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Abstract

The Arnoldi Algorithm is a well known method for the calculation of eigenvalues.
A short overview is given of some of its variants and some error estimates. Several
variants have been tested in a series of numerical experiments of which the results
are included. The purpose of these experiments is to show the dependence of the
convergence of these algorithms on some characteristics of the matrices involved.

1 Introduction

Calculating eigenvalues of a matrix is an important problem in many areas of research.
When small matrices are involved the QR algorithm is the best choice. But as the com-
puters grew more powerful they were able to solve larger problems, so the size of the used
matrices has been increasing during the last few decades. For instance matrices of high
order arise in the discretization of partial differential equations. Chatelin [2] calls a matrix
large when it is far cheaper to calculate only a few eigenvalues than the complete spectrum.
For large matrices the QR algorithm is too slow (the time is cubic in the dimension of the
matrix) and moreover the method destroys the sparsity of the matrix. So other algorithms
were required. In the Krylovspace methods of Lanczos and Arnoldi the matrix occurs only
in matrix-vector multiplications.

Historical survey. In the early fifties Lanczos [9] and Arnoldi [1] described iterative
methods based on Krylov subspace iteration which produce approximations of eigenvalues
of a matrix. In [12] Paige pointed out the interest of the iterative use of the Lanczos
Method for the computation of extreme eigenvalues. Parlett’s “The Symmetric Eigenvalue
Problem” [13] gives an analysis of many algorithms, especially the Krylov space methods.
In [8] Kaniel uses Chebychev polynomials to achieve as first errorbounds; these bounds
were improved by Saad [14, 15]. The pioneering work of Saad has caused a revival of the
Arnoldi Method. Polynomial filtering on base of Chebychev polynomials for nonsymmetric
problems are applicable since Manteuffel [10, 11]. Their use for the nonsymmetric eigen-
problem is analysed in [16], [6] and in [7]. Golub and van Loan [4] describe the state of
the art in numerical linear algebra, inclusive Krylov space techniques, Chatelin [2] more

1This paper is the result of the project “The Arnoldi Method: Analysis and Numerical Results”
performed under the auspices and support of NCF/Cray Research University Grant, under contract
CRG 92.20. The original version of this paper as was send to NCF contained a Fortran program which
implements the Iterative Arnoldi Algorithm with Deflation.



specificly the algebraic eigenproblem. Block Arnoldi algorithms have been analysed and de-
veloped in [19, 20]. Sorenson [21] combines the Arnoldi Algorithm and the QR method in a
filtering technique for the construction of new startvectors to perform the Arnoldi Method
in an iterative way. The Implicit Schur Deflation technique of Saad [18], as Sorenson’s
Algorithm, improves the facility to compute several eigenvalues of large sparse nonsym-
metric matrices with Arnoldi type iterations. The Block Arnoldi Method [19, 20] seems to
be promising for the same objective. Finally, Saad’s monograph [18] gives an overview of
the many aspects and problems related with the computation of the eigenvalues of large
(sparse) nonsymmetric matrices.

About this paper. In this paper we are concerned with the Arnoldi Method and two of
its variants. These methods sequentially reduce the given matrix to a Hessenberg form by a
projection on Krylov spaces. In section 2 some basic theory about the Arnoldi Algorithm
is presented. Section 3 discusses the Iterative Arnoldi Algorithm with Schur deflation.
Section 4 presents Sorenson’s Iterative Arnoldi Algorithm in which the new startvectors
are obtained by a QR filtering process. The results of numerical experiments can be found
in section 5. In the examples the attention is directed to three characteristics of the
convergence in the Arnoldi process: separation of eigenvalues, condition of the eigenvector
matrix and the choice of the startvector. The appendices discuss two implementational
problems: the storage of the matrix and the multiplication of a vector by the matrix.

Notation. The following notation is used in this paper. The matrix of which the eigenva-
lues are to be calculated is called A. This matrix is real, has dimension n and can be dia-
gonalized: AU = UA, with U = (u,...,%n), ||u;]| = 1 for all < and A = diag(A,...,An).
K;(A,v) denotes the j-th Krylov space with respect to A and vector v and is defined by
Kj(A,v) = span{v, Av, A%, ..., A" 'v}. V9 is a matrix whose columns form an orthonor-
mal basis for K;(A,v) such that HU) = VT AVU) js a Hessenbergmatrix of dimension j.
HOy; = 8y;, ||yi]| =1 for i = 1,...,5. When we write “norm” or | - || we mean || - ||2.

2 Arnoldi’s Algorithm and variants

2.1 Arnoldi’s Algorithm

To obtain approximations of the eigenvalues of A we can restrict this matrix to a subspace
of relative low dimension and calculate its eigenvalues. We get an iterative method if we
add a dimension to the subspace in each iteration. When the Krylov subspaces K;(A,v;)
are used, we get the Arnoldi Algorithm. Let us assume that Kj;(A,v;) has dimension j,
then vy, Avy, A%v;,..., A" v, are independent and we can use the Gram-Schmidt orthogo-
nalization method to obtain an orthonormal basis for this subspace: v;,v3,...,v;. Let H()
denote the restriction of A to Kj(A,v;) with that basis and V{9 the orthogonal matrix
whose columns are the basisvectors. So:

AV _ v EG) | K;(A,v,) (1)



or:

