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1. INTRODUCTION.

There is a significant body of literature in statistics and econometrics dealing with
discrete response models under various types of non-random sampling. Such sampling
schemes might reduce the cost of the study, particularly if one of the responses is rare. A
leading case is case-control, retrospective, choire-based or response-based sampling. In
the simplest example the researcher has two samples, one containing observations with
response y = 1 (the cases), and the second containing observations with response y = 0
(the controls). In both samples we observe the attributes z for all observations. When
the model for the conditional probabilities of the choices given the covariates is of logit
form it has long been known that the investigator can proceed as though the data were
obtained by random sampling so far as estimation of the covariate coefficients is concerned;
see for example Prentice and Pyke(1979). For the general case Manski and Lerman (1977)
proposed a weighted maximum likelihood estimator. Cosslett (1981) and Imbens (1990)
proposed efficient solutions to the general estimation problem.

A case that has not received as much attention, and one that is not covered by the
general sampling schemes in Hsieh, Manski and McFadden (1985) and Imbens (1990) is
that where the second sample is a random sample from the whole population with only the
attributes or covariate values and not the responses, observed. The second sample, that
formed the control group in case—control sampling, now consists of an unknown mixture
of cases and controls. Such a situation might occur if the researcher obtains a sample
of observations with a particular response, for example being a labor force participant or
being unemployed, and wishes, possibly for reasons of economy, to compare them with
a random sample from a very different source in which the particular response was not
measured. We describe this set up as one of contaminated controls, following the usage
of Heckman and Robb(1984). Neither sample in itself identifies the parameters of the
conditional response probability but the combination of cases and contaminated controls
might do so.

This paper deals with efficient estimation of parametric discrete choice using samples
of this type. In section 2 we discuss identifiability of choice models under contaminated
sampling and point out that the choice model is nonparametrically identified if the marginal



probabilities of the choices are are known to the investigator. In section 3 we give an effi-
cient generalized method of moments (GMM) estimator for the case in which the marginal
probabilities are unknown. The estimator is identical to a constrained maximum likelihood
estimator when the covariates have a multinomial distribition with known support. In sec-
tion 4 we give an efficient GMM estimator for the case in which the marginal probabilities
arc known. This estimator is asymptotically equivalent to a constrained maximum likeli-
hood estimator when the covariates are multinomial. The estimator proposed in section 3
acheives the semiparametric efficiency bound as defined by Chamberlain (1987) or Begun
et al (1983). The problem is semiparametric because of the appearance in the likelihood
of the unknown population covariate distribution.

In section 5 we discuss the case in which the choice model is logit and the marginal
probabilities are known. This case has been considered by Steinberg and Cardell(1991)
who have given a consistent estimator of the logit parameters. Section 6 reports a small

Monte Carlo study of the estimators.



2. THE MODEL AND ITS IDENTIFIABILITY

Let y be a binary random response variable variable, equal to 0 or 1, and z a vector
of attributes. In the population the distribution function of z is F(z) which is unknown.
We will assume that the conditional probability of y = 1 given z in the population is
equal to pr(y = 1l|z) = P(z;B) where P(-;-) is a known function and # an unknown
parameter. Finally, we define ¢ to be the marginal probability of choice 1 in the population,
g = [ P(z;8)dF(z).

The sampling scheme is that two independent random samples of sizes N; and N, are
available. The first is drawn from the subset of the population who made choice 1 and
the covariate is observed; the second is drawn from the whole population with only the
covariate observed. We let s denote a binary stratum indicator, taking the value 1 if an
observation is drawn from the sub-population who made choice 1, and 0 if it was drawn
from the whole population.

An observation from stratum 1 has probability p(z|y = 1) = P(z)f(z)/q; an observa-
tion from stratum 0 has probability f(z). If we knew these probabilities we could determine
the function P(r)/q for all values of z with positive probability. This function is therefore
non-parametrically identified. It follows that the relative probabilities P(z)/P(z,) are
identified. This contrasts with standard case-control sampling which identifies the relative
odds, P(z)/(1 — P(z))+ P(z0)/(1 — P(zo).

