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ARNOLDI TYPE IVIETHODS FOR
EIGENVALUE CALCULATION:
THEORY AND EXPERIMENTS 1

P. SMIT

Abatract

The Arnoldi Algorithm ia a well known method for the calculation of eigenvalues.
A short overview is given of some of its variants and aome error eatimatee. Several
varianta have bcen tested in a series of numerieal ezperiments of which the reaults
are included. The purpose of these ezperimeab is to ahow the dependence of the
convergence of these algorithms on some eharacteristica of the matrices involved.

1 Introduction
Calculating eigenvalues of s matrix is aa important problem in many aresa of research.
When amall matrices are involved the QR algorithm is the beat choice. But as the com-
putera grew more powerful they were able to aolve larger problema, ao the size of the used
matricea has been increasing during the last few decadea. For inatance matricea of high

order arise in the diacretisation of partial differential equationa. Chatelin [2] calls a matrix

large when it is fat cheaper to calculate only a few eigenvaluee than the complete apectrum.

For large matricea the QR algorithm ia too elow (the time ie cubic in the dimension of the

matrix) and moreover the method deatroys the aparaity of the matrix. So other algorithma
were required. In the Krylovspace methods of Lanczoe and Arnoldi the matrix occurs only

in matrix-vector multiplicationa.

Hiatorical eurvey. In the early fifties Lanczoa [9] and Arnoldi (1] deacribed iterative
methoda baeed on Krylov subapace iteration which produce approximationa of eigenvaluea
of a matrix. In [12] Paige pointed ont the interest of the iterative nse of the Laaczos
Method for the compntstioa of extreme eigenvalnea. Parlett's ~The Symmetric Eigenvalue
Problem„ (13] gives an analysis of many algorithma, eapecially the Krylov apace methode.
In (8J Kaniel uaea Chebychev polynomiala to schieve ae firat errorbounda; these bounda
were improved by Saad (14, 15]. The pioneering work of Sasd has caused s revival of the
Araoldi Method. Polynomial filtering on base of Che~ychev polynomials for nonaymmetric
problems are applicable aince Msnteuffel [10, 11]. Their nse for the nonaymmetric eigen-
problem ia analysed in [16], [6] and in [7]. Golnb and vsn Loan [4] describe the atate of
the art in aumerical linear algebrs, inclusive Krylov epsce techniqnea, Chatelin [2] more

1Thu paper is the resnlt of the project `The Arnoldi Method: Anslysis aad Nnmerical Results"
performed under the aospiw and enpport of NCF~Cray Reseuch University Grant, nnder contract
CRG 92.20. The otiginal version of this paper ns wss sead to NCF contained a Fortraa progrsm which
implementa the Iterative ArnoMi Algorithm with Deflation.
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specificly the algebraic eigenproblem. Block Arnoldi algorithms have been analysed and de-
veloped in [19, 20]. Sorenson [21] combines the Arnoldi Algorithm and the QR method in a
filtering technique for the construction of new startvectors to perform the Arnoldi Method
in an iterative way. The ImpGcit Schur Deflation technique of Saad [18], as Sorenson's
Algorithm, improves the facility to compute several eigenvalues of large sparse nonsym-
metric matrices with Arnoldi type iteratioas. The Block Arnoldi Method [19, 20] seeme to
be promising for the same objective. Finally, Saad's monograph [18] gives an overview of
the many aspects and problems related with the computation of the eigenvalues of large
(sparse) nonsymmetric matrices.

About this paper. Ia this paper we are concerned with the Arnoldi Method and two of
its variants. These methods seqnentially reduce the given matrix to a Hessenberg form by a
projection on Krylov spaces. Ia aection 2 some basic theory about the Arnoldi Algorithm
is presented. Section 3 discusses the Iterative Arnoldi Algorithm with Schur deflation.
Section 4 presents Sorenson's Iterative Arnoldi Algorithm ia which the new startvectors
are obtained by a QR filtering process. The results of numerical experimeats can be found
in sectioa 5. In the examples the attention is directed to three characteristics of the
convergence in the Arnoldi process: separation of eigenvalues, condition of the eigenvector
matrix and the choice of the startvector. The appendices dl8cnee two implementational
problems: the storage of the matrix and the multiplication of a vector by the matrix.

Notation. The following notation ie used in this paper. The matrix of which the eigenva-
lues are to be calculated is called A. This matrix is real, has dimension n and can be dia-
gonalized: AU - UA, with U- (ul,...,u„), ~[u;[~ - 1 for all i and A- diag(J11,..., 1„).
K~(A,v) denotes the j-th Krylov apace with reapect to A and vector v aad is defined by
K~(A,v) - span{v, Av, A~v,..., A'-'v}. V(~) is a matrix whose columns form an orthonor-
mal basis for K~(A,v) snch that H(~) - V(~)TAV(~) is a Hessenbergmatrvr of dimension j.
H(')y; - B;y;, [~y;~~ - 1 for i- 1,..., j. When we write "norm" or ~[ .[~ we mean ~[ .[~z.