VT gy l) = g (2)

Ifi > j+1 then v L Kji(4,v1) so HY = (v;, Av;) = 0. This shows that H®) is a
Hessenbergmatrix and also that:

AV = yO gO) 4 ,.(i)eg‘ (3)

where () | K;(A,v:) and e; is the j-th unit vector of IR7. We call this an Arnoldi
factorization of A. The j eigenvalues and -vectors of H'%) are given by:

B9y =6y  (i=1,...,5) (4)

These can be computed efficiently because H() is a Hessenberg matrix. We can look
upon the ;s as approximations of eigenvalues of A in some sense (more about that later).
Similarly the vectors VUy; can be regarded as approximations of eigenvectors of A. We
call 6; a Ritzvalue and V9y; a Ritzvector of A with respect to K;(A4,v:).

All this leads to the following algorithm that generates the matrices H(?) and V{9,

Algorithm 1 (Arnoldi)

1. Choose v, of norm one.
2 d6j=1,23,...:

w = Av;

dos= Yyuuayd's
H;; = (w,%)

enddo

w=w-— 2{:! H;J‘U,‘
Hjp 5 = |||
viy1 = w/Hj4,; .
Calculate the eigenvalues 6,,...,60; of H.
If the “wanted” eigenvalues have “converged” then stop.
enddo

The terms “wanted” and “converged” are still vague, but section 2.3 tries to make them
more precise. '

For reasons of numerical stability it is better to use the (in exact arithmetic equivalent)
modified Gram-Schmidt method, which gives this alternative algorithm.

Algorithm 2 (Arnoldi, using modified Gram-Schmidt)

1. Choose v, of norm one.
2 doi=123,..1
w=Av,~
dod= Y59 s



H;; = (w,w)
w=w- H,‘J‘U,’
enddo

Hjyy,5 = |||l

Vi1 = w/Hjp 5

Calculate the eigenvalues 0y,...,0; of H.

If the “wanted” eigenvalues have “converged” then stop.
enddo

2.2 On the meaning of some error estimates

Let 7; be the orthogonal projection on K;(A,v,), P; the spectral projection on the eigen-
space corresponding with A;. A relevant theorem to understand the Arnoldi Algorithm is
the following.

Theorem 3 Assume Py, # 0. C(U) = ||U|| - |[U™!| denotes the condition number of U
and P} is the set of polynomials of degree j which take the value one in z. Then

10 = xgvl < KL @) min oo
Proof: See (2, p.181]. |
With the notation ESJ') . e i) -
peP;i, M
theorem 3 reads pe I = Pywa| " .
sin ¢; =W'C(U)'€i (6)

where ¢,(j )is the angle between eigenvector u; and Krylovspace K;(4,v,). In (6) mﬁi‘)ﬁﬂl

indicates the influence of the angle between startvector v; and eigenvector u; on 4),(" ). The
following theorem indicates the influence of the djstribution of the eigenvalues on the angle

¢(J)_
Theorem 4 There ezist j eigenvalues say Ay, s, ..., each different from A; such that
j . - X
(4) 4 i y-1
& =( ——=
,,E=:l ,L],, A=A
Proof: See [2, p.191]. [ ]

Chatelin [2] proves the existence of a constant c such that

I — 6] < ef|(T — ;)i (7



where ¢ depends on C(U). This emphasizes the role of the condition of the eigenvalue
problem for the convergence of the Ritzvalues. On account of these error estimates our
numerical experiments are concentrated on the effects of

o separation of the eigenvalues,
e condition of the eigenvector matrix,
e choice of the startvector.

The condition of the eigenvector matrix is related to the rate of non-normality of A.
C(U) > 1 with equality if and only if A is normal. The following functions can be used to
describe the non-normality of A.

o m(4) = [[AAT - ATA|

o u2(A) = (IlAlF — 3 M)

In general the number C(U) can not be computed efficiently, but 4, and, in case of triangu-
lar matrices, u, can and they give indications concerning the condition of the eigenproblem
(see [3]).

2.3 Implementational problems

In the Arnoldi Algorithm some choices have to be made by the user. First a startvector
must be supplied. When the eigenvalues of H() have been calculated it must be recognized
whether a Ritzvalue is interesting or not. And it has to be decided whether a Ritzvalue is
a good enough approximation of an eigenvalue. These problems will be discussed below.

2.3.1 Startvector

The Krylov spaces depend on two parameters: the matrix A and the startvector »;. For
a given matrix we have all freedom to choose v;, but it is obvious that some choices are
better than others. If v; has a large component in the direction of an eigenvector, then
one of the Ritzvalues approximates the corresponding eigenvalue rather good. Perhaps we
know some characteristics of the eigensystem of A that can lead to a good choice of vy,
but in general we do not have such information, so the best thing we can do is take a
random vector, or a vector with all entries equal, or whatever we want. Notice that after
a number of iterations we do have some information about the eigensystem of A (apart
from the question how reliable this information is). In the algorithms that are discussed
hereafter we have to choose a startvector repeatedly and then it becomes possible to make
more sensible choices for the startvector.



