.1 :

1. Generate a random sample Z~, .. ., ZT, T-~N r;, jmm g(z).

2. Cenerate the output processes Li,Si~1,Wi, and OWi - WiSi~l.

3. Calculate PN(v) and ~fN(v) according to (3.12J and (8.13J, respectively.

Assume further that we restrict g(y) to the same parametric family that f(y,v)

belongs to; that is, g(y) - j(y, vo).
Remark 3.1 Rubinstein and Shapiro (1993) show how to obtain reasonably ugoodn

estimators of ~kP(v), k- 0,1 simultaneously for different values of v, say v~, ..., v,.

Let p be the trafTic intensity in the CI~G~1 queue, or in more complex queueing

models. Then one has to choose the reference parameter vo such that the traffic

intensity p(vo) is either
P(vo) - ~max~P(vi) (3.14)

or moderately larger than p(vo); that is, the reference parameter vo must correspond

with the highesl lrn,~c intensíty among all traffic intensities associated with the

selected valucs v~,...,v,.
Figure 3.1 depicts the estimator of the response curve f(v), namely the curve

lN(p} - é~,(plpo) (denoted by [N in that figure) along with the two curves

1.96à(PIPo) (3.15)
J~ -{PN(pI po) - w,} and Jz -{éN(plpo) -1- w.}, where w, -

lN(pIPo)

(denoted by 95o1oC1) as functions of p for the M~C~1 queue with po - 0.8; here

ó(plpo) is the estimate of the standard deviation of fN(v) in (3.12), so w, represents

the half width of the 95eIo relative confidence interval. Note that LN(pIPo) and w, in

Ji, Jz are given in different scales.
Figure 3.2 depicts similar data for the derivative of the expected waiting time in

the M~G~1 queue with respect to the service rate a.
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ln those two figures we assumed that f(v) is the steady-state expected waiting
time of a customer in the M~G~1 queue. We took ao - vo as the reference parameter;
that is, we assumed po - J1oQ, chose the arrival rate equal to 1, the scale ~- vo

-0.4, the shape (~ - 2, so p~ - E(Y) - ao~ - 0.8; see Example 3.1. From a single
simulation run we estimated the performance B(v) and the derivative simultaneously
for p- 0.2, 0.3, ..., 0.8, while simulating 10, 000 customers.

It is readily seen that the LLwhat iíT estimators fN(pI po) and ~f~r(pI pa) perform
reasonably well in the rangc p E(0.4,0.8). For larger perturbations the SF process
OkW (k - 0, 1) blows up the variance of the estimators PN(pIPo) and OLN(pIPo)-
Note that the true P(v) and d C(v), which are known for the M~G~1 case, 1ie within
the confidence bands, but they are not shown in the figure.

l~ - - ~.4 ~.S ~.6 ~.7 Y.76

-1.5

Y.5 O -

e -Í :~'--1 ~ F- 4--

-e.5

-1 '.

Figure 3.1 Performance of the LLwhat if" estimator lN(pI po) as function of p íor
the M~G~1 queue with po - 0.8.
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1 ~- -'.p.
a ~I ~---gt

.~.,2 ..~-~- e.4

Figure 3.2 Performance of the "what if" estimator OfN(pIPo) as function of p for

the M~G~1 queue with po - 0.8.

The basic formulas (3.12)-(3.13) developed for the CI~G~1 queue with the FIFO
discipline can be extended to more general open and closed queueing systems in the

sense that (3.12)-(3.13) still hold, provided the indexing in the likelihood ratio pro-

cess Wi and the associated quantities, such as ~~ LiWi and ~~ L~OW~, are defined

in a more sophisticated way. When the process Li is nonregenerative, but stationary

and ergodic, we can use the so-called decomposable and truncated estimators. For

details we refer to Rubinstein and Shapiro ( 1993).

