Tilburg University

The optimal number of suppliers in an (s,Q) inventory system with order splitting
 Janssen, F.B.S.L.P.; de Kok, T.

Publication date:
1997

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Janssen, F. B. S. L. P., \& de Kok, T. (1997). The optimal number of suppliers in an (s,Q) inventory system with order splitting. (CentER Discussion Paper; Vol. 1997-61). CentER, Center for Economic Research.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Tilburg University

Center for
Economic Research

By Fred Janssen and Ton de Kok

June 1997

ISSN 0924-7815

The optimal number of suppliers in an (s, Q) inventory system with order splitting

Fred Janssen*
Ton de Kok ${ }^{\dagger}$

Version June 19, 1997

Abstract

In this paper we present an (s, Q) inventory model with order splitting. Replenishment orders are split equally among n suppliers. Demand is modelled as a compound renewal process, and we consider independent identically distributed lead times for the suppliers. By extending results for the standard (s, Q) inventory model, we derive approximate expressions for the expected average physical stock level, the expected average backlog level, and the fraction of the time the physical stock is positive. The optimal values of the decision variables, the reorder point s, the replenishment quantity Q, and the number of suppliers n, are determined by minimizing the sum of ordering, holding, and shortage costs, where the emphasis is on the optimal number of suppliers.

1 Introduction

Order splitting is a vendor management strategy. This strategy can be applied in combination with many inventory replenishment strategies, such as the (s, S) and (s, Q) strategy.

[^0]Order splitting or multiple sourcing is the partitioning of a replenishment order among two or more suppliers.

Order splitting is advocated for the purpose of reducing lead time uncertainties, whereby safety stocks are reduced In Sculli and Wu (1981), Kelle and Silver (1990a, 1990b), and Guo and Ganeshan (1995) order statistics are used to derive analytical expressions for some characteristics of the first arriving partial delivery. Typically the number of suppliers, n, is allowed to be larger than two. In these papers the demand rate is assumed to be constant over time. The optimal value of n is determined based on the reduction in the safety stock.

Other papers focus on another advantage of order splitting, namely the decrease of the inventory holding cost due to the delayed replenishments (see, for example, Zhao and Lau (1992), Lau and Zhao (1993), Lau and Lau (1994), and Chiang and Chiang (1996)). In these papers the number of suppliers is mostly restricted to two, and demand is assumed to be stochastic. The papers focus either on minimizing the sum of holding, ordering, and shortage costs, or on minimizing the sum of ordering and holding costs subject to a service level constraint.

It has been shown that the profitability of order splitting depends on the ratio between the inventory holding cost and the extra transhipment or ordering cost when using more than one supplier (see, for example, Larson (1989), Ramasesh et al. (1991), and Hong and Hayya(1992)).

In this paper we consider an (s, Q) replenishment policy in which a replenishment order is split equally among n suppliers. We focus on minimizing the sum of holding, ordering, and shortage costs. By extending results from the standard (s, Q) inventory model, we derive approximate expressions for the expected length of a replenishment cycle, the average physical stock level, and the average backlog level.

The contribution of this paper is twofold. The expressions for the average physical stock level and the expected average backlog level are derived under general assumptions for the demand and lead time process. Demand is modelled as a compound renewal process, and lead times of the suppliers are independent and identically mixed Erlang distributed random variables. The compound renewal process is suitable for modeling real life demand processes, and the mixtures of Erlang distribution is able to model a wide variety of lead time distributions. Regarding the literature, most papers on order splitting consider constant demand models or consider at most two suppliers. In that sense these models are special cases of the model presented in this paper.

Secondly we present an approximation algorithm for computing the optimal values of s, Q and n, given the first two moments of the underlying demand and lead time process. We note that in practice only the first two moments of the underlying processes can be
accurately estimated from the available data, The algorithm developed in this article can be applied in many different practical settings. We concentrate on the impact of the problem parameters on the optimal number of suppliers. For this purpose it is sufficient to consider the case of identically distributed lead times.

The paper is organized as follows. In section 2 the model assumptions are discussed and expressions for the performance measures are derived. In section 3 a method for finding values for the optimal control variables is discussed. Section 4 deals with some computational aspects of the performance measures derived, and an algorithm is presented to actually calculate these measures. In section 5 the algorithm is validated by simulation and in section 6 we used the proposed algorithm to investigate the optimal values of the control parameters. Finally, in section 7 conclusions and future research are discussed.

2 The model description

In this single echelon inventory model with order splitting we assume that the demand process is a compound renewal process. I.e, the interarrival times of customers can be described by the sequence $\left\{A_{i}\right\}_{i=1}^{\infty}$ of independent and identically distributed (i.i.d.) random variables with a common distribution function F_{A}, where A_{i} represents the time between the arrival of the i-th and $(i-1)$-th customer after time zero. We assume a customer arrives at time zero. The demand sizes of the customers are described by the sequence $\left\{D_{i}\right\}_{i=1}^{\infty}$ of i.i.d. random variables with a common distribution function F_{D}, where D_{i} represents the demand size of the i-th customer after time zero. The sequence $\left\{D_{i}\right\}_{i=1}^{\infty}$ is independent of $\left\{A_{i}\right\}_{i=1}^{\infty}$.

Shortages are backordered, and replenishment decisions are based on the inventory position, being defined as the total stock on hand plus on order minus the total stock backordered. The replenishment strategy that is considered is the continuous review (s, Q) policy. I.e., as soon as the inventory position drops below the reorder point s an amount of Q is ordered, such that the inventory position after ordering is between s and $s+Q$. Hence we implicitly assume that always an amount of exactly Q is ordered. A replenishment order is equally split among n different suppliers. The suppliers have independent and identically distributed lead times with a common distribution function G. If we rearrange the realisations of the lead times of the n partial deliveries in an increasing order, we get the order statistics. These order statistics are denoted by $L_{1: n} \leq L_{2: n} \leq \ldots \leq L_{n: n}$, with distribution functions $G_{k: n}$ for $k=1, \ldots, n$. It is assumed that deliveries of two successive replenishment orders (each consisting of n
partial deliveries) do not cross in time. Thus, the last partial delivery of a replenishment order arrives before any partial delivery of a subsequent replenishment order.

The values of the control parameters s, Q and n are determined such that the total sum of long-run ordering, holding and backordering cost per unit time are minimized. A well-known approach for deriving expressions for the long-run performance measures is to consider an arbitrary replenishment cycle. The renewal reward theorem (see, e.g., Tijms (1994)) enables us to compute expressions for the long-run performance measures by deriving expression related to an arbitrary replenishment cycle.

Let $T R C(s, Q, n)$ denote the total of ordering, holding and backordering cost per unit time incurred during an arbitrary replenishment cycle. The holding costs are proportional to the expected average physical stock level: stocking one unit of product costs $h \$$ per day. Hong and Hayya (1990) investigated the effects of the ordering costs on models with order splitting. In particular they considered ordering costs that depend on the number of suppliers (denoted by $A(n)$). They showed that the optimal number of suppliers is very sensitive to the shape of $A(n)$. We use the following simple function for the ordering costs,

$$
\begin{equation*}
A(n)=n^{c} K, \quad n \in \mathbb{I}, c \in \mathbb{R} \tag{1}
\end{equation*}
$$

where K is a fixed cost component, and c determines the shape of $A(n)$. By varying c we can model a convex, concave, or a linear ordering cost function. Backordering costs are proportional to the number of units short, which coincides with the so-called B_{3} criterion in Silver and Peterson (1985): each unit short is charged with an amount of say $b \$$ per time unit. Hence,

$$
\begin{equation*}
T R C(s, Q, n)=\frac{A(n)}{\xi(s, Q, n)}+h \phi(s, Q, n)+b \psi(s, Q, n) \tag{2}
\end{equation*}
$$

where
$\xi(s, Q, n)$ denotes the expected length of an arbitrary replenishment cycle;
$\phi(s, Q, n)$ denotes the average physical stock level during an arbitrary replenishment cycle;
$\psi(s, Q, n)$ denotes the average backlog level during an arbitrary replenishment cycle.
Towards this end we defined a replenishment cycle as the time period between two successive last arrivals of partial deliveries of a replenishment. Consider now an arbitrary replenishment cycle, then we define the k-th sub-cycle as the time period between the arrival of the $(k-1)$-th partial delivery and the k-th partial delivery $(k \in\{2, \ldots, n\})$. The first sub-cycle is defined as the time period between the arrival of last partial delivery of the replenishment cycle which preceded the arbitrary replenishment cycle and the arrival of the first partial delivery of the tagged replenishment cycle.