2.3.2 Wanted eigenvalues

Another problem is on which Ritzvalues we should focus. We do not intend to compute all
eigenvalues, so we must have a sort of description of the eigenvalues we are interested in.
This can be something of the form: “the ten eigenvalues with largest real part”, or “the
four eigenvalues of largest absolute value”. In general we can say: “the k eigenvalues that
maximize the function f”. Selecting the “wanted” Ritzvalues is the same as selecting the
k Ritzvalues that maximize the function f.

2.3.3 Stopping criterion

For iterative algorithms we need a stopping criterion. We would like to stop if our approxi-
mation has some predescribed relative accuracy, but as a consequence of lack of knowledge
of the true solution this accuracy can be measured only with an indirect criterion. It is
important to know the relationship between this criterion and the real error in the approx-
imation to understand the reliability of the former.

In our case we have a computed Ritzvalue 6; and we would like to know min, |Ax — 6;]. A
criterion is suggested by the following theorem.

Theorem 5 Let u € IR and z € R™ with ||z|| = 1, then min; |X; — p| < C(U) - || Az — pz||
where C(U) = ||U|| - |[U?|| is the condition number of U.

Proof:
1 = |zl = |(A—pI)"(A-pl)z|
< (A= pD)| - I(A - pD)z|| = |UA = pI)7U| - I(A = p)z||
< U IA =g D)7 U - (A = pD)z|| = m -C(U) - || Az — p=||

If z; is the Ritzvector corresponding to #; then during the execution of the algorithm we
can calculate ||Az; — 6;z;||, which is called the residual norm and is denoted by p;. If
this number is smaller than a specified tolerance then the Ritzvalue is accepted as an
approximation of an eigenvalue of A. Unfortunately we know nothing about the condition
number C(U), so we do not know the reliability of this criterion. It is possible that in case
of a large C(U) the Ritzvalue is accepted while it is still a bad approximation. But so far
a better criterion is not known, so we will use it in the algorithms.

It is not necessary to compute z; explicitly: z; is a Ritzvector, so z; = V(y; and in (3)
we had AVU) = VO HG) 4 (el which leads to:

Azi — 6,z = AVOly, — GV Dy, = VRO, 4 1 DeTy, - Vg, = rDeTy;  (8)
Hence: .
pi = 1Az — bzl = 1P - lefwl = Hy ;- 1w (9)
So we only have to calculate y; and to perform one simple calculation to obtain the residual
norm p;.



2.4 The Block Arnoldi Algorithm

A variant of the Arnoldi Algonthm is the Block Arnoldi Algorithm. There one considers
a “generalized Krylov space”:

K;(A,vy,... ,vx) = span{vy,..., v, Avy,..., Av,... ,Aj_lvl, 33 .,Aj_lvh} (10)

So we start with k vectors and in each iteration step the dimension of the Krylov space
increases by k. The matrix H() has a block Hessenberg structure, which means that H. (’

1sakkaatnxandH(’) =0if1; >+ 1.

1,82
Algorithm 6 (Block Arnoldi)

1. Choose an orthogonal n X k matriz V;.
2. dog=.1,2,3,..5

W = AV;
dot=1;::553%

H;; = WTV;
enddo

W=W-XL, B,V

Calculate a QR decomposition of W: W = QR.
Hj ;=R

Vit = Q

Calculate the eigenvalues of H.

If the wanted eig lues have c rged then stop.

enddo

In the algorithm we take for H. ,,_1 j an upper triangular matrix, so H () has k subdiagonals
below the main diagonal.

2.5 Iterative Arnoldi Algorithm

A disadvantage of the Arnoldi Algorithm is the storage requirements for the basis of the
computed Krylov space. If A is symmetric, H%) is also symmetric and thus a tridiagonal
matrix. Then the algorithm reduces to the Lanczos algorithm and only three basis vectors
have to be stored at each moment. In the general case the storage requirements grow in
time. Since the number of iterations cannot be predicted, a priori the space requirements
are unknown. Generally the user has a limited memory capacity and does not want the
algorithm to use more space.

Let us assume that m is the maximum dimension of the Krylov space one allows. Consider
the situation in which we are looking for one eigenvalue );. After m iterations of the
Arnoldi algorithm we decide if we accept the wanted Ritzvalue 6. If we do not, we repeat
this algorithm with a “better” startvector. This means we need a new startvector v; such
that.iél—i'l‘r-u is smaller than it was before (see theorem 3). Therefore it seems reasonable



to choose the Ritzvector VUy corresponding to 6 as the new startvector, hoping it is a
better approximation to u; than the previous choice.

Algorithm 7 (Iterative Arnoldi)

1. Choose tolerance tol.
Choose v, of norm one.
8. dojg=1;eeym
w= Av,-
dod=1y.55:9 %
H;; = (w,v)
enddo
w=w - E.l— H,‘ GV
Hjs; = |wl|
vipr = w/Hj,;
enddo
8. Calculate the wanted Ritzvalue 6;
and corresponding Ritzvector y; of H.
4. If pi < tol then stop
else take v; = Vy; and go to 2.

There is a complication. When the wanted Ritzvalue is not real, the corresponding eigen-
vector also has an imaginary part. Restarting using this vector means the introduction of
complex arithmetic. We avoid this by using Block Arnoldi.
Suppose we have:

Au:;\u,A=A,+v\§,u=u,+m.- (11)

then:
Aler, ) = (Aur — Mg, Nty + A1) = (U, %) ( _A:\ :\\" ) (12)

So A restricted to the space spanned by u, and u; has the eigenvalues A and A. This
suggests the following strategy: instead of restarting with a non-real Ritzvector z, +1iz; we
use Block Arnoldi with blocksize two and V; = (z,,z;). The number of iterations becomes
|Z]. If the wanted Ritzvector is real we return to blocksize one.

