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Abstract

:n this paper we present an (s, Q) inventory model with order splitting. Replenish-

ment orders are split equally among n suppliers. Demand is modelled as a compound

renewal process, and we consider independent identically distributed lead times for

the suppliers. By extending results for the standard (s, Q) inventory model, we derive

approximate expressions for the expected average physical stock level, the expected

average backlog level, and the fraction of the time the physical stock is positive.

The optirnal values of the decision variables, the reorder point s, the replenishment

quantity Q, and the number of suppliers n, are determined by minimizing the sum of

ordering, holding, and shortage costs, where the emphasis is on the optimal number

of suppliers.

1 Introduction

Order splitting is a vendor management strategy. This strategy can be applied in combina-

tion with many inventory replenishment strategies, such as the (s, S) and (s, Q) strategy.
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5000 LE Tilburg, The Netherlands, E-mail: F.B.S.L.P.JanssenC~kub.nl.

TDepartment of Technology Management, Eindhoven University of Technology, P.O. Box 513,
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Order splitting or multiple sourcing is the partitioning of a replenishment order among two

or more suppliers.

Order splitting is advocated for the purpose of reducing lead time uncertainties, whereby

safety stocks are reduced In Sculli and Wu (1981), Kelle and Silver (1990a, 1990b), and

Giio and Ganeshan (1995) order statistics are used to deríve analytical expressions for some

characteristics of the first arriving partial delivery. Typically the number of suppliers, n, is

allowed to be larger than two. In these papers the demand rate is assumed to be constant

over time. The optimal value of n is determined based on the reduction in the safety stock.

Other papers focus on another advantage of order splitting, namely the decrease of the

inventory holding cost due to the delayed replenishments (see, for example, Zhao and Lau

(1992), Lau and Zhao (1993), Lau and Lau (1994), and Chiang and Chiang (1996)). In

these papers the number of suppliers is mostly restricted to two, and demand is assumed

to be stochastic. The papers focus either on minimizing the sum of holding, ordering, and

shortage costs, or on minimizing the sum of ordering and holding costs subject to a service

level constraint.

It has been shown that the profitability of order splitting depends on the ratio between

t.he invent.ory holding cost and the extra transhipment or ordering cost when using more

than one supplier (see, for example, Larson (1989), Ramasesh et al. (1991), and Hong and

Hayya(1992)).

In this paper we consider an (s, Q) replenishment policy in which a replenishment

order is split equally among n suppliers. We focus on minimizing the sum of holding,

ordering, and shortage costs. By extending results from the standard (s, Q) inventory

model, we derive approximate expressions for the expected length of a replenishment cycle,

the average physical stock level, and the average backlog level.

The contribution of this paper is twofold. The expressions for the average physical

stock level and the expected average backlog level are derived under general assumptions

for the demand and lead time process. Demand is modelled as a compound tenewal

process, and lead times of the suppliers are independent and identically mixed Erlang

distributed random variables. The compound renewal process is suitable for modeling real

life demand processes, and the mixtures of Erlang distribution is able to model a wide

variety of lead time distributions. Regarding the literature, most papers on order splitting

consider constant demand models or consider at most two suppliers. [n that sense these

models are special cases of the model presented in this paper.

Secondly we present an approximation algorithm for computing the optimal values of

s, Q and n, given the first two moments of the underlying demand and lead time process.

We note that in practice only the first two moments of the underlying processes can be
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accurately estimated from the available data, The algorithm developed in this article can be

applied in many different practical settings. We concentrate on the impact of the problem

parameters on the optimal number of suppliers. For this purpose it is sufficient to consider

the case of identically distributed lead times.

The paper is organized as follows. In section 2 the model assumptions are discussed

and expressions for the performance measures are derived. In section 3 a method for

finding values for the optimal control variables is discussed. Section 4 deals with some

computational aspects of the performance measures derived, and an algorithm is presented

to actually calculate these measures. In section 5 the algorithm is validated by simulation

and in section 6 we used the proposed algorithm to investigate the optimal values of the

control parameters. Finally, in section 7 conclusions and future research are discussed.

2 The model description

In this single echelon inventory model with order splitting we assume that the demand

process is a compound renewal process. l.e, the interarrival times of cnstnmers can be de-

scribed by the sequence {A;}~r of independent and identically distributed ( i.i.d.) random

variables with a common distribution function FA, where A; represents the time between

the arrival of the i-th and (i- I)-th customer after time zero. We assume a customer arrives

at. time zero. The demand sizes of the customers are described by the sequence {D;}~t of

i.i.d. random variables with a common distribution function Fo, where D; represents the

demand size of the i-th customer after time zero. The sequence {D;}~1 is independent of

{A }~~ ~-r.
Shortages are backordered, and replenishment decisions are based on the inventory

position, being defined as t.he total stock on hand plus on order minus the total stock

backordered. The replenishment strategy that is considered is the continuous review (s, Q)

policy. I.e., as soon as the inventory position drops below the reorder point s an amount of

Q is ordered, such that the inventory position after ordering is between s and s f Q. Hence

we implicitly assume that always an amount of exactly Q is ordered. A replenishment

order is equally split among n different suppliers. The suppliers have independent and

identically distributed lead times with a common distribution function G. If we rearrange

the realisations of the lead times of the n partial deliveries in an increasing order, we get

the order statistics. These order statistic.s are denoted by

L~:,, G Lz:,, c... G L,,;,,, with distribution functions Gk:,, for k - 1, ..., n.

