

Tilburg University

How Larger Demand Variability may Lead to Lower Costs in the Newsvendor Problem

Ridder, A.A.N.; van der Laan, E.; Salomon, M.

Publication date: 1997

Link to publication in Tilburg University Research Portal

Citation for published version (APA): Ridder, A. A. N., van der Laan, E., & Salomon, M. (1997). *How Larger Demand Variability may Lead to Lower Costs in the Newsvendor Problem*. (CentER Discussion Paper; Vol. 1997-31). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Center for Economic Research

801.4 3000 31

No. 9731

90

R 35

+ istochastic processes

t inventory

HOW LARGER DEMAND VARIABILITY MAY LEAD TO LOWER COSTS IN THE NEWSVENDOR PROBLEM

By Ad Ridder, Erwin van der Laan and Marc Salomon

March 1997

ISSN 0924-7815

How larger demand variability may lead to lower costs in the Newsvendor Problem

Ad Ridder

Dept. of Econometrics Vrije Universiteit Amsterdam De Boelelaan 1105, 1081 HV Amsterdam the Netherlands email: aridder@econ.vu.nl

Erwin van der Laan

Rotterdam School of Management Erasmus Universiteit Rotterdam P.O. Box 1738, 3000 DR Rotterdam the Netherlands email: elaan@fac.fbk.eur.nl

Marc Salomon

Dept. of Econometrics Tilburg University P.O. Box 90153, 5000 LE Tilburg the Netherlands email: msalomon@kub.nl

February 28, 1997

Abstract

In this paper we consider the Newsvendor Problem. Intuition may lead to the hypothesis that in this stochastic inventory problem a higher demand variability results in larger variances and in higher costs. In a recent paper, Song (1994a) has proved that the intuition is correct for many demand distributions that are commonly used in practice, such as for the Normal distribution function. However, this paper shows that there exist demand distributions for which the intuition is misleading, i.e., for which larger variances occur in combination with lower costs. To characterize these demand distributions we use stochastic dominance relations.

Keywords: Newsvendor problem, demand variability, stochastic dominance.

We consider the traditional single-item single-period Newsvendor Problem with continuous product demand. Let the demand D be randomly distributed with distribution function $F(\cdot)$, finite mean μ and variance σ^2 . There is an underage cost p and an overage cost h per unit of product. If Q products are ordered at the beginning of the period, the expected total cost is

$$C(Q) = h \int_{0}^{Q} (Q - x) F(dx) + p \int_{Q}^{\infty} (x - Q) F(dx)$$

= $p(\mu - Q) + (h + p) \int_{0}^{Q} F(x) dx.$ (1)

In the sequel we denote the order quantity for which (1) is minimized by Q^* and we indicate the optimal cost $C(Q^*)$ as the buffer cost. Recently, Song (1994a, 1994b) showed for a particular definition of demand variability that the buffer cost will increase with increasing variability. The key question in this note is whether $C(Q^*)$ will always increase when demand gets more variable.

1 Preliminaries

We consider two inventory systems i = 1, 2, with demands D_i and distribution functions F_i . Both systems have underage cost p and overage cost h. We assume that the demands have equal means but different variances. Condition 1.1

$$\mu_1=\mu_2=\mu.$$

Condition 1.2

$$\sigma_1^2 \leq \sigma_2^2$$
.

One finds in the literature on stochastic dominance relations a family of rules to compare variability between the two demands (Fishburn and Vickson (1978)).

Definition 1

Demand D_2 is more n-variable than demand D_1 , denoted by

$$D_1 \geq_n D_2$$
,

if

$$H_n(x) \ge 0$$
 for all $x \ge 0$,

where

$$H_1(x) = F_2(x) - F_1(x),$$

$$H_n(x) = \int_0^x H_{n-1}(t) dt \quad (n = 2, 3, ...).$$

In Lemma 1 (below) we show that 2-variability implies higher demand variances in combination with higher buffer costs. The proof is based on the following theorem.