2 Arnoldi's Algorithm and variants

2.1 Arnoldi's Algorithm
To obtain approximations of the eigenvalues of A we can restrict this matrix to a subspace
of relative low dimension and calcnlate its eigenvalues. We get an iterative method if we
add a dimension to the subspace in each iteration. When the Krylov subspaces K~(A,vl)

are used, we get the Arnoldi Algorithm. Let us assume that K~(A,vl) has dimension j,

then vl, Avl, A~vl, ..., A'-lvl are independent and we can use the Gram-Schmidt orthogo-

nalizatioa method to obtain an orthonormal basis for this subspace: vl, v~, ..., v~. Let II(~)

denote the restriction of A to K~(A,vl) with that basis and V(~) the orthogonal matrix
whose columns are the baeisvectors. So:

AVti) - y(i)gG) 1 K~(A,vi) (1)
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or:
y(i)TAV(i) - H(i) (2)

If i~ j f 1 then v; 1 K;tl(A,vl) so H~a) -(v;,Av;) - 0. This shows that H(i) ie a
Hessenbergmatrix and also that:

AV(i) - y(i)g(i) ~ r(i)ei (3)

where r(i) 1 K;(A,vl) and e; ie the j-th unit vector of IR'. We call this an ArnoJdi
factorization of A. The j eigenvalues and -vectors of H(i) are given by:

H(i)y. - Bal: (i - 1,. ..~7) (4)

These can be computed efficieatly because H(i) is a Hessenberg matrix. We can look
upon the B;'s as approximations of eigenvalues of A in some sense (more about that later).
Similarly the vectors V(i)y; can be regarded as approximations of eigenvectors of A. We
call B; a Ritzvalue and V(i)y; a Ritzvector of A with respect to K;(A,vl).
All this leads to the following algorithm that generates the matrices H(i) and V(i).

Algorithm 1 ( Arnoldi)

1. Choose vl of norm one.
2. doj-1,2,3,...:

w - Av;
do i - 1,...,j

H;,; - (w,v;)
enddo

i
w-w-E:-1H:,;v;
Hiti.i - ~~w~~
viti - w~H~tia
Calculate the eigenvalues 81,...,8; of H.
Ifthe `4uanted" eigenvalues have "converged" then stop.

enddo

The terms "wanted" and "converged„ are still vague, but section 2.3 tries to make them
more precise.
For reasons of numerical stability it is better to use the (in exact arithmetic equivalent)
modified Gram-Schmidt method, which gives this alternative algorithm.

Algorithm 2 (Arnoldi, using modifled Gram-Schmidt)

1. Choose vl of norm one.
2. do j - 1,2,3,... :

w-Av;
doi-1,...,j:
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H;,i - ( w,v;)
w-w-H.ávi

enddo

Hit:.i - IIwII
vitt - w~Hifi,i
Calculate ihe eigenvalues 81,...,Bi of H.
If the "wanted" eigenvalues have "converged" then stop.

enddo

2.2 On the meaning of some error estimates
Let A~ be the orthogonal projection oa Ki(A,vl), P; the spectral projection on the eigen-
space corresponding with J1;. A relevant theorem to understand the Arnoldi Algorithm is
the following.

Theorem 3 Assume P;vl ~ 0. C(U) - I[U~~ ~ IIU-tII denotes the condition number of U
and ~~ is the set of polynomials of degree j which take the value one in x. Then

II( i) ;II - II(I - P;)vill , C(U) . min m~ [p(aw)[I-a u C
I[P:v1II ~9;',

Proof: See [2, p.181]. ~

With the notation
f(i) - min max Ip(ak)I

rEr;, w~`
(5)

theorem 3 reads
sin ~(i) - II(I - P,)vi [[ , L,(U) , E(i) (s)

IIP:viII
where ~~') is the angle between eigenvector u; and Krylovspace Ki(A,vl). In (6) IPólllII
indicates the influence of the angle between atartvector vl and eigenvector u; on ~~'). The
following theorem indicates the influence of the d,jatribution of the eigenvalues on the angle
~(i)

Theorem 4 There exist j eigenvalues aay al, a~, ..., ai each different from a; such ihat

E(i)-(~11I~1-~~I)-i
' r~-i t~r ~: - J~r

Proof: See [2, p.191].

Chatelin [2] proves the existence of a constant c such that

Ia; - B(i)I G cI[(1- xi)wII (7)
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where c depends on C(U). This emphasizes the role of the wndition of the eigenvalue
problem for the convergence of the R.itzvalues. On account of these error estimates our
numerical experiments are concentrated on the effects of

~ separation of the eigenvalues,

~ condition of the eigenvector matrix,

~ choice of the startvector.

The condition of the eigenvector matrix is related to the rate of non-normality of A.
C(U) ? 1 with equality if and only if A is normal. The following functiona can be used to
describe the non-normality of A.

a !~i(A) - II AAT - ATAII

~ ~z(A) - (IIAIIF - E;-i lail')'~'
In general the number C(U) can not be computed ef6ciently, but pl and, in case of triangu-
lar matrices, ~~ can and they give indications concerning the condition of the eigenproblem
Ís~ ~31).

2.3 Implementational problems

In the Arnoldi Algorithm some choices have to be made by the user. First a startvector
must be supplied. When the eigenvalues of E~i1 have been calculated it must be recognized
whether a Ritzvalue is interestiag or not. And it has to be decided whether a Ritzvalue is
a good enough approximation of aa eigenvalue. These problems will be discussed below.

2.3.1 Startvector

The Krylov spaces depend on two parameters: the matrix A and the startvector vl. For
a given matrix we have all freedom to choose vl, but it is obvious that some choices are
better than others. If vl has a large component in the d'uection of an eigenvector, then
one of the Ritzvaluea approximates the corresponding eigenvalue rather good. Perhaps we

know some characteristics of the eigeasystem of A that can lead to a good choice of vl,

but in general we do not have such information, so the best thing we can do is take a

random vector, or a vector with all entries equal, or whatever we want. Notice that after

a number of iteratione we do have some information about the eigensystem of A(apart
from the question how reliable this iaformation is). In the slgorithms that are discussed
hereafter we have to choose a startvector repeatedly and then it becomes possible to make

more sensible choices for the startvector.
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2.3.2 Wanted eigenvalues

Another problem is on which Ritzvalues we should focus. We do not intend to compute all
eigenvalues, so we must have a sort oí description of the eigenvalues we are interested in.
Thia can be something of the form: "the ten eigenvalues with largest real part", or "the
íour eigenvalues oílargest absolute valuen. In general we can say: "the k eigenvalnes that
maximize the function f". Selecting the "wanted" Ritzvalues is the same as selecting the
k Ritzvalues that maximize the function f.