It is assumed that deliveries of two successive replenishment orders ( each consisting of n

3



partial deliveries) do not cross in time. Thus, the last partial delivery of a replenishment

order arrives fiefore any partial delivery of a subsequent replenishment order.

The values of the control parameters s, Q and n are determined such that the total

sum of long-run ordering, holding and backordering cost per unit time are minirnized.

A well-known approach for deriving expressions for the long-run performance measures

is to consider an arbitrary replenishment cycle. The renewal reward theorem (see, e.g.,

Tijms (1994)) enables us to compute expressions for the long-run performance measures

by deriving expression related to an arbitrary replenishment cycle.

Let TRC(s, Q, n) denote the total of ordering, holding and backordering cost per unit

time incurred during an arbitrary replenishment cycle. The holding costs are proportional

to the expected average physical stock level: stocking one unit of product costs h~ per

day. Hong and Hayya (1990) investigated the effects of the ordering costs on models with

order splitting. In particular they considered ordering costs that depend on the number of

suppliers (denoted by A(n)). They showed that the optimal number of suppliers is very

sensitive to the shape of A(n). We use the following simple function for the ordering costs,

A(n) - n`K, n E IN, c E IR, (1)

where K is a fixed cost component, and c determines the shape of A(n). By varying c we

can model a convex, concave, or a linear ordering cost function. Backordering costs are

proportional to the number of units short, which coincides with the so-called B3 criterion

in Silver and Peterson (1985): each unit short is charged with an amount of say 6~ per

time unit. Hence,

TRC(s,Q,n) - ~(~Q)n) f h~(s,Q,n) ~~(s,Q,n), (2)

where
l; (s, Q, Ta) denotes the expected length of an arbitrary replenishment cycle;

~(s, Q, n) denotes the average physical stock leve] during an arbitrary replenishment cycle;

zli(s, Q, n) denotes the average backlog level during an arbitrary replenishment cycle.

Towards this end we defined a replenishment cycle as the time period between two

successive last arrivals of partial deliveries of a replenishment. Consider now an arbitrary

replenishment, cycle, then we define the k-th sub-cycle as the time period between the

arrival of the (k - 1)-th partial delivery and the k-th partial delivery (k E{2, ..., n}). The

first sub-cycle is defined as the time period between the arrival of last partial delivery of

the replenishment cycle which preceded the arbitrary replenishment cycle and the arrival

of the first partial delivery of the tagged replenishment cycle.
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Figure 1: Evolution of the net stock and inventory position during a replenishment cycle

forn-4.

Let zero be an arbitrary customer arrival moment. Denote the j-th ordering epoch after

zero by Q;. Let D(tt, t2) be the total demand during ( tl, t2~, and U; the undershoot under

s at a;. Lk'.n denotes the lead time of the k-th partial delivery in the j-th replenishment

cycle after zero. Consider the second replenishment cycle after zero, see Figure i. Define

the net stock as the stock on hand minus the total stock backordered. Then we denote for

k E{1,2,...,n} Ik as the net stock at the beginning of the k-th sub-cycle in the second

replenishment cycle after zero (just after the partial delivery arrived), and Ik as the net

stock at the end of the k-th sub-cycle in the second replenishment cycle (just before the

partial delivery arrives). Then it can be seen that ( see Figure 1):

I; - s- UI f Q- D(Qt, at -~ L;,'.n);
Ii - s- U2 - D(a2i o2 ~- Li2;,):

Ik - s-UZ-f-kn1Q-D(o2,a2~-Lk2~t:n), kE{2,3,...,n}:

Ik - s-Uzi-knlQ-D(vzia2-FLk~;z), kE{2,3,...,n}.

Since the demand process is a compound renewal process and the lead times are i.i.d.,

it can be seen that UI ~ Uz, and D(ai, at ~- Lni;,) d D(oz, az f Ln~n), where d denotes

t~

~ --.li-

I 1~ ~I

i ~

7
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equality in distribution. Hence,

I; d s- UZ ~- Q- D(o2, oz -~ Lnzn).

For ease of notation we will suppress the indices 2 in v2, UZ and Lk2n. As in the standard

(s, Q) inventory model, it can be shown that the expected demand during a replenishment

cycle is equal to Q. Then it is easy to see that

~(S,Q,n) - Q~,D~. (3)

Not,e that ~(s, Q, n) is independent of s and n.

In order to derive an expression for ~(s, Q,n) we need the expected surface between

the physical stock level and the zero level during a replenishment cycle. By using results

from renewal theory we can derive the following approximate exptession for ~(s, Q, n) (see

Appendix 1),

~(s, Q, n) - ry ~
~(Ik)} - ~(Ik)}

k~l Q

-F ~ ~((Ik } U)t)z - ~((rk ~ U)})2, (4)
k-~ ZQ

where ry- 1~2~ci - I)IED. In a similar way the following approximate expression for

r(~(s,Q,n) can be derived,

n~((-(Ik f U))})2 - 1~((-(Ik f U))})2
~(s, Q, n) - ~

k-1 2Q
- ry ~ IE(-Ik)} - IE(-Ik)t

(5)
k-l Q

We did not use the fact that the lead times of the partial deliveries are identically

dist.ributed. Hence, (4) and (5) are also valid for non-identically distributed lead times.

