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1. INTRODUCTION.

There is a significant body of literature in statistics and econometrics dealing with

discrete response inodels under various types of non-random sampling. Such sampling

schemes might reduce the cost of the study, particularly if one of the responses is rare. A

leading case is case-control, retrospective, choi~e-based or response-based sampling. In

the simplest example the researcher has two samples, one containing observations with

response y- 1(the cases), and the second containing observations with response y- 0

(the controls). In both samples we observe the attributes x for all observations. When

the model for the conditional probabilities of the choices given the covariates is of logit

form it has long been known that the investig~a.tor can proceed as though the data were

obtained by random sampling so far as estimation of the covariate ccefi'icients is concerned;

see for example Prentice and Pyke(1979). For the general case Manski and Lerman (1977)

proposed a weighted maximum likelihood estimator. Cosslett (1981) and Imbens (1990)

proposed efficient solutions to the general estimation problem.

A case that has not received as much attention, and one that is not covered by the

general sampling schemes in Hsieh, Manski and McFadden (1985) and Imbens (1990) is

that where the second sample is a random sample Jrom the whole population with only the

attributes or covariate values and not the responses, obaerved. The second sample, that

formed the control group in case-control sampling, now consists of an unknown mixture

of cases and controls. Such a situation míght occur if the researcher obtains a sample

of observations with a particular response, for example being a labor force participant or

being unemployed, and wishes, possibly for reasons of economy, to compare them with

a random sample from a very different source in which the particular response was not

measured. We describe this set up as one of contaminated controls, following the usage

of Heckman and Robb(1984). Neither sample in itaelf identifies the parameters of the

conditional response probability but the combiaation of cases aad contamiaated controls

might do so.

This paper deals with efficient estimation of parametric discrete choice using samples

of this type. In section 2 we discuss identifiability of choice models under contaminated

sampling and point out that the choice model is aonparametrically identified if the marginal



3

probabilities of the choices ue arc known to the investigator. In section 3 we give an effi-

cient generalized method of moments (GMM) estimator for the case in which the marginal
probabilities are unknown. The estimator is identical to a constrained maximum likelihood
estimator when the covariates have a multinomial distribition with known support. In sec-
tion 4 we give an efficient GMM estimator for the case in which the marginal probabiliti~
are known. Thís estimator is asymptotically equivalent to a constrained maximum likeli-

hood estimator when the covasiates are multinomial. The estimator proposed in section 3
acheives the semiparametric efáciency bound as defined by Chamberlain (1987) or Begun

et al (1983). The problem is semiparametric because of the appearance in the likelihood
of the unknown population covariate distribution.

In section 5 we discuss the case in which the choice model is logit and the marginal

probabilities are known. This case has been considered by Steinberg and Cardell(1991)
who have given a consistent estimator of the logit parameters. Section 6 reports a small

Monte Carlo study of the estimators.
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~. THE MODEL AND ITS IDF,NTIFIABILITY

Let y be a binary random response variable variable, equal to 0 or 1, and x a vector
of attributes. In the population the distribution function of z is F(x) which is unknown.
We will assume that the conditional probability of y- 1 given x in the population is
equal to pr(y - l~x) - P(x; p) where P(.; -) is a known function and Q an unknown
pazameter. Finally, we define q to be the mazginal probability of choice I in the population,

4 - f P(x; ~) dF(x).

The sampling scheme is that two independent random samples of sizes Nl and No are
available. The first is drawn from the subset of the population who made choice 1 and

the covaziate is observed; the second is drawn from the whole population with only the
covariate observed. ~Ttle let s denote a binary stratum indicator, taking the value 1 if an

observation is drawn from the sub-population who made choice 1, and 0 if it was drawn
from the whole population.

An observation from stratum 1 has probability p(x~y - 1) - P(x)f(x)~q; an observa-

tíon from stratum 0 has probability f(x). If we knew these probabilities we could determine
tho function P(r)~q for all values of x with positive probability. This function is therefore

non-pazametrically identified. It follows that the relative probabilities P(x)~P(x~) are

identified. This contrasts with standard case-control sampling which identifies the relative
odds, P(x)~(1 - P(x)) - P(xo)~(1 - P(xo).