2.3.3 Stopping criterion

For iterative algorithms we need a stopping criteríoa. We would like to stop if our approxi-
mation has eome predescribed relative accuracy, but as a consequence of lack of knowledge
of the true solution this accuracy can be measured only with an indirect criterion. It is
important to know the relationship between thie criterion and the real error in the approx-
imation to understand the reliability of the former.
In our case we have a computed Ritzvalue 6; and we would like to know mink law - 9;1. A
criterion is suggested by the following theorem.

Theorem 5 Let p E]R and x E IR" vrith Ilxll - 1, then min; la; - ~al C C(U) . IIAx -{~xll
where C(U) - IIUII ' IIU-'ll ~~e condition number of U.

Proof:

I - IIxII - II(A-~I)-`(A-~I)xll
s II(A - ~I)-lII . II(A - ~I)x11-11U(A - r~I)-'~-' II ' II(A - ~I)xll
~ IIUII . II(A - ~I)-'ll . IIv-'ll . II(A - ~I)xll - ~i la. - ~I ~ c(v) - IIAx - ~xll

If x; is the Ritzvector corresponding to B; then during the execution of the algorithm we
can calculate IIAx; - B;x;ll, which is called the residual norm and is denoted by p;. If
this number is amaller than a specified tolerance then the Ritzvalue is accepted as an
approximation of an eigenvalne of A. Unfortunately we know aothing about the conditioa
number C(U), so we do not know the reliability of this criterion. It is possible that in case
oí a large C(U) the Ritzvalue ie accepted while it is still a bad approximation. But so far
a better criterion is not known, so we will use it in the algorithms.
It is not necessary to compute x; ezplicitly: x; is a R.itzvectot, so x; - V~~~y; and in (3)
we had AV~~~ - V~~~H~~~ t r~~~e~ which leads to:

Ax; - B;x. - A~rib: - B;Vii)p: - VU)g(i)y: f ri')e~ g: - V(f)B:ál: - r(i)e~p; (g)

Hence:
p; - IIAx;-B;x;ll - IIr(i)II .le~~;I - ~it~;' leiya (9)

So we only have to calculate y; and to perform one simple calculation to obtain the residual
norm p;.
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2.4 The Block Arnoldi Algorithm

A variant of the Arnoldi Algorithm is the Block Arnoldi Algorithm. There one considers
a "generalized Krylov space":

IC;(A,vl,...,vw)-span{v1i...,vw,Av1,...,Avk,...,A~-1v1t...,A~-lvw} (10)

So we start with k vectors and in each iteration step the dimension of the Krylov space
increases by k. The matrix H~~~ has a block Hessenberg atrncture, which means that H~1 ~.~
isakxkmatrixandH;~~~-0ifil~i~f1.

Algorithm e (Block Arnoldi)

1. Choose an orthogona! n x k matrix Vl.
2. do j - 1, 2, 3, ...:

W-AV;
doi- 1,...,j:

H;,; - WT U
enddo
W - W - E;-, H;,;Y
Calculate a QR decomposition of W: W- QR.

Hiti.i - R

Viti - Q
Calculate the eigenvaluea of H.
Ifthe wanted eigenvaluea have converged then stop.

enddo

In the algorithm we take for H~tlá an upper triangular matrix, so H~~~ has k subdiagonals
below the main diagonal.

2.5 Iterative Arnoldi Algorithm
A disadvantage of the Arnoldi Algorithm is the atorage requirements for the basis of the
computed Krylov space. If A is symmetric, H~'1 is also symmetric and thus a tridiagonal
matrix. Then the algorithm reduces to the Lanczos algorithm and only three basis vectors
have to be stored at each moment. In the general case the atorage requirements grow in
time. Since the number of iterations cannot be predicted, a priori the space requirements
are unknown. Generally the user has a limited memory capacity and dces not want the
algorithm to use more epace.
Let us assume that m is the maximum dimension of the Krylov space one allows. Consider
the situation ia which we are looking for one eigenvalue .`;. After m iterations of the
Arnoldi algorithm we decide if we accept the wanted Ritzvalue B. If we do not, we repeat
this orithm with a"better" startvector. This meane we need a new startvector vl such
that t P' ~ is smaller than it was before (see theorem 3). Therefore it seems reasonableIIP:o,ll



8

to choose the Ritzvector V~'~y corresponding to B as the new startvector, hoping it is a
better approximation to u; than the previous choice.

Algorithm 7 (Iterative Arnoldi)

1. Choose tolerance tol.
Choose vl of norm one.

2. do j - 1,...,m:
w - Av~
doi-1,...,j:

H:,~ - (w,v:)
enddo
w-w-~:-~H.av:

Hifi.i - IIw~~
viti - wI Hitiá

enddo
~. Calculate the wanted Ritzvalue B;

and corresponding Ritzvector y; af H.

.~. If p; C tol then stop
else take v1 - Vy; and go to 2.

There is a complication. When the wanted Ritzvalue is not real, the corresponding eigen-
vector also has an imaginary part. Restarting uaing this vector means the introduction of
complex arithmetic. We avoid thia by using Block Arnoldi.
Suppose we have: .