However, it is well-known that the distribution fimction of the order statistics of non-

identicallv distribution random variables is quite complex, see Balakrishnan (1988). In

principle it is possible to compute ~(s, Q, n) and ~(s, Q, n) for independent and non-

identicallv distributed lead times. Yet the computational complexity is of order n! For

computatJional convenience we therefore restrict ourselves to identically distributed lead

times for thc different suppliers. The assumptions of identical suppliers is justified by the

fact that suppliers of the same product should provide more or less the same prices and

lead t.imes to the customers.

6



3 The optimization problem

In this section we consider the problem of determining values for the cost-optimal control

paranreters s, Q, and n. The objective is to minimize the sum of the holding, orderíng,

ancí backordering costs. Hence, we want to

minimize TRC(s, Q, n) - t(s,4.n) -i- h~(s, Q, n) ~- b~i(s, Q, n)

s.t. Q? 0, n E IN.

When n is fixed, we can find the optimal values for s and Q, denoted by s'(n) and

Q'(n) respectively, in the following way. For given values of n and Q, the optirnal value of

s can be determined by solving the equation ~Ra(''4'n) - 0, presuming a unique solution

exists. By using relations ( 4) and (5) it can be derived that

ófRC(s, Q, ?t) -(h t b)r(s, Q, n) - b, (6)
as

where

" IP(Ik ~ 0) - IP(Ik ~ 0)
r(s, Q, n) - 7 ~

k-1 Q

}~ IE(Ik f U)} - IE(Ik t U)f (7)

k-1 Q

IVloreover, it can be shown that T( s, Q, n) is equal to the long-run fraction of the time the

net stock is positive ( see Janssen and de Kok ( 1997a, 1997b)). Hence, for given values of

n and Q the optimal value of s(denoted by s'(Q,n)), can be determined by solving

7(s,Q,n) - b~-h~
(8)

Since T(s,Q,n) is increasing in s, and can take all values on (0,1), a unique solution

indeed exists. Note the resemblance with the newsboy problem ( see Silver and Peterson

(1985, p 265)). So, we can find s'(n) and Q'(n) by solving the following one-dimensional

optimization problem

minimize TRC(s' ( Q, n), Q, n)

s.t. Q 1 0.

If we assume that TRC(s'(Q,n),Q,n) is convex in Q, we can determine Q'(n) by using

for example Golden Section search, and s'(n) - s'(Q'(n),n).

For practical situations we may restrict ourself to a limited number of suppliers (n„,~).

For each n, 1 C n G nmaZ, we determine s'(n) and Q'(n), and select that n for which the
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TRC,(s'(n), Q`(n), n) is minimal.

4 Computational aspects

.A versatile class ofdistribution functions is the class of mixtures of two Erlang distributions

(denoted by ME distributions), i.e.

~ O.Ï(s) - ~~~~i~ ( k -
1)ic-v;s x ~ 0, 9

~-i ~

where ~, ? 0, Pz ~ 0, Pi f Pz - 1, k,, kz E IN.

In Tijms ( 1994, p.358) formulas are given to fit a ME distribution on a positive ran-

dom variable based on the first two moments of that variable. When X and Y are ME

distributcd and z E IR, then closed form expressions for ]E(X - z)t, IE((X - z)t)z,

IE(X - r')} and IE((X - Y)})z exist.

Iu tl~e modcl presented in section 2, we assumed that FA, FD and G are known. Ex-

pressions (4) and ( 5) contain the distributions of D(a, o f Lk:,,) ( k - 1, ..., Ta) and the

distribution of the undershoot U. In general these distribution functions are hard to ot~-

tain from F,a, Fo and G. To avoid this problem, we assume that D(o, a f Lk;,,) f U and

D(a, a~- Lk:,,) ( k - 1, ..., n) are ME distributed. So, we only need the first two moments

of D(a, o-F Lk;,,) ~- U and D(a, o-1- Lk;,,) (k - 1, ..., n) to calculate the expressions (4) and

(5) for given values of s, Q, and n. Since U is independent of D(a, a f Lk:,,) it is sufficient

~o find expressions for the moments of U and D(a, a f G~;,,) separately.

Now we use the fact that the distribution function of the undershoot is approxi-

mately equal to the stationary residual lifetime distribution with respect to FD, when

(~ ~ Cond(D), ( see Tijms ( 1994, p.14)). For a positive random variable X with finite

moments IEX, IEXz, and where ch represents the coefficient of variation of X, Cond(X)

is defined as

zCx.IEX if CX 1 1,

GOn.d(X)- IEX Íf 0.2 C CX G 1,

zcXIEX if OCCh-c0.2.