Figure 1: Evolution of the net stock and inventory position during a replenishment cycle for $n=4$.

Let zero be an arbitrary customer arrival moment. Denote the j-th ordering epoch after zero by σ_{j}. Let $D\left(t_{1}, t_{2}\right)$ be the total demand during $\left(t_{1}, t_{2}\right]$, and U_{j} the undershoot under s at $\sigma_{j} . L_{k: n}^{(j)}$ denotes the lead time of the k-th partial delivery in the j-th replenishment cycle after zero. Consider the second replenishment cycle after zero, see Figure 1. Define the net stock as the stock on hand minus the total stock backordered. Then we denote for $k \in\{1,2, \ldots, n\} I_{k}^{b}$ as the net stock at the beginning of the k-th sub-cycle in the second replenishment cycle after zero (just after the partial delivery arrived), and I_{k}^{e} as the net stock at the end of the k-th sub-cycle in the second replenishment cycle (just before the partial delivery arrives). Then it can be seen that (see Figure 1):

$$
\begin{aligned}
& I_{1}^{b}=s-U_{1}+Q-D\left(\sigma_{1}, \sigma_{1}+L_{n: n}^{(1)}\right) ; \\
& I_{1}^{e}=s-U_{2}-D\left(\sigma_{2}, \sigma_{2}+L_{1: n}^{(2)}\right): \\
& I_{k}^{b}=s-U_{2}+\frac{k-1}{n} Q-D\left(\sigma_{2}, \sigma_{2}+L_{k-1: n}^{(2)}\right), \quad k \in\{2,3, \ldots, n\}: \\
& I_{k}^{e}=s-U_{2}+\frac{k-1}{n} Q-D\left(\sigma_{2}, \sigma_{2}+L_{k: n}^{(2)}\right), \quad k \in\{2,3, \ldots, n\} .
\end{aligned}
$$

Since the demand process is a compound renewal process and the lead times are i.i.d., it can be seen that $U_{1} \stackrel{d}{=} U_{2}$, and $D\left(\sigma_{1}, \sigma_{1}+L_{n: n}^{(1)}\right) \stackrel{d}{=} D\left(\sigma_{2}, \sigma_{2}+L_{n: n}^{(2)}\right)$, where $\stackrel{d}{=}$ denotes
equality in distribution. Hence,

$$
I_{1}^{b} \stackrel{d}{=} s-U_{2}+Q-D\left(\sigma_{2}, \sigma_{2}+L_{n: n}^{(2)}\right) .
$$

For ease of notation we will suppress the indices 2 in σ_{2}, U_{2} and $L_{k: n}^{(2)}$. As in the standard (s, Q) inventory model, it can be shown that the expected demand during a replenishment cycle is equal to Q. Then it is easy to see that

$$
\begin{equation*}
\xi(s, Q, n)=\frac{Q \mathbb{I E A}}{\mathbb{E} D} \tag{3}
\end{equation*}
$$

Note that $\xi(s, Q, n)$ is independent of s and n.
In order to derive an expression for $\phi(s, Q, n)$ we need the expected surface between the physical stock level and the zero level during a replenishment cycle. By using results from renewal theory we can derive the following approximate expression for $\phi(s, Q, n)$ (see Appendix 1),

$$
\begin{align*}
\phi(s, Q, n)= & \gamma \sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}\right)^{+}-\mathbb{E}\left(I_{k}^{e}\right)^{+}}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(\left(I_{k}^{b}+U\right)^{+}\right)^{2}-\mathbb{E}\left(\left(I_{k}^{e}+U\right)^{+}\right)^{2}}{2 Q} \tag{4}
\end{align*}
$$

where $\gamma=1 / 2\left(c_{A}^{2}-1\right) \mathbb{E D} D$. In a similar way the following approximate expression for $\psi(s, Q, n)$ can be derived,

$$
\begin{align*}
\psi(s, Q, n)= & \sum_{k=1}^{n} \frac{\mathbb{E}\left(\left(-\left(I_{k}^{e}+U\right)\right)^{+}\right)^{2}-\mathbb{E}\left(\left(-\left(I_{k}^{b}+U\right)\right)^{+}\right)^{2}}{2 Q} \\
& -\gamma \sum_{k=1}^{n} \frac{\mathbb{E}\left(-I_{k}^{e}\right)^{+}-\mathbb{E}\left(-I_{k}^{b}\right)^{+}}{Q} \tag{5}
\end{align*}
$$

We did not use the fact that the lead times of the partial deliveries are identically distributed. Hence, (4) and (5) are also valid for non-identically distributed lead times. However, it is well-known that the distribution function of the order statistics of nonidentically distribution random variables is quite complex, see Balakrishnan (1988). In principle it is possible to compute $\phi(s, Q, n)$ and $\psi(s, Q, n)$ for independent and nonidentically distributed lead times. Yet the computational complexity is of order n ! For computational convenience we therefore restrict ourselves to identically distributed lead times for the different suppliers. The assumptions of identical suppliers is justified by the fact that suppliers of the same product should provide more or less the same prices and lead times to the customers.

3 The optimization problem

In this section we consider the problem of determining values for the cost-optimal control parameters s, Q, and n. The objective is to minimize the sum of the holding, ordering, and backordering costs. Hence, we want to

$$
\begin{aligned}
\operatorname{minimize} & T R C(s, Q, n)=\frac{A(n)}{\xi(s, Q, n)}+h \phi(s, Q, n)+b \psi(s, Q, n) \\
\text { s.t. } & Q \geq 0, n \in I N
\end{aligned}
$$

When n is fixed, we can find the optimal values for s and Q, denoted by $s^{*}(n)$ and $Q^{*}(n)$ respectively, in the following way. For given values of n and Q, the optimal value of s can be determined by solving the equation $\frac{\partial \operatorname{TRC(s,Q,n)}}{\partial s}=0$, presuming a unique solution exists. By using relations (4) and (5) it can be derived that

$$
\begin{equation*}
\frac{\partial T R C(s, Q, n)}{\partial s}=(h+b) \tau(s, Q, n)-b \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
\tau(s, Q, n)= & \gamma \sum_{k=1}^{n} \frac{\mathbb{P}\left(I_{k}^{b}<0\right)-\mathbb{P}\left(I_{k}^{e}<0\right)}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}+U\right)^{+}-\mathbb{E}\left(I_{k}^{e}+U\right)^{+}}{Q} \tag{7}
\end{align*}
$$

Moreover, it can be shown that $\tau(s, Q, n)$ is equal to the long-run fraction of the time the net stock is positive (see Janssen and de Kok (1997a, 1997b)). Hence, for given values of n and Q the optimal value of s (denoted by $s^{*}(Q, n)$), can be determined by solving

$$
\begin{equation*}
\tau(s, Q, n)=\frac{b}{b+h} \tag{8}
\end{equation*}
$$

Since $\tau(s, Q, n)$ is increasing in s, and can take all values on $(0,1)$, a unique solution indeed exists. Note the resemblance with the newsboy problem (see Silver and Peterson (1985, p 265)). So, we can find $s^{*}(n)$ and $Q^{*}(n)$ by solving the following one-dimensional optimization problem

$$
\begin{aligned}
\operatorname{minimize} & T R C\left(s^{*}(Q, n), Q, n\right) \\
\text { s.t. } & Q \geq 0
\end{aligned}
$$

If we assume that $\operatorname{TRC}\left(s^{*}(Q, n), Q, n\right)$ is convex in Q, we can determine $Q^{*}(n)$ by using for example Golden Section search, and $s^{*}(n)=s^{*}\left(Q^{*}(n), n\right)$.

For practical situations we may restrict ourself to a limited number of suppliers $\left(n_{\max }\right)$. For each $n, 1 \leq n \leq n_{\max }$, we determine $s^{*}(n)$ and $Q^{*}(n)$, and select that n for which the
$T R C\left(s^{*}(n), Q^{*}(n), n\right)$ is minimal.