If q is also known then clearly P(x) is identifiable. Alternatively, if the parametric

form of P(x; ~3) is known then ~ can generally be deduced from knowledge of the function
P(x)~q for a sufficiently large set of values of x. In this case P(x) is pazametrically

identifiable. In this paper we shall consider parametric models for P(x) with and without
prior knowledge of q. When q is known P(x) is parametrically overidentified.
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3. EFFICIF.NT ES"IIMATION.

lu this scctiou wc will propose an estimator for the paracneters o[ the couditional
choice probability function P(x;Q). This function P(x) will be assumed known up to a
finite parameter vector Q and there is no prior knowledge of the marginal probability y. In
section 4 we shall show how to take account of prior information such as knowledge of q.

To derive this estimator we will assume initially that the regressocs r have a discrete
dist.ributir,n with unknown probabilities a~ on L f 1 known points of support, xt. This
allows us to use standard maximum likelihood theory, and to derive an eflicient estimator
for that case. This estimator dces not depend on either the number or the location of
points of support of the covariate distribution that do not appear in the sample. We then
show that this estimator is asymptotically semiparametrically efficient.

It is convenient, first of all, to enlatge the model. We do this by supposing that the
sample sizes were determined by a sequence of Bernoulli trials with unknown parameter
h. Thus the data is provided by repeatedly conducting such trials; if a success occurs we
randomly sample írom the subpopulation who made choice 1; if a failure, we randomly
sample from the whole population. This procedure is repeated N times. The population is
assumed sufficiently la.rge that the probability of overlap between the sampled individuaLs
is zero. A consequence of this enlargment is that the sample now constitutes N indepen-
dently and identically distribution realisations from the joint distribution of stratum and
covariate g(s,x) -(hPf~q)'((1 - h)f)1-'. The quantity h will be treated as an unknown
parameter. Its mauimum likelihood estimator will be the i;ample fraction of observations
from stratum 1, N~~N. As long as h is functionally independent of ~, N~~N is ancillary
a.nd the asymptotic distribution of the ML estimator of Q is indepeadent of that of h.

If N- N~ f No is the total number of observations the log likelihood is

N

L(Fi~ h~ ~) - ~ l3n lOglPn(Y)fn(~),9(Q , a)1 {- (1 - Sn) log jn(~)1
n-1

f Nl logh f No log(1 - h), (3.1)

where f„(a) - f(xn;a) and P„(Q) - P(x,,;~). Since L involves ~,a in a rather awkward
way because of the term in q it is convenient to reparametrize. The following transformation



changes the log likelihood into the form that would arise under a random sampling schemc
in which there exists a conditional distribution and a marginal distribution each de.pending
on distinct sets of parameters.

Define

R1(x;Q,9,h) - (h~q)P(x;Q) ~ - 1 - R1,
(h~q)P(x;Q) f 1 - h' (3.2)

9(x) - I(h~q)P(x; Q) f 1- h]f(x)-

R1 is the conditional probability that an observation comes from stratum 1 given the
covariate and the sampling scheme. The distribution g(x), which is also multinomial with
pararneters rrr -((h~q)P(xi;Q) ~- 1- h]~r on the same points of support as f(x), is the
covariate distribution induced by the sampling scheme. Then L may be rewritten as

N

L(Q, 9, h, n) - ~Isn log Rln(Q, 4, h) f( 1 - sn) loPi Ron(Q. q, h)]
n-1

N

-i- ~ log9n(~)
n-1

- L1(Q,q,h)f Ls(T)

We cazi regazd L as a function of the pazameters (3, y, h, a, where these parameters
are subject to the constraint that q- JP(x; Q)dF(x; a) which may be rewritten in terms
of the new parametrization as

h- f Rl(x;Q, 4, h)dG(x; ~)- (3.4)

We now give the ML estimator of Q, q, h, rr. Let a hat denote an estimator which
maximizes L without imposing the restriction ( 3.4). Then á~ - n~~N for all 1 where n~ is
the sample number of observations which have covariate value x~. At this solution for n
the constraint, ( 3.4), becomes

N

h- N-1 ~ Rtn(Q, 9, h).
n-1

Ó
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Next consider the Q, q and h likelihood equations from L~.