Then using results from renewal theory gives

(10)

z
IEU ,-., IED

(11)

IEUZ ~

2~D
IED3
31E D

(12)
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The first two moments of D(o,a f Lk:n) are given by the well-known results

IED(o, v t Lk:n) - IEN(a, o f Lk:n)IED, (13)

IED2(a, a f Lk:n) - IEN(o, v f Lk:,,)o2(D) -f- IENZ(Q, v f Lk:n)(~D)2, (14)

where N(a, Q f Lk:n) denotes the number of customer arrivals during ( o, a-{- Lk:,,]. Since

a is an order epoch it follows that a customer arrives at epoch a. Therefore we can derive

the following approximations from asymptotic expressions from renewal theory ( see, for

example, Cox (1962))

l~.Lk:n ~A2
IF.'N(2, o f Lk:n) - IE.4 } 21EA -

1 (15)

~(Lk:n)2 2IEA2 3
~iN2(O,O -i' Lk:n) - (~iA)Z } ~Lk:n((~iA)3

- iFiA~

3(IE.A2)2 21EA3 31EAz
~ 2(IEA)" ~ 3(IEA)3 - 2(IEA)z ~

1 (16)

These asymptotic relations hold for k- 1, ..., n only when IP(Lk;n C A) are negligible.

In case this probability ís larger than a certain trashnld v~lue, we propose a Gamma

approximation presented by Smeitink and Dekker (1990) to compute the first two moments

of the renewal function.

What remains to compute are the moments of the order statistics Lk:n. Using an

analogous approach as described in Balakrishnan and Cohen (1991, p.44), IELk,, can be

computed for m E IN, and k- 1, ..., n, in case G is ME distributed.

Summarizing, to compute values for the expressions (4) and (5) for given values of s,

Q, and ra, we have to go through the following three steps

~ Compute the moments of the order statistics IEGk,, for m E { 1, 2} and k- 1, ..., n.

. Compute the first two moments of U2 and D(o, o~- Lk;n) for k- 1, ..., n, by using

relations (11) to (16).

~ Compute ~(s, Q, n), ~(s, Q, n) and ~i(s, Q, n) by fitting ME distributions on D(a, Q-~

Lk:n) and D(o, af Lk;n)-f U(k - 1, ..., n), and using relations (3) to (5) respectively.

5 Validation of the algorithm

By simulatiou we first validate the proposed algorithm for computing the values of ~(s, Q, n),

zL~(s, Q, n), and r(s, Q, n). The algorithm yields approximations for the values for the op-

t.imal decision parameters, because we assume that

9



1. Replenishmc~nt orders do not cross

2. Exactly Q is ordered at a time.

3. A is distributed as the residual lifetime disttibution associated with F;r (see Ap-

pendix 1).

4. U is distributed a5 the residual lifetime distribution associated with Fp.

5. The moments of N(a, 0 1-L~:,,) are approximated by (15) and (16), which are asymp-

totic relations.

6. The distribution functions of D(a, o~- Lk;,,) f U and D(o, a f Lk;,,) ( k - 1, . .., n)

are approximated by ME distributions;

7. TR~C(s'(Q,ri),Q,~i) is convex in Q.

We will show that is spite of these all these assumptions, our calculation scheme provides

rxcellt~ut approximations for the relevant performance characteristics given s, Q and a.

'I'hereby the algorithm given in section 3 yields near-optimal values for s', Q` and n'. We

distinguish betweE:n assumptions made for deriving expressions for ~(s, Q, rt) and ~i(s, Q, re)

(assumptions 1, 2 and 3), cotnputing the first two moments of D(o, rr f Lk:,,) and D(a, a f

L,k.,,) f U (k - l, .. ., Ta) (assumptions 4, 5 and 6), and for selecting the optimal values

for the decision variables (assumption 7). It is well-known that for small values of Q with

respect to IED(a, a f L,,:,,) assumption 1 is violated, see, for example, Kelle and Silver

(19916). Assumptions 2 and 4 are violated only when Q is small with respect. to IED, i.e.

Q G Co~arL(D). Assumptions 3 and 5 are violated when IEL G Cond(A).

In practice assumption 1 may be violated when the number of suppliers is large. "I'here-

fore, we will investigate the effect of assumption 1 on t.he quality of the computation of the

expected avcrage physical stock level, expected average backlog level, and the fraction of

the time thc net stock is positive by the proposed algorithm of section 3.

We used discrete event. simulation to validate the quality of the approximations in

terms of the deviation of the calculated performance measures by the algorithm described

iu section 3, and the performance measures cornputed by simulation. These expcriments are

done for a wiríe range of pararneter values. The input values of the system parameters are

given in Tab1E: 1. For each of these 3240 experiments we calculated s by solving T(s, Q, n.) -

r,,,, via a numerical search routine, where Tan represents the rat,io bth. The number of

sub-rrms which where performed in the simulation experíment is fixed to 5(exclusive

the initialisation run), and the sub-run length is 100.000 time units. Furthermore, the

10



Table 1: basic setting parameters for the experiments

n ~iD Cp ÍFi.~I Cq Í~ii. CL Q Tan

1 5 2 IED~5 2 5 1Ó 50 0.90
2 10 1 1 10 2 100 0.99
3 2 2 1 250
5
1~

Table 2: The deviations of simulation and the values calculated with the algorithm.