Theorem 1 (Fishburn (1980)) If $D_1 \ge_n D_2$ for some $n \ge 2$ then

$$\left. \begin{array}{c} \mu_1 = \mu_2 \\ \sigma_1^2 \neq \sigma_2^2 \end{array} \right\} \Rightarrow \sigma_1^2 < \sigma_2^2.$$

Lemma 1

Under Condition 1.1,

$$D_1 \ge_2 D_2 \Rightarrow \begin{cases} \sigma_1^2 \le \sigma_2^2 \\ C_1(Q_1^*) \le C_2(Q_2^*) \end{cases}$$

Proof. Apply Theorem 1, the definition of Q_1^* and (1) to obtain that

$$C_2(Q_2^*) - C_1(Q_1^*) \ge C_2(Q_2^*) - C_1(Q_2^*)$$

= $(h+p) \left(\int_0^{Q_2^*} F_2(x) \, dx - \int_0^{Q_2^*} F_1(x) \, dx \right)$
= $(h+p)H_2(Q_2^*) \ge 0.$

Song (1994a) proves that Lemma 1 holds also under alternative stochastic orderings, such as the increasing convex ordering of the demands $(D_2 \ge_{ic} D_1)$, and the cut criterion ordering $(D_2 \ge_{cut} D_1)$. These results follow easily from the observation that these orderings are stronger than 2-variability.

Lemma 2 (Sections 1.3 and 1.5 in Stoyan (1983)) Under Condition 1.1,

$$D_2 \ge_{\operatorname{cut}} D_1 \Rightarrow D_2 \ge_{\operatorname{ic}} D_1 \Rightarrow D_1 \ge_2 D_2.$$

2 The opposite effect

Theorem 1 and the proof of Lemma 1 suggest to investigate *n*-variability of higher orders $(n \ge 3)$ to verify whether the opposite effect may occur, i.e., higher demand variances in combination with lower buffer costs. Indeed, Theorem 2 below states sufficient conditions under which the opposite effect occurs.

Theorem 2 (Sufficiency)

Suppose that Condition 1.1 holds.

(i) If $D_1 \ge_n D_2$ for some $n \ge 3$, then $\sigma_1^2 \le \sigma_2^2$.

(ii) If $H_2(Q_1^*) < 0$ then $C_1(Q_1^*) > C_2(Q_2^*)$.

Proof. Part (i) is Theorem 1. The proof of part (ii) is analogous to Lemma 1:

$$C_2(Q_2^*) - C_1(Q_1^*) \le C_2(Q_1^*) - C_1(Q_1^*)$$

= $(h+p) \left(\int_0^{Q_1^*} F_2(x) \, dx - \int_0^{Q_1^*} F_1(x) \, dx \right)$
= $(h+p)H_2(Q_1^*) < 0.$

In Lemma 3 below we state necessary and sufficient conditions under which the opposite effect occurs. For this purpose we use the relation

$$H_3(\infty) = \int_0^\infty H_2(x) \, dx = \int_0^\infty \int_0^x (F_2(y) - F_1(y)) \, dy \, dx = \frac{1}{2} (\sigma_2^2 - \sigma_1^2). \tag{2}$$

This relation is derived by using the excess equilibrium distribution functions $G_i(x) = \frac{1}{\mu_i} \int_0^x (1 - F_i(y)) dy$ and Condition 1.1.

Lemma 3 (Necessity and sufficiency) Under Condition 1.1,

$$\sigma_1^2 \le \sigma_2^2 \quad and \quad C_1(Q_1^*) \ge C_2(Q_2^*)$$

$$\Leftrightarrow H_3(\infty) \ge 0 \quad and \quad H_2(Q_1^*) \le \frac{p}{h+p}(Q_2^* - Q_1^*) - \int_{Q_1^*}^{Q_2^*} F_2(x) \, dx.$$

Proof. The lemma follows directly from (2) and from

$$\begin{aligned} C_2(Q_2^*) - C_1(Q_1^*) &= p(Q_1^* - Q_2^*) + (h+p) \left(\int_0^{Q_2^*} F_2(x) \, dx - \int_0^{Q_1^*} F_1(x) \, dx \right) \\ &= p(Q_1^* - Q_2^*) + (h+p) \left(H_2(Q_1^*) + \int_{Q_1^*}^{Q_2^*} F_2(x) \, dx \right). \quad \Box \end{aligned}$$

3 Examples

Traditional families of demand densities are (truncated) Normal, Lognormal, Beta, Gamma, Weibull and Uniform (Silver & Peterson (1985), Appendix B in Tijms (1994)). When both densities of D_1 and D_2 are taken from one of these families, Condition 1 implies that $D_1 \ge_2 D_2$ (verify the tables in Appendix 1 of Stoyan (1983)). Hence, Lemma 1 applies, and higher demand variability leads to higher buffer cost in these cases.

