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Abstract

A product set of pure strategies is said to be closed under best replies if all

best replies against all possible mixtures of these strategies are contained in the set.

Minimal sets with this property are called minimal curb sets. It has been argued

infonnally that the concept of minimal curb sets has an evolutionary flavour. In

this paper we present a formal foundation to support this idea.

We construct a learning process that has two main characteristics: Players have

a bounded memory and they play best replies against beliefs, formed on the basis

of strategies used in the recent past. It is shown that this leazning process leads

the players to playing strategies from a minimal curb set. Moreover, this result

continues to hold in the presence of mimickers and sophisticated players. When

players are uncertain the process dces not converge to a minimal curb set but to

related solution concepts as curb', robust or persistent sets, depending on how the

uncertainty is modelled.
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helpful discusaions and comments. This research was aponsored by the Foundation for the Promotion

ot Research in Economic Sciences, which is part of the Netherlands Organization for Scientific Research
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1 Introduction

A product set of pure strategies is said to be closed under best replies if all best replies

against all possible mixtures of these strategies are contained in the set. Minimal sets

with this property are called minimal curb sets (Basu and Weibull (1991)). Curb sets are

closely related to the better known persistent retracts. Kalai and Samet (1984) showed

that every game has at least one persistent retract and that every persistent retract

contains at least one (proper) Nash equilibrium. This enabled them to introduce the

persistent equilibrium as a refinement of the Nash equilibrium concept.

Both concepts have been used in the literature. Kalai and Samet (1985) used persis-

tency to achieve efficiency in unanimity games that are repeated as long as no agreement

is reached. Blume (1993a) used the persistent retract as a set-valued solution concept

in sender receiver games. Blume (1993b) shows that equilibria in minimal curb sets

sometimes select the preferred outcome in one-sided cheap talk games. Hurkens (1993)

shows that minimal curb sets always select the preferred outcome in games where sev-

eral players have the possibility to send costly messages. Van Damme and Hurkens

(1993) applied the concepts of curb and persistency in games of endogenous timing and

Balkenborg (1993) did so in finitely repeated games.

In most of these papers it is argued informally that the concepts of curb and persis-

tency have an evolutionary flavour. However, few or no attempts have been made to

support this idea with an evolutionary foundation of the concepts.

We construct a learning process that has the following characteristic: Players have

a bounded memory. On the basis of strategies played in the recent past, tóey form

expectations about the strategies the other players will use, and best respond to these

expectations. We assume that every period players are drawn from a heterogeneous

pool. Different players may have different beliefs and therefore they may choose different

actions. It is shown that, if the memory is long enough, play will settle down in minimal

curb sets.

In some respects our results are stronger than those obtained thus far in the literature
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ori learning. First, the process always converges.' Second, the set of curb stategies is a

subset of the set of rationalizable strategies (Bernheim (1984) and Pearce (1984)). Hence,

our learning process reduces the number of "plausible" strategies. This is in contrast

with Milgrom and Roberts (1991) whe sl:ow that a sequence that is consistent with

adaptive learning will eventually lie within the set of serially undominated strategies,

which is a superset of the set of rationalizable strategies. Third, it is reasonably simple

t.o calculate t.he minimal curb sets of a game. It is not necessary to simulate the learning

process in order to determine them.

From the main and basic theorem we derive several results for learning processes

where players learn in a somewhat different way. Play still settles down in minimal

curb sets when some players do not play best responses to past play, but are more

sophisticated than that, or, on the contrary, are less sophisticated. If we allow players

to have beliefs as if the other players in the game correlate their actions, play settles

down in a primitive formation (Harsanyi and Selten (1988)), a variant of a minimal

curb set. When players are uncertain, the process does not converge to a curb set but

to related solution concepts as curb`, robust or persistent sets, depending on how the

uncertainty is modclled. The learning processes presented in this paper may give the

reader sorne insight in the differences and similarities between these related concepts. We

also characterize two classes of games where our results go through, even if the players

only observe the outcomes of past play, instead oí the full descriptive strategies.

The rest of the paper is organized as follows. In section 2 we introduce some prelimi-

naries concerning Markov chains and curb sets. Section 3 describes the model of learning

as a Markov chain. Section 4 contains the main result: the ergodic sets of the Markov

chain correspond one-to-one to the minimal curb sets of the underlying game. In sec-

tions 5 and 6 the above mentioned variations of the learning process are considered. In

section 7 we consider the possibility that players make mistakes with small probability.

Section 8 concludes.

IThe process converges to a set. Within the set the process may continue to "drift".
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2 Preliminaxies

Let G- (S~, .. ., 5,,, ul, ..., u„) be a finite game with player set N- { 1, ..., n}. Let

S-]-j;-1 S; and S-; - j-j~~; Si. For any finite set X let 0(X) denote the set of

probability distributions over X. For a distribution ~ E 0(S) let ~; E 0(S;) be the

marginal on S;, and let p,-; E 0(S-;) be the marginal on S-;, i.e.

~i(Si) - ~a-.ES-~ l~(Si, 3-i) (Si E S;)

'L-i(3-i) - ~a1ES~fA(SieJ-i) ( s-i E S-;)

Of special interest are the probability distributions whose marginals on St, ...,..S„

are independent. The sets of these probability distributions will be denoted by E and

E-;, respectively. Although they are formally not the same, we will identify E with

jj;-1 0(S;) and E-; with jj~~; 0(S;) and trust that no confusion will result.

For p E 0(S) and i E N we let BR;(p-;) denote the set of pure best replies against

p-;. Let BR(p) - rj; 1 BR;(p-;). For F C 0(S) let BR;(F) - U„EFBR.;(~-;) and

BR(F) - jj" 1 BR;(F).

Definition 1 . A non-empty carlesian product set C- j-[;-~ C; C S is said to be closed

under best replies (or C is a curb setJ if BR(jj; 1 0(C;)) C C. Such a set is called

a minimal curb set tij it does not properly contain a curb set. Strategies contained in

minimal curb sets are called curb strategies.

It is straightforward to show that BR(jj" 1 0(C;)) - C for any minimal curb set C.

The notion of curb sets was introduced by Basu and Weibull ( 1991). Curb is mnemonic

for closed under rational behaviour.

A strict Nash equilibrium is a curb set as a singleton. Strict Nash equilibria have

almost all desired properties one can hope for, except existence. A lot of these properties

carry over to minimal curb sets. For instance, every curb set contains the support of a

proper equilibrium. Moreover, every game has at least one minimal curb set.

