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Abstract

In this paper we present an (s, Q) inventory model with order splitting. Replenish-
ment orders are split equally among n suppliers. Demand is modelled as a compound
renewal process, and we consider independent identically distributed lead times for
the suppliers. By extending results for the standard (s, Q) inventory model, we derive
approximate expressions for the expected average physical stock level, the expected
average backlog level, and the fraction of the time the physical stock is positive.
The optimal values of the decision variables, the reorder point s, the replenishment
quantity @, and the number of suppliers n, are determined by minimizing the sum of
ordering, holding, and shortage costs, where the emphasis is on the optimal number

of suppliers.

1 Introduction

Order splitting is a vendor management strategy. This strategy can be applied in combina-
tion with many inventory replenishment strategies, such as the (s, S) and (s, Q) strategy.
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Order splitting or multiple sourcing is the partitioning of a replenishment order among two
or more suppliers.

Order splitting is advocated for the purpose of reducing lead time uncertainties, whereby
safety stocks are reduced In Sculli and Wu (1981), Kelle and Silver (1990a, 1990b), and
Guo and Ganeshan (1995) order statistics are used to derive analytical expressions for some
characteristics of the first arriving partial delivery. Typically the number of suppliers, n, is
allowed to be larger than two. In these papers the demand rate is assumed to be constant
over time. The optimal value of n is determined based on the reduction in the safety stock.

Other papers focus on another advantage of order splitting, namely the decrease of the
inventory holding cost due to the delayed replenishments (see, for example, Zhao and Lau
(1992), Lau and Zhao (1993), Lau and Lau (1994), and Chiang and Chiang (1996)). In
these papers the number of suppliers is mostly restricted to two, and demand is assumed
to be stochastic. The papers focus either on minimizing the sum of holding, ordering, and
shortage costs, or on minimizing the sum of ordering and holding costs subject to a service
level constraint.

It has been shown that the profitability of order splitting depends on the ratio between
the inventory holding cost and the extra transhipment or ordering cost when using more
than one supplier (see, for example, Larson (1989), Ramasesh et al. (1991), and Hong and
Hayya(1992)).

In this paper we consider an (s, @) replenishment policy in which a replenishment
order is split equally among n suppliers. We focus on minimizing the sum of holding,
ordering, and shortage costs. By extending results from the standard (s, @) inventory
model, we derive approximate expressions for the expected length of a replenishment cycle,
the average physical stock level, and the average backlog level.

The contribution of this paper is twofold. The expressions for the average physical
stock level and the expected average backlog level are derived under general assumptions
for the demand and lead time process. Demand is modelled as a compound renewal
process, and lead times of the suppliers are independent and identically mixed Erlang
distributed random variables. The compound renewal process is suitable for modeling real
life demand processes, and the mixtures of Erlang distribution is able to model a wide
variety of lead time distributions. Regarding the literature, most papers on order splitting
consider constant demand models or consider at most two suppliers. In that sense these
models are special cases of the model presented in this paper.

Secondly we present an approximation algorithm for computing the optimal values of
s, @ and n, given the first two moments of the underlying demand and lead time process.
We note that in practice only the first two moments of the underlying processes can be
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accurately estimated from the available data, The algorithm developed in this article can be
applied in many different practical settings. We concentrate on the impact of the problem
parameters on the optimal number of suppliers. For this purpose it is sufficient to consider
the case of identically distributed lead times.

The paper is organized as follows. In section 2 the model assumptions are discussed
and expressions for the performance measures are derived. In section 3 a method for
finding values for the optimal control variables is discussed. Section 4 deals with some
computational aspects of the performance measures derived, and an algorithm is presented
to actually calculate these measures. In section 5 the algorithm is validated by simulation
and in section 6 we used the proposed algorithm to investigate the optimal values of the
control parameters. Finally, in section 7 conclusions and future research are discussed.

2 The model description

In this single echelon inventory model with order splitting we assume that the demand
process is a compound renewal process. l.e, the inlerarrival times of customers can be de-
scribed by the sequence {4;}$2, of independent and identically distributed (i.i.d.) random
variables with a common distribution function F,, where A; represents the time between
the arrival of the i-th and (i—1)-th customer after time zero. We assume a customer arrives
at time zero. The demand sizes of the customers are described by the sequence {D;}2, of
iid. random variables with a common distribution function Fp, where D; represents the
demand size of the i-th customer after time zero. The sequence {D;}?, is independent of
{Ai2:

Shortages are backordered, and replenishment decisions are based on the inventory
position, being defined as the total stock on hand plus on order minus the total stock
backordered. The replenishment strategy that is considered is the continuous review (s, Q)
policy. Le., as soon as the inventory position drops below the reorder point s an amount of
Q is ordered, such that the inventory position after ordering is between s and s+ Q. Hence
we implicitly assume that always an amount of exactly @ is ordered. A replenishment
order is equally split among n different suppliers. The suppliers have independent and
identically distributed lead times with a common distribution function G. If we rearrange
the realisations of the lead times of the n partial deliveries in an increasing order, we get
the order statistics. These order statistics are denoted by
Lin < Lo < ... < Ly, with distribution functions Gg.n for k =1,...,n.