.N

aQ~ -~ Pgn(sn - R,n(Q, 9, h))~Pn - 6 (3.6)

aL1 N
áq --(1~4) ~(Sn - R~n(Q, 4, h)) - 6 (3.7)

n-1

aL, "
8h - (lIh)~(sn - Rin(Q,9,h)) - 6. (3.8)n-i

Here p~n - r7P„~ó~i of order 1 x!í where lí is the dimension of p and 1: - h(1 - h).
Let Q, q solve ( 3.6) anà (3.7) with h - h- N1~N. Then Q, q, h solve (3.6), (3.7), (3.8)

and they also satisfy the constraint ( 3.5) which may be written N-~ ~(Sn - R~n(Q, q, h)) -
0. Hence the constrained ML estimator of Q,q can be found by maximising L1(~J,q,h)
with respect to variation in Q, q. Since L1 is just a random sampling binary choice log
likelihood this is an essentially simple computation.

The above derivation gives Q as a constrained ML estima.tor after a parameter trans-
formation. It may also be given a generalized method of moments ( GMM) interpretation.~
Consider the generalized moments

,~, (Q: q: h , S, x) - n'Q{z; Q)(.4 - R~(z; Q, v, h))IP(x; Q)
~Gz(Q, q, h, S, z) --( lIq)(s - Ri(z; Q, 4, h)) (3.9)
~s(Q, h , 4, s, z) - 4- P(x; Q)~[(hIq)P(i; Q) f 1 - hJ oc h- Ri (~; p, 9, h).

The moments ~i~ , tliz are the single observation scores for ~,q from the log likelihood
L~, (3.3). In the form q - P~[(h~q)P {- 1- h] the moment rli3 is just the definitional
relation between mazginal, q, and conditional, P(x), choice probabilities after allowing for
the fact that the covariate distribution induced by the sampling scheme is not f(a), but
g(x) - f(a)[(h~q)P f 1- h]. In the form h- R~ the moment t(i3 is the single observation
version of the constraint (3.4). These moments have mean zero at the true parameter point.

1See Hansen(1982), Manski(1988).



8

Equating their sample analogues to zero gives ,D, q, h which are then GMDí estimates. Thus
the asymptot.ic distribution of the estimator may be found equivalently írom GMM theory
or from constrained ML theory. The former is rather simpler since we do not have to
consider the estimation of a. Moreover note that these are valid moments whether the
distribution of r is discrete or continuous so they do not hinge on the assumption of a
discrete covariate with known support.

Theorem 1. Let ó-(~, q, h) and ~-(tGt, rQz, iG3) where ~3 - h - R~ (x; Q, q, h). Under
regularity conditions, the solution, 6 to ~~ ~ 1(~„(ó) - 0 is a consistent estimator for ó'

and ~(é - ó')-. lV(O, V) where

1~ - r-'o(r')-', o - E(~(ó) - ~(ó)'1ó-6., r - ~ .aáa ~ 6-6~la~~
An asterisk denotes the true value. The above covariance matrix is the semipazametric

efficiency bound of Chamberlain(1987) or Begun, Hall, Huang and Wellner(1984). Proof:
see appendix.

An explicit form for the asymptotic covariance matrix of ~,q is as follows. Let

~i~ - E(PBRPOIP~); Dix - -(lIq)~(P6R~P)
(3.10)

~zz - (1~9z)E(R); Os3 - h - ~(R)

which are the non-zero elements of 0. Here R- R~(1 - Rl) and the expectation is with
respect to g(x), defined in (3.2). Then the limiting covariance matrix of Q,q is

V(Q,4) - Di~-~Ó q2,h~ where O1 -(
Oxi 02s) ~

( 3.11)

The variance of h is h and it is dístributed independently of`Q,q.

We see that the covariance matrix of ~ can be found from the upper left submatrix

of ~~ ~ which is the inverse information matrix for Q,q fmm L~. This means that (a) an
efficient estimate of (3 can be found by maximizing the binary choice log likelihood, L~,
with respect to Q,q with h replaced by N1~N, and (b) the standard inverse information

matrix estimate of the Q, y covariance matrix will give the correct standard errors for ~
(though not for q.)