Minimal curb sets can be viewed as a set-valued generalization of strict equilibria:

When an outsider recommends to all players to play strategies from a minimal curb set

C, then all players will follow this recommendation if they expect the other players to

do so. The comparison with strict equilibria is not completely valid: minimal curb sets

may contain weakly dominated strategies.
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Before we go further let us consider some examples where minimal curb sets have

some cutting power.

Example A. Let G be given by the following normal form.

L R

T
B

2,2 0,0

0,0

Figure 1.

'I'his is a pure coordination game. Since (T, I,) and (B, R) are strict equilibria it is

easy to see that {(T, L)} and {(B, R)} are minimal curb sets, and that there are uo

other ones. In particular, the support of the mixed equilibrium is not contained in any

mínimal curb set.

Example B. Let G be given by

O
T
B

L R
2,2
3,1

0,0

Figure 2.
G is the normal form representation of the extensive form game where player 1 has the

choice between an outside option O which gives both players a payoff of 2, and entering

a"battle of the sexesn game with player 2. This game has a unique minimal curb set,

namely R - {(T, L)}.

These two exarnples are nice because the minimal curb sets are singletons, and hence

consist of one strict Nash equilibrium. The following example is different.

Example C. Let C be given by the normal form in Figure 3.

4,4

1,3

L R
T
B

9,5 1,4

1,1

2,2
0,0

7,7

Figure 3.
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Hurkens (1993) analyzes situations where some players can send a costly message to

all players before a game is played. Suppose that player 1 can send one of two messages,

mo or mr, to player 2 before G is played. Suppose that it costs player 1 í units to send

m'. Let ma denote player I's strategy "I send message m and choose action an and let

aoal denote player 2's strategy "I choose action a' if I receive message m'n. Then the

(reduced) normal form of the game with pre-play communication is as follows.

moT

moB
m1T

m1B

LL LR RL RR

9,5 9,5 1,4 1,4

4,4 4,4 7,7 7,7
8,5 0,4 8,5 0,4
3,4 6,7 3,4 6,7

Figure 4.

Now it can be checked that {moT} x {LL, LR} is the unique minimal curb set of this

extended game. The set is not a singleton but it consists only of equilibria that involve

sending the cheapest message and then playing the equilibrium preferred by player 1.

In Hurkens (1993) similar results are obtained for a whole class of games with n players

among which k have the possibility to send a costly message.

In the next section we will describe the learning process by means of a Markov chain.

Therefore we will need some basic notions from the theory of Markov chains.

A finite stationary Markov chain is characterized by a pair (X, P), where X is a finite

state space and P: X x X-. [0,1] is a transition matrix. The interpretation is that

P(x, x') is the probability that the process will move from x to x' in one period. We

will denote x M x' if there exist k E N, xo, ..., xk E X with xo - x, xk - i and

P(.z;, x;t~ ) ~ 0(i - 0, ..., k- 1). Now ti. defines a weak order on X. Hence, we can

dcfinc an ex~uivalence relation on X:

x~ y q x-~ y and y-u x

Let [x] denote the equivalence class that contains x and let Q- {[x]~x E X} denote the
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set of eyuivalence classes. We define a partial order { on Q.

~~~ ~ ~y~ p y -..~ ~

The minimal elements with respect to the order ~ are called ergodic sets. The other

elements are called transient sets. IÏ the process leaves a transient set it can never return

to that set. And if the process is in an ergodic set it can never leave this set. The

elements of these sets are called ergodic and transient states. We have the following

theorem.

Theorem 1 . !n any finite Markov chain, no matter where the process starts, the

pro6a6i1ity after k steps that the process is in an ergodic state tends to 1 as k tends

to infinity.

Proof. See e.g. Kemeny and Snell (1976).

3 The learning process

According to the Bayesian approach, a player forms some expectation about the strate-

gies that will be played by the other players, and best responds to his expectation. How

these expectations are formed is not clear. When the same game has been played be-

fore, possibly by different people, it seems reasonable to suggest that expectations are

formed on the basis of information on past play. One way of using this information is to

assume that a player's belief corresponds to the empirical frequency of strategies used

in the past. This way of forming beliefs, known as fictitious play (Brown (1951) and

Robinson (1951)), makes perhaps sense in matching models, but it is certainly not the

only possible way of forming beliefs. One drawback of fictitious play is that it assumes

that all people always form expectations in the same way. This implies that if different

people have the same information, they will form the same beliefs and consequently they

choose the same action. One can create some stochastic variability in the process by

assuming that people only draw an incomplete sample of the information, as in Young

(1993). 'Ihere it is assumed that players learn how the game was played in m out of the

most recent K periods. The players use a fictitious play rule to map samples into beliefs,
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and best respond to these beliefs. The great technical advantage of Young's approach is

that the learning process can be described by a finite Markov chain on the state space

H- Sti, consisting of all sequences of length Ií drawn from S. In order to determine

the ergodic sets of such Markov chains, one needs only to specify which transitions occur

with positive probability, and which occur with zero probability.

We will also describe a]earning process by means of a finite Markov chain, but we

need more variability in the responses of the players. In fact, we need the degree of

variability that is present in Milgrom and Robcrts' ( 1991) definition of adaptive play.2

Let G-(.S, u) be an n-person normal form game. Fix a positive integer K. Suppose

we have a finite population of individuals that is partitioned into non-empty classes

V~, ..., V. The members of U; are candidates to play role i in the game, and they all

have the same payoff function u;. Let t- 0,1, 2, ... denote succesive time periods. Game

G is played once every period. In period t one individual is drawn from ea,ch class [;.

These individuals are going to play the appropriate roles in the game this period. We

will refer to the individual that is drawn from V to play the game in the current period

as player i, although the identity of this player may change from time to time.

Let s(0), s(1), .. . , s(t - 1) denote the strategy profiles played up to period t. Player

i receives some, but not necessarily all, information about play in the recent K periods,

denoted by 1[s(t - K),...,s(t - 1)]. Then he chooses a pure strategy s;(t) according

to somc rule. We will define below what kind of iniormation a player may receive, and

how he chooses a strategy as a function of this information. Then the players are put

back in their class ( or they die and are replaced by a new individual with the same

utility function). This ends period t and we move up to period t f 1. Again, from

each class one individual is drawn to play the game. Player i receives some information

I[s(t f 1 - K),...,s(t)] and chooses a strategy according to the same rule.

Since we will assume that all the rules are time-independent, this learning process

can be described by a stationary Markov chain on the state space H- SK. Call h E H

a successor of h E H if h is obtained from h by deleting the left most element and

by adding some element s E S to the right. Let r(h) denote the right most element

ZS~ar S~~ction R(or a romparison between the present paper and Milgrom and Rnberts ( 1991).



of h E Il. For h-(s-K, ..,s-~) E H let n;(h) - {s; K, ..,s;~} denote the set of

strategies played by player i in the recent past. We will assume that our learning process

is described by a transition matrix P E P, where ~ is defined as follows.3

Definition 2 .

Let P denote the set of transition matrices P, that satisfy for all histories h, h E H,

P(h, h) ~ 0 t~
h is a successor of h

r;(h) E BR;(p') for some p' E[[~~; 0(~~(h)) (all i)

We will give two interpretations of a learning process that is described by some P E~P.

The first interpretation is close to the model of Young (1993). Fix a positive integer L.

Before player i chooses a strategy in period t, he receives information about how the

game was played by player j in the recent past, for all j~ i. He receives L draws with

replacement from the set {s~(t-K),... , s~(t-1)}. A way of thinking about this sampling

procedure is that player i passively hears about L precedents concerning the way player

j played the game before. But player i is unaware of the fact that he might hear about

the same precedent several times. Assume that all draws are independent, but more

importantly, assume that each combination of draws occurs with positive probability.

Player i's belief about the behaviour of player j corresponds to the empirical frequency

of strategics in the sample of size L. Hence, this belief is one of a finite number of

possible probability distributions. Namely, let h-(s(t - K),...,s(t - 1)) denote the

recent history and let a~(h) -{si(t - K),...,s~(t - 1)} denote the set of strategies

played by player j in the recent past. Now player i's belief about player j's behaviour is

contained in the set

B~(h, L) -{p~ E 0(~r~(h))~lci(s~) - l~L for some I E{0,1,... , L}}.

We call the set B'(h, L) - jj~~; B~(h, L) the L-grid distribution space for i induced by

h. This learning process could be described by a transition matrix P' with the following

properties.

3A tranaition matrix describea a learning procesa for a fixed game, C, and a fixed length of the

memory, K. We will however suppreea auperacripta C and K.
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(1) If h is not a successor of h, then P'(h, h) - 0.

(Z) If h is a successor of h, and s is the right most element of h, then P'(h, h) , 0 if and

only if, for all i, s; E BR.;(p') for some p' E B'(h, L).

Note that as L increases, the grid becomes finer and finer, and the stochastic variability

of the process increases. It seems that as L increases, P' "approaches" some P E P.

There exists a`generic' class of games for which it suffices, for the purpose of this paper,

to choose L sufficiently large. However, in general we need a little bit more and therefore

we assume that our learning process is described by some P E P.

Anothc~r intcrprotation of a learning proccss that is dcscribed by a transition tnatrix

P E ~ is tlic following. Suppose that the individuals in a class have different personal

characteristics: They use the information on past play to know which strategies will

certainly not be used ( namely the ones that have not been played in the recent history).

13ut each individual makes his own personal assessment of the probabilities with which

the remaining strategies will be played. Some people are very optimistic and expect the

best, while others are very pessimistic and expect the worst. And there will be a lot who

have some intermediate beliefs. Of course, we need sufficient diversity in the different