It is assumed that deliveries of two successive replenishment orders (each consisting of n



partial deliveries) do not cross in time. Thus, the last partial delivery of a replenishment
order arrives before any partial delivery of a subsequent replenishment order.

The values of the control parameters s, @ and n are determined such that the total
sum of long-run ordering, holding and backordering cost per unit time are minimized.
A well-known approach for deriving expressions for the long-run performance measures
is to consider an arbitrary replenishment cycle. The renewal reward theorem (see, e.g.,
Tijms (1994)) enables us to compute expressions for the long-run performance measures
by deriving expression related to an arbitrary replenishment cycle.

Let TRC(s, @, n) denote the total of ordering, holding and backordering cost per unit
time incurred during an arbitrary replenishment cycle. The holding costs are proportional
to the expected average physical stock level: stocking one unit of product costs h $ per
day. Hong and Hayya (1990) investigated the effects of the ordering costs on models with
order splitting. In particular they considered ordering costs that depend on the number of
suppliers (denoted by A(n)). They showed that the optimal number of suppliers is very
sensitive to the shape of A(n). We use the following simple function for the ordering costs,

A(n)=n°K, neN,ce R, (1)

where K is a fixed cost component, and ¢ determines the shape of A(n). By varying ¢ we
can model a convex, concave, or a linear ordering cost function. Backordering costs are
proportional to the number of units short, which coincides with the so-called Bj criterion
in Silver and Peterson (1985): each unit short is charged with an amount of say b $ per

time unit. Hence,
A(n)

TRC(S, Q, n) = m

+ ho(s,Q,n) + biy(s, Q,n), (2)

where
£(s,Q,n) denotes the expected length of an arbitrary replenishment cycle;

#(s,@,n) denotes the average physical stock level during an arbitrary replenishment cycle;
¥(s,Q,n) denotes the average backlog level during an arbitrary replenishment cycle.

Towards this end we defined a replenishment cycle as the time period between two
successive last arrivals of partial deliveries of a replenishment. Consider now an arbitrary
replenishment cycle, then we define the k-th sub-cycle as the time period between the
arrival of the (k — 1)-th partial delivery and the k-th partial delivery (k € {2,...,n}). The
first sub-cycle is defined as the time period between the arrival of last partial delivery of
the replenishment cycle which preceded the arbitrary replenishment cycle and the arrival
of the first partial delivery of the tagged replenishment cycle.
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Figure 1: Evolution of the net stock and inventory position during a replenishment cycle

for n = 4.

Let zero be an arbitrary customer arrival moment. Denote the j-th ordering epoch after
zero by o;. Let D(t;,t2) be the total demand during (t1,t2], and U; the undershoot under
s at o;. Lff:, denotes the lead time of the k-th partial delivery in the j-th replenishment
cycle after zero. Consider the second replenishment cycle after zero, see Figure 1. Define
the net stock as the stock on hand minus the total stock backordered. Then we denote for
k € {1,2,...,n} I} as the net stock at the beginning of the k-th sub-cycle in the second
replenishment cycle after zero (just after the partial delivery arrived), and I{ as the net
stock at the end of the k-th sub-cycle in the second replenishment cycle (just before the
partial delivery arrives). Then it can be seen that (see Figure 1):

I' = s—Ui+Q—D(oy,01+L{);

It = s—Uy—D(o3,02+L3):

B = s—Up+%'Q-D(og02+LY,,), ke {23,...,n}
I = s—-U+%5'Q—- Doy + L), ke{23,...,n}

Since the demand process is a compound renewal process and the lead times are i.i.d.,
it can be seen that U; < U,, and D(0y,0, + L)) L D(0y,05 + L)), where £ denotes



equality in distribution. Hence,
1'% s — Uy + Q— D(02,02 + LE),).

For ease of notation we will suppress the indices 2 in o3, U, and Lff,), As in the standard
(s, Q) inventory model, it can be shown that the expected demand during a replenishment
cycle is equal to Q. Then it is easy to see that

QIEA
£s,@Qn) = 3)
Note that &(s, @, n) is independent of s and n.