However, Example 1 below shows that the opposite effect may occur when the demand densities belong to the same family. Example 2 illustrates that Theorem 2 may apply when the demand densities belong to different families.

Example 1

The nonsymmetric triangular density f is continuous, piecewise linear and characterized by three parameters $0 \le a < b < c$. The function is nonzero on the interval (a, b) and it attains its maximum at c. Basic algebra yields expressions for the mean, the variance, and the H_n functions. We consider two nonsymmetric triangular densities f_i , i = 1, 2. The numerical example below illustrates that the parameters a_i, b_i, c_i can be set such that the conditions of Theorem 2 or Lemma 3 apply.

(a) Let

$$a_1 = 1, b_1 = 2, c_1 = \frac{11}{2};$$
 $a_2 = 0, b_2 = 4, c_2 = \frac{9}{2},$ $h = 1, p = 6$

It is easily verified that $\mu_1 = \mu_2 = 17/6$, $0.9306 = \sigma_1^2 < \sigma_2^2 = 1.0139$, so that Condition 1 holds. Furthermore, $D_1 \ge_3 D_2$, $Q_1^* = 4$, and $H_2(Q_1^*) = -0.0546$. Hence, Theorem 2 applies. Indeed, $Q_2^* = 3.9279$, $C_1(Q_1^*) = 1.6667 > 1.2883 = C_2(Q_2^*)$.

(b) Let

$$a_1 = 0, b_1 = 4, c_1 = 6;$$
 $a_2 = 1, b_2 = 2, c_2 = 7,$ $h = 5, p = 1.$

It is easily verified that $\mu_1 = \mu_2 = 10/3$, $28/18 = \sigma_1^2 < \sigma_2^2 = 31/18$, so that again Condition 1 holds. However, there is no $n \ge 1$ for which $D_1 \ge_n D_2$ or $D_2 \ge_n D_1$ (Ridder et al. (1996)). In this case, Lemma 3 applies with $Q_1^* = Q_2^* = 2$:

$$H_3(\infty) = \frac{1}{12} > 0, \quad -\frac{1}{18} = H_2(Q_1^*) < \frac{p}{h+p}(Q_2^* - Q_1^*) - \int_{Q_1^*}^{Q_2^*} F_2(x) \, dx = 0.$$

Example 2

Let D_1 have a Lognormal ($\mu = -0.1, \sigma^2 = 0.2$) density and D_2 a Gamma ($\lambda = 4$, $\alpha = 4$) density, with cost factors h = 1, and p = 24. Condition 1 holds (with $\mu = 1, 0.2214 = \sigma_1^2 < \sigma_2^2 = 0.25$); $H_3 \ge 0$; $Q_1^* = 1.9797$; $H_2(Q_1^*) = -0.0013$. Hence, Theorem 2 applies. Indeed, $Q_2^* = 2.0214$, $C_1(Q_1^*) = 1.4052 > 1.3712 = C_2(Q_2^*)$.

Remark. Note from the above examples that the optimal ordering quantities Q_i^* may increase as well as decrease with increasing demand variance. In Example 1(a):

 $Q_1^* > Q_2^*$, in Example 2: $Q_1^* < Q_2^*$. Note further that the opposite effect may occur when h < p (Example 1(a)), but also when h > p (Example 1(b)). Assuming that the conditions of Theorem 2 hold, these phenomena are explained by the following equivalence.

$$Q_2^* \ge Q_1^* \quad \Leftrightarrow \quad Q_1^* < F_2^{-1}\left(\frac{p}{p+h}\right).$$

4 Conclusion

The conclusion of this paper is that a reduction of the demand uncertainty in stochastic production and inventory systems is economically favorable for most demand distributions that are commonly used in practice. However, for some demand distributions a reduction of the demand uncertainty will *not* result in the desired cost reduction. Whether cost reduction occurs, depends on many factors such as the definition of uncertainty, the structure of the demand distributions, and the ratio between the overage and underage costs.