classes when this learning process is to be described by some P E~. Note, however,

that this does not necessarily mean that these classes are large. Suppose that for each

strategy s; E S;, there is some individual in U, who plays s;, whenever it is a best reply to

some belief that puts positive weight only on strategies that were played recently. (And

he chooses a best reply to the most recent strategy otherwise.) Then we only need ~.5;~

individuals in class [;.

In the next section we will state and prove the main theorem of this paper: Play will

settle down in minimal curb sets.
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4 Ergodic sets

Fix 1~ E N as the length of the histories. Recall from section 2 that h-~-~ h means that

there exist k E N, ho, ..., hk E H- SX such that ho - h, hk - h and P(h',h't' ) 1 0.

Now ti. deíines a weak order on H and hence we can define an equivalence relation on H

and an order on the set of equivalence classes of H. We will be interested in the minimal

elements of this order, the ergodic sets.

Let C be a minimal curb set of G- (S, u). We say that h E H is a C-history if

h E C~. We call h a curb history if it is a C-history for some minimal curb set C.

Now we are ready to state the main theorem.

Theorem 2. There exists K E N such that for alI K~ K and every Markov chain

with a transilion matrix P E P

(iJ If Z C H is an ergodic set then Z C CK for some minimal curb set C.

(iiJ For every minimal curb set C there exists exactly one subset Z C CK that is ergodic.

The theorem states that, if the history is long enough, any ergodic set is a set of

C-histories for some minimal curb set C and that the set of C-histories contains one

ergodic set. Hence, the ergodic states are curb histories. From Theorem 1 then the

following corollary follows.

Corollary 1 . The probability that the players are playing a curb strategy profile after k

steps oJ the learning process tends to 1 as k tends to infinity, if histories are su,~ciently

long.

The intuition for the theorem is quite clear. By having a large enough memory, players

may liave beliefs with large supports. This means that best replies against all kinds of

mixtures will be played now and then. This creates so much stochastic variability that

players sooner or later will play curb strategies. When they keep drawing the "right"

samples, they will keep best responding against curb strategies, and hence they will

play curb strategies again. It might happen that they will do this K periods in a row.

The probability that this happens at a specific point in time is only small, but with

probability one it will happen eventually. By that time all non-curb strategies will be

forgotten. The strategies that will be played from that point on, will depend on the

sample drawn, but it is sure that it will be curb strategies again.
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Before we start with the actual proof of Theorem 2 we introduce some notation and

state a lemma.

Let F be a non-empty subset of S. We define the projection of F on S; as p;(F) -

{ f,~ f E F} and we define span(F) - jj; 1 p;(F). Hence, span(F) is the smallest cartesian

product set in S that contains F. Similarly, for a history h-(s-k~, .., s-') we define

~r;(h) - {s; F, ..,s;'} and span(h) - j~j; ~ rr;(h). We say that B C S apans F if

span(B) - span(F).

For a history h let B'"a(h) -{p E E~supp(p) C span(h)}. This set contains all

independent beliefs a Bayesian player might have when the process is in state h. Similarly,

we define for a set F C S, 6'"d(F) - {W E E~supp(W) C span(F)}. Let M - max; ~5;~.

Lemma 1 . Let s',...,sT E S be such that s`t' ~ span({s',...,s`}) for all t-

1,...,T-1. ThenTC~"~~5;~-(n-1).

Proof. Easy and hence omitted. ~

Proof of Theorem 2. Take If -~; ~ ~S;~ -(n - 1) -F M and let K 1 If. Let P E D.

Let h` -(xK-`, ..., x', s' ,..., s`) be a particular history and assume that F` -

span({s',...,s`}) is not a curb set. Then there exists s`t' E BR(Ciind(Ft)) `Fs

Let h`t' -(xK-`-', .., x', s', . .., s`}') Then P(h`, h`}' ) ~ 0. Starting from an

arbitrary history h' we can apply this argument repeatedly. By Lemma 1 we know

that there exists T G !f - M such that h' M hT -(xK-T xl s', ..., 3T) and

such that F'T - span({s',...,sT}) is a curb set. Let C C FT be a minimal curb

set and Icl. {b`,...,bM} span C. Since every strategy in a rninimal curb seL ia a

best reply to some belief concentrated on this set and since K 1 M f T, we havc

hT...~ (...,s',...,sT,b',...,bM)-..~ (b',...,6'y,bM,...,6M).

The above shows that for every history h, there exists a minimal curb set C such

that for every set {b', ..., bM } that spans C, we have h M (b', ..., 6M, bM, ..., 6M ).

Furthermore, the definition of D implies that if h is a C-history and h M h, then h is

also a C-history.

The second observation implies that the set of C-histories contains an ergodic set, for

any minimal curb set C. The first observation then implies that the set of C-histories

contains exactly one ergodic set, and that there are no other ergodic sets. ~
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It is not true in general that every curb history is an ergodic state. This is so because

not every curb history can be reached from any other curb history.4 Consider the game

in Figure 5.

ar

br

cr

aZ 6,
1,44,1

1,4 4,1

3,2 3,2

cz

2,3

2,3

0,0

Figure 5.

1'his game has only one curb set, namely the set of all pure strategy combinations.

But the profile h-(c, c, ..., c) cannot be reached under the learning process from any

other history. This is so because c is only a best reply against some mixtures of a and 6.

Ilence, there exists no h with P(h, h) ~ 0.

We certainly do not claim that the lower bound on K that was given in the proof of

Theorem 2 is sharp. The example in Figure 6 shows however that memories must not

be too short.

A
T
M
B

a 1

4,4 2,2 2,2 2,2
2,2 5,0 0,5 0,0
2,2 0,0 5,0 0,5

2,2 0,5 0,0 5,0

Figure 6.

It is not difircult to see that if K- 2, then the set of histories {(s-~,s-t)~s-~ E

span({Tl, Mc, Br})} contains an ergodic set. Take for example the history (Tl, Mr).

"However, from the proof it follows easily that if a E C for eome minimal curb set C, then there

exists an ergodic state h with r(h) - s. Hence, every strategy in C will be played infinitely often once

the ergodic aet contained in CK is entered.
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Agents from pool Vr will play a best reply against crl f (1 - a)r, for some a E [0, 1].

Hence, they will play T or B. But the unique curb retract is the singleton {(A,a)}.

So the history must not be too short. Note that if K- 3 and the process is in state

(Tl, Mr, Mc), then there will be some agent in Vi who will play A, since A is the best

reply against 31 f 3c ~- 3r.

Note that. the game from Figure 6 has a unique equilibrium, namely ( A, a). This

equilibrium is strict. Since every curb set contains the support of a Nash equilibrium

and since a strict equilibrium forrns a curb set as a singleton, it followa that this game

has a unique minimal curb set. Hence, if players behave as described by our learning

process then they will eventually play the equilibrium. This reasoning holds for all games

that have a unique equilibrium that happens to be strict. So we proved

Corollary 2 . Suppose that s is the unique Nash equilibrium of G and BR(s) -{s}.

The probability that players are playing the equiliórium after k steps of the learning

process tends to 1 as k tends to infinity, if histories are suffeciently long.

5 Variations on the same theme

We remarked before that one only needs to know which entries of the transition matrix

are positive and which are zero in order to characterize the ergodic sets. In the proof of

Theorem 2 we used that certain entries are positive (together with Lemma 1) to show

that the process can move from any history h to a curb history h in a finite number of

periods. Furthermore, we used the fact that certain entries are zero to ensure that the

process can not leave the set of C-histories, for any curb set C.

It is possible to prove Theorem 2 for an even bigger class of transition matrices. Let

P E~ and let P be a transition matrix that satisfies, for any minimal curb set C,

P(h, h) ~ 0 ~ P(h, h) 1 0 (5.1)

h E CK and P(h, h) ~ 0 ~ h E CK (5.2)