In order to derive an expression for ¢(s,@,n) we need the expected surface between
the physical stock level and the zero level during a replenishment cycle. By using results
from renewal theory we can derive the following approximate expression for ¢(s, @, n) (see
Appendix 1),

" z": E(I)* — E()*

¢(SY Q’ n) = Q
" 2": IE((12+U)+)22—QIE((IE+U)+)2, @
k=1

where v = 1 /Z(C?,1 - I)ED. In a similar way the following approximate expression for
(s, Q,n) can be derived,

" B((=(f+U)Y)? - B(-UR+U)*)?
vsqm = y 2 20 S
k=1
n E(-—]e)* . E(_Ib)+
=y Z . Q 2 (5)
k=1
We did not use the fact that the lead times of the partial deliveries are identically
distributed. Hence, (4) and (5) are also valid for non-identically distributed lead times.
However, it is well-known that the distribution function of the order statistics of non-

identically distribution random variables is quite complex, see Balakrishnan (1988). In
principle it is possible to compute ¢(s,@,n) and ¥(s,@Q,n) for independent and non-
identically distributed lead times. Yet the computational complexity is of order n! For
computational convenience we therefore restrict ourselves to identically distributed lead
times for the different suppliers. The assumptions of identical suppliers is justified by the
fact that suppliers of the same product should provide more or less the same prices and
lead times to the customers.



3 The optimization problem

In this section we consider the problem of determining values for the cost-optimal control
parameters s, @, and n. The objective is to minimize the sum of the holding, ordering,
and backordering costs. Hence, we want to

minimize TRC(s,Q,n) = A4 ho(s,Q,n) + by (s,Q,n)
£(s,Qn)

st. @>0,nelN.

When n is fixed, we can find the optimal values for s and @, denoted by s*(n) and
Q" (n) respectively, in the following way. For given values of n and @, the optimal value of
s can be determined by solving the equation MM;:‘&Z = 0, presuming a unique solution
exists. By using relations (4) and (5) it can be derived that

OTRC(s,Q,n)

ds = (h+b)7(s,Q,n) — b, o
where
(s,@Q,n) = ,Yz": IP(I} < 0) C—QP(I’: <0)
k=l

Z (+0)t - ; (I,:+U)+‘ )

Moreover, it can be shown that 7(s, @, n) is equal to the long-run fraction of the time the
net stock is positive (see Janssen and de Kok (1997a, 1997b)). Hence, for given values of
n and Q the optimal value of s (denoted by s*(Q,n)), can be determined by solving

b
b+h ®)

Since 7(s,Q,n) is increasing in s, and can take all values on (0,1), a unique solution

7(s,Q,n) =

indeed exists. Note the resemblance with the newsboy problem (see Silver and Peterson
(1985, p 265)). So, we can find s*(n) and Q*(n) by solving the following one-dimensional
optimization problem

minimize TRC(s*(Q,n),Q,n)
s.t. @>0.
If we assume that TRC(s*(Q,n), @, n) is convex in @, we can determine Q*(n) by using
for example Golden Section search, and s*(n) = s*(Q*(n), n).

For practical situations we may restrict ourself to a limited number of suppliers ()
For each n, 1 < n < Nynaz, we determine s*(n) and Q*(n), and select that n for which the
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TRC(s*(n),Q*(n),n) is minimal.

4 Computational aspects

A versatile class of distribution functions is the class of mixtures of two Erlang distributions
(denoted by ME distributions), i.e.

) g oo
f(I)ZZ:Pj#j (k_-—l_)!e %, 220, (9)
j=1 j
where py >0, p; > 0, p1 +p2 =1, k1, ks € IN.

In Tijms (1994, p.358) formulas are given to fit a ME distribution on a positive ran-
dom variable based on the first two moments of that variable. When X and Y are ME
distributed and z € IR, then closed form expressions for IE(X — z)*, IE((X — 2)*)?
IE(X —Y)* and [E((X — Y)*)? exist.

In the model presented in section 2, we assumed that Fs, Fp and G are known. Ex-
pressions (4) and (5) contain the distributions of D(o,0 + Lgs) (kK = 1,...,n) and the
distribution of the undershoot U. In general these distribution functions are hard to ob-
tain from Fu, Fp and G. To avoid this problem, we assume that D(o,0 + Li.n) + U and
D(o,0 + Li.n) (k=1,...,n) are ME distributed. So, we only need the first two moments
of D(0,0 + L.n) +U and D(0,0+ L) (k =1,...,7n) to calculate the expressions (4) and
(5) for given values of s, Q, and n. Since U is independent of D(0, 0 + Li.n) it is sufficient
io find expressions for the moments of U and D(0, 0 + Li.,) separately.

Now we use the fact that the distribution function of the undershoot is approxi-
mately equal to the stationary residual lifetime distribution with respect to Fp, when
Q@ > Cond(D), (see Tijms (1994, p.14)). For a positive random variable X with finite
moments IEX, JEX?, and where cx represents the coefficient of variation of X, Cond(X)
is defined as

3XEX if & >1;
Cond(X) =¢ [EX if 02<ék £1; (10)
S EX i 0<d <02

Then using results from renewal theory gives

ED?
BU =~ 5= (11)
IED?
2 ~ —
EBU? = 5. (12)



The first two moments of D(c,0 + Ly.,) are given by the well-known results

IED(0,0+ Lgn) = IEN(0,0 + Liy)ED, (13)
[ED*(0,0 + Lin) = IEN(0,0 + Lia)o®(D) + IEN?(0,0 + Lys) (IED)?, (14)

where N(0,0 + Li.n,) denotes the number of customer arrivals during (0,0 + Lg.,]. Since
o is an order epoch it follows that a customer arrives at epoch o. Therefore we can derive
the following approximations from asymptotic expressions from renewal theory (see, for
example, Cox (1962))

EL, IEA?