Our analysis applies to the class of inventory models where the cost function has the form (1). Besides the classical Newsvendor Problem, dynamic inventory systems controlled by a base stock policy belong to this class (D stands for the lead time demand and Q for the base stock level). Furthermore, our analysis carries over easily to discrete demands distributions (see Ridder et al. (1996)).

References

P.C. FISHBURN AND R.G. VICKSON (1978). Theoretical foundations of stochastic dominance. In *Stochastic dominance*, eds. G.A. Whitmore and M.C. Findlay, Heath, Lexington, Mass., p. 39 – 114.

P.C. FISHBURN (1980). Stochastic dominance and moments of distributions. Mathematics of Operations Research 5, p. 94 - 100.

A. RIDDER, E.A. VAN DER LAAN, M. SALOMON (1996). How larger demand

variability may lead to lower costs in the newsboy problem. Management Report Series No. 265. Erasmus University Rotterdam, The Netherlands.

E.A. SILVER & R. PETERSON (1985). Decision systems for inventory management and production planning. Wiley, New York.

J-S. SONG (1994a). The effect of leadtime uncertainty in a simple stochastic inventory model. Management Science 40, p. 603 - 613.

J-S. SONG (1994b). Understanding the lead-time effects in stochastic inventory systems with discounted costs. *Operations Research Letters* 15, p. 85 – 93.

D. STOYAN (1983). Comparison methods for queues and other stochastic models. Wiley, New York.

H.C. TIJMS (1994). Stochastic models. An algorithmic approach. Wiley, New York.

N	No.	Author(s)	Title
96	661	U. Gneezy and J. Potters	An Experiment on Risk Taking and Evaluation Periods
96	662	H.J. Bierens	Nonparametric Nonlinear Co-Trending Analysis, with an Application to Interest and Inflation in the U.S.
90	663	J.P.C. Blanc	Optimization of Periodic Polling Systems with Non-Preemptive, Time-Limited Service
90	664	M.J. Lee	A Root-N Consistent Semiparametric Estimator for Fixed Effect Binary Response Panel Data
90	665	C. Fernández, J. Osiewalski and M.F.J. Steel	Robust Bayesian Inference on Scale Parameters
90	666	X. Han and H. Webers	A Comment on Shaked and Sutton's Model of Vertical Product Differentiation
90	667	R. Kollmann	The Exchange Rate in a Dynamic-Optimizing Current Account Model with Nominal Rigidities: A Quantitative Investigation
9	668	R.C.H. Cheng and J.P.C. Kleijnen	Improved Design of Queueing Simulation Experiments with Highly Heteroscedastic Responses
9	669	E. van Heck and P.M.A. Ribbers	Economic Effects of Electronic Markets
9	670	F.Y. Kumah	The Effect of Monetary Policy on Exchange Rates: How to Solve the Puzzles
9	671	J. Jansen	On the First Entrance Time Distribution of the $M/D/\!\!\infty$ Queue: a Combinatorial Approach
9	672	Y.H. Farzin, K.J.M. Huisman and P.M. Kort	Optimal Timing of Technology Adoption
9	0673	J.R. Magnus and F.J.G.M. Klaassen	Testing Some Common Tennis Hypotheses: Four Years at Wimbledon
9	674	J. Fidrmuc	Political Sustainability of Economic Reforms: Dynamics and Analysis of Regional Economic Factors
9	0675	M. Das and A. van Soest	A Panel Data Model for Subjective Information on Household Income Growth
9	0676	A.M. Lejour and H.A.A. Verbon	Fiscal Policies and Endogenous Growth in Integrated Capital Markets
9	9677	B. van Aarle and SE. Hougaard Jensen	Output Stabilization in EMU: Is There a Case for an EFTS?
9	9678	Th.E. Nijman, F.A. de Roon and C.Veld	Pricing Term Structure Risk in Futures Markets