Q 10on - 0.:m1 ~d'.n ' d~.~.~.~ ~TUw - ~..I Crosaing D- h 6- IOA 6- 20h

50 0.50 0.3 0.0532 0.0331 0.001] 0.4689 0.03T2 0.0320 0.0318

50 0.99 0.3 0.0014 0.5184 0.0000 D-4892 0.0026 0.0139 0.0261

100 0.50 0.3 0.0248 0.0203 0.0002 0.1446 0.0205 O.OIB9 O.O194

100 0.99 0.3 0.0012 0.3364 0.0000 0.144] 0.001] 0.0082 0.0155

250 0-50 0.3 O.OOfiI 0.0054 O.OOUO 0.0048 O.W46 O.OOSI 0.0052

t5D 0 99 0.3 0.0012 0.2022 0.0000 0.004] 0.0013 0.0035 0.0064

50 0.50 0.5 0.0804 0.0480 0.0041 0..5378 0.0816 0.0510 O.OSOI

50 0.99 0.5 O.W't't E.TOTR 0.0001 0'~374 0.0042 0.0222 0.0421

l00 0.50 0.5 0.0224 0.0214 0.0006 0.19P? 0.0201 0.0203 0.0204

100 0.99 0.5 0.0015 0.3224 0.0000 0.198] 0.0026 0.0142 0.0269

250 0.50 0.5 0.0065 0.0064 0-0001 O.WPS 0.0051 0.0059 00081

150 0.99 0.5 0.0012 1.19.35 0.0000 0.0085 0.0014 0.0049 0.0091

50 0.30 1.0 0.262] 0.09T3 O.OIRP O.SB]B O.Ifi62 0.1154 0.1120

50 0.99 1.0 O.OU40 0.9804 0.0001 0.5P]8 0.00]0 0.0338 O.D63]

100 0 50 1.0 O.OP01 0.0608 0.003] 0.3094 O.OT03 0.0828 0-0623

100 0.99 1.0 0.0039 0.9259 0.0001 0.3091 0.0068 0.0333 0.0626

250 0.50 I.0 0.00]5 0.015] 0.0001 0.03T] 0.0095 0.013T 0.0143

250 U.99 l.0 0.0031 0.953P 0.0000 0.03TT 0.003] O.OIPl 0.0344

demand sizes, interarrival times, and the lead times, are ME distributed. We computecí

~(s, Q, n), z(~(s, Q, xx) and T(s, Q, n) by formula.5 (4), (5) and (7) which are denoted by

~nn, ~,bD„ and Tnn respectively. Simulation was used to verify whet.her ~an, ~ian, and Ta„

are eyual to the related values computed by simulation, denoted by ~s~m, ~i3;,,,, and Tsim~

respectively. Furthermore, we calculated by simulation the fraction of the partial deliveries

that crossed any partial deliveries of previously placed replenishment orders, which is

denoted by Crossing.

The results of these experiments are aggregated in Table 2, in which each line represents

the average of the absolute deviations of the performance measures over 180 experiments.

Since the mean absolute deviations of ~ and ~i have to be related to the absolute values

of ~ and ~!~, we also computed the relative errors of the sum of inventory and backordering

costs. That, is, for h- 1 and b-{1, 10, 20} we computed Int~"" h~s m}tby,~~am W"m}I (see

columns b- h, b- lOh, and b- 20h).
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From these experiments we can conchrde the following about the quality of the expres-

siuus for the performance measures computed by the proposed algorithm in this section.

. Fix the situations in which Q- 100 or Q- 250, the algorithm performs good in all

c~r.ties that are considered. Both the determination of s via T(s, Q, n) - ra„ and the

cumputation of tb(s, Q, n) and ~i(s, Q, n) yield accurate results.

. For t.he sit.uations where Q- 50, cL - 1, and ra„ - 0.50, we see discrepancies between

the target and achieved T-level. The explanation for this deviation is expressed by

the fraction of partial deliveries that cross, which is in these situations up to 59 070 of

the partial deliveries.

. For high vahies of ra„ we note that ~~a„ deviates from ~i,;m. This has only a small

impact on the computation of the sum of ordering and holding costs, which follows

from the last colrnnns in Table 2. This can be explained by the fact that for large

values of 6, the determination of the optimal values for the decision variables is

basicall,y a trade off between the ordering and holding costs.

. Iuterest,ingly, the crossing of orders does not inftuence the quality of the approxima-

t ions for high values of ra,,, that is, high values of b.

These results point out that the proposed algorithm performs very we1L We have to be

i~areful onlv in situations where crossing of orders frequently occurs, or cases with low

~alues of b.

In the following experiment we checked numerically whether assumption 7 is valid

(TRC(s'(Q, n), Q, n) is convex in Q). Of course this is not the appropriate way of

validating the convexity assumption. However, we have not been able to derive condi-

tions for convexity. Therefore, we resort to a numerical investigation into the convex-

ity of TRC(s"(Q, n), Q, n). For these experiments we fixed the following input values,

(~D, c~) -(10, 1), (IEA, cA) -(1, 1), IEG - 10, and h- 0.01. In Figures 2 to 5 we

plotted TRC(s'(Q,~a),Q,n) as function of Q. The authors did not find any numerical

~~ounter examples of the conjecture that TRC(s' (Q, n), Q, n) is convex. These figures show

also that Q'(~a) is increasing in n. Moreover, the optimal number of suppliers is depending

un the input parameters. The cost parameters IC, c, h, and 6 indeed influence n" (com-

pare Figirres 2, 4 and 5). But. also the parameters of the underlying lead time process do

influence ~i` (compare Fígure 2 with Figure 3).
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Figure 2; TRC(s(Q,n),Q,n) as func-

t.ion of Q, where cL - 0.3, K - 30,

c-0.5,and6-0.1.