Au-~u,a-~-~iat,u-u.~iu: (11)

then:
A(u.,u:) - (~.u. - a.u:,a.u, f a.u:) - (~,u;) ~ ~~~ ~T ~ (12)

So A restricted to the space apanned by u, and u; has the eigenvaluea a and ~. This
suggests the following strategy: instead of restarting with a non-real Ritzvector x, fix; we
use Block Arnoldi with blockaize two and Vi -(x„ x;). The number of iterations becomea
~? J. If the wanted Ritzvector is real we return to blocksize one.

3 Iterative Arnoldi Algorithm with deflation

Algorithm 7 computes only one eigenvalue, so if we want more eigenvalues the method
has to be changed. One possibility is constructing the aew startvector by takiag a linear
combination of wanted Ritzvectors instead of just one Ritzvector, but it ia difócult to take
this combination in a systematic way and achieve convergence for all wanted Ritzvalues.
Another possibility is performing the Iterative Arnoldi Algorithm until the first wanted
eigenvalue hae been accepted, and then applying the technique of deflation to obtain the
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second one, and so on. Saad ( 18] has worked this out. When k- 1 R.itzvalues have been
accepted, the corresponding Ritzvectors span a nearly invariant space. We can orthonor-
malize these vectors and thus obtain vl, ... , vk-~ which can be regarded as approximations
of Schurvectors. These vectors are put in the first k - 1 columns of Vtm~ and are not
changed during the rest of the algorithm. This subspace is completed to a subspace of
dimension m by generating a Krylov-space af dimension m- k~ 1 in its orthogonal com-
plement. So, we choose a startvector vw perpendicular to vl,...,vk-1 and we consider the
"modified Krylov space":

span{vl,...,vw-1,vw,Avw,---, Am-kvw} (13)

Orthonormalizing the above vectors give the columns of the matrix V~m~. If the first k- 1
vectors span an invariant aubspace then for j G k:

AvJ E span{vl,...,v~} (14)

which implies that H~}iá - 0 for j G k. Since the subspace we get is not exactly invariant

we put zeros in Hk~i.w explicitly if the k-th eigenvalue has been accepted. So if, for example,
two eigenvalues have been accepted and m- 6, H~"`~ has the following structure:

H~ml - ( s r r ~
r~ . ~r ~

(15)

We get the following algorithm.

Algorithm 8 (Saad)

1. Choose numóer of wanted eigenvalues nev and tolerance tol.
Choose vl of norm one.
k-1

2. do j - k,...,m :
w - Av~
do i - 1,...,j

H;á - (w,v;)
enddo

iw-w-E;-iH.áv.
Hitiá - IIw~~
viti - w~Hitià

enddo
9. Calculate eigenvalues of H: Bl, ..., 8,,,.
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4. Calculate eigenvector y4 corresponding to Bk : Hy4 - Bkyk.
vk - VYk
Orthonormalize vk w.r.t. vl,...,vk-1 and put the result in vw.

5. Calculate the residual pk - H,,,tl,,,, . Ie,Tnykl.
if pk C tol then

Accept B4 as eigenvalue of A.
if k - nev then

stop
else

do i - 1,...,k :

H..r. - ( Avk~v.)
enddo
Hktl,k - 0

k-k~i
Calculate eigenvector yk corresponding to Bk : Hyk - Bkyk.
vk - Vyk
Orthonormalize vk w.r.t. vl,...,vk-1 and put the result in vk.

endif
endif
go to 2.

This algorithm can be adapted to the case of complex eigenvalues in the same way as
described in section 2.5.

4 Sorenson's Algorithm

Suppose we have performed m Arnoldi steps resulting in the Arnoldi factorization:

AV~n`1 - V~n`~H~m~ ~ r~"`le,T„ (16)

and we want to restart. Sorenson [21] describes an algorithm for generating a new startvec-
tor in an implicit way instead of explicitly. The next startvector is a linear combination of
wanted Ritzvectors, constructed by filtering out the unwanted R.itzvectors.
Assume we have m Ritzvalues, k of them are "wanted~ aad p- m- k are "unwantedn.
The latter are denoted B,ytr, . .., Bwty. Then define the filterpolynomial:

P

~Y(t) - ~(t - Bwfi)
i-1

and take for the new startvector:

(17)

vi - ~(A)villl ~(A)vlll (18)

This has the desired effect as is shown by the following theorem.
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Theorem 9 !f H~"`ly~ - B~y~ and x~ - V~"`~y~ for j- 1,...,m and vi deftned as in (18)
then vi - ~j-1 ~~x~ for certain ~i,...,~(,.

Proof: Let vl -~~1~~x~ and let II denote the orthogonal projection on K,,.(A,vl). Now
~Y(A)v~ E K,,,(A,vl), so ~Y(A)v, - ~Y(IIA)v~.