If ¢ is also known then clearly P(z) is identifiable. Alternatively, if the parametric
form of P(z; ) is known then f can generally be deduced from knowledge of the function
-P(z)/q for a sufficiently large set of values of . In this case P(z) is parametrically
identifiable. In this paper we shall consider parametric models for P(z) with and without
prior knowledge of g. When ¢ is known P(z) is parametrically overidentified.



3. EFFICIENT ESTIMATION.

Iu this section we will propose an estimator for the parameters of the conditional
choice probability function P(z; ). This function P(z) will be assumed known up to a
finite parameter vector 4 and there is no prior knowledge of the marginal probability q. In
section 4 we shall show how to take account of prior information such as knowledge of q.

To derive this estimator we will assume initially that the regressors z have a discrete
distribution with unknown probabilities A\; on L + 1 known points of support, z!. This
allows us to use standard maximum likelihood theory, and to derive an efficient estimator
for that case. This estimator does not depend on either the number or the location of
points of support of the covariate distribution that do not appear in the sample. We then
show that this estimator is asymptotically semiparametrically efficient.

It is convenient, first of all, to enlarge the model. We do this by supposing that the
sample sizes were determined by a sequence of Bernoulli trials with unknown parameter
h. Thus the data is provided by repeatedly conducting such trials; if a success occurs we
randomly sample from the subpopulation who made choice 1; if a failure, we randomly
sample from the whole population. This procedure is repeated N times. The population is
assumed sufficiently large that the probability of overlap between the sampled individuals
is zero. A consequence of this enlargment is that the sample now constitutes N indepen-
dently and identically distribution realisations from the joint distribution of stratum and
covariate g(s,z) = (hPf/q)’((1 - h)f)*~°. The quantity k will be treated as an unknown
parameter. Its maximum likelihood estimator will be the sample fraction of observations
from stratum 1, N;/N. As long as h is functionally independent of 8, N, /N is ancillary
and the asymptotic distribution of the ML estimator of 3 is independent of that of h.

If N = Ny + Ng is the total number of observations the log likelihood is

N
L(B,h,A) = Y [snlog[Pa(B) fa(A)/a(B: )] + (1 = $n) log fa(N)]
n=1

where fn(A) = f(zn;A) and Po(B) = P(z,;B). Since L involves 8, A in a rather awkward
way because of the term in g it is convenient to reparametrize. The following transformation



changes the log likelihood into the form that would arise under a random sampling scheme
in which there exists a conditional distribution and a marginal distribution each depending
on distinct sets of parameters.

Dt (h/q)P(z; )
. 5 9)P(z; s
Rl(r’ﬂ,q,h)_(h/q)P(I,ﬂ)+1—h’ RO—]. Rly (3'2)

9(z) =[(h/9)P(z; B) + 1 - h)f(z).

R, is the conditional probability that an observation comes from stratum 1 given the

covariate and the sampling scheme. The distribution g(z), which is also multinomial with
parameters m; = [(h/q)P(z';8) + 1 — h]A; on the same points of support as f(z), is the
covariate distribution induced by the sampling scheme. Then L may be rewritten as

N
L(B,q,h,7) = Z[sn log Rin(B,q,h) + (1 = sa)log Ron(8.4, b))

N
+ logga(m)

n=1

= Li(B,g,h) + La(7) (33)

We can regard L as a function of the parameters f,g, h,, where these parameters
are subject to the constraint that ¢ = fP(:; B)dF(z;A) which may be rewritten in terms

of the new parametrization as
h= /Rl(a:;ﬂ, ¢, h)dG(z; ). (3.4)

We now give the ML estimator of f3,q,k,m. Let a hat denote an estimator which
maximizes L without imposing the restriction (3.4). Then #; = ny/N for all [ where n; is
the sample number of observations which have covariate value z!. At this solution for =

the constraint, (3.4), becomes

N
h=N"'Y" Rin(B,0,h). (3:5)

n=1

6



Next consider the 3, g and h likelihood equations from L.

Bl

% = ZP:‘Jn(Sn = Rln(ﬁ,q,h))/Pn =0 (36)
n=1
N
%%l =—-(1/q) Z(sn — Ria(B,q,h)) =0 3.7)
n=]
N
% = (1/k) Z(s,. — Rin(B,q.h)) = 0. (3.8)

Here pgn = 8P, /38 of order 1 x K where K is the dimension of A and k = h(1 = h).