4 Computational aspects

A versatile class of distribution functions is the class of mixtures of two Erlang distributions (denoted by ME distributions), i.e.

$$
\begin{equation*}
f(x)=\sum_{j=1}^{2} p_{j} \mu_{j}^{k_{j}} \frac{x^{k_{j}-1}}{\left(k_{j}-1\right)!} e^{-\mu_{j} x}, \quad x \geq 0 \tag{9}
\end{equation*}
$$

where $p_{1} \geq 0, p_{2} \geq 0, p_{1}+p_{2}=1, k_{1}, k_{2} \in \mathbb{N}$.
In Tijms (1994, p.358) formulas are given to fit a ME distribution on a positive random variable based on the first two moments of that variable. When X and Y are ME distributed and $z \in \mathbb{R}$, then closed form expressions for $\mathbb{E}(X-z)^{+}, \mathbb{E}\left((X-z)^{+}\right)^{2}$, $\mathbb{E}(X-Y)^{+}$and $\mathbb{E}\left((X-Y)^{+}\right)^{2}$ exist.

In the model presented in sestion 2 , we assumed that F_{A}, F_{D} and G are known. Expressions (4) and (5) contain the distributions of $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ and the distribution of the undershoot U. In general these distribution functions are hard to obtain from F_{A}, F_{D} and G. To avoid this problem, we assume that $D\left(\sigma, \sigma+L_{k: n}\right)+U$ and $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ are ME distributed. So, we only need the first two moments of $D\left(\sigma, \sigma+L_{k: n}\right)+U$ and $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ to calculate the expressions (4) and (5) for given values of s, Q, and n. Since U is independent of $D\left(\sigma, \sigma+L_{k: n}\right)$ it is sufficient io find expressions for the moments of U and $D\left(\sigma, \sigma+L_{k: n}\right)$ separately.

Now we use the fact that the distribution function of the undershoot is approximately equal to the stationary residual lifetime distribution with respect to F_{D}, when $Q \geq \operatorname{Cond}(D)$, (see Tijms (1994, p.14)). For a positive random variable X with finite moments $\mathbb{E X}, \mathbb{E} X^{2}$, and where c_{X} represents the coefficient of variation of $X, \operatorname{Cond}(X)$ is defined as

$$
\operatorname{Cond}(X)=\left\{\begin{array}{lll}
\frac{3}{2} c_{X}^{2} \mathbb{E} X & \text { if } \quad c_{X}^{2}>1 \tag{10}\\
\mathbb{E} X & \text { if } & 0.2<c_{X}^{2} \leq 1 \\
\frac{1}{2 c_{X}} \mathbb{E} X & \text { if } & 0<c_{X}^{2} \leq 0.2
\end{array}\right.
$$

Then using results from renewal theory gives

$$
\begin{align*}
\mathbb{E U} & \simeq \frac{\mathbb{E} D^{2}}{2 \mathbb{E} D} \tag{11}\\
\mathbb{E} U^{2} & \simeq \frac{\mathbb{E} D^{3}}{3 \mathbb{E} D} \tag{12}
\end{align*}
$$

The first two moments of $D\left(\sigma, \sigma+L_{k: n}\right)$ are given by the well-known results

$$
\begin{align*}
\operatorname{IED}\left(\sigma, \sigma+L_{k: n}\right) & =\operatorname{IEN}\left(\sigma, \sigma+L_{k: n}\right) \mathbb{E} D \tag{13}\\
\mathbb{E} D^{2}\left(\sigma, \sigma+L_{k: n}\right) & =\operatorname{IEN}\left(\sigma, \sigma+L_{k: n}\right) \sigma^{2}(D)+\mathbb{E} N^{2}\left(\sigma, \sigma+L_{k: n}\right)(\mathbb{E} D)^{2} \tag{14}
\end{align*}
$$

where $N\left(\sigma, \sigma+L_{k: n}\right)$ denotes the number of customer arrivals during $\left(\sigma, \sigma+L_{k: n}\right]$. Since σ is an order epoch it follows that a customer arrives at epoch σ. Therefore we can derive the following approximations from asymptotic expressions from renewal theory (see, for example, Cox (1962))

$$
\begin{align*}
\mathbb{E N}\left(\sigma, \sigma+L_{k: n}\right) \simeq & \frac{\mathbb{E} L_{k: n}}{\mathbb{E} A}+\frac{\mathbb{E} A^{2}}{2 \mathbb{E} A}-1 \tag{15}\\
\mathbb{E E N} N^{2}\left(\sigma, \sigma+L_{k: n}\right) \simeq & \frac{\mathbb{I E}\left(L_{k: n}\right)^{2}}{(\mathbb{E} A)^{2}}+\mathbb{E} L_{k: n}\left(\frac{2 \mathbb{E} A^{2}}{(\mathbb{E} A)^{3}}-\frac{3}{\mathbb{E} A}\right) \\
& +\frac{3\left(\mathbb{E} A^{2}\right)^{2}}{2(\mathbb{E} A)^{4}}-\frac{2 \mathbb{E} A^{3}}{3(\mathbb{E} A)^{3}}-\frac{3 \mathbb{E} A^{2}}{2(\mathbb{E} A)^{2}}+1 \tag{16}
\end{align*}
$$

These asymptotic relations hold for $k=1, \ldots, n$ only when $\mathbb{P}\left(L_{k: n} \leq A\right)$ are negligible. In case this probability is larger than a certain treshold value, we propose a Gamma approximation presented by Smeitink and Dekker (1990) to compute the first two moments of the renewal function.

What remains to compute are the moments of the order statistics $L_{k: n}$. Using an analogous approach as described in Balakrishnan and Cohen (1991, p.44), $\mathbb{E} L_{k: n}^{m}$ can be computed for $m \in I N$, and $k=1, \ldots, n$, in case G is ME distributed.

Summarizing, to compute values for the expressions (4) and (5) for given values of s, Q, and n, we have to go through the following three steps

- Compute the moments of the order statistics $\mathbb{E} L_{k: n}^{m}$ for $m \in\{1,2\}$ and $k=1, \ldots, n$.
- Compute the first two moments of U_{2} and $D\left(\sigma, \sigma+L_{k: n}\right)$ for $k=1, \ldots, n$, by using relations (11) to (16).
- Compute $\xi(s, Q, n), \phi(s, Q, n)$ and $\psi(s, Q, n)$ by fitting ME distributions on $D(\sigma, \sigma+$ $\left.L_{k: n}\right)$ and $D\left(\sigma, \sigma+L_{k: n}\right)+U(k=1, \ldots, n)$, and using relations (3) to (5) respectively.

5 Validation of the algorithm

By simulation we first validate the proposed algorithm for computing the values of $\phi(s, Q, n)$, $\psi(s, Q, n)$, and $\tau(s, Q, n)$. The algorithm yields approximations for the values for the optimal decision parameters, because we assume that

1. Replenishment orders do not cross
2. Exactly Q is ordered at a time.
3. \tilde{A} is distributed as the residual lifetime distribution associated with F_{A} (see Appendix 1).
4. U is distributed as the residual lifetime distribution associated with F_{D}.
5. The moments of $N\left(\sigma, \sigma+L_{k: n}\right)$ are approximated by (15) and (16), which are asymptotic relations.
6. The distribution functions of $D\left(\sigma, \sigma+L_{k: n}\right)+U$ and $D\left(\sigma, \sigma+L_{k: n}\right)(k=1, \ldots, n)$ are approximated by ME distributions;
7. $\operatorname{TRC}\left(s^{*}(Q, n), Q, n\right)$ is convex in Q.

We will show that is spite of these all these assumptions, our calculation scheme provides excellent approximations for the relevant performance characteristics given s, Q and n. Thereby the algorithm given in section 3 yields near-optimal values for s^{*}, Q^{*} and n^{*}. We distinguish between assumptions made for deriving expressions for $\phi(s, Q, n)$ and $\psi(s, Q, n)$ (assumptions 1,2 and 3), computing the first two moments of $D\left(\sigma, \sigma+L_{k: n}\right)$ and $D(\sigma, \sigma+$ $\left.L_{k: n}\right)+U(k=1, \ldots, n)$ (assumptions 4, 5 and 6), and for selecting the optimal values for the decision variables (assumption 7). It is well-known that for small values of Q with respect to $\mathbb{E} D\left(\sigma, \sigma+L_{n: n}\right)$ assumption 1 is violated, see, for example, Kelle and Silver (1991b). Assumptions 2 and 4 are violated only when Q is small with respect to $\mathbb{E D D}$, i.e. $Q<\operatorname{Cond}(D)$. Assumptions 3 and 5 are violated when $\mathbb{E} L<\operatorname{Cond}(A)$.