Figure 4: TRC(s(Q, n), Q, n) as func-

t.ion of Q, where c~ - 0.5, K- 5,

c-0.5,and6-0.1.

ioo ioo Soo ~oo aoo iioo
Q r

Figure 3: TRC(s(Q, n), Q, n) as func-

tion of Q, where cL - 1, K - 30,

c-0.5,and6-0.1.

Figure 5: TRC(s(Q, n), Q, n) as func-

tion of Q, where c~ - 0.5, K- 5,

c-l,and6-0.1.
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6 The optimal number of suppliers

From Fignres 2 to 5, it is clear that n' depends on the values of the input parameters.

'Cherefore, we designed a number of experiments to get some insight into the optimal

uumber of suppliers.

First of all we compared our results with the results presented by Ramasesh et al.(1991).

Ramasesh et al. consider the same objective, under constant demand and with at most

two suppliers. Hence t.he model differs from the model discussed in this paper. We fit the

parameters of our model to the parameters of the model in Ramasesh et al.(1991) as follows.

13y considering srnall interarrival time of customers and low coefTicient of variations of D

and A, we can approximate the model considered by Ramasesh et al.(1991). Moreover,

the ordering costs in Ramasesh et al. (1991) for the two supplier situation are given by

A(2) - aIC, where a E [1, 2]. Hence, the appropriate choice of c is log2 a. The results for

Te - 1 and re - 2 are similar, see Table 3, where (,I) denotes the results of our model and

(R) the results of the model of Ramasesh et aL ( 1991). The optimal values of s and Q and

the value of the total relevant costs are almost equal. For the situation that a- 1(i.e.

r- 0) the optimal nurnber of suppliers i~ inlinity, as was alrcady noted by Larson(1989).

Furthermore, we note that for values of a 1 1, using two suppliers can be advantageously,

but is not optimal (see c- 0.263).

14



Table 3: Comparison results from Ramasesh et al. (1991) with our results

c si

n-1
Qi TRC s2

n-2
Q2 TRC s3

n-3
Q3 TRC n' TRC

0.00 (,I) 188.6 1275.2 1222.4 33.7 1334.1 977.7 -6.8 1309.2 889.9 00 -

(R) 191.3 1271.2 1220.3 35.6 1333.7 981.2

0.263 ( J) 188.6 1275.2 1222.4 22.6 1407.0 1050.6 -22.0 1418.9 1012.7 4 1010.30

(It) 191.3 1271.2 1220.3 24.0 1408.0 1054.1

0.678 (J) 188.6 1275.2 1222.4 5.2 1539.6 1186.3 -51.7 1651.4 1264.1 2 1186.30
(R) 191.3 1271.2 1220.3 5.7 1542.2 1189.6

0.761 (.1) 188.6 1275.2 1222.4 1.8 1569.1 1216.9 - 58.6 1708.6 1324.1 2 1216.92
(it) 191.3 1271.2 1220.3 2.0 1573.4 1220.3

In the experiments that follow we take one day as the basic time unit, and one year

equal ta 250 (worlcing) days. We investigate the effect of the cost parameters K, c, b

and h on the optimal number of suppliers. We fixed the following values for the system

parameters: (IED, co) -(10,1), (IEA, cA) -(1,1), and (IEL, c~,) - (10, 0.5). We fixed c

equal to 0.5 and the inventory holding cost h equal to 0.04. This represents an article with

purchase price of ~40 and a opportunity factor of 0.25 ~~~~~year. First we varied b between

1, 10, 100, and 1000 times h, and for each setting we calculated the optimal number of

suppliers as function of K (see Figures 6 and 7). The number of values chosen for K is

equal to 100 for each value of b. To generate Figures 6 and 7 required about 14 minutes

CPU time on a SUNSPARC-station 4. We see that n` -r oo when K j 0, and n' - 1

when K -r oo, which is also intuitively clear. Moreover, n' increases when btn increases.

.And n' decreases when c increases (compare Figures 6 with 7), which is intuitively clear,

as well.

In the final experiments we investigate the effect of the parameters of the underlying

stochastic processes (IED, co), (]EA, cA), and (IEL, cL). We considered situations in which

K- 20, c- 0.5, h- 0.04, and b- 0.4. We started with (IED, co) - (10,1), (IEA, cA) -

(1, i), and (IBL, ct) -(10, 0.5), as in the basic situation, however in each experiment we

varied one or two of these system patameters.

In Figure 8 we computed n' as function of IED, for various values of IEL. We note

that n' is almost linear in both IED and IEL. In Figure 9 we varied IEA. Similar to the

eflect of K, we see that n' ~ oo when IEA .~ 0, and n' - 1 when IEA -r oo.
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Figure 6: The optimal number of sup-

pliers as function of K with c- 0.5.
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Figure 8: The optimal number of sup-

pliers as function of IED.
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Figure 7: The optimal number of sup-

pliers as function of K with c- 1.
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Figure 9: The optimal number of sup-

pliers as function of ]EA.

In case the coefFicients of variation of D and A are varied, we only find minor effects

on the optimal number of suppliers. In Figure 10 we varied cq. It is important to note

that higher values of cq can lead to both lower and higher values of n". A detailed inves-

tigation of the solutions is given for ]EL - 20 and cq is varied between 1.1 and 1.2 (see

Table 4). The differences between TRC(s`(12), Q'(12),12) and TRC(s'(13), Q`(13),13)

are very small, and for some values of cq the TRC(s"(12), Q"(12), 12) is smaller than

TRC(s"(13), Q"(13),13) and for other values the other way around. When n increases, the

optimal reorder point will decrease, however, the optimal reorder quantity will increase.