Let 4, § solve (3.6) and (3.7) with h = h = N, /N. Then 4, 4, h solve (3.6), (3.7), (3.8)
and they also satisfy the constraint (3.5) which may be written N =1 Y (s, — Rl,,([;, g, iz)) =
0 . Hence the constrained ML estimator of 8, ¢ can be found by maximising L;(8, ¢, k)
with respect to variation in f,q. Since L, is just a random sampling binary choice log
likelihood this is an essentially simple computation.

The above derivation gives 5 as a constrained ML estimator after a parameter trans-
formation. It may also be given a generalized method of moments (GMM) interpretation.!
Consider the generalized moments

'.1’1(.5:4; h,s,:r) = p’g(l’,ﬂ)(* ~ Rl(z;ﬂvq) h))/P(I;ﬂ)
wz(ﬂ.% h,s,:l‘) =—<1/q)(s_Rl(I;ﬂ1Q1h)) (3'9)
¥3(B,h,q,8,2) = ¢ = P(z;8)/[(h/q)P(z; 8) + 1 — h]  h — Ry(z; B, q, h).

The moments ¥;,1; are the single observation scores for B,q from the log likelihood
Ly, (33). In the form ¢ — P/[(h/q)P + 1 — h] the moment %3 is just the definitional
relation between marginal, ¢, and conditional, P(z), choice probabilities after allowing for
the fact that the covariate distribution induced by the sampling scheme is not f(z), but
9(z) = f(z)[(h/q)P + 1 — R]. In the form h — R; the moment 3 is the single observation
version of the constraint (3.4). These moments have mean zero at the true parameter point.

!See Hansen(1982), Manski(1988).



Equating their sample analogues to zero gives 3, §, h which are then GMM estimates. Thus
the asymptotic distribution of the estimator may be found equivalently from GMM theory
or from constrained ML theory. The former is rather simpler since we do not have to
consider the estimation of #. Moreover note that these are valid moments whether the
distribution of z is discrete or continuous so they do not hinge on the assumption of a

discrete covariate with known support.

Theorem 1. Let § = (B,q,h) and ¢ = (11, %2, %3) where 3 = h — Ry(z;8,¢, ). Under
regularity conditions, the solution, & to Z:’=1 ¥n(8) = 0 is a consistent estimator for §*
and VN(§ — 6*) — N(0, V) where

o

V=T7'A)™, A= EWd) $(@)lsmsr, T=£ [%&7 .
s=6"

An asterisk denotes the true value. The above covariance matrix is the semiparametric
efficiency bound of Chamberlain(1987) or Begun, Hall, Huang and Wellner(1984). Proof:

see appendix.
An explicit form for the asymptotic covariance matrix of 3, § is as follows. Let

An = E(pyRps/P?);  Ai2 = —(1/9)E(psR/P)

s o == (3.10)
Ay =(1/¢")E(R); A3z =h-E(R)

which are the non—zero elements of A. Here R = R,(1 — R;) and the expectation is with
respect to g(z), defined in (3.2). Then the limiting covariance matrix of 3,§ is

& £ 0 0 A A
V. =ar - (5 ) wheear=(Q 20). 3.11)

21

The variance of h is k and it is distributed independently of 3, 4.

We see that the covariance matrix of 4 can be found from the upper left submatrix
of A7" which is the inverse information matrix for 3, ¢ from L,. This means that (a) an
efficient estimate of B can be found by maximizing the binary choice log likelihood, L;,
with respect to 8,¢ with h replaced by N;/N, and (b) the standard inverse information
matrix estimate of the B,é covariance matrix will give the correct standard errors for 3

(though not for g.)