9

4. EFFICIENT ESTIMATION WITH 1~NOWN y

Suppose that. extra sample information provides the numerical value of the marginal
choice probability, q'. One way of proceding is to maximize the log likelihood (3.3) subject
to the constraint provided by knowledge of q'. The log likelihood becomes

N

L(Q, h, n)- ~[Sn log R, n(Q, q', h) -~ (1 - sn ) log ~n(Q, y' , h)]
ncl

N

i. ~log9n(x)
n-1

- L1(Q,h)f Ls(x) (4.1)
The constraint relating Q, h, a is q' - f P(a;Q)dF(x; ~) which is equivalent to

h- f Rt(x;Q,h)dG(x;n). (4.2)

Here, Rl -(h~q')P~((h~q')P f 1- h]. The ML estimator of Q,h,n maximizes (4.1)
subject to (4.2). Unlike the case in which q was unknown it is no longer true that the
unconstrained ML estimator satisfies the constraint, so this simplification no longer applies.
But a constrained optimization can be avoided if the adopt a Generalized Method of
Moments approach.

Consider the moments tG with q replaced q'. These aze
~Gl (Q, 4~, h, s, z) - P,e(x; Q)(S - Rl(2; Q, 4~, h))~P(s; Q)
~Gs(Q,4~,h,s,x) - -(l~q')(s - R1(z;Q,9~,h)) (4.3)
~Ga(Q,9',h,S,2) - h - Ri(2;Q,9r,h).

The covariance matrix of these moments is ~ whose elements were given in (3.10). Theu
Theorem 2.

LCt tlin - rj,(Q, q`, h, en, zn); b-(Q, h), 0- F(~(i~') and r- E(arAi~aa). r is now
a submatrix of the I' of theorem 1- the column corresponding to q has been deleted.
Finally, let 6 minimize

N

~ ~n(ó)0-'~n(6).
n-1
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Then ~(b - b') y ~1~(0, V) where

v - [r'o-'r]-t.
This covariance matrix is the same as that of the estimator of p, h which maximizes
(4.1} subject to (4.2), under the usual regularity conditions. Thus the GMM estimator
is asymptotically equivalent to the ML estimator and is .efficient when the covariate is
discrete with known points of support. We conjecture that Q is also semiparametrically
efficient.

Notíce the simplicity of the GMM procedure. It avoids estimation of the covariate
distribution; it avoids a constrained optimization problem; and it it is a procedure that
can be applied without any restrictive assumption about the covariate distribution.

An explicit form for the asymptotic covariance matrix of Q isz

V(Q) - Ottt - O~It~t2[~zt~ti102t f(h~qz) - O2z]-t~z10ttt (4-4)
The corresponding expression when q is not known is found from ( 3.11) to be

V(i)-0ttt -~~~ ~tz[~2~Ottt~zi -~z2]-t~zi~iit (4.5)

The feasible form of the estimator will require an initial consistent estimate of b in
order to estimate the covariance matrix 0. This might be provided by the estimator which
solves

N

~~Gt (Q, 9 , h, Sn, zn) - ~ (4.6)
n-1

This uses only the first moment, which is the score from the conditional Gkelihood of s given
a with h replaced by NI~N. It is similar to Manski and McFaddens' ( 1981) conditional
maximum likelihood estimator in the standard case-control or choice-based sampling set
up. The asymptotic covariance matrix of this estimator is

V(QcMt) - Ottt - Ottl~tz[h~9z]-tOztOti - (4.7)
This estimator is distributed independently of h. Its inefficiency is revealed by comparison
with (4.4) since ~zz - ~zt~l~ ~~2 is is non-ncgative definite.

z f(h - h) is distributed independently of ,0 with variance h.
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5. THE LOGIT CASE

The logit model for P is of interest since it is widely used azid there are known

simplifications under this model in standard case-control saznpling. The model is

P(x;Q) - lI(1 f exPiQo f Q~x}).

Under standard case-control sampling the conditíonal probability of choice 1 given the

covariate and the sampling scheme is

R,(x; Q) - lI(1 f exp{Qo f loglq(1 - h)Ih(1 - q)1 f Q;x})

which is the original logit model with intercept displaced. This is the reason why under

standard case-control sampling with a logit model an investigator can proceed aa if the
data had been obtained by raaidom sampling so faz as inference about the covariate effects

is concerned. But in the present application the conditional probability of stratum 1 given

the covariate and the sampling scheme is

Ri(x;Q) - lI(1 f I4(1 - h)Ih] -F exp{Qo f loglq(1 - h)Ih] ~-Q~x}).

This is not a logit model. Thus it would be incorrect for an investigator to proceed to

make inferences about covariate effects as if the data originated in random sampling.