4 Combining the Score Function with Classic
Experimental Design

This section deals with extensions o[ the SF method for the following model:

Q(v) - Ero,{L(L'r,ros)}, (4.1)

where L(~) is the sample performance, Y~, ... ,Y, are iid random vectora with

common pdf f(y,ro~), the combined vector of parameters is given here by ro-

(ro~, ro~), and the subscript ro~ in Ero, [LJ indicates that the expectation is taken with

respect to the pdf j(y, ro~ ). So we assume that the pdf j depends on the parameter

vector ro~ but not on ro~, and that the sample performance L depends on vs, but

not on v~. We shall call v~ and vz the distrióutional and the structurnl parameter
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vector, respectively. Note also that the model in Section 3, f(ro) - Ev[L(~)], can
be considered as a particular case of the model (4.1) with L not dependent on vz
and with v - v~.

As before, we suppose that C(v) is not available analytically, so we use simulation
to estimate B(v) as well as the associated sensitivities Ok((ro), k- 1,2,..., for
multiple values of ro-(ro~, uz). Consider the following examples.

(1) GI~G~1 queue. Suppose that it is desired to estimate the cdf

Pv{L L x} (4.2)

with L the sample performance in the steady state, and the associated detiva-
tive, 8P(L G x) j8x, for multiple valuea of v~ - v and uz - z. In this case,
we can represent P(L G x) as

P(L G x) - ) Ev, {I(-,o,ol(L - x)} , (4.3)

where I(-,o,ol(.) is the indicator function of the interval (-00,0].

(2) GI~D~1 and D~G~1 queues, where D stands for deterministic. For the

GI~D~1 queue, Y~ ji(yi,v~) represents the random interarrival time with

interval rate v~, and vz is the length of the constant service time. Similar

definitions hold for the D~G~1 queue.

(3) GI~G~I~m queue, where m denotes the buffer size. Suppose it is deaired

to estimate the steady-state expected waiting time [(ro) - lEv,[L(Y,v~)] of

a stable GI~G~I~m queue for multiple values of v~ - m. (This problem is

treated rigorously in Kriman, 1994.)

One approach ( not the focus of this paper) uses "push-out" and "push-in" , re-

spectively; see Rubinstein ( 1992). These terms derive from the fact that in the first

case we "push out" the parameter vector, vzi írom the original sample performance

L(Y,v~) into an auxiliary pdf via a suitable transformation, and then apply the

standard SF method; in the second case, we operate the other way around, namely,

we first "pust~ in" (via a suitable transformation) the parameter vector v~ into the

sample pertormance L(Y, vz) and then differentiate the resulting (auxiliary) sample

performance with respect to v-(v~, vz). Conditions under which such transforma-

tiona are useful, in the sense that they either generate smaoth sample perjortinances

or lead to variance reduction are discussed in Marti ( 1990) and Uryas'ev (1994). It

is also shown that Lhe infinitesimal perturóation analysis (IPA) method introduced

by Ho and his co-workers ( scr Ho and Cao, 1991) corresponda with the "puah in"

technique; the Iatter can be viewed as a dual of the "push out" technique.

A second approach, discussed in the remainder of this section, is based on the idea

that the effects of changing one or more components of the diatributional vector v~

can be estimated with relatively little eífort ( in the way we discussed in the preceding

sections), whereas the effects of changing one or more componenta of the structural

vector vz are estimated wíth more effort, using classic Experimental Deaign (ED).
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We shall also show that the ideas of ED might be utilized in SF, in order to further
reduce computer time. Details on the application o( ED in simulation can be found
in Kleijnen ( 1987, 1994).

Suppose vz has kz components; that is, the vector has dimensionality kz. In ED

terminology we say that there are kz jactora. The number of levels or 'values' per

factor, denoted by st, is usually limited to a small number, say 2 C sk C 5(k -

1, ..., kz). The values for sk are selected as follows. -

I[ we assume that the effects of the kz factors are additive, then we can estimate
the kz main effects from n simulation runs, where n is the smallest multiple of four
that is larger than kz (for example, if 8 C kz C 11 then n - 12). So, only a fraction
of all possible 2k~ combinations or scenarioa is simulated. Each factor is simulated
for only two different values ( sk - 2).