4. EFFICIENT ESTIMATION WITH KNOWN ¢
Suppose that extra sample information provides the numerical value of the marginal
choice probability, ¢*. One way of proceding is to maximize the log likelihood (3.3) subject
to the constraint provided by knowledge of ¢". The log likelihood becomes
N
L(B.hyw) = ) [snlog Rin(B,q", k) + (1 — s,) log Ron(B,q", h)]

n=1

N
i z log gn ()

n=]
The constraint relating 8, h, 7 is ¢* = J P(z; B)dF(z; ) which is equivalent to

h =/R1(z;ﬂ,h)dG(x;1r). (4.2)

Here, Ry = (h/q")P/((h/q*)P + 1 — h]. The ML estimator of B,h,n maximizes (4.1)
subject to (4.2). Unlike the case in which ¢ was unknown it is no longer true that the
unconstrained ML estimator satisfies the constraint, so this simplification no longer applies.
But a constrained optimization can be avoided if the adopt a Generalized Method of
Moments approach.
Consider the moments ¢ with ¢ replaced ¢*. These are
¥1(8,4", h,s,z) = pp(; B)(s — Ri(z; 8,4, k))/ P(z; B)
¥2(B,q%, hy5,2) = —(1/g")(s - Ru(z; B, 4", h)) (4.3)
¥3(B,¢",h,s,2) = h — Ry(z; 8, ¢", h).
The covariance matrix of these moments is A whose elements were given in (3.10). Then

Theorem 2.

Let ¥n = ¥(B,9*,h,5n,20);6 = (B,h), A = E(Yy') and T = £(0y/d6). T is now
a submatrix of the I' of theorem 1 — the column corresponding to ¢ has been deleted.
Finally, let § minimize

N
D ¥a(8)A7 ¢a(6).

n=1
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Then VN (6 — %) — N(0, V) where

V= ['A=)2,
This covariance matrix is the same as that of the estimator of B,h which maximizes
(4.1) subject to (4.2), under the usual regularity conditions. Thus the GMM estimator
is asymptotically equivalent to the ML estimator and is -efficient when the covariate is
discrete with known points of support. We conjecture that f is also semiparametrically
efficient.

Notice the simplicity of the GMM procedure. It avoids estimation of the covariate
distribution; it avoids a constrained optimization problem; and it it is a procedure that
can be applied without any restrictive assumption about the covariate distribution.

An explicit form for the asymptotic covariance matrix of 3 is?

V(B) = A% - AR An[An AT Ay + (B/¢?) - Agp)~ Ap A} (4.4)
The corresponding expression when ¢ is not known is found from (3.11) to be
V(B) = AL - AL An[An AL Ay — A Ay AT (4.5)
The feasible form of the estimator will require an initial consistent estimate of § in
order to estimate the covariance matrix A. This might be provided by the estimator which
solves

N
Y %1(B.q" b smy20) = 0 (4.6)

n=1
This uses only the first moment, which is the score from the conditional likelihood of s given
z with h replaced by N;/N. It is similar to Manski and McFaddens’ (1981) conditional
maximum likelihood estimator in the standard case—control or choice-based sampling set
up. The asymptotic covariance matrix of this estimator is

V(Bemi) = AT} - A7} Ara[R/¢?) ™ Ay AT (47)

This estimator is distributed independently of k. Its inefficiency is revealed by comparison
with (4.4) since Agp — Ag,Al‘,'A,z is is non-ncgative definite.

2\/n(h — h) is distributed independently of § with variance .

“
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5. THE LOoGIT CASE

The logit model for P is of interest since it is widely used and there are known

simplifications under this model in standard case-control sampling. The model is
P(z;8) = 1/(1 + exp{Bo + Bjz}).

Under standard case-control sampling the conditional probability of choice 1 given the

covariate and the sampling scheme is
Ri(z;8) = 1/(1 + exp{Bo + log[q(1 — h)/h(1 — q)] + B1z})

which is the original logit model with intercept displaced. This is the reason why under
standard case-control sampling with a logit model an investigator can proceed as if the
data had been obtained by random sampling so far as inference about the covariate effects
is concerned. But in the present application the conditional probability of stratum 1 given
the covariate and the sampling scheme is

Ry(z;8) = 1/(1 + [¢(1 — h)/h] + exp{Bo + log[g(1 — h)/h] + | z}).