Steinberg and Cazdell(1991) have suggested an estimator for the logit model when q

is known. They propose choosing Q to maximize

N

LSC - ~(1 - sn)log(1 - Pn(Q)) ~ ~,Snlog(Pn(Q)I(1 - P(Q))I. (s.i)
n-1

Here w - q`(1 - h)Ih). In this section we shall give an interpretation of the Steinberg

and Cardell (SC) estimator and comment on its properties.3 In the next section we report

some Monte Carlo comparisons of this estimator and the efficient procedure.

'Steinberg and Cardell actually study a slightly different case where the population is

finite, and the two samples, one containing observations with y- 1, and one randomly

from the whole population, may partially overlap. The model we study can be viewed as

a limit of their framework where the size of the population goes to infinity. They also gave

a quite different justification for their estimator than the one which follows.
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Consider a two stage estimation procedure. In the first stage a nonparametric esti-
mate of the population joint distribution of choice and covaziate is constructed. In the
second stage, an estimate of Q is formed by minimizing the Kullback-Leibler(ICL) dis-
tance between the nonparametric estimate and a proposed parametric (logit) model. Let
u(i~,T) -((r)P(r)y(I --P(z)~~-y, the population j~int distribution of choice and covariate.
'1'hi. srcouil stagi~ thi~refore tniniuiizes

C-~ u(Y,x) log[u(y, x)~u(Y, x~Q)[ (5.2)
9.i

where u is the nonparametric estimate and u(y, x; Q) is the pazametric mode] with a logit
form for P(x) depending on the parameter Q. Dropping terms from (5.2) which do not
involve Q it may be written

C-~ Prfr l08 Pr(Q) t(1 - Pr )fr 1og(1 - Pr(Q))
r

-~ fi 1og(1 - Pr(Q)) f Prfr log[Pr(Q)~(I - Pr(Q))~. (5.3)
r

In this expression, fr - f(xr), Pr - P(xr) and a caret indicates the nonpazametric estimate.
Now consider nonparametric estimation of P and f. The log likelihood ( 3.3) with

g(x) multinomial leads us to such estimates. The ML estimate of g(x) is ïrr - nr~N. The
nonparasetric estimate of R~(xr) - Itrr is nlr~nr. Here nr is the number of observations
having covariate value xt and n~r is the number of observations having covariate xr and
originating from stratum 1. nor is similarly defined. Note that these estimates do satisfy
the constraint ( 3.4) or ( 3.5) when h- Nr~N so they do in fact maximize the constrained
log likelihood.

The definitions ( 3.2) and the definition of w - q"(1 - h)~h enable us to go from
estimates of R~, g to estimates of f and Pf which are

Pifr - Nár; fi - Nó.

Note that the nonpazametric estimator of f(x) is the sample distribution from stratum 0,
the random saznple.
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Insrrting thesc~ cst.inr.~t,~s into the I~L mea.,ure, ( 5.3), gives

C- No ~~ nor 1og(1 - P~(Q) ~- wni~ log(P~(Q~(1 - P~(Q))

N

- No ~~(1 - sn) log(1 - P(Q)) t cos„ log[Pn(Q)r(1 - Pn(Q))~ (5.5)
n-1

This is proportional to the Steinberg and Cardell criterion function, (5.1).
While the preceding argument is formally correct it suffers from the difficulty that the

implicit `nonparametric ML' estimate of P may lie outside the interval zero to one. This
is obvious from the relation between R~ and P given in (3.2) where, even though Rl is a
proper probability there is no guarantee that P is. This suggests that the Steinberg~Cardell
estimator may behave poorly in small samples, even though when P is logit the criterion
function ( 5.1) is globally concave.

It is interesting the look at the form of the Steinberg-Cardell estimator in more detail,
as it explains some of the finding of the Monte Carlo study. Suppose that x is a scalar
random vaziable, taking on two values, 0 and l. Also, assume that Qo is known. The first
order condition for maximization of LS~ is

N

L3C - ~ znl~sn - (1 - Sn)Pn~ - 0.
n-7

Since x is binary this becomes

LS~ - ~,S - P(N~ - S) - ~, (5.6)

where S is the number of the N~ observations from stratum 1 having covariate value one
and P- 1~(1 f exp{Qo -~ Ql}). Conditional on z- 1, S is Binomial (N~,Rl(1;Q,q, h)).