If, in addition, we assume that besides main effects, there may also be interactions

betwcen factors, then a larger fraction is simulated (still simulating only two values

per factor). If morever we assume quadratic effects, then more than two values per

factor must be simulated. So-called central composite designs require five values per

factor; they do not simulate all 5~ combinations, but only a fraction ( combining the

designs for rnain effects and interactions with designs that change only one factor

at a time).
Let us now turn to the distributional parameter vector v~. Suppose vi has kr

components. SF gives CN(v) as an explicit function of v~. In order to get a better

underatandíng of this function, we evaluate this function for a set of values of vr. So

far we aupposed that component k of vr is studied for sk (k - 1,...,kr) values; see

Algorithm 2.1 and Figure 3.1. Now, however, we point out that if kr ia high, then

we may restrict the computer time required and f.}ie amount of output data; that is,

we drastically restrict the number of values per component, say, 2 G sk C 5. To the

sk estimates of E(L) we can then fit a curve, such as a polynomial in vr of degree

1 or 2. We emphasize that these jjk sk responses are positively correlated, since

they are based on the same random number stream ( namely the one used for the

reference parameter vor; also see ( 4.5) below). Note that a`distributional scenario'

is a combination of values for the k~ components of vr.

We emphasize that ED without SF would experiment with kr fkz factors, whereas

ED with SF considers only kz factors. In SF the estimation of the gradient ~C(vt)

is analogous to the estimation of C(vr ) , as we saw in the preceding sections. In

ED the estimation oí the gradient ~l(vz) follows from differentiating the estimated

response curve or rnetamodcl; for example, in a first order polynomial the marginal

effects equal the main effects, whereas in a regression metamodel with interactions,

by definition, the marginal effects also depend on these intetactions; sce Kleijnen

(1987, 1994).
In summary, Score Function-Ezperimental Design ( SFED) considers the set oí

tactors
{(vt,~2) - {on,...,v~k~, vsr,...,v~k,}. (4.4)

SFED selects an ED for the k~ factors in vq and an ED for the kr factors in vr.

Unless otherwise stated, we assume further that g(y) - j(y,vor), where vor is the
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rejerence parameter, and that f(v) is the mean sojourn time in a GI~C~c~m queue.

Let vz be fixed, while v~ takes values in the set {vtt, ..., v~„ } where rt -[jk!~ ak.

Consider the following mathematical program problem:

min max Varvo, {~N(v)}. (4.5)
Vo, V,-{V,,,...,V,~,}

Arguing as in Rubinstein and Shapiro (1993) (see also Section 5 below), it seems

natura! to choose the reference parameter, vo~, in such a way that

P(~ot) - m~ P(~ij). (4.6)
j-t,...,.,

Equation (4.6) means that vo~ should correspond to the highest tmffic intensity

among all traffic intensities associated with the permissible values v~t,...,v~,,.

Example 4.1 Consider the GI~C~I~m queue. Assume that the buffer size is fized

at m and suppose we wish to estimate the expected sojourn time, i(v) - C(vr,vz),

simultaneously for all v~ - vtt,...,v~„ by using the "what-if" estimator LN(v).

Let v~ be the service rate. It readily follows from ( 4.6) that in this case, vo~ must

satisíy vo~ - min(vt~, ..., vt„ ), which is the same as

Po - max(Pi, . . . , P., )- (4.7)

where pj corresponds to the sc.rvice rate u;j, 1 C j C r~.

Consider now the general case ( 4.4). In typical applications, the trafóc intensity is

monotonic in each component of v2, in which case, formula ( 4.6) is applicable again

in the sense that once a"goodr reference parameter po(v~) is chosen, it remains a

"goodr one for all v~ in (4.4). In other words, in order to find a"goodr reierence

parameter vo~(v~) ( and the corresponding Po(vz)) suitable for all combinationa of

{v~,v~}, we have to first fix an arbitrary value vz from the set {vzj, j- 1,...,rz},

and then apply for~nula (4.6).