EN(0,0 + Lin) =~ E—Z S | (15)
E(Lin)? 2EA2 3

IEN%*(0,0 + Lgn) =~ —(_EE:IT + ELk:n(-(TEA—)s - E/I)

3(BA%? 2[EA®  3EA
2(EA)"  3(EAY  2(IEA)

These asymptotic relations hold for £ = 1,...,n only when IP(Ly., < A) are negligible.

S +1 (16)

In case this probability is larger than a certain treshold value, we propose a Gamma
approximation presented by Smeitink and Dekker (1990) to compute the first two moments
of the renewal function.

What remains to compute are the moments of the order statistics Li.,. Using an
analogous approach as described in Balakrishnan and Cohen (1991, p.44), IEL},, can be
computed for m € IN, and k =1,...,n, in case G is ME distributed.

Summarizing, to compute values for the expressions (4) and (5) for given values of s,
@, and n, we have to go through the following three steps

e Compute the moments of the order statistics IEL}?, form € {1,2} and k =1,...,n.

e Compute the first two moments of U; and D(0,0 + Ly.s) for k = 1,...,7n, by using
relations (11) to (16).

e Compute £(s,@,n), ¢(s,Q,n) and ¥(s, Q,n) by fitting ME distributions on D(o, o +
Li.n) and D(0,0+ Lin)+U (k =1,...,n), and using relations (3) to (5) respectively.

5 Validation of the algorithm

By simulation we first validate the proposed algorithm for computing the values of ¢(s, @, n),
¥(s,Q,n), and 7(s,Q,n). The algorithm yields approximations for the values for the op-
timal decision parameters, because we assume that

9



1. Replenishment orders do not cross
2. Exactly @ is ordered at a time.

3. A is distributed as the residual lifetime distribution associated with F4 (see Ap-
pendix 1).

4. U is distributed as the residual lifetime distribution associated with Fp.

. The moments of N (o, 0+ Ly.,) are approximated by (15) and (16), which are asymp-

[34]

totic relations.

6. The distribution functions of D(0,0 + Lin) + U and D(0,0 + Lis) (k= 1,...,71)
are approximated by ME distributions;

7. TRC(s*(Q,n),Q,n) is convex in Q.

We will show that is spite of these all these assumptions, our calculation scheme provides
excellent approximations for the relevant performance characteristics given s, @ and n.
Thereby the algorithm given in section 3 yields near-optimal values for s*, @* and n". We
distinguish between assumptions made for deriving expressions for ¢(s,Q,n) and (s, Q,n)
(assumptions 1, 2 and 3), computing the first two moments of D(0,0 + Lg.,) and D(0,0 +
Lim) + U (k = 1,...,n) (assumptions 4, 5 and 6), and for selecting the optimal values
for the decision variables (assumption 7). It is well-known that for small values of @ with
respect to IED(0,0 + Ln.yn) assumption 1 is violated, see, for example, Kelle and Silver
(1991b). Assumptions 2 and 4 are violated only when @ is small with respect to ED,i.e.
Q < Cond(D). Assumptions 3 and 5 are violated when IEL < Cond(A).

In practice assumption 1 may be violated when the number of suppliers is large. There-
fore, we will investigate the effect of assumption 1 on the quality of the computation of the
expected average physical stock level, expected average backlog level, and the fraction of
the time the net stock is positive by the proposed algorithm of section 3.

We used discrete event simulation to validate the quality of the approximations in
terms of the deviation of the calculated performance measures by the algorithm described
in section 3, and the performance measures computed by simulation. These experiments are
done for a wide range of parameter values. The input values of the system parameters are
given in Table 1. For each of these 3240 experiments we calculated s by solving 7(s,Q,n) =
Tan Via a numerical search routine, where 7., represents the ratio b—fr’—h The number of
sub-runs which where performed in the simulation experiment is fixed to 5 (exclusive
the initialisation run), and the sub-run length is 100.000 time units. Furthermore, the
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Table 1: basic setting parameters for the experiments

n|IED|cp| IEA |ca|EL|cy| Q | Tan
1| 5 |L|ED/5| 5| 5 | %] 50090
2|10 |1 1|10 | 3 |100]0.99
3 2 2 1 |250

5

10

Table 2: The deviations of simulation and the values calculated with the algorithm.