3 Iterative Arnoldi Algorithm with deflation

Algorithm 7 computes only one eigenvalue, so if we want more eigenvalues the method
has to be changed. One possibility is constructing the new startvector by taking a linear
combination of wanted Ritzvectors instead of just one Ritzvector, but it is difficult to take
this combination in a systematic way and achieve convergence for all wanted Ritzvalues.
Another possibility is performing the Iterative Arnoldi Algorithm until the first wanted
eigenvalue has been accepted, and then applying the technique of deflation to obtain the



second one, and so on. Saad [18] has worked this out. When k — 1 Ritzvalues have been
accepted, the corresponding Ritzvectors span a nearly invariant space. We can orthonor-
malize these vectors and thus obtain vy,...,vs_; which can be regarded as approximations
of Schurvectors. These vectors are put in the first k — 1 columns of V(™) and are not
changed during the rest of the algorithm. This subspace is completed to a subspace of
dimension m by generating a Krylov-space of dimension m — k + 1 in its orthogonal com-
plement. So, we choose a startvector v, perpendicular to vq,...,v;_; and we consider the
“modified Krylov space”:

span{vy, ..., Vk—1,Vk, AV, ..., A" *y.} (13)

Orthonormalizing the above vectors give the columns of the matrix V(™). If the first k — 1
vectors span an invariant subspace then for j < k:

Av; € span{vy,...,v;} (14)

which implies that Hfrl) ; = 0for j < k. Since the subspace we get is not exactly invariant

we put zeros in Hg‘h explicitly if the k-th eigenvalue has been accepted. So if, for example,

two eigenvalues have been accepted and m = 6, H(™) has the following structure:

™ = (15)

We get the following algorithm.

Algorithm 8 (Saad)

1. Choose number of wanted eigenvalues nev and tolerance tol.
Choose v, of norm one.

k=1
2 doj=ik;:.i;ms
w = Av;
do 1= Lisussd's
Hj = (w,v)
enddo

w=w— Eg.:l H.-‘jv.-
Hj; = [l
vip = w/Hjp;
enddo
9. Calculate eigenvalues of H: 6y,...,0p.
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4. Calculate eigenvector y, corresponding to 0, : Hyi = Oiys.
e =Vu
Orthonormalize U w.r.t. vy,...,ve_1 and put the result in v,.
5. Calculate the residual pp = Hppyym - |e,7,;y,,|.
if pr < tol then
Accept 0, as eigenvalue of A.

if k = nev then
stop
else
dos=l,... k¢t
H;p = (Av,v:)
enddo
Hh+1,h =0
k=k+1
Calculate eigenvector y, corresponding to 6, : Hyi = Orys.
e = Vi
Orthonormalize ¥ w.r.t. vq,...,v,_1 and put the result in v,.
endif
endif
go to 2.

This algorithm can be adapted to the case of complex eigenvalues in the same way as
described in section 2.5.

4 Sorenson’s Algorithm
Suppose we have performed m Arnoldi steps resulting in the Arnoldi factorization:
AV = ym gm) 4 pm) T (16)

and we want to restart. Sorenson [21] describes an algorithm for generating a new startvec-
tor in an implicit way instead of explicitly. The next startvector is a linear combination of
wanted Ritzvectors, constructed by filtering out the unwanted Ritzvectors.

Assume we have m Ritzvalues, k of them are “wanted” and p = m — k are “unwanted”.
The latter are denoted fi41,...,0k4p. Then define the filterpolynomial:

P
¥(t) = JI(t — Onss) (17)
e
and take for the new startvector:

vy = ¥(A)vy/[|¥(A)va| (18)

This has the desired effect as is shown by the following theorem.
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Theorem 9 If H™y; = ;y; and z; = V("‘)yj forj =1,...,m and v] defined as in (18)
then v} = Zgzl £iz; for certain §;,. .., .

Proof: Let v; = 37, {;z; and let II denote the orthogonal projection on K,,(A4,v;). Now
Y(A)v; € Kin(A,v1), s0 ¥(A)v; = Y(ILA)v;.

[e(A)uillv; = $(MA)Y &z; = 3 &E(MA)V™y;
I=1 g==1
m m k
= Y EVMU(HM)y; = 3 LEVU(6;)y; = Y %(85)z;
i=1 i=1 j=1
|
Now observe that:
Y(A)v,..., A1 ¥(A)v, € Kn(4,v1) (19)
So:
K.(A, v{) (g Km(A, 1)1) (20)

Let V' be the Arnoldi basis of Ki(A,v]). We construct V’ from the existing basis by
multiplication with a convenient matrix:

Q' is an orthogonal m X k matrix. If Q' can be efficiently constructed, it is no longer neces-
sary to restart explicitly with v], but we can immediatly update the Arnoldi factorization:

AV' =V'H' +r'e] (22)

where V' is n X k and V’e; = v]. Sorenson constructs Q' by using the QR-factorization of
(H™ — uI) (» € R). So he obtained from the Arnoldi factorization:

(A- pI)V("‘) = V("')(H("‘) ! r("')e,’,‘,

= V("‘)QR + r("‘)eﬁ
(A—pI)(VI™Q) = (VI™Q)(RQ)+r™elQ
AVMQ) = (VIMQ)(RQ +pl) +1™MelQ
(VIQ)QTH™Q) +r™elQ (28)

Note that:
e Since Q is a Hessenberg matrix, QT H(™Q = (RQ + pI) is also one.
L] (V("‘)Q)e1 = V("‘)QRel/Rm = (A = ;tI)vl/Rm
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This last property is very attractive when we think of ¥. We repeat the procedure described
above for g = Biy1,...,0m, setting Hy = H(™ and producing in step j the matrices
QJ'» Rj ’ Hi:

QiR; = (Hj-x — buysl)
H; Q,"'H i-1Q;

Take Q = @1Q3 - - - @p, then we have:

e In each step j Q; is a Hessenbergmatrix, so Hj; is also a Hessenbergmatrix and Q has
p subdiagonals below the main diagional.

o A(V™IQ) = (VI™Q)QTH™Q) +r™eLQ
o (VIQ)er = ¥(A)us/|[ (A

Decompose:
vimQ = (v',V) (24)
= _ H M
QH™Q = (ﬂe,ez ﬂ) (25)

with V' and H’' having k columns, then:
AV' = V'H'+ Ve +r™elQ ( ’; )

V'H' + B(Ver)el +r™el Qmn
V'H' + (BVes + Qumar™)el (26)

And this is the intended Arnoldi factorization mentioned in (22), for V' is orthogonal, H'
is Hessenberg, v} = (V{™Q)e; = ¥(A)v,/||¥(A)vs| and AV’ — V'H' L Ki(A,v}).
These considerations lead to the following algorithm.

Algorithm 10 (Sorenson)

1. Choose vy with norm 1,
set Hyy = (v, Avy)

r= Av, — v H
2. Perform k — 1 additional Arnoldi steps.
8 doi=2%20:%

if ||7|| < tol then stop

Perform p additional Arnoldi steps.
Calculate p shifts py,...,pp.

Q =Ikp

dois.= L,y @
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Calculate Q;:R = (H — p;1)

H=QTHQ;

Q=QQ:
enddo
v=(VQ)ern

T = Hip14v + Quipar

V = (VQ)(I,0)"

H = (It,0)H(I,0)
enddo

5 Numerical experiments

This chapter gives some testresults of the Fortran code for the Iterative Arnoldi Algorithm
with Deflation. There are two approaches. In section 5.1 the qualitative behaviour is
displayed and compared to the behaviour of the Arnoldi Algorithm. The used matrices are
not very large and the programs have been run on a SUN workstation.

In section 5.2 the Deflation Algorithm is compared to an implementation of Sorenson’s
Algorithm on some large sparse matrices. The CRAY-YMP of SARA, Amsterdam, was
used for these experiments.

The implementation of the Arnoldi Algorithm is denoted by ARN, that of Saad and Soren-
son by DEFL(m) and SOREN(k,p) respectively. m is the maximum dimension of the
Krylovspace, k is the number of wanted eigenvalues and p is the number of shifts.

5.1 The behaviour of the algorithms of Saad and Arnoldi

In section 2.2 it was shown that the convergence of the Arnoldi Method depends on several
characteristics as:

e separation of the eigenvalues,
e condition of the eigenvector matrix,
e choice of the startvector.

We get an idea of their influence from numerical experiments with sets of matrices in which
only one of them varies. This is done in the sections 5.1.2, 5.1.3 and 5.1.4. The dimension
of the matrices was 100 and we were looking for the eigenvalue with largest real part or,
in case this eigenvalue was not real, the two eigenvalues with largest real part.

5.1.1 Notation

The matrices used in this section are defined below. n always denotes the dimension of
the matrix.
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CIRC(n,r) A block-diagonal matrix with spectrum {e‘*(y:_‘)lj =2,...,n—1}U{ret"}.
COM(n,€) A matrix with spectrum {1 +ei},U{%|k=1,...,n —2}.
DIA(n) = diag(l,22,...,2).

SEP(n,e) A diagonal matrix with n — 1 eigenvalues uniformly spread over the interval
(35,1 — €] and an eigenvalue 1.

TRI(n,a) A tridiagonal matrix with 2 on the main diagonal, a on the upper co-diagonal
and a~! on the lower co-diagonal.

U(n,nnz) A strict upper triangle matrix with (nnz — n) elements not equal to zero. The
positions of these elements are chosen random and their values are taken from a
uniform [0, 1] distribution.

UPP(n,nnz,¢c) = diag(l,22,...,1) + ¢ U(n,nnz).