This is not a logit model. Thus it would be incorrect for an investigator to proceed to
make inferences about covariate effects as if the data originated in random sampling.
Steinberg and Cardell(1991) have suggested an estimator for the logit model when ¢
is known. They propose choosing 3 to maximize
N

LSC = z(l - 3,.)105(1 = Pn(ﬂ)) + wsn ]og[P,.(ﬂ)/(l o Pn(ﬂ))] (51)

n=1
Here w = ¢*(1 - R)/R). In this section we shall give an interpretation of the Steinberg
and Cardell (SC) estimator and comment on its properties.® In the next section we report
some Monte Carlo comparisons of this estimator and the efficient procedure.

3Steinberg and Cardell actually study a slightly different case where the population is
finite, and the two samples, one containing observations with y = 1, and one randomly
from the whole population, may partially overlap. The model we study can be viewed as
a limit of their framework where the size of the population goes to infinity. They also gave
a quite different justification for their estimator than the one which follows.
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Consider a two stage estiination procedure. In the first stage a nonparametric esti-
mate of the population joint distribution of choice and covariate is constructed. In the
second stage, an estimate of f is formed by minimizing the Kullback-Leibler(KL) dis-
tance between the nonparametric estimate and a proposed parametric (logit) model. Let
u(y,r) = f(2)P(x)¥[1-P(z)]'~¥, the population joint distribution of choice and covariate.

The second stage therefore minimizes

C =) ily,z)loglu(y, z)/u(y, z; B)] (52)
¥,z

where 4 is the nonparametric estimate and u(y, z; 8) is the parametric model with a logit
form for P(z) depending on the parameter §. Dropping terms from (5.2) which do not

involve f it may be written

C =Y PfilogP(B)+(1- B)filog(1 - P (B))
1

=) _ filog(1 — P(B)) + Pifilog[Pi(B)/(1 — P(B))]. (5.3)
{

In this expression, f; = f(z'), P, = P(z') and a caret indicates the nonparametric estimate.
Now consider nonparametric estimation of P and f. The log likelihood (3.3) with
g(z) multinomial leads us to such estimates. The ML estimate of g(z) is 7y = ny/N. The
nonparametric estimate of Ry{z') = R is ny;/n;. Here n is the number of observations
having covariate value z! and ny; is the number of observations having covariate z! and
originating from stratum 1. ng; is similarly defined. Note that these estimates do satisfy
the constraint (3.4) or (3.5) when A = N, /N so they do in fact maximize the constrained
log likelihood.
The definitions (3.2) and the definition of w = ¢*(1 — &)/k enable us to go from
estimates of R;.g to estimates of f and Pf which are
Bfy = L%o”; o= ']:,—ool- (5.4)
Note that the nonparametric estimator of f(z) is the sample distribution from stratum 0,

the random sample.
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Inserting these estimates into the KL measure, (5.3), gives
g g

C=N;! Znollog(l = P(B) + wnylog(Pi(B/(1 — Pi(B))
b

N
= Ng' Y (1 = sn)log(1 = Pa(B)) + wsn log[Pa(B)/(1 - Pa(B))] (5.5)

n=1
This is proportional to the Steinberg and Cardell criterion function, (5.1).

While the preceding argument is formally correct it suffers from the difficulty that the
implicit ‘nonparametric ML’ estimate of P may lie outside the interval zero to one. This
is obvious from the relation between R; and P given in (3.2) where, even though R, is a
proper probability there is no guarantee that P is. This suggests that the Steinberg/Cardell
estimator may behave poorly in small samples, even though when P is logit the criterion
function (5.1) is globally concave.

It is interesting the look at the form of the Steinberg-Cardell estimator in more detail,
as it explains some of the finding of the Monte Carlo study. Suppose that z is a scalar
random variable, taking on two values, 0 and 1. Also, assume that Bo is known. The first
order condition for maximization of Lg¢ is

N
Lgc = Zz"[ws,, —(1=3s,)P,)=0.

n=1

Since z is binary this becomes
Lic =wS - P(N, - ) =0, (5.6)

where S is the number of the N, observations from stratum 1 having covariate value one
and P =1/(1 + exp{fo + A1}). Conditional on z =1, S is Binomial (Ny, Ry(1; 5, q, h)).
Equation (5.6) will have a finite solution for g, if and only if wS < N; — S, an event
of probability less than one. As a particular example suppose that Bi = 0 and that
equal numbers of observations come from each stratum, h = 0.5. Then, using the Normal
approximation to the Binomial, we find
1—g

pr(no finite solution for ﬁ,) =1-9 ( M m)

ic
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Some values of this probability are given in the following table