Q Tan | cL | 19an — Ssiml | |¥an - Yaim| | ITan - Tsim| [ Crossing b=h | b=10h | b=20h
50 0.50 0.3 0.0532 0.0331 0.0017 0.4889 0.0372 0.0320 0.0316
50 0.99 0.3 0.0014 0.5184 0.0000 0.4892 0.0026 0.0139 0.0261
100 0.50 0.3 0.0248 0.0203 0.0002 0.1446 0.0205 0.0194 0.0194
100 0.99 03 0.0012 0.3364 0.0000 0.1447 0.0017 0.0082 0.0155%
250 0.50 0.3 0.0061 0.0054 0.0000 0.0048 0.0046 0.0051 0.0052
250 0.99 0.3 0.0012 0.2022 0.0000 0.0047 0.0013 0.0035 0.0064
50 0.50 0.5 0.0804 0.0480 0.0041 0.5376 0.0616 0.0510 0.0501
50 0.99 0.5 0.0022 0.7072 0.0001 N A374 0,0042 0.0222 0.0421
100 0.50 0.5 0.0224 0.0214 0.0006 0.1987 0.0201 0.0203 0.0204
100 0.99 0.5 0.0015 0.5224 0.0000 0.1987 0.0026 0.0142 0.0269
250 0.50 0.5 0.0065 0.0064 0.0001 0.0085 0.0051 0.0059 0.0061
250 0.99 0.5 0.0012 1.1435 0.0000 0.0085 0.0014 0.0049 0.0091
50 0.50 1.0 0.2627 0.0973 0.0188 0.5878 0.1662 0.1154 0.1120
50 0.99 1.0 0.0040 0.9804 0.0001 0.5878 0.0070 0.0338 0.0637
100 0.50 1.0 0.0801 0.0608 0.0037 0.3094 0.0703 0.0628 0.0623
100 0.99 1.0 0.0039 0.9254 0.0001 0.3091 0.0068 0.0333 0.0626
250 0.50 1.0 0.0075 0.0157 0.0001 0.0377 0.0095 0.0137 0.0143
250 0.99 1.0 0.0031 0.4538 0.0000 0.0377 0.0037 0.0181 0.0344

demand sizes, interarrival times, and the lead times, are ME distributed. We computed
#(s,Q,n), ¥(s,Q,n) and 7(s,Q,n) by formulas (4), (5) and (7) which are denoted by
Bans Van and Tan Tespectively. Simulation was used to verify whether ¢an, Yan, and 7an
are equal to the related values computed by simulation, denoted by ¢sim, ¥sim, and Tgim,
respectively. Furthermore, we calculated by simulation the fraction of the partial deliveries
that crossed any partial deliveries of previously placed replenishment orders, which is
denoted by Crossing.

The results of these experiments are aggregated in Table 2, in which each line represents
the average of the absolute deviations of the performance measures over 180 experiments.
Since the mean absolute deviations of ¢ and 9 have to be related to the absolute values
of ¢ and ¥, we also computed the relative errors of the sum of inventory and backordering
costs. That is, for h = 1 and b = {1,10,20} we computed l"("""‘_,'f;:"f‘:im"‘:‘_"’“"‘n (see
columns b = h, b = 10h, and b = 20h).

11



From these experiments we can conclude the following about the quality of the expres-
sions for the performance measures computed by the proposed algorithm in this section.

e For the situations in which Q = 100 or @ = 250, the algorithm performs good in all
cases that are considered. Both the determination of s via 7(s, @,n) = T4, and the
computation of ¢(s, @,n) and ¥(s, @, n) yield accurate results.

e For the situations where Q = 50, ¢, = 1, and 7,, = 0.50, we see discrepancies between
the target and achieved 7-level. The explanation for this deviation is expressed by
the fraction of partial deliveries that cross, which is in these situations up to 59 % of

the partial deliveries.

e For high values of 7,, we note that 1., deviates from ;. This has only a small
impact on the computation of the sum of ordering and holding costs, which follows
from the last columns in Table 2. This can be explained by the fact that for large
values of b, the determination of the optimal values for the decision variables is
basically a trade off between the ordering and holding costs.

o Interestingly, the crossing of orders does not influence the quality of the approxima-
tions for high values of 7,,, that is, high values of b.

These results point out that the proposed algorithm performs very well. We have to be
careful only in situations where crossing of orders frequently occurs, or cases with low

values of b.