5.1.2 Separation of the eigenvalues

It is known that a bad separation between the wanted and the unwanted eigenvalues makes
it difficult to find all the wanted eigenvalues (see theorem 4). In SEP(n,¢) all eigenvalues
are real and the gap between the largest and the next eigenvalue is €. CIRC(n,r) has its
eigenvalues uniformly spread over the unit circle in the complex plane except for the two
eigenvalues with largest real part which are multiplied by r. If r grows, the separation of
these gets better. COM(n, €) has only two non real eigenvalues with have a distance 2¢ to
eachother. The effects of the gapsize on the convergence using these matrices are shown
in the figures 1 to 6. Especially the figures 3 and 4, for p < —0.75, are in conformity with

the largeness of eS’ in case of uniform distribution of the spectrum on the unit circle (see

(2])-

5.1.3 Condition of the eigenvector matrix

We used matrices with constant spectrum and a variable condition of the eigenvector
matrix. We measure this by the rate of non-normality p, (see section 2.2). The first set of
matrices contains the tridiagonal matrices TRI(n,a). This matrix is similar to TRI(n,1),
which is symmetric with spectrum:

{ain’ (G g Ik = 1,-.om)

We have
#1(TRI(n,a)) = |a” —a”?|

But the condition of the eigenvector matrix is exponential in a.
The second set of matrices contains the upper triangle matrices UPP(n,nnz, €) with fixed
diagonal. The largest entry in its strict upper triangle part and the rate of non-normality
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convergence largest Ritzvalue

10log of error

Figure 1: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using ARN on the matriz SEP(100,107?) for the mentioned values of p.

convergence largest Ritzvalue

10log of emror

Figure 2: The °log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using DEFL(10) on the matriz SEP(100,107?) for the mentioned values of p.
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convergence largest Ritzvalue

10log of error

Figure 3: The °log of the absolute error in the Ritzvalue with largest real part plotted
against the number of iterations using ARN on the matriz CIRC(100,1 + 107) for the
mentioned values of p.

convergence largest Ritzvalue
2}
4}
E of
k]
£ f
.10}
-Ilr
-14
[} 5 10 15 20 25
number of iterations

Figure 4: The '°log of the absolute error in the Ritzvalue with largest real part plotted
against the number of iterations using DEFL(10) on the matriz CIRC(100, 1+ 107) for the

mentioned values of p.
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convergence largest Ritzvalue

10iog of emor

Figure 5: The °log of the absolute error in the Ritzvalue with largest real part plotted
against the number of iterations using ARN on the matriz COM(100,107?) for the men-

tioned values of p.

convergence largest Ritzvalue

N\ =S

4- \\\/\\/\/\/\ \\\i

10log of emror

&

| \0
-1} -
Figure 6: The °log of the absolute error in the Ritzvalue with largest real part plotted

against the number of iterations using DEFL(10) on the matriz COM(100,107?) for the
mentioned values of p.
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are of order €. Figures 7 to 10 contain the results using ARN and DEFL. They reflect the
fact that the speed of convergence decreases with the increasing non-normality.

5.1.4 Choice of the startvector

Until now the startvector (1,1,...,1)//n was used. To study the influence of the startvec-
tor we define the vector in IR™ of length one:

-

€

1

STVEC = ! v
mO=Fsa !l : |t vt

0

1

So € is the tangent of the angle between the first unitvector e; and STVEC(n,e). When we
use the matrices DIA and UPP the eigenvector corresponding to the largest eigenvalue is e;.
So STVEC(n, ¢) can be varied from an eigenvector to a vector with almost no component
in the direction of the wanted eigenvector. The results of various choices of £ can be found
in the figures 11 to 14. It seems that for small ¢ the logarithm of the error depends linearly
on the logarithm of the angle.

5.2 Comparing the algorithms of Saad and Sorenson

The Deflation Algorithm was tested on some large, sparse matrices and compared to the

performance of Sorenson’s Algorithm on the same matrices. The first set of matrices arises

from a partial differential equation [14]. Consider the region £ = (0,1) x (0,1) C IR? and
the convection-diffusion equation:

—Au+tpu,=u inQ), ulkp=0 (27)

Using a five-point discretization on a rectangular I x ! grid gives rise to the matrix of

dimension n = [?:
M(lLp) -I

DIF(p) = | 1 Mo

5 e ol

-1 M(,p)

where the [ x | matrix M(l, p) is given by:
4 a

4

Mo =|P 4

B 4
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Figure 7: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of sterations using ARN on the matriz TRI(100,1 + 107?) for the mentioned values of p.

10log of emror

Figure 8: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using DEFL(10) on the matriz TRI(100,1 + 107?) for the mentioned values

of p.
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Figure 9: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using ARN on the matriz UPP(100,400,1077) for the mentioned values of p.

10log of evor

Figure 10: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using DEFL(10) on the mairiz UPP(100,400,107?) for the mentioned values

of p.
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10iog of emror

Figure 11: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using ARN on the matriz DIA(100) and startvector STVEC(100,107) for the

mentioned values of p.

10log of emor

Figure 12: The 1°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using DEFL(10) on the matriz DIA(100) and startvector STVEC(100, 107) for
the mentioned values of p.
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10log of emor

Figure 13: The '°log of the absolute error in the largest Ritzvalue plotted against the number
of iterations using ARN on the matriz UPP(100,400,0.1) and startvector STVEC(100, 10)
for the mentioned values of p.

10log of esvor

Figure 14: The °log of the absolute error in the largest Ritzvalue plotted against the
number of iterations using DEFL(10) on the matriz UPP(100,400,0.1) and startvector
STVEC(100, 10?) for the mentioned values of p.



Figure 15: The grid of the Markov chain problem.