m
~~~(A)v,~~v; - ~Y(IIA)~ fixi - ~~i~I`(IIA)Vlm~3li

i-i i-1
m m k

- ~ ~iVlml~(Rlml)tJi - ~ ~iV lml~(Bi)yí - ~ ~i~(Bi)xi
~-i ~-i ~-i

Now observe that:

So:

~Y(A)v1f...,Ak-'~Y(A)vl E Km(A,v~) (19)

Kk(A~vi) C Km(A~vl) (20)

Let V' be the Arnoldi basis of Kk(A,vi). We construct V' from the eueting basis by
multiplication with a convenient matrix:

V' - V~m1Q' (21)

Q' is an orthogonal m x k matrix. If Q' can be efficiently constructed, it is no longer neces-
sary to restart explicitly with vi, but we can immediatly update the Arnoldi factorization:

AV' - V'H' ~- r'ew (22)

where V' is n x k and V'e~ - vi. Sorenson constructs Q' by using the QR-factorization of
(Hlml - pl) (~c E IR). So he obtained from the Arnoldi factorization:

(A - !~I )Vlm~ - Vlml(Hlml - !~I ) f rlm)em
- V~m~QR ~ T~m~em

(A - F~I )(V1m1 Q) - lV`m,Q)(RQ) } T(m1 emQ

A(~"`1 Q) - (V1m1Q)(RQ f l~I ) f r1m1e.T~.Q
- (V~m1Q)(QTH~m~Q) f r~mlemQ (23)

Note that:

a Since Q is a Hessenberg matrix, QTH1m1Q -(RQ -~ {~I) is also one.

a (V1m1Q)ei - V1m1QRei~R~.~ - (A-l~I)vi~Ri,i
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This last property is very attractive when we think of ~Y. We repeat the procedure described
above for p - Bk~l, ..., 8,,,, setting Ho - Hlm~ and producing in step j the matrices
Qi, R„ H~:

QiRi - (Hi-i - Bwtil)
T

Hi - Q~ Hi-1Qi

Take Q - Q1Q~ .-. Qp, then we have:

~ In each step j Q~ is a Hessenbergmatrix, so H~ is also a Hessenbergmatrix a.nd Q has
p subdiagonals below the main diagional.

a A(Vtm1Q) - (Vt"`1Q)(QTH1m1Q) t rlmlemQ

a (V~m1Q)ei - ~(A)vi~Il~(A)vill

Decompose:

V1m1Q - (V',V) (24)
~

QT H1m1 Q - ~~e~ g ~ (25)

with V' and H' having k columns, then:

AV' - V'H' ~ V~elek ~ rlmlemQ ~ ~~ ~

- V'H~ f A(V ei )e~ f rlml ew Q`.,.,k
- V'H' f (QVei -F- Q.~.kr~~`~)ek (26)

And this is the intended Arnoldi factorization mentioned in (22), for V' is orthogonal, H'
is Hessenberg, vi -(V~m~Q)e~ -~Y(A)v1~II~Y(A)v1II and AV' - V'H' 1 Kw(A,vi).
These considerations lead to the following algorithm.

Algorithm 10 ( Sorenaon)

1. Choose v~ vrith norm 1,
set Hl,~ - (v1,Av~)
r-Av1-v1H

2. Perform k- 1 additiona( Arnoldi steps.
8. do j- 1, 2, ...:

tÍ IIrII c tol then atop
Perform p additional Arnoldi ateps.
Catculate p shifts pl, ..., pp.

Q - rk}p

do i - 1,...,p
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Calculate Q;R - (H - p;l)
H - QT HQ:
Q - QQ:

enddo
v - (VQ)ektl

r - Hkti,wv f Qrta~r
V - (VQ)(Ik,O)T
H - (Ir, 0)H(Ir, 0)T

enddo

5 Numerical experiments

This chapter gives some testresults of the Fortran code for the Iterative Arnoldi Algorithm
with Deflation. There are two approaches. In section 5.1 the qualitative behaviour is
displayed and compared to the behavionr of the Arnoldi Algorithm. The used matrices are
not very large and the programa have been run on a SUN workstation.
In section 5.2 the Deflation Algorithm is compared to an implementation of Sorenson's
Algorithm on some large sparse matrices. The CRAY-YMP of SARA, Amsterdam, was
used for these experiments.
The implementation of the Arnoldi Algorithm is denoted by ARN, that of Saad and Soren-
son by DEFL(m) and SOREN(k,p) respectively. m is the maximum dimension of the
Krylovspace, k is the number of wanted eigenvalues and p ia the number of shifts.

5.1 The behaviour of the algorithms of Saad and Arnoldi
In section 2.2 it was shown that the convergence of the Arnoldi Method depends on several
characteristics as:

~ separation of the eigenvalues,

~ condition of the eigenvector matrix,

~ choice of the startvector.

We get an idea of their influence from numerical experiments with sets ofmatrices in which
only one of them varies. This is doae in the sections 5.1.2, 5.1.3 and 5.1.4. The dimension
of the matricee was 100 and we were looking for the eigenvalue with largeat real part or,
in case this eigenvalue was not real, the two eigenvalues with largest teal part.

5.1.1 Notation

The matrices used in this section are defined below. n always denotes the dimension of
the matrix.
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CIRC(n, r) A block-diagonal matrix with spectrum {e`~~1~j- 2, ..., n -1} U{ret -}.

COM(n,e) A matrix with spectrum {1 tei},U{n~k - 1,...,n-2}.

DIA(n) - diag(1,"nl,...,n).

SEP(n,e) A diagonal matrix with n - 1 eigenvalues uniformly spread over the interval

[ ió, l- e] and an eigenvalue 1.

TRI(n, a) A tridiagonal matrix with 2 on the maín diagonal, a on the upper co-diagonal
and a-' on the lower co-diagonal.

U(n, nnz) A strict upper triangle matrix with (nnz - n) elements not equal to zero. The
positions of these elements are chosen random and their values are taken from a
uniform [0,1] distribution.

UPP(n,nnz,E) - diag(1, "~1,..., n) f e- U(n,nnz).

5.1.2 Separation of the eigenvaluee

It is known that a bad separation between the wanted and the unwanted eigenvalues makes
it dif6cult to find all the wanted eigenvalues (see theorem 4). In SEP(n, e) all eigenvalues
are real and the gap between the largest and the next eigenvalue is e. CIRC(n, r) has its
eigenvalues unifotmly spread over the unit circle in the complex plane except for the two
eigenvalues with latgest real part which are multiplied by r. If r grows, the separation of