In practice assumption 1 may be violated when the number of suppliers is large. Therefore, we will investigate the effect of assumption 1 on the quality of the computation of the expected average physical stock level, expected average backlog level, and the fraction of the time the net stock is positive by the proposed algorithm of section 3 .

We used discrete event simulation to validate the quality of the approximations in terms of the deviation of the calculated performance measures by the algorithm described in section 3, and the performance measures computed by simulation. These experiments are done for a wide range of parameter values. The input values of the system parameters are given in Table 1. For each of these 3240 experiments we calculated s by solving $\tau(s, Q, n)=$ $\tau_{a n}$ via a numerical search routine, where $\tau_{a n}$ represents the ratio $\frac{b}{b+h}$. The number of sub-runs which where performed in the simulation experiment is fixed to 5 (exclusive the initialisation run), and the sub-run length is 100.000 time units. Furthermore, the

Table 1: basic setting parameters for the experiments

n	$\mathbb{E} D$	c_{D}	$\mathbb{E} A$	c_{A}	$\mathbb{E} L$	c_{L}	Q	$\tau_{a n}$
1	5	$\frac{1}{2}$	$\mathbb{E} D / 5$	$\frac{1}{2}$	5	$\frac{3}{10}$	50	0.90
2	10	1		1	10	$\frac{1}{2}$	100	0.99
3		2		2		1	250	
5								
10								

Table 2: The deviations of simulation and the values calculated with the algorithm.

Q	$\tau_{a n}$	c_{L}	$\left\|\phi_{a n}-\phi_{s i m}\right\|$	$\left\|\psi_{a n}-\psi_{s i m}\right\|$	$\left\|\tau_{a n}-\tau_{s i m}\right\|$	$C_{r o s s i n g}$	$b=h$	$b=10 h$	$b=20 h$
50	0.50	0.3	0.0532	0.0331	0.0017	0.4889	0.0372	0.0320	0.0316
50	0.99	0.3	0.0014	0.5184	0.0000	0.4892	0.0026	0.0139	0.0261
100	0.50	0.3	0.0248	0.0203	0.0002	0.1446	0.0205	0.0194	0.0194
100	0.99	0.3	0.0012	0.3364	0.0000	0.1447	0.0017	0.0082	0.0155
250	0.50	0.3	0.0061	0.0054	0.0000	0.0048	0.0046	0.0051	0.0052
250	0.99	0.3	0.0012	0.2022	0.0000	0.0047	0.0013	0.0035	0.0064
50	0.50	0.5	0.0804	0.0480	0.0041	0.5376	0.0616	0.0510	0.0501
50	0.99	0.5	0.0022	0.7072	0.0001	0.5374	0.0042	0.0222	0.0421
100	0.50	0.5	0.0224	0.0214	0.0006	0.1987	0.0201	0.0203	0.0204
100	0.99	0.5	0.0015	0.5224	0.0000	0.1987	0.0026	0.0142	0.0269
250	0.50	0.5	0.0065	0.0064	0.0001	0.0085	0.0051	0.0059	0.0061
250	0.99	0.5	0.0012	1.1435	0.0000	0.0085	0.0014	0.0049	0.0091
50	0.50	1.0	0.2627	0.0973	0.0188	0.5878	0.1662	0.1154	0.1120
50	0.99	1.0	0.0040	0.9804	0.0001	0.5878	0.0070	0.0338	0.0637
100	0.50	1.0	0.0801	0.0608	0.0037	0.3094	0.0703	0.0628	0.0623
100	0.99	1.0	0.0039	0.9254	0.0001	0.3091	0.0068	0.0333	0.0626
250	0.50	1.0	0.0075	0.0157	0.0001	0.0377	0.0095	0.0137	0.0143
250	0.99	1.0	0.0031	0.4538	0.0000	0.0377	0.0037	0.0181	0.0344

demand sizes, interarrival times, and the lead times, are ME distributed. We computed $\phi(s, Q, n), \psi(s, Q, n)$ and $\tau(s, Q, n)$ by formulas (4), (5) and (7) which are denoted by $\phi_{a n}, \psi_{a n}$ and $\tau_{a n}$ respectively. Simulation was used to verify whether $\phi_{a n}, \psi_{a n}$, and $\tau_{a n}$ are equal to the related values computed by simulation, denoted by $\phi_{s i m}, \psi_{s i m}$, and $\tau_{s i m}$, respectively. Furthermore, we calculated by simulation the fraction of the partial deliveries that crossed any partial deliveries of previously placed replenishment orders, which is denoted by Crossing.

The results of these experiments are aggregated in Table 2, in which each line represents the average of the absolute deviations of the performance measures over 180 experiments. Since the mean absolute deviations of ϕ and ψ have to be related to the absolute values of ϕ and ψ, we also computed the relative errors of the sum of inventory and backordering costs. That is, for $h=1$ and $b=\{1,10,20\}$ we computed $\frac{\left|h\left(\phi_{a n}-\phi_{s i m}\right)+b\left(\psi_{a n}-\psi_{s i m}\right)\right|}{h \phi_{s i m}+b \psi_{s i m}}$ (see columns $b=h, b=10 h$, and $b=20 h)$.

From these experiments we can conclude the following about the quality of the expressions for the performance measures computed by the proposed algorithm in this section.

- For the situations in which $Q=100$ or $Q=250$, the algorithm performs good in all cases that are considered. Both the determination of s via $\tau(s, Q, n)=\tau_{a n}$ and the computation of $\phi(s, Q, n)$ and $\psi(s, Q, n)$ yield accurate results.
- For the situations where $Q=50, c_{L}=1$, and $\tau_{a n}=0.50$, we see discrepancies between the target and achieved τ-level. The explanation for this deviation is expressed by the fraction of partial deliveries that cross, which is in these situations up to 59% of the partial deliveries.
- For high values of $\tau_{a n}$ we note that $\psi_{a n}$ deviates from $\psi_{s i m}$. This has only a small impact on the computation of the sum of ordering and holding costs, which follows from the last columns in Table 2. This can be explained by the fact that for large values of b, the determination of the optimal values for the decision variables is basically a trade off between the ordering and holding costs.
- Interestingly, the crossing of orders does not influence the quality of the approximations for high values of $\tau_{a n}$, that is, high values of b.

These results point out that the proposed algorithm performs very well. We have to be careful only in situations where crossing of orders frequently occurs, or cases with low values of b.

In the following experiment we checked numerically whether assumption 7 is valid $\left(T R C\left(s^{*}(Q, n), Q, n\right)\right.$ is convex in $\left.Q\right)$. Of course this is not the appropriate way of validating the convexity assumption. However, we have not been able to derive conditions for convexity. Therefore, we resort to a numerical investigation into the convexity of $\operatorname{TRC}\left(s^{*}(Q, n), Q, n\right)$. For these experiments we fixed the following input values, $\left(\mathbb{I E D}, c_{D}\right)=(10,1),\left(\mathbb{E} A, c_{A}\right)=(1,1), \mathbb{E} L=10$, and $h=0.01$. In Figures 2 to 5 we plotted $\operatorname{TRC}\left(s^{*}(Q, n), Q, n\right)$ as function of Q. The authors did not find any numerical counter examples of the conjecture that $\operatorname{TRC}\left(s^{*}(Q, n), Q, n\right)$ is convex. These figures show also that $Q^{*}(n)$ is increasing in n. Moreover, the optimal number of suppliers is depending on the input parameters. The cost parameters K, c, h, and b indeed influence n^{*} (compare Figures 2, 4 and 5). But also the parameters of the underlying lead time process do influence n^{*} (compare Figure 2 with Figure 3).

Figure 2; $\operatorname{TRC}(s(Q, n), Q, n)$ as function of Q, where $c_{L}=0.3, K=30$, $c=0.5$, and $b=0.1$.

Figure 4: $\operatorname{TRC}(s(Q, n), Q, n)$ as function of Q, where $c_{L}=0.5, K=5$, $c=0.5$, and $b=0.1$.

Figure 3: $\operatorname{TRC}(s(Q, n), Q, n)$ as function of Q, where $c_{L}=1, K=30$, $c=0.5$, and $b=0.1$.

Figure 5: $\operatorname{TRC}(s(Q, n), Q, n)$ as function of Q, where $c_{L}=0.5, K=5$, $c=1$, and $b=0.1$.

6 The optimal number of suppliers

From Figures 2 to 5 , it is clear that n^{*} depends on the values of the input parameters. Therefore, we designed a number of experiments to get some insight into the optimal number of suppliers.