We have

2
m(DIEG, p)) = 2L

The second set of matrices represents the transition matrices of Markov chains [14]. These
chains describe random walks on the grid:

{G,7)eN*0<i,j<Li+j<I}

See also figure 15. In a point (4, 5) a transition can occur to the points (i +1,7), (4,7 + 1),
(i — 1,7), (3,7 — 1), the first two of them with probability ®3% and the last two with
probability ?_1 This last probability is doubled if i = 0 or j = 0. We denote the
corresponding transition matrix of dimension n = 3(I + 1)(I + 2) by MARK(J).

The tables 1 to 4 contain results of running DEFL and SOREN on the matrices DIF and
MARK. “mult” is the number of calls of the matrix-vector multiplication routine and the
time is the total running time of the algorithms in seconds. In table 1 DEFL and SOREN
are compared using DIF(l,p) for several values of p. In table 2 DEFL and SOREN are
compared using MARK(?) for several values of . In table 3 DEFL(m) is compared for
m = 10,20, 30,40 using DIF(l, p) for several values of p. In table 4 DEFL(m) is compared
for m = 10,20, 30,40 using MARK(!) for several values of l.

6 Conclusions

In section 2.2 we considered three characteristics in the error estimates for the computed
eigenvalue approximations. The meaning of their role was checked experimentally and is
described in chapter 5. Our experiments affirm in a qualitive sense the dependence of the
convergence on these characteristics.



24

DEFL(10) | DEFL(20) | SOREN(1,9) | SOREN(1,19)

P mult time | mult time | mult time | mult time
0. 431 3.760 | 281 2.908 | 838 5.397 | 457 3.814
0.0001 | 431 3.810 | 281 2.965 | 838 5.449 | 457  3.905
0.001 511 4.302 | 341 3.362 | 838 5.451| 457  3.886
0.01 621 4.979 | 381 3.635 | 838 5.450 | 457 3.911
0.1 741 5.717 | 441 4.022 | 838 5.451 | 457 3.914
851 6.394 | 481 4.273 | 838 5.466 | 457 3.881
701 5.473 | 421 3.887 | 532 3.874| 418 3.677

EARAR AR AR AR A RS

et
o i

Table 1: The performance of DEFL and SOREN on DIF(l,p). The eigenvalue with largest
real part is wanted and the tolerance is 107°.

DEFL(10) DEFL(20) SaR.EN( 1,9) | SOREN(1,19) |
I | mult time | mult time | mult time | mult time
45 | 111 0.586 41 0.452 | 1037 2.540 | 342 1.466
50 11 0474 21 0.503 | 3194 7.779 | 855 3.192
55 | 4341 13.216 41 0.667 | 6374 17.251 | 457  2.283
60 21 0.716 21 0.719 | 4032 12.729 | 550 2.919
65 91 1.114 41 0.932 | 3338 12.023 | 586  3.359
70 31 1.013 41 1.070 | 9285 35.842 | 1023  5.809
75 21 1.106 21 1.122 | 35261 149.000 | 626 4.323

Table 2: The performance of DEFL and SOREN on MARK(!). The eigenvalue with largest
real part is wanted and the tolerance is 10~°.
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DEFL(10) DEFL(20) DEFL(30) DEFL(40)

] P mult time | mult time | mult time | mult time
100 0. 791 19.692 | 461 13.333 | 361 11.537 | 361 11.817
100 0.0001 | 6201 128.730 | 3021 66.155 [ 1951 45.913 | 1201  30.649
100 0.001 | 6601 136.785 | 3481 75.765 | 2251 52.400 | 601 17.262
100 0.01 7761 160.219 | 3361 73.516 | 2341 54.166 | 1481  36.887
100 0.1 7641 157.924 | 3641 79.247 | 871 22.602 | 761 20.833

100 1. 7741 159.952 [ 3601 78.568 | 931 23.968 | 721  19.998
100 10. 2051 45.298 | 901 22.569 | 691 18.886 | 1161  29.895
100 100. 2721 60.480 | 2821 62.792 | 4111 93.982 | 5201 121.636

Table 3: The performance of DEFL on DIF(l,p). The eigenvalue with largest real part is
wanted and the tolerance is 10~°.

DEFL(10) | DEFL(20) | DEFL(30) | DEFL(40)
[ 7 [mult time [ mult time | mult time | mult time
100 11 1886 21 1.970 | 31 2.075| 41 2192
105 | 131 3.279 | 681 9.005 | 691 9.434 | 121 3.320
110 [ 51 2721 41 2.602| 61 2.858 | 41 2.646
115| 41 2.841| 41 2842 | 31 2.733| 41 2.889
120 | 31 2.968| 41 3.090| 31 2.973| 41 3.134
125 11 2914| 21 3.060 | 31 3.225| 41 3.401
130 | 81 4.216 | 101 4.561 | 61 3.975 | 81 4.361

Table 4: The performance of DEFL on MARK(l). The eigenvalue with largest real part is
wanted and the tolerance is 107°.
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Compared to the symmetric eigenvalue problem the nonsymmetric case introduces two
additional sources of delay in the convergence.

Firstly the appearance of nonreal eigenvalues. In the case of the matrix CIRC with almost
uniform distribution of its eigenvalues on the unit circle we see slow convergence despite
the seperation being 2% and the normality of that matrix. In the case of a symmetric
matrix with a uniform distribution on the real axis and comparable seperation the Arnoldi
(Lanczos) Method gives a much better performance.