these gets better. COM(n, e) has only two non real eigenvalues with have a distance 2e to
eachother. The effects of the gapsize on the convergence using these matrices are shown
in the figures 1 to 6. Especially the figures 3 and 4, for p C-0.75, are in conformity with
the largeness of e~'~ in case of uniform distribution of the spectrum on the unit circle (see
[2]).

5.1.3 Condition of the eigenvector matrix

We used matrices with constant spectrnm and a variable condition of the eigenvector
matrix. We measure this by the rate of non-normality {~l (see section 2.2). The first set of
matrices contains the tridiagonal matrices TRI(n,a). This matrix is eimilar to TRI(n,l),
which is symmetric with spectrum:

{4sin~(2~ ~ 1))~k - 1,...,n}

We have
l~i(TNI(n,a)) - ~a' - a-'~

But the condition of the eigenvector matrix is exponential in a.
The second set of matrices contains the upper triangle matrices UPP(n, nnz, e) with fixed
diagonal. The largest entry in its strict upper triangle part and the rate of non-normality
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conva6ence larsest Rilzvalue

numEer a( iteralions

Figure 1: The lo log of ihe absolute error in the largest Ritzvalue plotted against the number
of iterations wing ARN on the mafrix SEP(100,10-0) far the mentioned values of p.

convta{erce largeat Rilzvalue

number of iWationa

Figure 2: The lo log of the absolute errorin the largest Ritzvalue plotted against the number
of iteratioru using DEFL(10) on the matrix SEP(100,10-') for the mentioned values of p.
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Figure 3: The 101og of tlte abaolute error in the Ritzvalue with largeat real part plotted
againat the number of iteratiora uaing ARN on the matrix CIRC(100,1 ~ 10") for the
mentioned valuea of p.
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Fignre 4: The 'olog of the aóaolute error in the Ritzvalue vrith largeat real part plotted

against the numóer of itemtiona uaing DEFL(10) on the matrix CIRC(100,1 ~ 10') for the

mentioned valuea ofp.
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Figure 5: The lo log of the abaolute error in the Ritzvalue urith largeat real part plotted
against the numóer of iterntions uaing ARN on the matrix COM(100,10-n) for the men-
tioned values of p.
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Figure 6: The 101og of the absolute error in the Ritzvalue urith largesi real part plotted
againat the number of iterationa ueing DEFL(10) on the matriz COM(100,10-a) for the
mentioned valuea ofp.
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are of order e. Figures 7 to 10 contain the results using ARN aad DEFL. They reflect the
fact that the speed of convergence decreases with the increaaing non-normality.

5.1.4 Choice of the startvector

Until now the startvector (1,1, ... ,1)~f was uaed. To study the inflaence of the startvec-
tor we define the vectot in IIi~ of length one:

STVEC(n, e) -

1 0
1 0 e 1

lfe~ : } n-1 :

So E is the tangent of the angle between the first unitvector el and STVEC(n, e). When we
use the matrices DIA and UPP the eigenvector corresponding to the largest eigenvalue is el.
So STVEC(n,e) caa be varied from an eigenvector to a vector with almost no component
in the direction of the wanted eigenvector. The results of various choices of e can be found
in the figures 11 to 14. It seema that for small e the logarithm of the error depends linearly
on the logarithm of the angle.

5.2 Comparing the algorithms of Saad and Sorenson
The Deflation Algorithm was teated on some large, spatse matrices and compared to the
performance oí Sorenwn's Algorithm on the same matrices. The first set of matrices arises
from a partial differential eqnstion [14]. Consider the regioa fl -(0,1) x(0,1) C IR~ and
the convection-diffusion eqnation:

- Au f pu~ - u in tl, u~in - 0 (27)

Using a five-point diacretisation on a rectaagular ! x l grid gives rise to the matrix of
dimension n - l~:

M(!, P) -I

DIF(I,P) - -1 M(I,P) ~'.

where the I x l matriz M(!,p) i~ given by:

4 a

M(!,P) - ~ 4

. . a
~ 4

and

-I M(!, P)

( a--lfsl~
Sl A--1-s(~~)

0 1
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Figure 7: The l o log of the abaolute error in the largeat Ritzvalue plotted against the number
of iterationa uaing ARN on the matrix TRI(100,1 -F 10-0) for the mentioned values of p.
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of p.
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Figure 9: The 10 log of tht abaolute error in the largeat Ritzvalue plotted againat the number
of iterationa uaing ARN on the matrix UPP(100,400,10-P) for the mentioned valuea of p.
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Figure 10: Tht lo log of the abaolute errorin the largeat Ritzvalue plotted againat the number

oJ iterntiona using DEFL(10) on tlte matrix UPP(100, 400,10-D) for the mentioned valuea
of p.
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Fióure 11: The'o l06 of the absolute errorin the IargeatRitzvalue pbtted againat the number

of iterations vaing ARN on the matrix DIA(100) and atartvector STVEC(100, lOP) for the
mentioned values of p.
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Fignre 12: The'" log of tlte abaolute error in the largest Ritzvaluc plotted againat the number