Example 4.2 Suppose that we need to estimate the expected waiting time in the

CI~C~I~m queue for different combinations of the service rate vt and the buffer

size vz - m. We may then choose any buffer size m from the set {m~, ... , m„ }, find

vo~ according to (4.6), and finally run sz simulations corresponding to the chosen

values ml,...,m,,, respectively.

The "what-ifn estimator of f(v) given the j-th structural scenario ( j - 1,...,rs,

where rz -[[k' ~ sk) can be written ( analogous to (3.12)) as

~~ ~I (yai) [ti(V2j)Wti(Vl)
éN(ri,~sj) - r, v~ 1 - . ~ (4s)

~~~I( ~ We,(VI)

where we write r;(v~j) rather than r;, to indicate that its distribution depends on

vzj.
The SFED algorithm for estimating the response surface, l(v), can be written as

follows.
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Algorithm 4.1 : The SFED Algorithm

(I) Specijy the experimental design jor vr and jor vz nespectively; see (~.~). Let

r~(rz) denote the number ojcombinations oj values in the ED Jor v~(vz).
(2J Find the rejerence parameter, vor, via (~.6).

(3) Select the number of renewal cycles N.
For i:- 1 to N do
BECIN

while cycle not endcd do
BECIN

genernte Z; jrom the dominating pdj j(z,vor);

jor j~ :- 1 to ra do { perjorm ED jor vz}

BECIN
calcutale lhe perjorrnance L(Z;,v~,jz);
jor ji :- 1 to rr do { perjorm .SF Jor vr }
BEC~N

calculate the likclihoad rntios W(Z;,vr~r);
updnte L(Z;,vzaz) ~ W(Z;,vr,~r) and W(Z;,vrar);

ENU {ojj~}
END {oj j~}

END {oj while }

END {oji}
For j2 :- 1 to rz do { see (.{.8J }

compute L(Z;,vza,) ~ W(Z;,vrar) and W(Z;,vr~r);

Example 4.3 Consider the estimation of the steady-state mean waiting time, ((v),

in the M~M~c~m yueue with v~ -(vr~,v1z) denoting the vector of the interarrival

and service rates and vz -(m) denoting the bu(fer size. Assume that v~~ is fixed,

while v~z and m may vary. [n particular, set v~r - 1, while vrz - 2, 1.5, 1.4, 1.25,

and m- 5, 10, 15. According to (4.6), we first select some buffer size from the

set { 5, 10, 15 }, say m- 5. Next we choose the reference parameter value for

v1z as the one that corcesponds with the highest traffic intensity, po, among the

values v~~ - 2, 1.5, 1.4, 1.25;in our case v~z - 1.25 (slowest service rate). Finally,

we make three separate runs, with m- 5, 10, 15, to estimate f(v) for the above

rr x rz - 12 scenarios. Fíere, the SFED estimator is more ef6cient (only 3 runs

instead of 12). Numerical experiments also indicate that the 3 SF runs are more

accurate than its crude Monte Carlo (CMC) counterpart.

Example 4.9 Consider the estimation of the steady-state expected waiting time,

f(v) for r M~M~I~m yueues in tandem, where vr -(v~l,...,vr,) and v~ -

(vz1 ~ , . , , vz, ) - (m~ , . . . , m, ) are the vectors oï service rates and buffer sizes, re-

spectively. In this case, the full factorial ED method applied to kr t kz - 2r [actors,

would require a total o[ 2~' Monte Carlo experirnents, whereas the full factorial
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applied to kz - r factors requires only 2` such experimenta. Thus, the latter is

approximatcly 2' tirnc~s faster than the former, since the overhead of computing

Wt(vt), in thc correspondiug likelihood ratio cstimators, is relatively small. Thie

speed up has been confirmed liy various simulation studies. Further reduction of

computer time can be realized by assuming a first order polynomial response curve