First of all we compared our results with the results presented by Ramasesh et al.(1991). Ramasesh et al. consider the same objective, under constant demand and with at most two suppliers. Hence the model differs from the model discussed in this paper. We fit the parameters of our model to the parameters of the model in Ramasesh et al.(1991) as follows. By considering small interarrival time of customers and low coefficient of variations of D and A, we can approximate the model considered by Ramasesh et al.(1991). Moreover, the ordering costs in Ramasesh et al. (1991) for the two supplier situation are given by $A(2)=\alpha K$, where $\alpha \in[1,2]$. Hence, the appropriate choice of c is $\log _{2} \alpha$. The results for $n=1$ and $n=2$ are similar, see Table 3, where (J) denotes the results of our model and (R) the results of the model of Ramasesh et al. (1991). The optimal values of s and Q and the value of the total relevant costs are almost equal. For the situation that $\alpha=1$ (i.e. $c=0$) the optimal number of suppliers is infinity, as was already noted by Larson(1989). Furthermore, we note that for values of $\alpha>1$, using two suppliers can be advantageously, but is not optimal (see $c=0.263$).

Table 3: Comparison results from Ramasesh et al. (1991) with our results

		$n=1$				$n=2$				$n=3$		
c		s_{1}^{*}	Q_{1}^{*}	$T R C$	s_{2}^{*}	Q_{2}^{*}	$T R C$	s_{3}^{*}	Q_{3}^{*}	$T R C$	n^{*}	$T R C$
0.00	(J)	188.6	1275.2	1222.4	33.7	1334.1	977.7	-6.8	1309.2	889.9	∞	-
	(R)	191.3	1271.2	1220.3	35.6	1333.7	981.2					
0.263	(J)	188.6	1275.2	1222.4	22.6	1407.0	1050.6	-22.0	1418.9	1012.7	4	1010.30
	(R)	191.3	1271.2	1220.3	24.0	1408.0	1054.1					
0.678	(J)	188.6	1275.2	1222.4	5.2	1539.6	1186.3	-51.7	1651.4	1264.1	2	1186.30
	(R)	191.3	1271.2	1220.3	5.7	1542.2	1189.6					
0.761	(J)	188.6	1275.2	1222.4	1.8	1569.1	1216.9	-58.6	1708.6	1324.1	2	1216.92
	(R)	191.3	1271.2	1220.3	2.0	1573.4	1220.3					

In the experiments that follow we take one day as the basic time unit, and one year equal to 250 (working) days. We investigate the effect of the cost parameters K, c, b and h on the optimal number of suppliers. We fixed the following values for the system parameters: $\left(\mathbb{E E D}, c_{D}\right)=(10,1),\left(\mathbb{E A}, c_{A}\right)=(1,1)$, and $\left(\mathbb{I E L}, c_{L}\right)=(10,0.5)$. We fixed c equal to 0.5 and the inventory holding cost h equal to 0.04 . This represents an article with purchase price of $\$ 40$ and a opportunity factor of $0.25 / \$ / \$ /$ year. First we varied b between $1,10,100$, and 1000 times h, and for each setting we calculated the optimal number of suppliers as function of K (see Figures 6 and 7). The number of values chosen for K is equal to 100 for each value of b. To generate Figures 6 and 7 required about 14 minutes CPU time on a SUNSPARC-station 4 . We see that $n^{*} \rightarrow \infty$ when $K \downarrow 0$, and $n^{*}=1$ when $K \rightarrow \infty$, which is also intuitively clear. Moreover, n^{*} increases when $\frac{b}{b+h}$ increases. And n^{*} decreases when c increases (compare Figures 6 with 7), which is intuitively clear, as well.

In the final experiments we investigate the effect of the parameters of the underlying stochastic processes $\left(\mathbb{E E} D, c_{D}\right),\left(\mathbb{E} A, c_{A}\right)$, and $\left(\mathbb{E} L, c_{L}\right)$. We considered situations in which $K=20, c=0.5, h=0.04$, and $b=0.4$. We started with $\left(\mathbb{E} D, c_{D}\right)=(10,1),\left(\mathbb{E} A, c_{A}\right)=$ $(1,1)$, and $\left(\mathbb{I E L}, c_{L}\right)=(10,0.5)$, as in the basic situation, however in each experiment we varied one or two of these system parameters.

In Figure 8 we computed n^{*} as function of $\mathbb{E} D$, for various values of $\mathbb{I E L}$. We note that n^{*} is almost linear in both $\mathbb{E} D$ and $\mathbb{E} L$. In Figure 9 we varied $\mathbb{E} A$. Similar to the effect of K, we see that $n^{*} \rightarrow \infty$ when $\mathbb{I E A} \downarrow 0$, and $n^{*}=1$ when $\mathbb{E} A \rightarrow \infty$.

Figure 6: The optimal number of suppliers as function of K with $c=0.5$.

Figure 8: The optimal number of suppliers as function of $\mathbb{E D}$.

Figure 7: The optimal number of suppliers as function of K with $c=1$.

Figure 9: The optimal number of suppliers as function of $\mathbb{E A} A$.

In case the coefficients of variation of D and A are varied, we only find minor effects on the optimal number of suppliers. In Figure 10 we varied c_{A}. It is important to note that higher values of c_{A} can lead to both lower and higher values of n^{*}. A detailed investigation of the solutions is given for $\mathbb{E L}=20$ and c_{A} is varied between 1.1 and 1.2 (see Table 4). The differences between $\operatorname{TRC}\left(s^{*}(12), Q^{*}(12), 12\right)$ and $T R C\left(s^{*}(13), Q^{*}(13), 13\right)$ are very small, and for some values of c_{A} the $\operatorname{TRC}\left(s^{*}(12), Q^{*}(12), 12\right)$ is smaller than $T R C\left(s^{*}(13), Q^{*}(13), 13\right)$ and for other values the other way around. When n increases, the optimal reorder point will decrease, however, the optimal reorder quantity will increase. Hence, the inventory holding costs may increase or decrease.

The impact on n^{*} of c_{D} are similar to the effects of c_{A}. In contrast with this, n^{*} turns out to be very sensitive to the value of c_{L}. In Figure 11 we varied both $\mathbb{E} L$ and c_{L}. This

Table 4: Detailed investigation of the solutions

c_{A}	n	TRC $\left(s^{*}(n), Q^{*}(n), n\right)$	$s^{*}(n)$	$Q^{*}(n)$
1.1	1	3051.58	290.78	184.21
	12	2091.28	95.36	445.31
	13	2090.65	93.26	447.99
	14	2091.41	91.41	450.39
1.2	1	3091.85	291.86	185.81
	12	2146.90	97.01	452.29
	13	2146.91	94.88	454.77
	14	2147.94	91.35	457.08

Figure 10: The optimal number of suppliers as function of c_{A}.

Figure 11: The optimal number of suppliers as function of c_{L}.
sensitivity can be explained by considering effects of c_{L} that interfere. Namely when c_{L} increases, the first orders will arrive earlier, which leads to lower values of the reorder point. But due to the earlier arrival of the partial deliveries the expected average physical stock will slightly increase. Finally, it is noteworthy that often there are only minor differences in the total relevant cost for two successive values of n (see, for example Table 4).

7 Conclusions and future research

In this paper an (s, Q) inventory model is presented with order splitting, where the demand is modelled as a compound renewal process, and lead times of the suppliers are independent
and identically distributed random variables. This model can be applied to many practical situations.

We derived expressions for the expected average physical stock, the expected average backlog level, and the fraction of the time that the physical stock is positive. Furthermore, an algorithm is derived to compute these performance measures based only on moments of the underlying demand and lead time process. The algorithm turned out to perform very good for situations in which the number of order crossings was not too high. Although the performance measures are derived for non-identically distributed lead times of suppliers, the algorithm is only developed for identically distributed lead times. Clearly this is a topic of future research.

We considered the problem of determining the appropriate values for the control parameters s, Q, and n. We minimized the sum of ordering, holding, and backordering costs. The optimal number of suppliers turned out to be very sensitive for the combination of input parameters. A striking observation was that n^{*} is not always increasing when the coefficient of variation of the lead times does. The algorithm can be used to generate graphical support instantaneously for a wide range of input values.

References

Balakrishnan, N., 1988. Recurrence relations for order statistics from n independent and non-identically distributed random variables. Annals of Institutional Statistics Mathematics, 40, 273-277.