Hence, the inventory holding costs may increase or decrease.

The impact on n" of co are similar to the effects of cq. In contrast with this, n" turns

out to be very sensitive to the value of cL. In Figure 11 we varied both IEL and c~. This
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Table 4: Detailed investigation of the solutions

i; -

c

1 ~o
~~ R

h

J

Cq 7t

1.2 1
12
13
14

3051.58 290.78 184.21
2091.28 95.36 445.31
2090.65 93.26 447.99
2091.41 91.41 450.39
3091.85 291.86 185.81

2146.90 97.01 452.29

2146.91 94.88 454.77

2147.94 91.35 457.08 ~

iz ,

io ~

TRC(s'(n),Q"~n),n) s`~~) Q~~~)

4

1

o ~ o } , ~ ~ . ~
Ol (1.7 I.I I.5 19 2.? 00 06 0.8 1.2 16 2.0
-EL-S ....GL-10 .---F.L-20 c~-~ -EL-S .---EL-10 --..EL-20 c~y

Figurc 10: The optimal number of sup- Figure 11: The optimal nurnber of sup-

pliers as function of cq. pliers as fimction of c~.

sensitivity can ba explained by considering effects of c~ that interfere. Namely when c~

increases, the first orders will arrive earlier, which leads to lower values of the reorder point.

t3ut due to the earlier arrival of the partial deliveries the expected average physical stock

will slightly increase. Finally, it is noteworthy that often there are only minor differences

in the total relevant cost for two successive values of n(see, for example Table 4).

7 Conclusions and future research

In this paper an (s, Q) inventory model is presented with order splitting, where the demand

is modelled as a compound renewal process, and lead times of the suppliers are independent

17



ruul identically distributed random variables. This model can be applied to many practical

situations.

We derived expressions for the expected average physical stock, the expected average

backlog level, and the fraction of the time that the physical stock is positive. Furthermore,

an algorittun is derived to compute these performance measures based only on moments of

the underlying demand and lead time process. The algorithm turned out to perform very

good for situations in which the number of order crossings was not too high. Although the

pcrformance measures are derived for non-identically distributed lead times of suppliers,

the algorithm is onl,y developed for identically distributed lead times. Clearly this is a

topic of future research.

We considered the problem of determining the approptiate values fot the control pa-

rameters s, Q, and n. We minimized the sum of ordering, holding, and backordering costs.

The optimal number of suppliers turned out to be very sensitive for the combination of

input param~~,ters. A striking observation was that n' is not always increasing when the

coefficient of variation of the lead times does. The algorithm can be used to generate

graphical support instantaneously for a wide range of input values.
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Appendix 1: Proof of relation (4) and (5)

Given a random variable X with distribution function F and finite mean, and a random

variable Y' with distribution function G and finite mean, then the distibution function of

the convolution of ~ and Y will be denoted by (F ~ G), the distribution of the n-fold

convolution of .l" with itself is denoted by Fn', and the renewal function, M, associated
~

with F is defined as M(~) -~ F"'(x).
n-0

Define H(.r,) (and H(x)) as the expected area between the physical inventory level and

the zero level, in case the physical stock level on epoch 0 equals x (x 1 0), there are no

outstanding replenishment orders, and time epoch 0 is an arriva] moment of a customer

(for H(:z) tirne cpoch zero is an arbitrary moment in time). By conditioning on the first

arriving customer after t.ime epoch 0, we find

H(~) - ~IEA f ~ H(~ - y)dFp(y). (A.1.1)
0

Let M be the renewal function associated with Fp, then writing out recurrence relation

(A.1.1) yields

H(r.) - IEA~(x - y)dM(y) (A1.2)
0

Consider the situation that zero is an arbitrary point in time, and let A be the arrival

time of the first customer after zero. Then A is the excess life at time epoch zero with

respect to the arrival process of customers. Since zero is an arbitrary point in time, and

using standard renewal theory, yields the well-known result

~
~(A ~ ~) ~ ~A f (1 - FA(y))dy, (A.1.3)

0
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where

IEA1
IEA - 21EA'

IEflz - ~A33IEA ~

By conditioning on the first arriving customer after time epoch 0, results into

(A.1.4)

(A.1.5)

~

H(~) - x1Et1 f~ H(x - y)dF~(y). (A.1.6)

0

Using relations (A.1.1) and (A.1.2) gives

~

H(~) - (~,~ - ~A).~ f ~A f(~ - y)dM(y)
0

(A.1.7)

Lemma A.1.1.