in vz, and executing not 24' runs but only k~ f 1 runs.

5 Optimization

Consider tlte following mathematical programming problem:

minimize lo(v), v E V,

(Po)

where

subject to [~(v) G 0, j- 1,...,k, (5.1)

e~(w) - ~v(Li) -
~y(Ei-~ Git) j - 0,1,... , M, (5.2)

~~r '

are the steady-state expected performances corresponding to the output processes

{L~,}.
To estimate the optimal solution of this problem (Po) from simulation, we first

approximate it by its stochastic counterpart (see (5.4 ) below), and then solve this

counterpart problem by standard techniques oí mathematical programming (see also

a recent survey on optimization in simulation by Fu 1994).

ln order to construct such a stochastic counterpart, we argue as [ollows. Consider

first the cstimators of (~(v), defined in (3.12):

N r,

~ ~ ~it;rVt;
~jN(V) -

~-IN ir, ' 7 - 0,1,...,M. (5.3)

~ ~ Wti
;-1 t-1

Second, viewing e~N(v) as functions of v rather than as estimators for fixed v,

wc define the stochastic counterpart of (Po) as follows:

minimize foN(v), v E V,

(PN) subjPCt to ~~N(~) C ~, j - 1,...,k, (5.4)

~iN(w) - o, j- k f 1, ..., M.

Notice that as soon as the input sample Z1,... , ZN, is generated, the functions Wt;

and hence e~N(v), j - 0, ..., M, are given explicitly through the known density

functions J(Z;,v): substitute zl,...,zN into W,; - fI~-1WJ with W~ - f(z~)~g(z~).

e,(~)-o, j-kt1,...,M,
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'I'he corresponding gradients OC~N(v) can be calculated from a singk simulation
by the SF method according to (2.12). Consequently, in principle the optimization
problem (PN) can be solved by standard methods of mathematical programming
(scc, e.g., Rubinstein 1986). 1'he resulting optimal value CN(v) and the optimal

solution vN of the program (PN) provide estimatora of the optimal value ~(v') and

the optimal solution v' of the program (Po), respectively. Note that this solution is
feasible, since we assumed that the sample functions L~(y) do not depend on v.

The algorithm for estimating the optimal solution v' of the program ( Pa) while
using the stochastic counterpart (PN) can be written as follows.

Algorithm 5.1 :

l. Generate a random sampte Zr~,...,2~,,, .. ,ZNr,...,ZN,N Jrom g(z).

2. Cenerale the uulput (sample perJormancef processes L~i;, and lhe fikeJihood

ratio process Wi;(v), j - 0, . . . , M, t - l , . . . , r; i - 1, . . . , N.

3. Sotve lhe program (PN) by the techniques of mathematicaJ programming.

.~. Deliver the solution vN oj(PN) as an estimator ojv'.

Consider the following unconstmined program:

(Po) rninimize f(v), v E V. (5.5)

Its stochastic counterparts can be written as

lPN) minimize ~N(v), v E V. (5.6)

Before turning to numerical results with the stochastic counterpart (5.6), we assume

the following.

(1) The parameter set V is given by

V- {v : 0 G p(v) C po L 1, p-(P1,...,Pr)}, (5.7)

where Pk - Pk(v), k- 1, ..., r, is the traffic intensity at the k-th queue, r is

the number of nodcs in the network, and lhe inequalities between the vectors

must be taken componentwise.

(2) The expected performance B(v) is given as

t(v) - clEvLi f ~ bkvk,
k-~

where Li is the steady-state sojourn time process, c is the cost of a waiting

customer, v-( vr ,..., v, ) is the service rate vector, and bk is the cost per unit

increase (decrease) of vk. Note that under sorne mild regularity conditions,