Let P denote the set of all such transition matrices. It is obvious that Theorem 2

holds for all P E P. We will consider two subsets of P, namely ~so~h and ~""`. The
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transition matrices in these sets correspond to learning processes where some players are

more sophisticated (in the case of ~aoph) or less sophisticated (in the case of Pm'm). It

turns out that for these two classes we can prove slightly stronger results.

5.1 More and less sophisticated players

Suppose that not all individuals in the classes are Bayesian players, but that some

individuals are mimickers. Mimickers don't form expectations but just observe how

other agents in the same role have played the game during (some of) the last K periods.

Then they choose one of these strategies at random. When we retain our assumption

about the Bayesian players, this learning process can be described by a transition matrix

P E Pm'm, where Pm'm is defined as follows.

Definition 3 .

Get ~m'm denote the set of transition matrices P, that satísfy for all histories h, h E H,

P(h, h) , 0 t~
h is a successor of h

r;(h) E BR;(Li'"d(h)) or r;(h) E~r;(h) (all i)

Obviously, Pm'm C D, hence Theorem 2 holds for all P E P""m. We can prove a
slightly stronger result: A1le curb histories are ergodic states.

Theorem 3. There ezists K E N such that for all K~ K and for every Markov chain

with a transition matrix P E~'~`, Z C H is an ergodic set if and only if Z- CK for

some minimal curó set C.

Proof. Using the proof of Theorem 2, it suffices to show that if C is a minimal curb set

and h and h are C-histories, then h M h.

Let h-(s-~`~, .. , s-'). We can choose a set B- {61, . .. , bM} that spans C such

that s-~ E span( {b' ,..., N}, for j - 1, ..., M. From the proof of Theorem 2 we know

that h ti. (b', ..., bM, s-r` , .., 3-1M}11) -: h. Because of the special way we chose B

(and because players sometimes mimic) we have h M h. 0

It is possible to prove Theorem 3 with a s~naller lowerbound on the length of the

mr.mory by making full use of the presence of the mimickers. We will not pursue that

here. We just remark that íor weakly acyclic games, the class of games considered in
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Young (1993), we could take K- 1.

The learning process we considered implies that Bayesian players play best responses

against past play. If a player knew that other players are following this process, he

could do better by playing a strategy that is a best reply against a strategy profile,

consisting of best responses for the other players against past play. Of course, we may

have players who foresee that others are going to play best responses to best replies to

past play. We could have even more sophisticated players. When we assume that in a

class many different levels of sophistication are represented, we have a learning process

with sophisticated players. (See also Milgrom and Roberts (1991).)

Formally, let h be a particular history and let 7'o(h) - span(h). Define recursively

T'}`(h) - span(T'(h) U BR(Li'"d(T'(h)))). Since T'}'(h) ~ T'(h) and S is finite,

T~(h) - span(U~oTi(h)) is well-defined. Again, we define a whole set of transition

matrices that correspond to learning processes with sophisticated players. We will denote

this class by P'o'", where P„yh is defined as follows.

Definition 4 .

Let ~'o'h denote the set of transition matrices P, that satisjy for alI histories h, h E H,

h is a successor of h
P(h, h) ~ 0 a

r(h) E BR(T~(h))

It is obvious that ~'~h C P and hence Theorem 2 is valid, also for this clasa. We can

prove a stronger result: In the presence of sophisticated players we only need a memory

of length one. The intuition for this result is that sophisticated players can do all the

learning in their heads. They might foresee all the steps that needed to be executed in

the case of no sophisticated players.

Theorem 9 . For all lí ~ I nnrl all Markov chains vrith a lmnsition malriz P E~"'Ah

we have 'I, C H is an etgodic set èf and only ij Z- Ch for some minima! curb set C.

Proof. For notational convenience we just give the proof for K- 1. Now H- S and

we can define T~(s) for all s E S. Note that T~(s) is a curb set and hence there exists

a minimal curb set C C T~(s). If s E C then P(s, s) ~ 0.
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Not~~ that if s E C for some tninimal curb set C then T~(s) - C. Ilence, if s', s" E C,

then P(s', s") ) 0. ~

The reader may have noticed that this sophisticated learning process has some similarities

with the notion of rationalizability (Bernheim (1984) and Pearce (1984)). The difference

is that rationalizability corresponds with a process of iterative elimination of strategies

that are never best replies (starting with the whole space of strategy profiles) whereas

our learning process implies the addition of best replies (starting from a history). The

bounded memory of the players causes play to settle down in a minimal curb aet.

The sitnilarity of rationalizable and curb strategies has already been pointed out

by Basu and Weibull (1991) and Balkenborg (1992): Call a set C- jj; ~ C; tight if

BR(jj; ~ 0(C;)) - C. The maximal tight set is the set of rationalizable strategies, the

minimal tight sets are just the minimal curb sets. In particular, every curb strategy is

rationalizable.

5.2 Uncertain players

Consider the game from Figure 7.
L R

T
B

1,1

1,1

1,1

0,0

Figure 7.

This game has a unique curb set: it consists of all pure strategy profiles. When players

behave as described by any of the learning processes they will regularly be playing (B, R)!

This might seem a bit strange. It could not happen if the players were careful and only

played undominated best replies. Then they would finally be playing only (T, L).

This example shows a drawback of the notion of minimal curb sets: They can contain

strategies that are weakly dominated. Therefore let us introduce the notion of sets that

are closed under undominated best replies. Formally, s; is weakly dominated by s; if

u;(s;,s-;) c u;(s;,s-;) for all s-; with strict inequality for at least one s-;. Let UBR(a)

denote the set of pure best replies against o that are not weakly dominated.



17

Definition 5. A non-empty cartesian set C- jj; ~ C; is closed under undominated

best replies (or C is a curó~ setf if for all o E rj-1 0(G,), UBR(o) C C. Such a set

is called a minimal curó' set if it does not properly contain a set thal is closed under

undominated best replies. Stmteqies contained in minimal curb~ sets are called curb~

strategies.

Lemma 2. Every curb set contains a curb' set. Every minéma! curb' set contaíns the

support of a Nash equilibrium. Curb' strategies are not weakly dominated.

Proof. Easy and hence omitted. ~

It is easy to adjust the learning process so that players will end up playing curb"

strategies. Just replace `best replies' by `undominated best replíes' and analogies of

Theorems 2, 3 and 4 can be proved easily. On the level of Bayesian players this means

that, although they have certain beliefs, they are not completely sure that these belieís

are "correct".5 Therefore they should be careful and only play undominated best replies.

'The approach taken above is a bit unsatisfactory since the uncertainty is not modelled.

We will do that now. Remember the sampling procedure described in section 3. Every

time an individual is drawn from class I;, he hears about L precedents concerning the

way player j played this game before. This sample is transformed (by the fictitious play

rule) into a belief p' from the L-grid distribution space B`(h, L), where h denotes the

recent history of plays.

Now suppose that the final belief of this player is not necessarily p`, but some ~`

"close~ to p`, reflecting the uncertainty of this player. This uncertainty may stem from

the fact that the player realizes that he only draws a sample, and that te' is only a point

estimate of the distribution of strategies. The final belief ja' could be a draw from some

"confidence interval" around p'. This draw might depend on personal characteristics, as

well as on other external factors. We will just assume that ~' is drawn from the uniform

distribution over B,(~`) -{o' E E-;~d'móz(p',o') G e}, where e~ 0 is fixedg and where