Let M be the renewal function associated with Fp, and let U be the equilibrium excess

distribution of D, then

(M ~ U)(x) -
x

IED
(A.1.8)

Proof:

Let F~(y) be the Laplace transform of Fn, thus F~(y) - f e-y~dFp(x). Since U(y) -
0

(1 - Fo(y))~(ylED) and M(y) - 1~(1 - Fo(y)), it follows that the Laplace transform of

the convolution equals 1~(yIED). Hence, taking the inverse Laplace transform of 1~(yIEX)

yields (A-f ~ II)(x) - ~~IED. o

Lemma A.1.2.
Let M be the renewal function associated with FD, and let U be the equilibrium excess

distribution of D. Furthermore, let Y be a positive random variable with distribution

function G. Then, for s~ 0,

~H(s-x)d(G~U)(a.) - (IEÁ-IEA)~(s-x)d(G~U)(~)~-IEA~ (Z~~~dG(.~)(A.1.9)
0 0 0

Proof:

Using lemma A.1.1. it is easily seen that

f H(s - x)d(G ~ U)(x)
U
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S 9 9-2

-(IEA - IEA) f(s - x)d(G ~ U)(x) f IEA f f(s - x- y)dM(y)d(G ~ U)(x)
n 0 0

- (~A - ~A) f(s - x)d(G ~ U)(x) t ~A f f (s - x - y)d(n,r ~ U)(y)dG(x)
0 0 0

-(IEÁ- IEA) f(.s - x)d(G ~ U)(x) f IEA f(2~D2dG(x)
0 0

Now, consider the k-th sub-cycle (k E{ 1, ..., n}). The physical stock at the beginning

of the k-th sub-cycle (just after the replenishment arrived) is equal (Ik)}, whereas the

physical stock at the end of the k-th sub-cycle (just before the replenishment arrives) is

cqual to (Ik)}. Then it is easy to see that the expected area between the physícal inventory

level and the zero level within the k-th sub-cycle is given by IEH((Ik)}) - IEH((Ik)t). By

using (A.1.7), Lemma A.1.2, and by conditioning on Ik, we find

9}k-1~

IEH((Ik)}) - f H(s }~ n 1Q - x)dFD(o,otck-~:..)tu(x)
0

9tk-~4

(]EA - IEA) f (s f ~n1Q - x)dFD(v,otck-~:,.)fu(x)
0

9fkn~Q

}~D f (s f kn1Q - x)ZdFD(a,ottk-~..,)(x)
0

- (~,~ - ~A)~((Ik)}) f ~A~((rk f v)t)z
21ED

and for ]EH((Ik)}) an analogue expression can be derived.

Finally using that the length of a replenishment cycle equals eó and summing up the

expected area's of the n sub-cycles, yields

ó(~s, R, n) - ~ ~IEH((Ik)}) - IEH((Ik)})~
k-1

- 7 ~
IE(Ik)} - IE(Ik)t

k-1 Q

~. ~ ~((Ik } U)t)2 - ~((~~ } U )})z (A.l.lo)
k-1 2Q
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where ry - 1~2~c~ - 1)IED.
Notc~ that (A.1.10) is approximate since the distribution functions of A and U are

approximated by the associated residual life time distributions.

For the proof of expression (5) for the average backlog we will use the well-known

relatiou that the inventory position equals the physical stock plus on order minus the

backlog (see, for example, Hadley and Whitin (1963, p. 187)). The expected inventory

position is equal to sfQ~2, and that the expected amount on ordet is given by ~ EDELk,,,
k-1 nEA

Thc latter equality can be shown analogously to the arguments of Hadley and Whitin.

Imagine that orders flow into one end of a pipeline and procurements flow out of the other

end. For k E{ 1, ..., n} the k-th partíal delivery remains on average IELk;n time units in

the pipeline. A single demand unit has equal probability to be delivered from the k-th

(k E{1, ..., n}) partial delivery, and the expected flow out of the pipeline equals ED

Therefore, the expected number of units in the pipeline should be ~ EDÉAk'".
k-1

HenCe,

~('S~ Q~ n) -~(S~ Q~ 7L) - (S ~ Q,~`~) f~
ÍfiDÍN.Lk:n

k-1 n1EA
(A.1.11)

Note that for k E{ 1, ..., n} ED~,~k' " - IED(o, o f Lk;n) - ry. Substitution of (A.1.10) into

(A.1.11) yields

IE(Ik)} - IE(Ik)t
~G(~s, Q, n) - ry ~ Qk-1

~ n ~((~k ~ ~)t)z - ~((rk ~ U)})2 - (S } Q~2) ~ n ~D~Lk:n
~ 2Q ~ n1EA

- ry~ ~ ~i(Ik)t - ~(Ik)}
- 1~

k-1 Q
~ ~ ~(( jk ~ U)})2 - ~((Jk ~ U1t12k-' 2Q l 1 1

2sQ f Qz ~IED(a, U -F Lk:n)

2Q } ~ 2Q

-ry ~ IE(-Ik)} - IE(-Ik)}
k-1 Q

~~ IE(-(Ik f U)f)z - IE(-(Ik f U)t)z

k-1 2Q

f 2Q f(S f Q)z - 2(S f Q)IED(a, o t Ln:n) f IED(a, a f Ln:n)z
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- sz f 2s1ED(a, o f Lt:n) - IED(o, a f Ll:n)z - 2sQ - Qz

~- ~((s ~- k-1 Q)z - 2(s f ~-1Q)IED(a, a f Lk-l:n) -1- IED(a, 0 f Lk-l:n
k-2 ` ~ Tl

-(s t k-1Q)2 f 2(s -F k-1 Q)IED(a, a f Lk:n) - IED(a, a f Lk:n)`) 1n n 1

~ ~IED(a, a ~- Lk:n)
~ 2Qk-1
~ ~((-(Ik } U))}~22 ~((-(Ik ~ U))})2

k-1 Q

- 7 ~ IE(-Ik)} - IE(-Ik)}

k-1 Q
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