EvLi is a strictly convex differentiable function with reapect to v. Thus, v'

is a unique minimizer of (Po) over the convex region V.
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We can then solve the stochastic counterpart (PN) by using the following nonlinear

system of eyuations (first ordcr conditions for extreme values):

vZN(v) - 0, v E V.

In particular, for a queueing nwdel with a single node ( r - 1) and FIFO diacipline

PN reduces to

viN(v)

where

N r. N ~-
J ~,-1 ~t-i f li~Wli ~i-1 ~t-1 LliW li

-C l N ,,W - (~ N r.W
~i-1 ~t-1 l~ L~i-1 ~1-1 ti

N T.Ei-~ E'-~ OWti 1 f b- 0, v E V, (5.9)N J
~~-1 ~l-1 Wti

1'Vli -~ W(Zki,v) and W(Z,v) - I(Z,~)
k-~ 9(Z)

Remark 5.1 It is showu in Rubinstein and Shapiro (1993) that while solving the
stochastic counterpart

véN(v) - o, v E V,

whcre
V- {v : 0 G p(v) G p (v) G 1},

a"good" reference parameter po must be chosen, either equal to po or moderntely

larger than po.

We now present numerical results for the stochastic counterpart (~N) [or several

queueing decision models, assuming that g(y) - j(y,vo) where vo is the reference

parameter.

Example 5.1 M~M~1 queue. Let a and v be the arrival and service rates,

and let v be the decision parameter. Taking into account the analyliwl result

E„L - l~(v - J~), it is readily seen that the true optimal v' that minimizes the

per(ormance measure given in ( 5.8) is v' - a f (c~b)11~.

Table 5.1 represents theoretical values of v', point cstimators vN, and 9501o confidence

intervals for v' (denoted 95qoC1), as functions of b(p' - a~v' and a - [po-p']~p').

We chose a- 1, c- 1, the reference traffic intensity p,o - 0.8, and ran N - 10,000

cycles (approximately 50,000 customers). Note that all estimators vN(b) were ob-

tained simultaneously jmm a single simulation run (with po - 0.8) by solving the

system of equations ( 5.9) for different values of 6.
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Table 5.1 Performance of the stochastic counterpart (PN)

for the M~M~ I yueue with reference traffic intensity po - 0.8.

p` b a vN(b) v' 95oloCl
0.88 53.77 -0.091 1.278 1.136 0.65, 1.81
0.85 32.11 -0.058 1.208 1.176 0.91, 1.51
0.8 16.00 0.000 1.261 1.255 1.15, 1.37
0.7 5.444 0.143 1.433 1.429 1.33, 1.54
0.6 2.225 0.333 1.654 1.667 1.58, 1.73
0.5 1.000 0.600 1.971 2.000 1.91, 2.03
0.4 0.444 1.000 2.467 2.500 2.42, 2.51
0.3 0.184 1.667 3.324 3.333 3.25, 3.39
0.2 0.063 3.000 4.947 5.000 4.74, 5.15
0.1 0.012 7.000 9.791 10.00 9.42, 10.06

It is readily seen that the estimator vN performs reasonably well for p E(0.3, 0.8).

The poor performance of the estimator vN for p 7 0.8 is caused by the violation of

the requirement of remark 5.1 (according to that remark we must have p G po - 0.8,

whereas in fact we have 0.88 1 p~ po - 0.8.). The poor performance for p G 0.2 is

the result of very large rclativc perturbations (a ~ 3) in the likelihood ratio process

W,.

Example 5.2 M~C~1 queue. Assume that Lhe pdf of service time y is given by

I(y,p) - j P, if y - ac,
l 1- p, cf y- as,

where 0 G a~ G a2 and 0 G p G 1. 13y the Pollaczek-Khinchin formula ( e.g. Gross

and Harris (1985)) the expectc.d sojourn time can then be written as

e(P) -~v~ - Qi f 2(1 - a(ii)'

where a still denotes the arrival rate,

~ii - ~'~}~ - pac f(i - p)az, Í3s - Q'~}~~ - Pai t(1 -p)as~

In this case the likelihood ratio W in (5.9) reduces to

i s-'~-z-ec