Equation (5.6) will have a finite solution for Q~ if and only if~S C N~ - S, an event
of probability less than one. As a particular example suppose that Q~ - 0 and that
equal numbers of observations come from each stratum, h- 0.5. Then, using the Normal
approximation to the Binomial, we find

pr(no finite solution for Ql )- 1-~~ N~ 1}q I
` 4iii
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Some values of this probability are given in the following table

`Probabilities of No Solution `

N N~ q Probability

100 50 0.90 0.355
400 200 0.90 0.228
1000 500 0.90 0.120

lo0 50 o.so o.21s
400 200 0.80 0.058

1000 500 0.80 0.0065

Under these eircumstances the efficient GMM estimator can be expected to perform

much better. The third moment compares q to the average value of P(a; ~)~(hP(x;,0)~q f

1- h). In this case with Q~ close to zero, this moment has very little variance, and gives

an almost exact restriction on d~. This information is not used by the Steinberg-Cardell

estimatoc This is of course no proof that the GMM estimator will in fact perform better in

practice. It relies on a first round of consistent estimates to get an estimate of the optimal

weight matrix. The choice of the first round weight matrix dces not matter asymptotically,

but there is no guazantee that the first round estimator will actually converge. In practice

however, we had no difficulty in obtaining convergence for the GMM estimator using prior

knowledge of q.

In the Monte Carlo experiment x was choosen to have a bivariate normal distribution

with zero means, unit variance and zero correlation. Three sets of parameter values were

used: (fio„0~,~) equal to (0,1,1), (0,2,0.5) and (-1.89,1,1). The implied values for q were

0.5, 0.5 and 0.2. h was fixed at 0.5. The number of observations was in all simulations

equal to 400. The number of replications was equal to 200 for each experiment. We report

the averages of the 200 estimates (mean), the average of the asymptotic standazd devations

(asd), the standard deviation of the 200 replications (ssd), the median, and the median of

the absolute deviation from the median (mad). The results aze reported in tables 1 to 3.

The SC estimator performed significantly worse than the efficient GMM estimator
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Table 1: Design I

po-O.o,Ri-1.o,Ra-l.o,q-0.5,A-0.5
GMM(unknown q)

failure to
convcrgr 11

-

GMM(known q) SC

0 9

9o Q~ R2 Qo Q~ R1 Qo Qi R7mean 0.06 1.18 1.18 0.02 1.04 1.04 0.10 1.20 1 22asd 33.98 14.43 ! 1.41 0.10 0.26 0.26 0.42 O. i 7
.
770ssd 0.98 0.48 0.49 0.10 0.29 027 0.34 0.64

.
0 61med 0.06 1.09 1.11 0.01 1.01 1.02 0.04 1.05

.
1 10mad 0.66 0.32 0.30 0.06 0.19 0.15 0.20 0.30

.
0.31

Table 2: Design !I
Qo-O-O,R~-2.O,pz-0.5,q-0.5,A-0.5

CMM(unknown q) GMM(known q) SCfailure to
converge 2 0 27

aa R~ az vo a~ a~ po p~ a~rtxan -0.01 2.15 0.52 0.00 2.03 0.50 0.08 2.58 0 70agd 17.00 16.35 5.02 0.13 0.38 0.25 0.92 S.I5
.

2 10ssd 0.81 0.66 0.31 0.13 0.38 0.26 0.46 1.98
.

0 93med -0.01 2.04 0.46 -0.01 1.98 0.49 0.00 2.10
.

0 51mad 0.46 0.33 0.17 0.08 0.26 0.17 0.23 0.62
.

0.24

Table 3: Deaign III
90--1.89,Q~-1.O,Rz-1.000,q-0.2, h-0.5

GMM unknown q) GMM(known q) SCfailure to
conver e 19 0 0

Ro e~ az R~ a~ Rz ao a~ azmean - 1.89 1.12 1.10 -1.87 1.04 1.03 - 1.92 1.09 t 06asd 133.68 61.76 61.90 0.09 0.18 0.18 0.20 0.32
.

0 32ssd 0.75 0.31 0.26 0.10 0.20 0.18 0.20 0.36
.

0 36med -1.77 1.09 I.09 -1.87 1.04 1.03 -1.92 1.03
.

1 01mad 0.39 0.16 0.18 0.06 0.12 0.13 0.12 0.20
.