‘Probabilities of No Solution *

N N, q Probability
100 50 0.90 0.355
400 200 0.90 0.228

1000 | 500 0.90 0.120
100 50 0.80 0.216
400 | 200 0.80 0.058

1000 | 500 0.80 0.0065

Under these circumstances the efficient GMM estimator can be expected to perform
much better. The third moment compares g to the average value of P{z;8)/(hP(z;B)/q+
1 — h). In this case with 8, close to zero, this moment has very little variance, and gives
an almost exact restriction on 3,. This information is not used by the Steinberg—Cardell
estimnator. This is of course no proof that the GMM estimator will in fact perform better in
practice. It relies on a first round of consistent estimates to get an estimate of the optimal
weight matrix. The choice of the first round weight matrix does not matter asymptotically,
but there is no guarantee that the first round estimator will actually converge. In practice
however, we had no difficulty in obtaining convergence for the GMM estimator using prior
knowledge of ¢.

_ In the Monte Carlo experiment z was choosen to have a bivariate normal distribution
with zero means, unit variance and zero correlation. Three sets of parameter values were
used: (Bo,B1,P2) equal to (0,1,1), (0,2,0.5) and (-1.89,1,1). The implied values for ¢ were
0.5, 0.5 and 0.2. h was fixed at 0.5. The number of observations was in all simulations
equal to 400. The number of replications was equal to 200 for each experiment. We report
the averages of the 200 estimates (mean), the average of the asymptotic standard devations
(asd), the standard deviation of the 200 replications (ssd), the median, and the median of
the absolute deviation from the median (mad). The results are reported in tables 1 to 3.

The SC estimator performed significantly worse than the efficient GMM estimator
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Table 1: Design I

Bo=00,06 =10, = 10,¢g=05h=05

GMM(unknown q) GMM (known q) SC
failure to 1 0 9
converge |
Bo B B2 Bo By B2 Bo B B2
mean 0.06 118 1.18 0.02 1.04 | 1.04 0.10 120 | 1.22
asd 33.98 1443 | 1141 0.10 0.26 | 0.26 0.42 0.77 | 0.77
ssd 0.98 0.48 0.49 0.10 029 | 027 0.34 0.64 | 0.61
med 0.06 1.09 111 0.01 1.01 1.02 0.04 1.05 | 1.10
mad 0.66 0.32 0.30 0.06 0.19 | 0.15 0.20 0.30 | 0.31
Table 2: Design II
Bo=10.0 5 =208, = 05¢=05h=05
GMM (unknown q) GMM (known q) SC
failure to 2 0 927
converge
Bo I B2 Bo B B2 Bo B B2
mean -0.01 2.15 | 0.52 0.00 | 2.03 | 0.50 0.08 258 | 0.70
asd 17.00 16.35 5.02 0.13 | 038 [ 0.25 0.92 5.15 | 2.10
ssd 0.81 0.66 | 0.31 0.13 | 038 | 0.26 0.46 1.98 | 0.93
med -0.01 2.04 0.46 -0.01 | 1.98 | 0.49 0.00 2.10 | 0.51
mad 0.46 033 | 0.17 0.08 | 0.26 | 0.17 0.23 0.62 | 0.24
Table 3: Design 11
Bo=-1.89,8 =10, p; = 1.000, ¢ =0.2, A =05
GMM (unknown q) GMM (known q) SC
failure to 19 0 0
converge
Bo B B2 Bo B B2 Bo B B2
mean -1.89 112 L10 [ —187 [ 1.04 | 1.03 | =1.92 1.09 | 1.06
asd 133.68 | 61.76 | 61.90 009 | 0.18 | 0.18 0.20 | 0.32 | 0.32
ssd 0.75 0.31 0.26 0.10 | 0.20 | 0.18 0.20 | 0.36 | 0.36
med =177 1.09 109 | 187 | 1.04 | 1.03 [ -1.92 1.03 | 1.01
mad 0.39 0.16 0.18 006 | 0.12 | 0.13 0.12 | 0.20 | 0.17
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proposed in this paper. In fact, in the first and third set of simulations 9 and 27 of the
replications did not lead to convergence. The GMM estimator without knowledge of ¢ did
not converge for 11, 2 and 19 of the simulations. There were no problems with convergence
of the GMM estimator with known ¢. The standard errors for the unknown ¢ GMM
estimator and the Steinberg-Cardell estimator reflect the convergence problems: they are
markedly different from what one would expect given normality and given the median
deviation from the mean. The finite sample properties of the known ¢ GMM estimator
seem satisfactory and reflect its theoretical asymptotic superiority to the Steinberg and
Cardell estimator when the model is correctly specified.
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6. SUMMARY AND CONCLUSIONS