SThe uncertainty of the playera could stem from the fact that playera may realize that other players

have different samples. Anyway, sometimea players "are right" to be uncertain aince it is poaeible that

a history h is [ollowed by the play o[ a, where s~ span(h).

s We could take c- 1~L to reflect the intuition that bigger samples ehould reault in amaller confidence

intervals.
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dmay(~`,o`) - max,-~ES-, ~la'(s-;) - a'(s-;)~. Note that, for large G, the union of these

intervals over all L-grid distibutions induced by h, consists of all probability distributions

close to jj~~; 0(a~(h)).

What consequences does this have for our learning process? Or, in other words, what

strategies will be played with positive probability after each possible history? Well, let

h E K and let s; E S;. Before we had that s; was played with positive probability,

whenever there was some p' E j-j~~; 0(n~(h)) such that s; E BR;(p'). Now we have that

s; is played with positive probability, only if the stability region of s;,

St;(s;) -{o-; E E-;~s; E BR;(o-;)},

has positive probability under the uniform distribution over B~(j~'), for some L-grid

distribution jr' induced by h. For sufficiently large L, this is equivalent to

p-; E cl(int(St;(s;))), (5.3)

for some p-; E r[~~; 0(~ri(h)), where cl(.) and int(-) stand for closure and interior (in

the topological space E-;), respectively.

Note that if p-; E int(St;(s;)), then s; is a best reply against each strategy in an open

ne~ighbourliood of h-;. Up to equivalence, s; is then also the unique ( and undominated)

best reply against this neighbourhood, and s; is called a robust best reply against p-;.

If only (5.3) is satisfied, there is some non-empty open set close to p-; against which

s; is the unique best reply, and we call s; a semi-robust best reply against p-;, which

is denoted by s; E SRBR;({r-;). As opposed to robust best replies, semi-robust best

replies always exist, and there may exist several semi-robust best replies against some

p-;, even if player i has no equivalent strategies. It is easy to see that semi-robust best

replies are not weakly dominated. Similar to the case with the ( undominated) best reply

correspondence we define

Definition 8 (Balkenborg ( 1992))

A non-empty cartesian set C- jj;1 C; is closed under semi-robust óest replies (or C is

a robust setJ if SRBR(jj; 1 0(C;)) C C. Such a set is called n minimal rnbust set if it

does not properly contain a set that is closed under semi-robust óest rep(ies.
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It is easy to see that every curb' set contains a robust set, but not every minimal

robust set is (contained in) a minimal curb` set. Moreover, every robust set contains the

support of a Nash equilibrium.

The learning process where players are uncertain can be described by a Markov chain

that is very similar to the ones we had before. Just replace `best replies' by `semi-robust

best replies' and analogies of Theorems 2, 3 and 4 can be proved easily. Play will settle

down in a minimal robust set.

For `generic' normal form games the minimal curb, curb~` and robust sets coincide

with the persistent sets. Persistent sets consist of the extreme points of persistent re-

tracts (Kalai and Samet (1984)). As a matter of fact, for games in which no player

has equivalent strategies, the minimal robust sets coincide with the persistent sets (see

Balkenborg (1992)). However, many normal íorm games are interesting because they are

the normal form representation of an extensive form game, and these are not `generic'

in the class of normal form games. This is due to the fact that there may be strategies

in the extensive form game that preclude some information sets (or subgames) from be-

ing reached. This implies that curb sets may differ from robust sets. To illustrate this

difference consider the following example that is taken from Hurkens (1993).

Figure 8.
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Consider the gacne in Figure S. Player 3 can decide to burn one unit before players

I and `2 play a simultaneous rnove coordination game. Consider the strategy profile

.4meff - (Hll,rr, "burn 0"). '1'he singleton set containing this profile is a persistettt aud

robusl. set: ('onsider the history .h -{stc~c~ff, .., s111eff ). Player 3 k:as a uniquc best reply

against s~r~c~lf, nantely "burn 0"; players 1 and '2 have a lot of (widominatecf) best replies

against stneff but in a small neighbourhood outside the set, that is when they are a

little bit uncertain, they have a unique best reply. This is due to the fact that players

1 and 2 liave an interest in choosing the same action: in a small neighbourhood player

l plays `R' with a very high probability, whether or not player 3 burnt something, and

hecrce player 2 has to choose `r', whether or not player 3 burnt something.

In contrast, the only minimal curb (or curb') set of this game consists of all strategy

profiles leading Lo t,he payo(f vector (3, 3, 3). When the system is in state h, players 1

and 'l n~ay change their choice of action in the subgame that is not reachcd, that is,

when player 3 chooses to "burn I" they may play L and !, respectively.

This example shows that the uncertainty we have introduced has a rather strange

effect. By adding a little bit of uncertainty players are still quite certain about the

strategies that will be used, but they are also certain that all information sets will be

reached wit.h positive probability. Therefore they have to play a best reply against the

strategy profile tltat they believe to be played almost certainly, in all information sets,

although many of these information sets will not be reached if this strategy profile is

indeed played.

The peculiarity may very well be due to the fact that the game is an extensive form

garne, while curb is defined for normal form games. In our learning process we assumed

that players know the strategies played in the past. For extensive form games it makes

~nore sense to assume that players only observe the outcomes. We deal with this issue

in section 6.

5.3 Dependent beliefs

'Phrougltout this paper we assumed that a player's belief about the strategies oí the other

players is independent, i.e. is an element oí E-,. This was a consequence of the sampling
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procedure we described in section 3. Players receive information about the strategies

of the playcrs individually. Moreover, if players realize that the players are deciding

simultaneously and independently, then it is natural to have independent beliefs. There

are however two problems concerning the independency of beliefs.

First of all, do players indeed decide independently? After all, the choices of all

players depend (via the samples) indirectly on the same recent history. History might

act as a correlation mechanism. Secondly, our other interpretation of the learning process

was that personal characteristics are inrportant to form beliefs. All pkayers expect that

strategies that have not been played recently, will not be played, but different players

rnay have different assessments of the probabilities with which the remaining strategies

are played. In view of this interpretation, an individual from class l; might have a

dependent belief, i.e. an element of 0(S-;). b'or instance, he might believe that the

other players can correlate their strategies. It does not really matter whether or not the

other players do correlate, what matters is that some individuals may believe that they

cío.

In this section we will examine the consequences of allowing players to have dependent

beliefs. We will assume that the classes are very diverse: If h denotes the recent history

and s; E BR;(}t') for some p' E 0(span(h)), then s; will be played with positive proba-

bility. .4gain, we will define a whole set of transition matrices describing such learning

processes. Let Cid"(h) -{p E 0(S)~supp(tc) C span(h)} denote the set of all dependent

beliefs a player may have.

Definition 7 .

Let ~d`p denote the set of transition matrèces P, that satisfy for all histories h, h E H,

h is a successor of h
P(h, h) ~ 0 ta

r(h) E BR(Cid`p(h))