of iterations nring DEFL(10) on the matrix DIA(100) and atartvector STVEC(100, lOP) for
the mentioned oalYes ofp.
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Figute 13: The'o los of the absolate error in the largest Ritzvalue plotted agaisut the number
of iteratione wing ARN on the matrix UPP(100, 400,0.1) and atartvector STVEC(100,1(W)
for the mentioned vaAtes of p.
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Figure 14: The lo loa of the abaolute error in the largeat Ritznalue pbtted agairut the
number of iteratiwu uainy DEFL(10) on tht matrix UPP(100,400,0.1) and atartvector
STVEC(100,10~) for the mentioaed valuea of p.
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Fianre 15: 77ie grid of the Markov ehain problem.

We have
pl(DIF(l,P)) - 1 tpl

The second set of mstrica represents the transition matricea of Markov chains [14]. These
chaina describe random walks on the órid:

{(i,j)EHd~~OGi,jCl,i-}jcl}

Sce alao fióure 15. In a point (i, j) a transition un occur to the points (i f 1, j), (i, j~- 1),
(i - 1, j), (i,j- 1), the first two of them with probsbility ~ and the laat two with
probability '~ . This last probability is donbled ií i- 0 or j- 0. We denote the
correspondiaó tranrition matriz of dimension n- 2(l -f- 1)(1 f 2) by MARK(l).
The tsbles 1 to 4 contain reanlts of rnanin6 DEFL and SOREN on the matrices DIF and
MARK. "mnlt" is the nnmber of caW of the matrix-vector mnltiplicstion rontine and the
time is the total rnnnina time of the alóorithms in seconds. In table 1 DEFL and SOREN
are compared nsinó DIF(l,p) for several values of p. In tsble 2 DEFL and SOREN are
compared usiaa MARK(1) for several valnes of l. In table 3 DEFL(m) is compared for
m- 10, 20, 30, 40 nsins DIF(l, p) for several valnes of p. In table 4 DEFL(m) is compared
for m- 10, 20, 30, 40 nsinó MARK(l) for several valnes of l.

6 Conclusions
In section 2.2 we ~nsidered three characteriatics in the error estimates for the computed
eigenvalue appro~rimations. The meanins oí their role waa checked experimentally snd is
described in chspter 5. Onr experiments affirm in s qnalitive sense the dependence of the
converóence on these characteristiu.
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DEFL 10 DEFL(20) SOREN(1,9) SOR.EN(1,19)
! p mult time mult time mult time mult time
55 0. 431 3.760 281 2.908 838 5.397 457 3.814
55 0.0001 431 3.810 281 2.965 838 5.449 457 3.905
55 0.001 511 4.302 341 3.362 838 5.451 457 3.886
55 0.01 621 4.979 381 3.635 838 5.450 457 3.911
55 0.1 741 5.717 441 4.022 838 5.451 457 3.914
55 1. 851 8.394 481 4.273 838 5.46B 457 3.881
55 10. 701 5.473 421 3.88? 532 3.874 418 3.677

Table 1: The performance of DEFL and SOREN on DIF(l, p). The eigenvalue vrith largest
real parl ia wanted and the tolerante ia 10-0.

DEFL 10 DEFL 20 SOREN 1,9 SOREN 1,19
l mult time mnlt time mnlt time mnlt time

45 111 0.588 41 0.452 103? 2.540 342 1.466
50 11 0.474 21 0.503 3194 7.779 855 3.192
55 4341 13.216 41 0.667 6374 17.251 457 2.283
60 21 0.716 21 0.719 4032 12.729 550 2.919
65 91 1.114 41 0.932 3338 12.023 586 3.359
70 31 1.013 41 1.070 9285 35.842 1023 5.809
75 21 1.106 21 1.122 35261 149.000 62fi 4.323

Table 2: The performance ofDEFL and SOREN on MARK(l). The eigenvaluc vrith largest
real part is manted and thc tolerance is 10'0.
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DEFL 10 DEFL(20 DEFL 30) DEFL(40)
! p mult time mult time mnlt time mult time

100 0. 791 19.892 461 13.333 361 11.537 361 11.817
100 0.0001 6201 128.730 3021 66.155 1951 45.913 1201 30.649
100 0.001 6601 136.785 3481 75.765 2251 52.400 601 17.262
100 0.01 7761 160.219 3361 73.516 2341 54.166 1481 36.887
100 0.1 7641 157.924 3641 79.247 871 22.602 761 20.833
100 1. 7741 159.952 3601 78.568 931 23.968 ?21 19.998
100 10. 2051 45.298 901 22.589 691 18.886 1161 29.895
100 100. 2721 60.480 2821 62.792 4111 93.982 5201 121.638

Table 3: Thc performance of DEFL on DIF(l, p). The eigenvalue with largeat rea! part is
wanted and the toleronee ia 10-0.

DEFL 10 DEFL 20 DEFL 30 DEFL 40
1 mult time mult time mult time mult time

100 11 1.886 21 1.970 31 2.075 41 2.192
105 131 3.279 881 9.005 691 9.434 121 3.320
110 51 2.721 41 2.602 61 2.858 41 2.646
115 41 2.841 41 2.842 31 2.733 41 2.889
120 31 2.968 41 3.090 31 2.973 41 3.134
125 11 2.914 21 3.060 31 3.225 41 3.401
130 81 4.216 101 4.561 61 3.975 81 4.361

Table 4: The performance of DEFL on MARK(l). The eigenvalue with largeat rea! part ia
wanted and the tolerance ia 10-0.
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Compared to the symmetric eigenvalue problem the nonsymmetric case introducee two
additional sources of delsy in the converflence.
Firstly the appearance of nonreal eigenvaluea. In the case of the matrix CIRC with almost
uniform distribution of its eigenvaluea on the unit circle we see slow convergence despite
the seperation being ~~ and the normality of that matriz. In the case of a symmetric
matrix with a uniform distribntion on the real axis aad comparable seperation the Arnoldi
(Lancaos) Method gives a much better performance.
Secondly the occurnace of nonnormality of the matrix. In case of the testmatrix TRI,