We have given computationally simple and asymptotically efficient estimators in the
contaminated sampling problem. When the marginal choice probability, ¢, is unknown
the estimator maximizes a binary choice log likelihood and, if the covariate distribution
is multinomial with known support, it is interpretatable as a constrained maximum like-
lihood estimator. When the marginal choice probability is known the estimator solves a
generalized method of moments problem. When the covariate distribution is multinomial
with known support the estimator is asymptotically equivalent to a constrained maximum
likelihood estimator. We also gave explicit forms for the asymptotic covariance matrices
in both cases a< 2l as for a conditional likelihood estimator applicable when g is known.
Additional a priori information can be readily incorporated into the GMM procedure as
long as it is expressible as a moment condition. Imbens and Lancaster(1992) gives further
examples of this.

We have also discussed the logit model as a special case and compared numerically the
properties of the estimators proposed in this paper with an alternative method suggested
by Steinberg and Cardell(1991) which is applicable when ¢ is known. When g is known
the efficient generalized method of moments estimator exhibited satisfactory performance.
The estimator of Steinberg and Cardell failed to exist in a significant fraction of simulations
as did the efficient GMM procedure in the absence of knowledge of the marginal choice
probability.
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APPENDIX
PROOFS OF THEOREMS 1 AND 2

Conmisteney and asymptotic normality of the GMM estimators both when ¢ is known
and when 1t 1s unknown can be proved in a generalized method of moments framework
as described by Hansen(1982) and Manski(1988). For instance, theorems 2.1 and 3.1 in
Hansen(1982) prove consistency and asymptotic normality for generalized method of mo-
ments estimators. Conditions that ensure that the regularity conditions for these theorems
are satisfied are: (i) compactness of sample and parameter spaces (with true parameters
interior to the parameter space), (ii) continuity of P(z; /) and its derivative with respect
to A3, (ii1) uniqueness of the solution to £(¥(8)) = 0, and (iv) full rank of A and T.

The estimator of theorem 1 was derived initially for the case in which z has a discrete
distribution with known, finite, support. The estimator was shown to be a maximum
likelihood estimator in that case and therefore achieves the Cramer-Rao bound for regular
estimators. This result can be extended to the continuous regressor case using the approach
to semiparametric efficiency bounds of Begun, Hall, Huang and Wellner(1734).

From (3.1) the log density of a single observation is

log g(s,2) = slog P(z;3) — slogq+ slogh + (1 — s)log(1 — k) + log f(z). (A1)

Consider a parametric submodel in which the unknown density f(.) is parametrized by 7.

In this submodel the scores for 4 and n are
Sp =s(ps/P —as/e);  Sn=—s(an/9) + fulf. (A2)
The tangent set, T, is of the form
d(z) - s(€(d(z))/h)

where d(z) is unrestricted apart from the requirement that [d(z)dF(z) = 0. The efficient

score is

S* = (s — R(=z; B)(Ps/P + 6/9),
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where

_EwR/P)
TE®

The inverse of the covariance matrix of S* is the variance of the GMM estimator deseribed

= —Ale;-zl.

in theorem 1.
The extension of this theorem to the case in which ¢ is known is not yet available.
The claim in theorem 2 that the GMM estimator is asymptotically equivalent to the
constrained ML estimator when the covariate distribution is discrete with known support
is established by direct calculation using classical results on the covariance matrix of the

constrained maximum likelihood estimator.
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