We can prove a theorem similar to Theorem 2. Of course, the ptocess will in general

not converge to a minimal curb set, but to a cartesian set F- jj;-r F; that is minimal

with respect to the following property: If p E 0(F) and s; E BR;(p-;), then s; E F;.

Following Harsanyi and Selten (1988) we call such a set a primitive formation.~

~Ilarsanyi and SclLcn (19HH) ronsidcr this concept in Lhc ag~~nt. norrnal (orm.
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Theoretn 5. "l'here exists lí E N such that for a!l K~ K and Jor every Markov chain

with a lransition matrix P E ~d`p

(i~ IJ Z C II is an ergodic set then Z C Fk Jor some primitive formation F.

(iiJ For cvcr,y primitive Jormation F lhere exists exactly one ergodic subset 'L C Fh .

W~~ omit t.hi~ proof because it is cssentially the same as the proof of '[hmretn `l. We~

just have to observe that if F is a primitive forrnation and s E F, then s~ is a best reply

against some (dependent,) belief concentrated on F.

Obviously, analogies of Theorcros 3 and 4 to the case of dependent beliefs also exist.

The same is true for the results of section 5.2 on undominated best replies and semi-

robust best replies. Analogous to curb' and robust sets we could define primitive~` and

robust formations. The reader should be aware, though, that the definition of semi-

robustness needs to be adapted. In the context of dependent beliefs we say that s; is

a semi-robust best reply against p-; E 0(S-;) if p-; E cl(int(St;(s;))), where cl(.) and

int(.) stand for closure and interior, respectively, in the topological space 0(S-;), and

where St;(s;) -{p-; E ~(S-;)~s; E BR.;(te-;)} is the stability region of s;.

Of course, in a two person game the primitíve formations are identical to the minimal

curb sets. Moreover, every primitive formation contains a minimal curb set. Hence, if

a game has a unique minimal curb set C which is also a primitive formation, then C is

also the unique primitive formation. Similar statements can be made about the other

concepts with the help of the following diagram. In this diagram X~ Y means that

every X contains an Y, but not every Y is contained in an X.

primitive formation ~ primitive' formation ~ robust formation

U U U

min. curb set ~ min. curb` set ~ min. robust set

Remark. Note that our definition of the transition matrices dces not correspond to

what one may call "correlated learningn. Suppose that in a three player game player 3

observes that the other players played TL and BR in the last two períods. Then, under

our assumption of dependent beliefs, it is possible that player 3 believes that TR and

BL will be played, both with probability 1~2. One may feel that only beliefs of thc
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form aTL f ( 1 - a)BR should be allowed. We do not know whether such "correlated

learning" processes converge to some static set-valued solution concept.

6 Learning from outcomes

Throughout this paper we assumed that players know the strategies that were used in

the past. This assumption is reasonable when the players in the underlying game choose

their actions simultaneously. But if the underlying garne is in fact an extensive form

game, it makes more sense to assume that players only observe the outcomes, i.e. the

paths in the tree generated by the strategies. Consider for example the "burning money"

game in Figure 8. Suppose player 3 chose to "burn 0" in the last period. How could he

know how players 1 and 2 would have reacted to "burn 1"? In fact, he can't, although

he may have some beliefs.

[n this section we will consider the case where players only observe the outcomes in

the recettt past. We assume that all agents form expectations on the basis of observed

outcomes, and that different agents within a pool may form different beliefs. We pose

only one restriction on the beliefs: When a player is able to conclude from the observed

outcomes that a particular strategy has not been played during the last K periods, then

he expects it will not be played next period. As before, we assume that the classes are

very diverse: As soon as strategy s; is a best reply against some independent belief,

satisfying this restrictíon, then s; will be played with positive probability.

We will define a class of transition matrices that correspond to such a"learning from

outcomes" process, and we denote this class by ~o"`. Before we can do so, we need some

notation.

Let G be an extensive form game. Let O denote the set of outcomes (i.e. paths in

the tree from the root to an endpoint) and let o: S-~ O be the mapping that assigns to

a pure strategy combination the outcome it generates. We will assume that there are no

moves oí Nature in G, since this mapping is not well-defined if there are. For a óistory

h-(s-h, ..,s-t), let outc(h) - {o(s-K),...,o(s-r)}. Note that outc(h) surnmarizes

the information a player has. Let cons;(h) -{s; E S;~3s-; E S-; s.t. o((s;,s-;)) E
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outc(h)} denote the set of strategies of player i that are consistent with the observed
outcomes. Let cons(h) - j];-1 cons;(h).
Definition 8 .

Let P~`~ denote the set of transtition matrices P, that satisfy for all histories h, h E H,

h is a successor of h
P(h, h) ~ 0 a

r(h) E BR(6'"d(cons(h)))

In general, it is not true that play will settle down in minimal curb sets. Note that.

cons(h) ~ span(h). This implies that if P E 7~ and P(h, h) 1 0, then P""`(h, h) 1 0

for all Po"` E Po"`. Using part of the proof of Theorem 2, it follows that, if K is large

enough, for every history h and every Po"` E Po"`, there exists a curb history h such

that h~ h. The problem is that there might exist a history h, which is not a curb

history, such that h M h. This might even happen in `generic' extensive form games, as

the game from Figure 9 shows.

(6, 6) (1, 1) (3,3) (5,5) (2,2) (8,4)

Figure 9.
This game has a unique minimal curb set, namely {U,D} x{aA,aB,aC,bA}. How-

ever, suppose that in the recent (curb) history the strategy combinations (D, aB) and

(U, 6A) were played. Hence, player 1 observes (amongst other things) the outcomes DB

and Ub. He might believe that the strategy 68 was played, and will be played again

next period. If he does so, he will choose `Out', which is not a curb strategy.

The above example seems to suggest that there is no hope to obtain a result like

Theorem 2 in the case oí learning from outcomes. There are however two classes of
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games for which such an analogy does exist. The first class consists of the extensive

form games without moves of nature, where each player has only one iníormation set at

which he has to make a choice. For obvious reasons we call such a game an agent normal

form garne without moves of nature, and we denote the class by ANF. 1'he second class

of games consists of those games G that have the property that any minimal curb set C

of G corresponds to a single outcome, i.e. the set {o(c)~c E C} is a singleton. We denote

this class by SCO (single curb outcome). Examples of these games are shown in Figures

2, 4 and 8.

To prove the above claims we just need to show that Po"` C P, where P is as defined

at the beginning of section 5. Part (5.1) follows from span(h) C cons(h), part (5.2)

follows from the next lemma.

Lemma 3 . Let G E ANF or G E SCO and let C be a minimal curb set of G. Then

hECK ~ cons(h) C C

Proof. First consider the case G E ANF. Let j be a player. If there is an out-

come o(s-'") E outc(h) that does not intersect j's information set, then it follows that

BR~(s-m) - S~. "I'his implies that C~ - S~ ~ cons~(h). If there is no such outcome, all

outcomes intersect j's information set and cons~(h) - rr~(h) C C~. Hence, cons(h) C C.

Now consider the case G E SCO. Let s- r(h). Now we have outc(h) -{o(s)}. Let

j be a player and suppose s~ E cons~(h). In any information set of j that intetsects o(s),

sy picks the same action as s„ since s~ is consistent with h. Since G E SCO, we have

that s~ is a best reply against s-~. But this implies that s~ is a best reply against s-~ as

well, and hence s~ E C~. ~

The reader can check that there are also analogies of Theorems 3 and 4 to the case

where players learn from outcomes. The definiton of a mimicker needs to be adapted,