W(Z,P)- `po)s,-~~

~1-po . .

'1'able 5.2 presents data similar to those of table 5.1. We chose a- 0.6, p-

0.5, a~ - 0.5, az - 1.2 (po - 0.85), c- 1, po - 0.7, and ran the M~C~1 queue for

N- 15,000 cycles (approximately 100,000 customers). Following remark 5.1 and

taking into account that po - 0.7, we chose the reference traffic intensity moderately

larger than po, namely po - 0.85.

aA~
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Table 5.2 Performance of the stochastic counterpart (PN)
for the M~C~1 queue with reference traf6c intensity po - 0.85.

p'
0.80

b
10.32

a
0.062

p'
0.571

~N
0.559

95 Cf
0.34, 0.78

0.70 4.978 0.214 0.714 0.716 0.65, 0.73
0.65 3.843 0.307 0.786 0.804 0.77, 0.83
0.60 3.106 0.417 0.857 0.868 0.82, 0.91
0.55 2.601 0.545 0.928 0.951 0.91, 0.99
0.50 2.240 0.700 1.000 1.000 0.95, 1.05

Example 5.3 Tandem queue. Table 5.3 represents data similar to that of ta-

ble 5.1 for two M~M~1 queues in tandem, while using the stochastic counter-

part (~N). [t includes ry-(~~v' - vx~~)~~~v'~~, ( v -(v~,v~)) as functiona of

(bi,~i), (Pi - a~vi,Ps - a~vz), and (a~, as) - (~Poi - Pi)~Pi, ~Pos -Pz)~Ps). Again

we choose a- 1, c- 1, now with reference traffic intensities po~ - 0.8, p~ - 0.6,

and run N- 10, 000 cycles (approximately 50,000 customers).

Table 5.3 Performance of the stochastic counterpart (PN)

Pi Ps ~
---- ----

~
- --- ---

o~
- ----

os t(~') L(v~r) 95oibCl ry

0.60 0.88 2.25 53.77 0.33 -0.09 73.69 76.01 72.3, 79.7 0.200
0.60 0.80 2.25 16.00 0.33 0.00 29.25 29.28 28.0, 30.6 0.010

0.60 0.60 2.25 2.25 0.33 0.143 10.50 10.48 10.3, 10.6 0.004

0.60 0.40 2.25 0.44 0.33 1.00 7.U3 7.02 6.92,7.12 0.004
0.60 0.20 2.25 0.06 0.33 3.00 5.81 5.81 5.72, 5.90 0.002

0.60 0.1 2.25 0.01 0.33 7.00 5.49 5.48 5.38, 5.58 0.003

0.88 0.60 53.77 2.25 -0.09 0.33 73.69 75.65 69.3, 82.0 0.154

0.80 0.60 16.00 2.25 0.00 0.33 29.`l5 29.30 28.1, 30.5 0.008

0.40 0.60 0.44 2.25 1.00 0.33 7.03 7.02 6.93, 7.12 0.002

0.20 0.60 0.06 2.25 3.00 0.33 5.81 5.80 5.71, 5.90 0.013

0.10 0.60 0.01 2.25 7.00 0.33 5.48 5.47 5.38, 5.57 0.007

It is readily seen from tables 5.2 and 5.3 that the SF method performs well,

provided p' G Po.
Itzhaki (1994) gives extensive supporting nwnerical results with both uncon-

strained and constrained mathematical programming methods (Po) for different net-

work topologies, different dimensionalities n(1 G n G 100) of the decision vector v

(being the vector with the parameters of the interarrival and service time distribu-

tions and the routing probabilities), while using the research package QNSO.

6 Conclusion

1'he Score Function (SF) ~nethod uses a single simulation run to simullaneously

estimate the simulation response and its derivatives, for different values of the pa-
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rarneters of the distribution function of the simulation inputs. SF appliea to both
discrete-event static syatems (UESS) and discrete.event dynamic systems (DEDS).
Parameters that do not occur in the input distribution, but that are atructursl pa-
rameters, can be examined through classic experimental deaigna (ED). SF and ED
can be combined to obtain further efficiency gains. The optimal values of the dis-
tributional parameters can be obtained by solving the atochastic counterpart of the
original mathematical programming problem.
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