In the following experiment we checked numerically whether assumption 7 is valid
(TRC(s*(Q,n),Q,n) is convex in Q). Of course this is not the appropriate way of
validating the convexity assumption. However, we have not been able to derive condi-
tions for convexity. Therefore, we resort to a numerical investigation into the convex-
ity of TRC(s*(Q,n),Q,n). For these experiments we fixed the following input values,
(IED,cp) = (10,1), (IEA,c4) = (1,1), IEL = 10, and h = 0.01. In Figures 2 to 5 we
plotted TRC(s*(Q,n),Q,n) as function of Q. The authors did not find any numerical
counter examples of the conjecture that TRC(s*(Q,n), @, n) is convex. These figures show
also that Q*(n) is increasing in n. Moreover, the optimal number of suppliers is depending
on the input parameters. The cost parameters K, ¢, h, and b indeed influence n* (com-
pare Figures 2, 4 and 5). But also the parameters of the underlying lead time process do
influence n* (compare Figure 2 with Figure 3).

12
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Figure 4: TRC(s(Q,n),Q,n) as func-
tion of Q, where ¢, = 0.5, K = 5,
¢=0.5,and b=0.1.
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6 The optimal number of suppliers

From Figures 2 to 5, it is clear that n* depends on the values of the input parameters.
Therefore, we designed a number of experiments to get some insight into the optimal
number of suppliers.

First of all we compared our results with the results presented by Ramasesh et al.(1991).
Ramasesh et al. consider the same objective, under constant demand and with at most
two suppliers. Hence the model differs from the model discussed in this paper. We fit the
parameters of our model to the parameters of the model in Ramasesh et al.(1991) as follows.
By considering small interarrival time of customers and low coefficient of variations of D
and A, we can approximate the model considered by Ramasesh et al.(1991). Moreover,
the ordering costs in Ramasesh et al. (1991) for the two supplier situation are given by
A(2) = aK, where a € [1,2]. Hence, the appropriate choice of ¢ is log, . The results for
n =1 and n = 2 are similar, see Table 3, where (J) denotes the results of our model and
(R) the results of the model of Ramasesh et al. (1991). The optimal values of s and Q and
the value of the total relevant costs are almost equal. For the situation that o = 1 (i.e.
¢ = 0) the optimal number of suppliers is infinity, as was already noted by Larson(1989).
Furthermore, we note that for values of & > 1, using two suppliers can be advantageously,
but is not optimal (see ¢ = 0.263).
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Table 3: Comparison results from Ramasesh et al. (1991) with our results

n=1 n=2 n=3

c st Qi TRC | s3 H TRC s3 Q3 TRC |n* TRC

0.00 (J) |188.6 12752 12224 |33.7 13341 977.7 | -6.8 1309.2 889.9 | oo -
(R) | 191.3 1271.2 1220.3 | 35.6 1333.7 981.2

0.263 (J) | 188.6 12752 12224 | 22.6 1407.0 1050.6 | -22.0 1418.9 1012.7 | 4 1010.30
(R) | 191.3 1271.2 1220.3 | 24.0 14080 1054.1

0.678 (J) | 188.6 1275.2 12224 | 5.2 1539.6 1186.3 | -51.7 1651.4 1264.1 | 2 1186.30
(R) | 191.3 1271.2 12203 | 5.7 1542.2 1189.6

0.761 (J) | 188.6 12752 12224 | 1.8 1569.1 1216.9 | -58.6 1708.6 1324.1 | 2 1216.92
(R) | 191.3 1271.2 12203 | 2.0 1573.4 1220.3

In the experiments that follow we take one day as the basic time unit, and one year
equal to 250 (working) days. We investigate the effect of the cost parameters K, ¢, b
and h on the optimal number of suppliers. We fixed the following values for the system
parameters: (IED,cp) = (10,1), (IEA,ca) = (1,1), and (EEL,c) = (10,0.5). We fixed ¢
equal to 0.5 and the inventory holding cost h equal to 0.04. This represents an article with
purchase price of $40 and a opportunity factor of 0.25 /$/8/year. First we varied b between
1, 10, 100, and 1000 times h, and for each setting we calculated the optimal number of
suppliers as function of K (see Figures 6 and 7). The number of values chosen for K is
equal to 100 for each value of b. To generate Figures 6 and 7 required about 14 minutes
CPU time on a SUNSPARC-station 4. We see that n* — oo when K | 0, and n* =1
when K — oo, which is also intuitively clear. Moreover, n* increases when ,H_Lh increases.
And n* decreases when ¢ increases (compare Figures 6 with 7), which is intuitively clear,
as well.

In the final experiments we investigate the effect of the parameters of the underlying
stochastic processes (IED, cp), (IEA, c4), and (IEL,cr). We considered situations in which
K =20, ¢ = 0.5, h = 0.04, and b = 0.4. We started with (IED,cp) = (10,1), (IEA,ca) =
(1,1), and (IEL,ct) = (10,0.5), as in the basic situation, however in each experiment we
varied one or two of these system parameters.