since players don't observe strategies. We may assume that mimickers choose at random

a strategy from the set of strategies that are consistent with (some of) the observed

outcomes. There is also an analogy of Theorem 5, where players beliefs are not indepen-

dent. There are however no analogues for the results of section 5.2 on the refined notions

of undominated best replies or of semi-robust best replies. This is due to the fact that
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strategies that are consistent with a curb' histocy, may be weakly dominated. The game

of Figure 9 shows an example of such a case: The only curb` strategy is (U, aA), but aB

and aC are consistent with the curb' outcome.

7 Learning and experimentation

In many papers on learning, experimentation plays a prominent role. (See e.g. Kandori,

Mailath and Rob (1993), Samuelson (1993), Young (1993) and Fudenberg and Kreps

(1988)).

In Yomig (1993), Samuelson (1993) and Kandori et aL (1993) thc possibility of

expcrimentation (or mistakes, or mutations) implies that the Markov chain describing the

learning process becomes irreducible, and hence has a unique stationary distribution. By

taking the limit as the experimentation rate tends to zero, one stationary distribution of

the unperturbed process is selected. In Young (1993) and Kandori et al. (1993) this yields

typically a unique so called stochastically stable state because they consider a special

class of games. Samuelson (1993) considers games with alternative best replies and then

the support of the limit distribution consists usually of one or more line segments.

It turns out that the introduction of experimentation does not change the results

of the present paper, at least not for two person games. If a two person game has

rnultiple minimal curb sets, experimentation will not yield the selection of a particular

one: the lirniting distribution puts positive weight on all states that are ergodic under

the unperturbed process. The intuition behind this result is that only one mistake by one

player is necessary in order to move the system from one ergodic set to another. When

the game has more than two players, it might happen that a particular minimal curb set

is selected. One can characterize the selected minimal curb set graph-theoretically.

In order to prove these results formally, we would have to recall the essential definitions

and theorem from Young (1993). We refer the reader to the otiginal paper for a formal

treatment. We will just illustrate the result by means of a few examples.

Consider again the following game.
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T
B

L
2,2

0,0

K
0,0
1,1

Figure 10.

As we have seen before this game has two curb retracts, {TL} and {BR}, and the

Markov chain representing the learning process has two ergodic sets, {(TL,...,TL)}

and {(BR,..., BR)}. Suppose we are in state hT~ -(TI,,...,TL) and player 1 makes

a mistake ( with probability e) and plays B, so that the system moves up to state

(TG,...,TL,BL). From the latter state the system can move, without making any

further mistakes, to (Tl.,...,TL,BG,TR), to (TL,...,TL,BL,TR,BR), and finally

to (BIZ, ... , BR) - hBR. Hence, only one mistake is needed to move the system from

hTL to ieBR. Similarly, only one mistake is needed to move the system from hBH to

hT~. Since the mistake probabilities are of the same order, the limiting distribution puts

positive weight on both ergodic states.

It is not difficult to see that for two person games the experimentation can never

select one particular curb retract: it is always the case that only one mistake is needed

to move the system from one ergodic set to another one.

This result is in contrast with Young ( 1993). In Young (1993) the players also have

information about play in the recent history: Every player draws a sample of m plays

out of the plays of the most recent K periods, without replacement. Then players play

a best reply in a fictitious play fashion. That is, they play a best response against the

strategy combination that corresponds with the empirical frequency of strategies in the

sample t,hey draw. Let us illustrate this differencc with the game írom Figure ]0. If

player 1 rnakes a mistake the system can move from hT~ to state (TL,...,TL,BG).

But if then nobody makes a mistake anymore, the system will move back to hTL, if the

sample size is at least 2: in every sample there will be at least as many T's as there

will be B's. Hence, player 2 will always play L in the next period (unless he makes a

mistake).

Now let us consider the following three person game, where each player i chooses

between a; and b;.
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az

1,1,1

0,0,0

a3

b2
0,0,0
1,1,1

a2

0,0,0
1,1,1

b2
1,1,1
2,2,2

Figure 11.

This game has two curb retracts, namely {araza3} and {b~b2h3}. Consider the case

with K- 2. The ergodic sets are A- {(ara~a3iara~a;r)} and B- {(b~b1b;r, brbZb3)}.

'1'o move the system frorn A to B only one mistake is necessary. For example, the

system could evolve as follows:s

(ala2a3,ala~a3) ~ (ala2a3,ala~b3) ~ (ala~b3,brbzas)

lo

(bib~zbs, brbzb3) ~ (brbsas, brbsb3)

To move the system from B to A at least two mistakes are necessary. For example,

the system could evolve as follows:

(bi~tba,brb~ib3) ~ (brbzb3,arasbs) ~ (arazb:r,brbsa3)
lo

(ala2a3, ala4a3) ~ (bl~a3e ala2a3)

Theorem 4 of Young ( 1993) then implies that the limiting distribution will put all

weight on (b, b).

8 Concluding remarks

VVe have considered learning processes where the players have a bounded memory and

play best replics against past play. The importance of the bounded memory can be

elucidatc~d by comparing our learning process with Milgrom and Roberts (1991). In

general they consider games with compact strategy sets that are played continuously.

Translated to the context of a two player finite normal form game which is played re-

peatedly at discrete points in time, they define a sequence of plays {s(t)}~o to be

sThe number above the arrowa denotes the number of mistakes involved.
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consistent with adaptive learning if for all t, there exists a t such that for all t~ t,

s(t f 1) E BR([i'"d({s(t),s(t ~- 1),...,s(t)})). We could similarly define this sequence

to be consistent with learning with bounded memory, if there exists K E N such that for

all t, s(t -F K) E BR(8'"d({s(t),s(t f 1),...,s(t t K- 1)})). This definition illustrates

tlie similarity between the present paper and Milgrom and Roberts (1991).

Consider ior example the pure coordination game of Figure 1. The sequence

TR,BL,TR,BL,TR,... satisfies both definitions of consistency. However, the finite-

ness of thc memory and of the strategy space allows us to obtain a finite Markov chain,

from which we can compute that the probability of obtaining the above seyuence is zero:

Only sequences with tails T L, TL, T L, ... or BR, BR, BR, ... are obtained with positive

probability.

Milgrom and Roberts (1991) show that sequences that are consistent with adaptive

learning will eventually lie within the set of serially undominated strategies, which is

a superset of the set of rationalizable strategies. They give some examples of games

with strategic complementarities where this set is a singleton, which implies that these

sequences must converge to the unique equilibrium. We get the same results in these

games because the set of curb strategies is a subset of the set of rationalizable strategies.

But we get similar results in some games where the set of rationalizable strategies is big.

In every garne that has a unique and strict equilibrium s, {s} is the unique minimal

curb set. Hence, in such games our learning process leads the players ( with probability

1) to the unique equilibrium. An example of such a game is given in Figure 6, where all

strategies are rationalizable.

Another example is the discretized version of the following three player Cournot

oligopoly game. Player i chooses to produce q; at zero costs to maximize q;(A-q~ -qz-

q3). The unique ( and strict) equilibrium is (A~4, A~4, A~4). The set of rationalizable

strategie~s is [0, A~2] x[0, A~2] x[0, A~2].
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