No	Author(s)	Title
NO.	Author(s)	Tor in Principal Enclosed in an Europinantal
9679	M. Dufwenberg and U. Gneezy	Game
9680	P. Bolton and EL. von Thadden	Blocks, Liquidity, and Corporate Control
9681	T. ten Raa and P. Mohnen	The Location of Comparative Advantages on the Basis of Fundamentals only
9682	S. Hochguertel and van Soest	The Relation between Financial and Housing Wealth of Dutch A. Households
9683	F.A. de Roon, Th.E. Nijman and B.J.M. Werker	Testing for Spanning with Futures Contracts and Nontraded Assets: A General Approach
9684	F.Y. Kumah	Common Stochastic Trends in the Current Account
9685	U.Gneezy and M. Das	Experimental Investigation of Perceived Risk in Finite Random Walk Processes
9686	B. von Stengel, A. van den Elzen and D. Talman	Tracing Equilibria in Extensive Games by Complementary Pivoting
9687	S.Tijs and M. Koster	General Aggregation of Demand and Cost Sharing Methods
9688	S.C.W. Eijffinger, H.P. Huizinga and J.J.G. Lemmen	Short-Term and Long-Term Government Debt and Nonresident Interest Withholding Taxes
9689	T. ten Raa and E.N. Wolff	Outsourcing of Services and the Productivity Recovery in U.S. Manufacturing in the 1980s
9690	J. Suijs	A Nucleolus for Stochastic Cooperative Games
9691	C. Seidl and S.Traub	Rational Choice and the Relevance of Irrelevant Alternatives
9692	C. Seidl and S.Traub	Testing Decision Rules for Multiattribute Decision Making
9693	R.M.W.J. Beetsma and H. Jensen	Inflation Targets and Contracts with Uncertain Central Banker Preferences
9694	M. Voorneveld	Equilibria and Approximate Equilibria in Infinite Potential Games
9695	F.B.S.L.P. Janssen and A.G. de Kok	A Two-Supplier Inventory Model
9696	L. Ljungqvist and H. Uhlig	Catching up with the Keynesians
9697	A. Rustichini	Dynamic Programming Solution of Incentive Constrained Problems

No.	Author(s)	Title
9698	G.Gürkan and A.Y. Özge	Sample-Path Optimization of Buffer Allocations in a Tandem Queue - Part I: Theoretical Issues
9699	H. Huizinga	The Dual Role of Money and Optimal Financial Taxes
96100	H. Huizinga	The Taxation Implicit in Two-Tiered Exchange Rate Systems
96101	H. Norde, F. Patrone and S. Tijs	Characterizing Properties of Approximate Solutions for Optimization Problems
96102	M. Berg, A. De Waegenaere and J. Wielhouwer	Optimal Tax Reduction by Depreciation: A Stochastic Model
96103	G. van der Laan, D. Talman and Z. Yang	Existence and Approximation of Robust Stationary Points on Polytopes
96104	H. Huizinga and S.B. Nielsen	The Coordination of Capital Income and Profit Taxation with Cross-Ownership of Firms
96105	H. Degryse	The Total Cost of Trading Belgian Shares: Brussels Versus London
96106	H. Huizinga and S.B. Nielsen	The Political Economy of Capital Income and Profit Taxation in a Small Open Economy
96107	T. Dieckmann	The Evolution of Conventions with Endogenous Interactions
96108	F. de Jong and M.W.M. Donders	Intraday Lead-Lag Relationships Between the Futures-, Options and Stock Market
96109	F. Verboven	Brand Rivalry, Market Segmentation, and the Pricing of Optional Engine Power on Automobiles
96110	D. Granot, H. Hamers and S. Tijs	Weakly Cyclic Graphs and Delivery Games
96111	P. Aghion, P. Bolton and S. Fries	Financial Restructuring in Transition Economies
96112	A. De Waegenaere, R. Kast and A. Lapied	Non-linear Asset Valuation on Markets with Frictions
96113	R. van den Brink and P.H.M. Ruys	The Internal Organization of the Firm and its External Environment
96114	F. Palomino	Conflicting Trading Objectives and Market Efficiency
96115	E. van Damme and S. Hurkens	Endogenous Stackelberg Leadership
96116	E. Canton	Business Cycles in a Two-Sector Model of Endogenous Growth
9701	J.P.J.F. Scheepens	Collusion and Hierarchy in Banking