In Figure 8 we computed n* as function of IED, for various values of JEL. We note
that n* is almost linear in both IED and IEL. In Figure 9 we varied JEA. Similar to the
effect of K, we see that n* — oo when IEA | 0, and n* =1 when I[EA — co.
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In case the coefficients of variation of D and A are varied, we only find minor effects
on the optimal number of suppliers. In Figure 10 we varied c4. It is important to note
that higher values of c4 can lead to both lower and higher values of n*. A detailed inves-
tigation of the solutions is given for IEL = 20 and cu is varied between 1.1 and 1.2 (see
Table 4). The differences between TRC(s*(12),Q*(12),12) and TRC(s*(13),Q"(13), 13)
are very small, and for some values of ca the TRC(s*(12),Q%(12),12) is smaller than
TRC(s*(13),Q(13),13) and for other values the other way around. When n increases, the
optimal reorder point will decrease, however, the optimal reorder quantity will increase.
Hence, the inventory holding costs may increase or decrease.

The impact on n* of ¢p are similar to the effects of c4. In contrast with this, n* turns
out to be very sensitive to the value of cr. In Figure 11 we varied both IEL and cr. This
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Table 4: Detailed investigation of the solutions

ca n | TRC(s*(n),Q*(n),n) s*(n) Q*(n)
11 1 3051.58 290.78 184.21
12 2091.28 95.36 445.31
13 2090.65 93.26 447.99
14 2091.41 91.41 450.39
1.2 2 3091.85 291.86 185.81
12 2146.90 97.01 452.29
13 2146.91 94.88 454.77
14 2147.94 91.35 457.08
14 12 1
o IO i (S -
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6 4
6
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Figure 10: The optimal number of sup- Figure 11: The optimal number of sup-
pliers as function of cy4. pliers as function of ¢y,

sensitivity can be explained by considering effects of ¢, that interfere. Namely when cj,
increases, the first orders will arrive earlier, which leads to lower values of the reorder point.
But due to the earlier arrival of the partial deliveries the expected average physical stock
will slightly increase. Finally, it is noteworthy that often there are only minor differences

in the total relevant cost for two successive values of n (see, for example Table 4).

7 Conclusions and future research

In this paper an (s, Q) inventory model is presented with order splitting, where the demand
is modelled as a compound renewal process, and lead times of the suppliers are independent
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and identically distributed random variables. This model can be applied to many practical
sitnations.

We derived expressions for the expected average physical stock, the expected average
backlog level, and the fraction of the time that the physical stock is positive. Furthermore,
an algorithm is derived to compute these performance measures based only on moments of
the underlying demand and lead time process. The algorithm turned out to perform very
good for situations in which the number of order crossings was not too high. Although the
performance measures are derived for non-identically distributed lead times of suppliers,
the algorithm is only developed for identically distributed lead times. Clearly this is a
topic of future research.

We considered the problem of determining the appropriate values for the control pa-
rameters s, @, and n. We minimized the sum of ordering, holding, and backordering costs.
The optimal number of suppliers turned out to be very sensitive for the combination of
input parameters. A striking observation was that n* is not always increasing when the
coefficient of variation of the lead times does. The algorithm can be used to generate

graphical support instantaneously for a wide range of input values.
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Appendix 1: Proof of relation (4) and (5)

Given a random variable X with distribution function F' and finite mean, and a random
variable Y with distribution function G and finite mean, then the distibution function of
the convolution of X and Y will be denoted by (F' * G), the distribution of the n—fold
convolution of X with itself is denoted by F™*, and the renewal function, M, associated
with F is defined as M(z) = ni_'fo F™(g).

Define H(z) (and H(z)) as the expected area between the physical inventory level and
the zero level, in case the physical stock level on epoch 0 equals z (z > 0), there are no
outstanding replenishment orders, and time epoch 0 is an arrival moment of a customer
(for H(z) time epoch zero is an arbitrary moment in time). By conditioning on the first

arriving customer after time epoch 0, we find
H(z) = s IBA+ [ H(x - )dFo(y)- (A11)
0

Let M be the renewal function associated with Fp, then writing out recurrence relation
(A.1.1) yields
z
H(z) = BA /(1: — y)dM(y) (A1.2)
0
Consider the situation that zero is an arbitrary point in time, and let A be the arrival
time of the first customer after zero. Then A is the excess life at time epoch zero with
respect to the arrival process of customers. Since zero is an arbitrary point in time, and
using standard renewal theory, yields the well-known result

P(A<a)= o2 [(- Fa@)dy, (A13)
0
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where

EA = %, (A.1.4)
EA* = ;%A%. (A.1.5)
By conditioning on the first arriving customer after time epoch 0, results into
H(z) = zIBA + /I H(z — y)dFp(y)- (A.1.6)
0
Using relations (A.1.1) and (A.1.2) gives
H(z) = (EA - [EA)z + [EA / (z —y)dM(y) (A.17)
0

Lemma A.1.1.
Let M be the renewal function associated with Fp, and let U be the equilibrium excess
distribution of D, then
T
(M+U)(@) = pp (A.1.8)