Balakrishnan, N. and Cohen, A.C., 1991. Order statistics and inference, Academic Press, Inc., San Diego.

Cox, D.R., 1962. Renewal Theory, Methuen, London.
Chiang, C. and Chiang, W.C, 1996. Reducing inventory costs by order splitting in the sole sourcing environment. Journal of Operational Research Society, 47, 446456.

Guo, Y. and Ganeshan, R., 1995. Are more suppliers better? Journal of Operational Research Society, 46, 892-895.

Hong, J.D. and Hayya, J.C., 1992. Just-in-time purchasing: Single or multiple sourcing?. International Journal of Production Economics, 27, 175-181.

Janssen, F.B.S.L.P., Kok, A.G. de and Van der Duyn Schouten, F.A., 1995. Approximations for the delivery splitting model. CentER discussion paper 9584, Tilburg University.

Janssen, F.B.S.L.P., and Kok, A.G. de, 1996 . A two-supplier inventory model. CentER discussion paper 9695, Tilburg University.

Janssen, F.B.S.L.P., And Kok, A.G. De, 1997a . The fill rate service measure in an (s, Q) inventory system with order splitting. CentER discussion paper 97??, Tilburg University.

Janssen, F.B.S.L.P., And Kok, A.G. De, 1997b . The relation between a service level perspective and a cost perspective in an (s, Q) inventory system. CentER discussion paper 97??, Tilburg University.

Kelle, P. and Silver, E.A. 1990A. Decreasing expected shortages through order splitting. Eng. Costs and Production Economics, 19, 351-357.

Kelile, P. And Silver, E.A. 1990b. Safety stock reductions by order splitting. Naval Research Logistics, 37, 752-743.

LARSON, P.D., 1989. An inventory model which assumes the problem away: note on Pan and Liao. Production and Inventory Management Journal, 30 (4), 73-74.

LaU, H.S. and Lau, A.H., 1994. Coordinating two suppliers with offsetting lead time and price performance. Journal of Operations Management, 11, 327-337.

Lau, H.S. and Zhao, L.G., 1993. Optimal ordering policies with two suppliers when lead times and demand are all stochastic. European Journal of Operational Research, 68, 120-133.

Ramasesh, R.V., Ord, J.K., Hayya, J.C., and Pan, A.C., 1991. Sole versus dual sourcing in stochastic lead-time (s, Q) inventory models. Management Science, 37, 428-443.

Sculli, D. And Wu, S.Y., 1981. Stock control with two suppliers and normal lead times. Journal of Operational Research Society, 32, 1003-1009.

Silver, E.A. and Peterson, R., 1985. Decision Systems for Inventory Management and Production Planning. Wiley, New York.

Smeitink, E. and Dekker, R., 1990. A simple approximation for the renewal function. IEEE Transactions Reliability, R-39, 71-75.

Tisms, H.C., 1994. Stochastic Models: An Algorithmic Approach. Wiley, Chichester.
Zhao, L.G. and Lau, H.S., 1992. Reducing inventory costs and choosing suppliers with order splitting. Journal of Operational Research Society, 43, 1003-1008.

Appendix 1: Proof of relation (4) and (5)

Given a random variable X with distribution function F and finite mean, and a random variable Y with distribution function G and finite mean, then the distibution function of the convolution of X and Y will be denoted by $(F * G)$, the distribution of the n-fold convolution of X with itself is denoted by $F^{n *}$, and the renewal function, M, associated with F is defined as $M(x)=\sum_{n=0}^{\infty} F^{n *}(x)$.

Define $H(x)$ (and $\tilde{H}(x)$) as the expected area between the physical inventory level and the zero level, in case the physical stock level on epoch 0 equals $x(x \geq 0)$, there are no outstanding replenishment orders, and time epoch 0 is an arrival moment of a customer (for $\tilde{H}(x)$ time epoch zero is an arbitrary moment in time). By conditioning on the first arriving customer after time epoch 0 , we find

$$
\begin{equation*}
H(x)=x \mathbb{E} A+\int_{0}^{x} H(x-y) d F_{D}(y) \tag{A.1.1}
\end{equation*}
$$

Let M be the renewal function associated with F_{D}, then writing out recurrence relation (A.1.1) yields

$$
\begin{equation*}
H(x)=I E A \int_{0}^{x}(x-y) d M(y) \tag{A.1.2}
\end{equation*}
$$

Consider the situation that zero is an arbitrary point in time, and let \tilde{A} be the arrival time of the first customer after zero. Then \tilde{A} is the excess life at time epoch zero with respect to the arrival process of customers. Since zero is an arbitrary point in time, and using standard renewal theory, yields the well-known result

$$
\begin{equation*}
\operatorname{IP}(\tilde{A} \leq x) \simeq \frac{1}{\mathbb{E} A} \int_{0}^{x}\left(1-F_{A}(y)\right) d y \tag{A.1.3}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbb{E} \tilde{A} & =\frac{\mathbb{E} A^{2}}{2 \mathbb{E} A}, \tag{A.1.4}\\
\mathbb{E} \tilde{A}^{2} & =\frac{\mathbb{E} A^{3}}{3 \mathbb{E} A} \tag{A.1.5}
\end{align*}
$$

By conditioning on the first arriving customer after time epoch 0 , results into

$$
\begin{equation*}
\tilde{H}(x)=x \mathbb{E} \tilde{A}+\int_{0}^{x} H(x-y) d F_{D}(y) \tag{A.1.6}
\end{equation*}
$$

Using relations (A.1.1) and (A.1.2) gives

$$
\begin{equation*}
\tilde{H}(x)=(\mathbb{E} \tilde{A}-\mathbb{E} A) x+\mathbb{E} A \int_{0}^{x}(x-y) d M(y) \tag{A.1.7}
\end{equation*}
$$

Lemma A.1.1.

Let M be the renewal function associated with F_{D}, and let U be the equilibrium excess distribution of D, then

$$
\begin{equation*}
(M * U)(x)=\frac{x}{\mathbb{E D} D} \tag{A.1.8}
\end{equation*}
$$

Proof:

Let $\tilde{F}_{D}(y)$ be the Laplace transform of F_{D}, thus $\tilde{F}_{D}(y)=\int_{0}^{\infty} e^{-y x} d F_{D}(x)$. Since $\tilde{U}(y)=$ $\left(1-\tilde{F}_{D}(y)\right) /(y \mathbb{E} D)$ and $\tilde{M}(y)=1 /\left(1-\tilde{F}_{D}(y)\right)$, it follows that the Laplace transform of the convolution equals $1 /(y \mathbb{E} D)$. Hence, taking the inverse Laplace transform of $1 /(y \mathbb{E} X)$ yields $(M * U)(x)=x / \mathbb{E} D$.

Lemma A.1.2.

Let M be the renewal function associated with F_{D}, and let U be the equilibrium excess distribution of D. Furthermore, let Y be a positive random variable with distribution function G. Then, for $s>0$,

$$
\begin{equation*}
\int_{0}^{s} \tilde{H}(s-x) d(G * U)(x)=(\mathbb{E} \tilde{A}-\mathbb{E} A) \int_{0}^{s}(s-x) d(G * U)(x)+\mathbb{E} A \int_{0}^{s} \frac{(s-x)^{2}}{2 \mathbb{E} D} d G(x)(\mathrm{A} \tag{A.1.9}
\end{equation*}
$$

Proof:

Using lemma A.1.1. it is easily seen that

$$
\int_{0}^{s} \tilde{H}(s-x) d(G * U)(x)
$$

$$
\begin{aligned}
& =(\mathbb{E} \tilde{A}-\mathbb{E} A) \int_{0}^{s}(s-x) d(G * U)(x)+\mathbb{E} A \int_{0}^{s} \int_{0}^{s-x}(s-x-y) d M(y) d(G * U)(x) \\
& =(\mathbb{E} \tilde{A}-\mathbb{E} A) \int_{0}^{s}(s-x) d(G * U)(x)+\mathbb{E} A \int_{0}^{s} \int_{0}^{s-x}(s-x-y) d(M * U)(y) d G(x) \\
& =(\mathbb{E} \tilde{A}-\mathbb{E} A) \int_{0}^{s}(s-x) d(G * U)(x)+\mathbb{E} A \int_{0}^{s} \frac{(s-x)^{2}}{2 \mathbb{E} D} d G(x)
\end{aligned}
$$