0.17
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~~nq~o,r~l in Ihis Ir.ipcr. Iu fact, in the first and third set of simulations 9 and 27 of the
replications ilid uot lcad to couvcrgence. The GMM estimator without knowledge of q did
not converge for 11, 2 and 19 of the simulatioiis. There were no problems with convergence
of the GMM estimator with known y. The standard errors for the unknown q GMM
estimator and the Steinberg-Cardell estimator reflect the convergence problems: they are
markedly different from what one would expect given normality and given the median
deviation from the mean. The finite sample properties of the known q GMM estimator
seem satisfactory and reflect its theoretica] asymptotic superiority to the Steinberg and
Cardell estimator when the model is correctly specified.
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G. SUMMARY AND CONCLUSIONS

We have given coniputationally simple a.nd asymptotically efficient estimators in thi~
contaminated sampling problem. When the marginal choice probability, y, is unkuowu
the estimator maximizes a binazy choice log likelihood and, if the covariate distribution
is multi~omial ~vith known support, it is interpretatable as a constrained maximum lil..,-
lihood estimator. When the marginal choice probability is known the estimator solves a
generalized method of moments problem. When the covariate distribution is multinomial
with known support the estimator is asymptotically equivalent to a constrained maximum
likelihood estimator. We also gave explicit forms for the asymptotic covariance mat.rices
in both cases a~ --.sll as for a conditional likelihood estimator applicable when q is known.
Additional a priori information can be readily incorporated into the GMM procedure as
long as it is expressible as a moment condition. Imbens and Lancaster(1992) gives further
examples of this.

We have also discussed the logit model as a special case and compared numerically the
properties of the estimators proposed in this paper with an alternative method suggested
by Steinberg and Cazdell(1991) which is applicable when q is known. When q is kiiown
the efficient generalized method of moments estimator exhibited satisfactory performance.
The estimator of Steinberg and Cardell failed to exist in a significant fraction of simulations
as did the efficient GMM procedure in the absence of knowledge of the marginal choice
probability.
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.APPE`DI~

I~ROOFS OF THEOREMS 1 AND 2

~'~,,,.:,.:1~~„ ~:,,,.I :,vyn,~,t.,ti,~ u„rmalitv nf the GMM estimators both when q is known

auil when il ~s uukuuwn cau I~r I,ruvrd iu a gcurruliz~~d tuctho~i of monicnts frarnework

as described by Hansen(1982) and Manski(1988). For instance, theorems 2.1 and 3.1 in

Hansen(1982) prove consistency and asymptotic normality for generalized method of mo-

ments estiiuators. Conditions that ensure that the regularity conditions for these theorems

aze satisfied are: (i) compactness of sample and parameter spaces (with tnie pazameters

interior to the parameter space), (ii) continuity of P(x; (i) and its derivative with réspect

t.o É3, (iii) uniqucness of the solution to E(~(b)) - 0, and (iv) full rank of s7 and I'.

The estimator of theorem 1 was derived initially for the case in which x has a discrete
distribution with known, finite, support. The estimator was shown to be a maximum
likelihood estimator in that case and therefore achieves the Cramer-Rao bound for regulaz

estimators. This result can be extended to the continuous regressor case using the approach

to semipazametric efficiency bounds of Begun, Hall, Huang and Wellner(1~54).

From (3.1) the log density of a single observatiorr is

logg(s,x)-slogP(x;,3)-slogq~slogh~-(1-s)log(1-h)flogf(x). (A1)

Considcr a pararnetric submodel in which the unknown densicy f(.) is parametrized by rl.
In this submodel the scores for Q and q are

SB - s(Pg~P - 49~4); Sn --s(qn~4) f Ï~~f. (AZ)

The tangent set, 7, is of the form

d(x) - s(E(d(x))~h)

where d(x) is unrestricted apart from the requirement that f d(x)dF(x) - 0. The efficient
score is

S~ - (s - R(x;Q)(P~IP f bIq),
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whem
~(p'~R~p)

ó - -4 ~~R~ - -O~ZOn'.

The im-erse af t.he covariance matrix of S' is thi~ ~:nia.n~-,~ ~,f tL~~ C~1`4[`1 r,~tiwnl~~r ~I~~~~ ~ilm~l
in theorem 1.

The extension of this theorem to the case in which q is known is not yet available.
The claim in theorem 2 that the GMM estimator is asymptotically equivalent to the

constrained ML estimator when the covariate distribution is discrete with known support
is established by direct calculation using classical results on the covariance matrix of the
constrained maximum likelihood estimatoc.
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