Proof:
Let Fp(y) be the Laplace transform of Fp, thus Fp(y) = Te‘”’dFD(a:). Since U(y) =
0

(1 - Fp(y))/(yIED) and M@y)=1/1- Fp(y)), it follows that the Laplace transform of
the convolution equals 1/(yJED). Hence, taking the inverse Laplace transform of 1/(yIEX)
yields (M * U)(z) = z/IED. O

Lemma A.1.2.
Let M be the renewal function associated with Fp, and let U be the equilibrium excess
distribution of D. Furthermore, let Y be a positive random variable with distribution
function G. Then, for s > 0,

s B " s . s (S._m)z
/ H(s—2)d(GxU)(z) = (EA-IEA) / (s—2)d(G*U)(z)+EA / Ep-dCG@)(AL19)
0 0 0

Proof:
Using lemma A.1.1. it is easily seen that

/ H(s — 2)d(G + U)(z)
0
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— (EA - EA) / (s — 2)d(G * U)(z) + [EA / / (s — 7 — y)dM(y)d(G * U)(z)

— (BA- EA)/(s—z (G +U) z)+EA/

T

(s =z —y)d(M = U)(y)dG(z)

o9 °

— (BA - EA) / (s — 2)d(G + U)(z) + EA /
0

—

3 =

21E'D dG(z)

m}

Now, consider the k-th sub-cycle (k € {1,...,n}). The physical stock at the beginning
of the k-th sub-cycle (just after the replenishment arrived) is equal (I})*, whereas the
physical stock at the end of the k-th sub-cycle (just before the replenishment arrives) is
equal to (If)*. Then it is easy to see that the expected area between the physical inventory
level and the zero level within the k-th sub-cycle is given by EH((IY)") - EH((I)*). By
using (A.1.7), Lemma A.1.2, and by conditioning on I}, we find

EH((1)Y)
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‘ bl
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= Bl
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B
o
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o

+

FA k-1
o —_— (S + TQ = I)ZdFD(,,',_'_Lk_lm)(I)

EAE((IL + U)*)?

= (BA- BAE(L))+ —pp

and for IEH((I})*) an analogue expression can be derived.

Finally using that the length of a replenishment cycle equals 9,% and summing up the
expected area’s of the n sub-cycles, yields

é(s,Q,n) =

M=

(BAI)Y - BAIH")
Q

.S E((I+ U)*)"’2-QIE((IE +U)*)? (A.1.10)
k=1

E
1]

I

M=

i
k
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where 7 = 1/2(c — 1) EED.

Note that (A.1.10) is approximate since the distribution functions of A and U are
approximated by the associated residual life time distributions.

For the proof of expression (5) for the average backlog we will use the well-known
relation that the inventory position equals the physical stock plus on order minus the
backlog (see, for example, Hadley and Whitin (1963, p. 187)). The expected inventory

position is equal to s+@Q/2, and that the expected amount on order is given by Z E—D,%‘m.

The latter equality can be shown analogously to the arguments of Hadley and Whitin.
Imagine that orders flow into one end of a pipeline and procurements flow out of the other
end. For k € {1,...,n} the k-th partial delivery remains on average IELj., time units in
the pipeline. A single demand unit has equal probability to be delivered from the k-th
(k € {1,...,n}) partial delivery, and the expected flow out of the pipeline equals %ﬁl.

Therefore, the expected number of units in the pipeline should be i %’;%m.
E=1

Hence,

" IEDIEL.,

$(5,Qin) = 95, @) — (5+ Q/2) + 3. ==

(A.1.11)
k=1

Note that for k£ € {1,...,n} ED—@“ = [ED(0,0 + Li.,) — . Substitution of (A.1.10) into
(A.1.11) yields

n (1Y) — E(IE)*

U(s -72 )
+Z": ((IL’+U) )22—QIE((IE+U)+) (S+Q/2)+ZIEDIEL“
k=1
= =B - BU)T
”(kz )
n b 442 e +)2
+§IE((L¢+U) )ZQIE((IwU) )
_25Q+Q° Ly 0 ED(0,0 + Lin)
2Q L 2Q

2 E(-I)Y - E(-L)*

k=1 Q
n - re +\2 _ (b +)\2
+EIIE( U +UPY B+ 0))

(s+Q)? — 2(s + Q)EED(0,0 + Lnn) + IED(0,0 + Lnn)?
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— §*+2sIED(0,0 + L1x) — IED(0,0 + Lin)? — 25Q — Q°
+ Y (is+ Eolop -2+ K Q) BD(0,0 + Lu 1) + ED(0,0 + Li-1a)?
k=2
—(s+ E;Q)z +2(s+ %Q)ED(U, 0+ L) — IED(0,0 + Lk:,,)2>]
n 2Q :
i 2 n ED((;QU + Lk.ﬂ)
E((-(f+ 1)) - B(-(} +U)Y)?
2Q
» E(-IR)* - E-L)*
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