Now, consider the k-th sub-cycle $(k \in\{1, \ldots, n\})$. The physical stock at the beginning of the k-th sub-cycle (just after the replenishment arrived) is equal $\left(I_{k}^{b}\right)^{+}$, whereas the physical stock at the end of the k-th sub-cycle (just before the replenishment arrives) is equal to $\left(I_{k}^{e}\right)^{+}$. Then it is easy to see that the expected area between the physical inventory level and the zero level within the k-th sub-cycle is given by $\mathbb{E} \tilde{H}\left(\left(I_{k}^{b}\right)^{+}\right)-\mathbb{E} \tilde{H}\left(\left(I_{k}^{e}\right)^{+}\right)$. By using (A.1.7), Lemma A.1.2, and by conditioning on I_{k}^{b}, we find

$$
\begin{aligned}
\mathbb{E} \tilde{H}\left(\left(I_{k}^{b}\right)^{+}\right)= & \int_{0}^{s+\frac{k-1}{n} Q} \tilde{H}\left(s+\frac{k-1}{n} Q-x\right) d F_{D\left(\sigma, \sigma+L_{k-1: n}\right)+U}(x) \\
= & (\mathbb{E} \tilde{A}-\mathbb{E} A) \int_{0}^{s+\frac{k-1}{n} Q}\left(s+\frac{k-1}{n} Q-x\right) d F_{D\left(\sigma, \sigma+L_{k-1: n}\right)+U}(x) \\
& +\frac{\mathbb{E} A}{2 \mathbb{E} D} \int_{0}^{s+\frac{k-1}{n} Q}\left(s+\frac{k-1}{n} Q-x\right)^{2} d F_{D\left(\sigma, \sigma+L_{k-1: n}\right)}(x) \\
= & (\mathbb{E} \tilde{A}-\mathbb{E} A) \mathbb{E}\left(\left(I_{k}^{b}\right)^{+}\right)+\frac{\mathbb{E} A \mathbb{E}\left(\left(I_{k}^{b}+U\right)^{+}\right)^{2}}{2 \mathbb{E} D}
\end{aligned}
$$

and for $I E \tilde{H}\left(\left(I_{k}^{b}\right)^{+}\right)$an analogue expression can be derived.
Finally using that the length of a replenishment cycle equals $\frac{Q E A}{E D}$ and summing up the expected area's of the n sub-cycles, yields

$$
\begin{align*}
\phi(s, Q, n)= & \sum_{k=1}^{n}\left(\mathbb{E} \tilde{H}\left(\left(I_{k}^{b}\right)^{+}\right)-\mathbb{E} \tilde{H}\left(\left(I_{k}^{e}\right)^{+}\right)\right) \\
= & \gamma \sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}\right)^{+}-\mathbb{E}\left(I_{k}^{e}\right)^{+}}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(\left(I_{k}^{b}+U\right)^{+}\right)^{2}-\mathbb{E}\left(\left(I_{k}^{e}+U\right)^{+}\right)^{2}}{2 Q} \tag{A.1.10}
\end{align*}
$$

where $\gamma=1 / 2\left(c_{A}^{2}-1\right)$ IED.
Note that (A.1.10) is approximate since the distribution functions of \tilde{A} and U are approximated by the associated residual life time distributions.

For the proof of expression (5) for the average backlog we will use the well-known relation that the inventory position equals the physical stock plus on order minus the backlog (see, for example, Hadley and Whitin (1963, p. 187)). The expected inventory position is equal to $s+Q / 2$, and that the expected amount on order is given by $\sum_{k=1}^{n} \frac{\boldsymbol{E} D \boldsymbol{E} L_{k \cdot n}}{n \boldsymbol{E} A}$. The latter equality can be shown analogously to the arguments of Hadley and Whitin. Imagine that orders flow into one end of a pipeline and procurements flow out of the other end. For $k \in\{1, \ldots, n\}$ the k-th partial delivery remains on average $\mathbb{E} L_{k: n}$ time units in the pipeline. A single demand unit has equal probability to be delivered from the k-th $(k \in\{1, \ldots, n\})$ partial delivery, and the expected flow out of the pipeline equals $\frac{\boldsymbol{E} D}{\boldsymbol{E} A}$. Therefore, the expected number of units in the pipeline should be $\sum_{k=1}^{n} \frac{\boldsymbol{E} D \boldsymbol{E} L_{k: n}}{n \boldsymbol{E} A}$.

Hence,

$$
\begin{equation*}
\psi(s, Q, n)=\phi(s, Q, n)-(s+Q / 2)+\sum_{k=1}^{n} \frac{\mathbb{E} D \mathbb{E} L_{k: n}}{n \mathbb{E} A} . \tag{A.1.11}
\end{equation*}
$$

Note that for $k \in\{1, \ldots, n\} \frac{\boldsymbol{E} D \boldsymbol{E} L_{k: n}}{\boldsymbol{E} A}=\mathbb{E} D\left(\sigma, \sigma+L_{k: n}\right)-\gamma$. Substitution of (A.1.10) into (A.1.11) yields

$$
\begin{aligned}
\psi(s, Q, n) & =\gamma \sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}\right)^{+}-\mathbb{E}\left(I_{k}^{e}\right)^{+}}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(\left(I_{k}^{b}+U\right)^{+}\right)^{2}-\mathbb{E}\left(\left(I_{k}^{e}+U\right)^{+}\right)^{2}}{2 Q}-(s+Q / 2)+\sum_{k=1}^{n} \frac{\mathbb{E} D \mathbb{E} L_{k: n}}{n \mathbb{E} A} \\
= & \gamma\left(\sum_{k=1}^{n} \frac{\mathbb{E}\left(I_{k}^{b}\right)^{+}-\mathbb{E}\left(I_{k}^{e}\right)^{+}}{Q}-1\right) \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(\left(I_{k}^{b}+U\right)^{+}\right)^{2}-\mathbb{E}\left(\left(I_{k}^{e}+U\right)^{+}\right)^{2}}{2 Q} \\
& \quad-\frac{2 s Q+Q^{2}}{2 Q}+\sum_{k=1}^{n} \frac{\frac{2 Q}{n} \mathbb{E} D\left(\sigma, \sigma+L_{k: n}\right)}{2 Q} \\
= & -\gamma \sum_{k=1}^{n} \frac{\mathbb{E}\left(-I_{k}^{e}\right)^{+}-\mathbb{E}\left(-I_{k}^{b}\right)^{+}}{Q} \\
& +\sum_{k=1}^{n} \frac{\mathbb{E}\left(-\left(I_{k}^{e}+U\right)^{+}\right)^{2}-\mathbb{E}\left(-\left(I_{k}^{b}+U\right)^{+}\right)^{2}}{2 Q} \\
& +\frac{1}{2 Q}\left[(s+Q)^{2}-2(s+Q) \mathbb{E} D\left(\sigma, \sigma+L_{n: n}\right)+\mathbb{E} D\left(\sigma, \sigma+L_{n: n}\right)^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad-s^{2}+2 s \mathbb{E} D\left(\sigma, \sigma+L_{1: n}\right)-\mathbb{E} D\left(\sigma, \sigma+L_{1: n}\right)^{2}-2 s Q-Q^{2} \\
& +\sum_{k=2}^{n}\left(\left(s+\frac{k-1}{n} Q\right)^{2}-2\left(s+\frac{k-1}{n} Q\right) \mathbb{E} D\left(\sigma, \sigma+L_{k-1: n}\right)+\mathbb{E} D\left(\sigma, \sigma+L_{k-1: n}\right)^{2}\right. \\
& \left.\left.\quad-\left(s+\frac{k-1}{n} Q\right)^{2}+2\left(s+\frac{k-1}{n} Q\right) \mathbb{E} D\left(\sigma, \sigma+L_{k: n}\right)-\mathbb{E} D\left(\sigma, \sigma+L_{k: n}\right)^{2}\right)\right] \\
& + \\
& =\sum_{k=1}^{n} \frac{\frac{2 Q}{n} \mathbb{E} D\left(\sigma, \sigma+L_{k: n}\right)}{2 Q} \frac{\mathbb{E}\left(\left(-\left(I_{k}^{e}+U\right)\right)^{+}\right)^{2}-\mathbb{E}\left(\left(-\left(I_{k}^{b}+U\right)\right)^{+}\right)^{2}}{2 Q} \\
& \\
& \quad-\gamma \sum_{k=1}^{n} \frac{\mathbb{E}\left(-I_{k}^{e}\right)^{+}-\mathbb{E}\left(-I_{k}^{b}\right)^{+}}{Q} .
\end{aligned}
$$