the numerical results demonstrate the lsrge delay in convergence due to their departure
from normality. This already happens with valnes of a very close to oae. Recall that the
condition number of the eigenvector matrix is ezponential in a and thus is very sensitive
to changea ia this patametet.
Saad's Deflation Algorithm was compared with thst of Sorenson in section 5.2. The number
of experiments is too small to get a definitive answer on the question which of theae
algorithms ia superior. In most of our experiments the Deflation Algorithm needs a little
less time thaa Sorenson's Method, but further experiments are necessary. Moreover we
lsck the theoretical insight in the easential properties of these algorithms.

A Sparse matrix storage

An implementation of one of the algorithms mentioned in this paper requires an efficient
storage of the matrix A. Let nnz be the nnmber of nonsero entries of A. There ate several
storage possibilitiea, bnt we have chosen the compresaed spatse row format. This means
that the nonseros of A are stored rowwise in a vector a of length nnz. Usually the diagonal
element of s row is the first numbet stored of that row. The vector ja of the same length
contains the corresponding indices to the columns of A. The indices to the heads of the
rows are stored in the }'irst n pwitions of the vector ia of length n-~ 1 and we define
ia(n f 1) - nnz t 1. So a(ia(i)) to a(ia(i ~ 1) - 1) contain the nonseros of the ith row of
A.
If for example the matrix is:

11 12 0 14 0
21 22 23 0 0

A- 0 32 33 0 0
0 0 0 44 0
51 52 0 0 55

then its compreased sparse row format is:

a - (11,12,14,22,21,23,33,32,44,55,51,52)
ia - (1,4,7,9,10,13)
ja -(1, 2, 4, 2,1, 3, 3, 2, 4, 5,1, 2)
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B Implementation of the matrix-vector multiplica-
t ion

One of the most importsnt implementstional problema concerns the calculation of y- Ax
for a given vector z. Several Fortran routines have been written and tested on the CRAY-
YMP. Four versions are discussed here and their performance times are given. They are
denoted by AMUX and a index number. The CRAY vectorizes loops if possible and in
the fragments below it is indicsted which loops are vectorized (V) and which ones remain
8calar (.S).

AMUX1

5----------------------c do 100 i~ l,n
S t ~ 0.0
S V--------------------c do 99 k~ia(i), ia(itl)-1
S V t a t t a(k)iz(ja(k))
S V--------------------~ 99 eontinno
s y(i) - t
s----------------------~ loo eontinue

A is stored in compressed sparse row format, so the first thought was to have a double
loop in which the outer one indicates the row i and the inner one walks along that row
from ia(i) to ia(i f 1) - 1. The code above shows that the inaer loop has beea vectorized.
But the innet loop is very small (the number of aonaeros on the row) so the speed-up of
the vectorization is rather small.

AMUX2

s----------------------c
S
S
S
S
S
S
5----------------------~ 100

nnz ~ ia(n{1)-1
t ~ a(1)~z(ja(1))
i ~z
do 100 k e 2,nnz

ií (k.oq.ia(i)) than
y(i-1) - t
t ~ 0.0
i ~ itl

andii
t ~ t ? a(k)~z(ja(k))

contfnno
y(a) ~ t

The second version haa only oae loop, with k raaning over the array ia. At each passsge
to a new row, detected by an if etatement, there is aa iaterruption for the necessary
adjustments. AMUX2 ~hows thst this if-statement waa an obstacle for the vectori8ation
of the loop.
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AMUX3

Y----------------------c
v
V----------------------~ SO
5----------------------c
S
S Y--------------------c
S V
S v--------------------i 99
S
5----------------------~ 100

nnz ~ ia(ntl)-1
do 10 k~l,nnz

tamp(k) ~ a(k)~z(ja(k))
continna
do 100 i ~ l,a

t ~ 0.0
do 99 k~ia(i), in(i41)-1

t~ttt~p(k)
eontinna
y(i) ~ t

eontinno

We saw that the vectoriaation of AMUXl was not very efficient. In AMUX3 the idea was
to relief the inner loop by doing the multiplicatioas in advance in a large vectorizable loop.
In the othet loops only additions occur. Therefore an extra array temp is introduced which
contains the prodncts of a(k) aad z(ja(k)).

AMUX4

naa ~ 1a(n~i)-1
V----------------------c do 10 k~l.nnz
V tmp(k) ~ a(k)~z(ja(k))
Y----------------------) 10 contiana

t ~ tasp(1)
i ~ 2

5----------------------c do S00 k~ 2,nnz
S ií (k.eq.ia(i)) thaa
S y(i-1) ~ t
S t ~ 0.0
S i ~ i;l
S aadif
S t ~ t i tastp(k)
5----------------------~ 100 eoatinno

y(n) ~ t

The same ides is applied to AMUX2 and gives the version AMUX4.

TIMES. To compare the performina timea of these four routines they have been called
a hundred times each with A- UPP(1000,4000,0.1). The flowtrace facility of the CR.AY
delivered the resnlts in the tsble below.

Flovtrace Statistica áeport
Shoving flontinos Sortad by CPII Tima (Doacaading)

(CPD Tisas er~ Shovn ia Saeonds)
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Rontino Naaw Tot Tima : Calla ~vg Timo

~MUI1 1.8bE-O1 100 1.8bE-03 rrrr
1MUI3 1.78E-01 100 1.78E-03 rrr
IMUI2 1.62E-01 100 1.62E-03 rrr
1KUZ4 9.77E-02 100 9.77fi-04 rr
L~3:~::a.z-::aaaaz::..:.a::::.~::.n~::.:~::

The performance of AMUX4 is the best, and aiace similar reaulte were obtained uaing other
matrices, this became the final version of the rontine.
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