No.	Author(s)	Title
9702	H.G. Bloemen and E.G.F. Stancanelli	Individual Wealth, Reservation Wages and Transitions into Employment
9703	P.J.J. Herings and V.J. Vannetelbosch	Refinements of Rationalizability for Normal-Form Games
9704	F. de Jong, F.C. Drost and B.J.M. Werker	Exchange Rate Target Zones: A New Approach
9705	C. Fernández and M.F.J. Steel	On the Dangers of Modelling Through Continuous Distributions: A Bayesian Perspective
9706	M.A. Odijk, P.J. Zwaneveld, J.S. Hooghiemstra, L.G. Kroon and M. Salomon	Decision Support Systems Help Railned to Search for 'Win- Win' Solutions in Railway Network Design
9707	G. Bekaert, R.J. Hodrick and D.A. Marshall	The Implications of First-Order Risk Aversion for Asset Market Risk Premiums
9708	C. Fernández and M.F.J. Steel	Multivariate Student-i Regression Models: Pitfalls and Inference
9709	H. Huizinga and S.B. Nielsen	Privatization, Public Investment, and Capital Income Taxation
9710	S. Eijffinger, E. Schaling and M. Hoeberichts	Central Bank Independence: a Sensitivity Analysis
9711	H. Uhlig	Capital Income Taxation and the Sustainability of Permanent Primary Deficits
9712	M. Dufwenberg and W. Güth	Indirect Evolution Versus Strategic Delegation: A Comparison of Two Approaches to Explaining Economic Institutions
9713	H. Uhlig	Long Term Debt and the Political Support for a Monetary Union
9714	E. Charlier, B. Melenberg and A. van Soest	An Analysis of Housing Expenditure Using Semiparametric Models and Panel Data
9715	E. Charlier, B. Melenberg and A. van Soest	An Analysis of Housing Expenditure Using Semiparametric Cross-Section Models
9716	J.P. Choi and SS. Yi	Vertical Foreclosure with the Choice of Input Specifications
9717	J.P. Choi	Patent Litigation as an Information Transmission Mechanism
9718	H.Degryse and A. Irmen	Attribute Dependence and the Provision of Quality
9719	A. Possajennikov	An Analysis of a Simple Reinforcing Dynamics: Learning to Play an "Egalitarian" Equilibrium
9720	J. Jansen	Regulating Complementary Input Supply: Cost Correlation and Limited Liability
9721	J. ter Horst and M. Verbeek	Estimating Short-Run Persistence in Mutual Fund Performance

No.	Author(s)	Title
9722	G. Bekaert and S.F. Gray	Target Zones and Exchange Rates: An Empirical Investigation
9723	M. Slikker and A. van den Nouweland	A One-Stage Model of Link Formation and Payoff Division
9724	T. ten Raa	Club Efficiency and Lindahl Equilibrium
9725	R. Euwals, B. Melenberg and A. van Soest	Testing the Predictive Value of Subjective Labour Supply Data
9726	C. Fershtman and U. Gneezy	Strategic Delegation: An Experiment
9727	J. Potters, R. Sloof and F. van Winden	Campaign Expenditures, Contributions and Direct Endorsements: The Strategic Use of Information and Money to Influence Voter Behavior
9728	F.H. Page, Jr.	Existence of Optimal Auctions in General Environments
9729	M. Berliant and F.H. Page, Jr.	Optimal Budget Balancing Income Tax Mechanisms and the Provision of Public Goods
9730	S.C.W. Eijffinger and Willem H. Verhagen	The Advantage of Hiding Both Hands: Foreign Exchange Intervention, Ambiguity and Private Information
9731	A. Ridder, E. van der Laan and M. Salomon	How Larger Demand Variability may Lead to Lower Costs in the Newsvendor Problem