No. Author(s)
9689 T. ten Raa and E.N. Wolff

9690 J. Suijs
9691 C. Seidl and S.Traub
R.M.W.J. Beetsma and H. Jensen
H. Huizinga
H. Norde, F. Patrone and S. Tijs

96102 M. Berg, A. De Waegenaere and J. Wielhouwer

96103 G. van der Laan, D. Talman and Z. Yang M.W.M. Donders

96109 F. Verboven

Title

Outsourcing of Services and the Productivity Recovery in U.S. Manufacturing in the 1980s

A Nucleolus for Stochastic Cooperative Games
Rational Choice and the Relevance of Irrelevant Alternatives
Testing Decision Rules for Multiattribute Decision Making
Inflation Targets and Contracts with Uncertain Central Banker Preferences

Equilibria and Approximate Equilibria in Infinite Potential Games

A Two-Supplier Inventory Model

Catching up with the Keynesians
Dynamic Programming Solution of Incentive Constrained Problems

Sample-Path Optimization of Buffer Allocations in a Tandem Queue - Part I: Theoretical Issues

The Dual Role of Money and Optimal Financial Taxes
The Taxation Implicit in Two-Tiered Exchange Rate Systems
Characterizing Properties of Approximate Solutions for Optimization Problems

Optimal Tax Reduction by Depreciation: A Stochastic Model

Existence and Approximation of Robust Stationary Points on Polytopes

The Coordination of Capital Income and Profit Taxation with Cross-Ownership of Firms

The Total Cost of Trading Belgian Shares: Brussels Versus London

The Political Economy of Capital Income and Profit Taxation in a Small Open Economy

The Evolution of Conventions with Endogenous Interactions
Intraday Lead-Lag Relationships Between the Futures-, Options and Stock Market

Brand Rivalry, Market Segmentation, and the Pricing of

No. Author(s)

96110 D. Granot, H. Hamers and S. Tijs

96111 P. Aghion, P. Bolton and S. Fries

96112 A. De Waegenaere, R. Kast and A. Lapied

96113 R. van den Brink and P.H.M. Ruys

96114 F. Palomino
96115 E. van Damme and S. Hurkens

96116 E. Canton
9701 J.P.J.F. Scheepens
9702 H.G. Bloemen and E.G.F. Stancanelli

9703 P.J.J. Herings and V.J. Vannetelbosch

9704 F. de Jong, F.C. Drost and B.J.M. Werker

9705 C. Fernández and M.F.J. Steel On the Dangers of Modelling Through Continuous Distributions:

9706 M.A. Odijk, P.J. Zwaneveld, Decision Support Systems Help Railned to Search for 'WinJ.S. Hooghiemstra, L.G. Kroon Win' Solutions in Railway Network Design and M. Salomon

9707 G. Bekaert, R.J. Hodrick and D.A. Marshall

9708 C. Fernández and M.F.J. Steel
9709 H. Huizinga and S.B. Nielsen
9710 S. Eijffinger, E. Schaling and M. Hoeberichts

A Bayesian Perspective
Title
Optional Engine Power on Automobiles
Weakly Cyclic Graphs and Delivery Games

Financial Restructuring in Transition Economies

Non-linear Asset Valuation on Markets with Frictions

The Internal Organization of the Firm and its External Environment

Conflicting Trading Objectives and Market Efficiency
Endogenous Stackelberg Leadership

Business Cycles in a Two-Sector Model of Endogenous Growth
Collusion and Hierarchy in Banking
Individual Wealth, Reservation Wages and Transitions into Employment

Refinements of Rationalizability for Normal-Form Games

Exchange Rate Target Zones: A New Approach

The Implications of First-Order Risk Aversion for Asset Market Risk Premiums

Multivariate Student- i Regression Models: Pitfalls and Inference Privatization, Public Investment, and Capital Income Taxation Central Bank Independence: a Sensitivity Analysis

Capital Income Taxation and the Sustainability of Permanent Primary Deficits

No.	Author(s)	Title
9712	M. Dufwenberg and W. Güth	Indirect Evolution Versus Strategic Delegation: A Comparison of Two Approaches to Explaining Economic Institutions
9713	H. Uhlig	Long Term Debt and the Political Support for a Monetary Union
9714	E. Charlier, B. Melenberg and	An Analysis of Housing Expenditure Using Semiparametric A. van Soest
	Models and Panel Data	

No. Author(s)
9733 J. Ashayeri, R. Heuts and B. Tammel

9734 M. Dufwenberg, H. Norde, H. Reijnierse, and S. Tijs

9735 P.P. Wakker, R.H. Thaler and A. Tversky

9736 T. Offerman and J. Sonnemans

9737 R. Kabir

9738 M. Das and B. Donkers

9739 R.J.M. Alessie, A. Kapteyn and F. Klijn

9740 W. Güth
9741 I. Woittiez and A. Kapteyn

9742 E. Canton and H. Uhlig

9743 T. Feenstra, P. Kort and
A. de Zeeuw
A. De Waegenaere and P. Wakker

9745 M. Das, J. Dominitz and A. van Soest

9746 T. Aldershof, R. Alessic and
A. Kapteyn

9747 S.C.W. Eijffinger, M. Hoeberichts and E. Schaling

9748
W. Güth
M. Lettau
M.O. Ravn and H. Uhlig

Th. v.d. Klundert and S. Smulders

Title
Applications of P-Median Techniques to Facilities Design Problems: an Improved Heuristic

The Consistency Principle for Set-valued Solutions and a New Direction for the Theory of Equilibrium Refinements

Probabilistic Insurance

What's Causing Overreaction? An Experimental Investigation of Recency and the Hot Hand Effect

New Evidence on Price and Volatility Effects of Stock Option Introductions

How Certain are Dutch Households about Future Income? An Empirical Analysis

Mandatory Pensions and Personal Savings in the Netherlands

Ultimatum Proposals - How Do Decisions Emerge? -
Social Interactions and Habit Formation in a Model of Female Labour Supply

Growth and the Cycle: Creative Destruction Versus Entrenchment

Environmental Policy in an International Duopoly: An Analysis of Feedback Investment Strategies

Choquet Integrals with Respect to Non-Monotonic Set Functions

Comparing Predicitions and Outcomes: Theory and Application to Income Changes

Female Labor Supply and the Demand for Housing

Why Money Talks and Wealth Whispers: Monetary Uncertainty and Mystique

Boundedly Rational Decision Emergence -A General Perspective and Some Selective Illustrations-

Comment on 'The Spirit of Capitalism and Stock-Market Prices' by G.S. Bakshi and Z. Chen (AER, 1996)

On Adjusting the HP-Filter for the Frequency of Observations
Catching-Up and Regulation in a Two-Sector Small Open Economy

No. Author(s)
J.P.C. Kleijnen H.L.F. de Groot
S. Hochguertel
K. Kultti
K. Kultti
R. Kabir
A.B.T.M. van Schaik and
H.L.F. de Groot and R. Nahuis
R.M.W.J. Beetsma and H. Uhlig An Analysis of the "Stability Pact"
F. Janssen and T. de Kok
M. Lettau and H. Uhlig Preferences, Consumption Smoothing, and Risk Premia

Title

Experimental Design for Sensitivity Analysis, Optimization, and Validation of Simulation Models

Productivity and Unemployment in a Two-Country Model with Endogenous Growth

Optimal Product Variety, Scale Effects, and Growth
Precautionary Motives and Portfolio Decisions
Price Formation by Bargaining and Posted Prices
Equivalence of Auctions and Posted Prices
The Value Relevance of Dutch Financial Statement Numbers for Stock Market Investors Preferencs, Constion Smoothing, Risk Pramia The Optimal Number of Suppliers in an (s, Q) Inventory System with Order Splitting
 Bibliotheek K. U. Brabant

17000013949657

[^0]: *Co-operation centre, Tilburg and Eindhoven Universities, Tilburg University, P.O. Box 90153, B929, 5000 LE Tilburg, The Netherlands, E-mail: F.B.S.L.P.Janssen@kub.nl.
 ${ }^{\dagger}$ Department of Technology Management, Eindhoven University of Technology, P.O. Box 513, Paviljoen F4, 5600 MB Eindhoven, The Netherlands