Secondly the occurrence of nonnormality of the matrix. In case of the testmatrix TRI,
the numerical results demonstrate the large delay in convergence due to their departure
from normality. This already happens with values of a very close to one. Recall that the
condition number of the eigenvector matrix is exponential in a and thus is very sensitive
to changes in this parameter.

Saad’s Deflation Algorithm was compared with that of Sorenson in section 5.2. The number
of experiments is too small to get a definitive answer on the question which of these
algorithms is superior. In most of our experiments the Deflation Algorithm needs a little
less time than Sorenson’s Method, but further experiments are necessary. Moreover we
lack the theoretical insight in the essential properties of these algorithms.

A Sparse matrix storage

An implementation of one of the algorithms mentioned in this paper requires an efficient
storage of the matrix A. Let nnz be the number of nonzero entries of A. There are several
storage possibilities, but we have chosen the compressed sparse row format. This means
that the nonzeros of A are stored rowwise in a vector a of length nnz. Usually the diagonal
element of a row is the first number stored of that row. The vector ja of the same length
contains the corresponding indices to the columns of A. The indices to the heads of the
rows are stored in the first n positions of the vector ia of length n + 1 and we define
ia(n + 1) = nnz + 1. So a(ia(3)) to a(ia(si + 1) — 1) contain the nonzeros of the ith row of
A.

If for example the matrix is:

1 12 0 14 0
21 22 23 0 O
A=| 0 32 33 0 0
0 0 0 4 0
51 52 0 0 55

then its compressed sparse row format is:

a = (11,12,14,22,21,23, 33,32, 44, 55, 51,52)
ia = (1,4,7,9,10,13)
je = (1,2,4,2,1,3,3,2,4,5,1,2)
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B Implementation of the matrix-vector multiplica-
tion

One of the most important implementational problems concerns the calculation of y = Az
for a given vector z. Several Fortran routines have been written and tested on the CRAY-
YMP. Four versions are discussed here and their performance times are given. They are
denoted by AMUX and a index number. The CRAY vectorizes loops if possible and in
the fragments below it is indicated which loops are vectorized (V) and which ones remain
scalar (S).

AMUX1

S < do 100 i = 1,n

S t =0.0

S Vommmmmommmmmc e < do 99 k=ia(i), ia(i+1)-1
SV t =t + a(k)*x(ja(k))
SV > 99 continue

S yi) =t

S > 100 continue

A is stored in compressed sparse row format, so the first thought was to have a double
loop in which the outer one indicates the row i and the inner one walks along that row
from ia(i) to ia(i + 1) — 1. The code above shows that the inner loop has been vectorized.
But the inner loop is very small (the number of nonzeros on the row) so the speed-up of
the vectorization is rather small.

AMUX2
nnz = ia(n+1)-1
t = a(1)*x(ja(1))
i =2
S < do 100 k = 2,nnz
] if (k.eq.ia(i)) then
S y(i-1) = ¢
S t = 0.0
S i = i+l
s endif
S t =t + a(k)*x(ja(k))
S > 100 continune

y(@) = ¢t

The second version has only one loop, with k running over the array ia. At each passage
to a new row, detected by an if statement, there is an interruption for the necessary
adjustments. AMUX2 shows that this if-statement was an obstacle for the vectorization
of the loop.
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AMUX3

nnz = ia(n+1)-1
do 10 k=1,nnz
temp(k) = a(k)*x(ja(k))

)

]

)
A

v

v

v > 10 continue

S < do 100 i = 1,n

S t=0.0

sV < do 99 k=ia(i), ia(i+1)-1
SV t =t + temp(k)

sV > 99 continue

S y@i) =t

> 100 continue

We saw that the vectorization of AMUXI1 was not very efficient. In AMUX3 the idea was
to relief the inner loop by doing the multiplications in advance in a large vectorizable loop.
In the other loops only additions occur. Therefore an extra array temp is introduced which
contains the products of a(k) and z(ja(k)).

AMUX4

mnz = ja(n+1)-1
A < do 10 k=1,nnz

v temp(k) = a(k)*x(ja(k))
v > 10 continue
t = temp(1)
i =2
S < do 100 k = 2,nnz
S if (k.eq.ia(i)) then
S y@-1) = ¢
S t = 0.0
S i = i+l
S endif
S t =t + temp(k)
§eme > 100 continue

yn) = ¢
The same idea is applied to AMUX2 and gives the version AMUXA4.

TIMES. To compare the performing times of these four routines they have been called
a hundred times each with A = UPP(1000,4000,0.1). The flowtrace facility of the CRAY
delivered the results in the table below.

Flowtrace Statistics Report
Showing Routines Sorted by CPU Time (Descending)
(CPU Times are Shown in Seconds)
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Routine Name Tot Time # Calls Avg Time

AMUX1 1.85E-01 100 1.85E-03 ##xx*
AMUX3 1.78E-01 100 1.78E-03 ##*x
ANMUX2 1.62E-01 100 1.62E-03 #*=*=»
AMUX4 9.77E-02 100 9.77E-04 *x*

The performance of AMUX4 is the best, and since similar results were obtained using other
matrices, this became the final version of the routine.
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