Tilburg University

More on the Grouped Heteroskedasticity Model

Bartels, R.; Fiebig, D.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Bartels, R., \& Fiebig, D. (1990). More on the Grouped Heteroskedasticity Model. (CentER Discussion Paper; Vol. 1990-58). CentER.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

No. 9058

MORE ON THE GROUPED HETEROSKEDASTICITY MODEL

	P20
by Robert Bartels	$3301 / 5$
and Denzil G. Fiebig	51892

October 1990

ISSN 0924-7815

MORE ON THE GROUPED HETEROSKEDASTICITY MODEL *

Robert Bartels
University of Sydney and University of Bonn
Denzil G. Fiebig
University of Sydney and CentER at Tilburg University

Abstract

Binkley (1989) presented Monte Carlo evidence on the relative efficiency of two estimators of the regression coefficients in the grouped heteroskedastic model. The alternative methods differ according to whether the disturbance variances are estimated using residuals from individual group regressions or one pooled regression. This note extends this discussion, placing particular emphasis on the question of computational convenience, and on testing hypotheses and imposing restrictions on variance parameters. The arguments presented here provide further information on which to base a choice between the alternative methods.

September 1990

* The second author gratefully acknowledges the support of CentER and its staff. We also thank Mark Steel for his helpful comments.

I Introduction

The grouped heteroskedasticity model specifies a partitioning of the n observations in a regression model into M mutually exclusive groups. Disturbance variances are assumed to be constant within groups but are permitted to vary between groups. Recently in this REVIEW Binkley (1989) presented Monte Carlo evidence on the relative efficiency of two estimators of the regression coefficients in the grouped heteroskedasticity model. The alternative methods differ according to whether the disturbance variances are estimated using residuals from individual group regressions or one pooled regression. This note extends this discussion with particular emphasis on matters of computational convenience, and on testing hypotheses and imposing restrictions on variance parameters. The arguments presented here provide further information on which to base a cholce between the alternative methods.

II The grouped heteroskedasticity model

The grouped heteroskedasticity model can be written as

$$
\begin{equation*}
Y_{1}=X_{1} \beta+u_{1}, \quad i=1, \ldots, M \tag{1}
\end{equation*}
$$

where Y_{1} and u_{i} are n_{1} element vectors, X_{1} is an $n_{1} \times k$ matrix of explanatory variables, β is a $k \times 1$ vector of coefficients and $\operatorname{var}\left(u_{1}\right)=\sigma_{1}^{2} I_{n_{1}}$.

Binkley (1989) has compared two alternative methods of generating the estimated generalized least squares (EGLS) estimator of β. In the first method, a separate OLS regression is run for each group of observations and σ_{1}^{2} is estimated by

$$
\begin{equation*}
\hat{\sigma}_{i}^{2}=\frac{\left(Y_{1}-X_{1} b_{1}\right)^{\prime}\left(Y_{1}-X_{1} b_{1}\right)}{n_{1}-k} \tag{2}
\end{equation*}
$$

where $b_{1}=\left(X_{1}{ }^{\prime} X_{1}\right)^{-1} X_{1}{ }^{\prime} Y_{1}$.

In the alternative method, the information that each b_{1} is an estimate of
the same β is incorporated by obtaining a pooled estimate of β, namely $b=$ $\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ where X and Y contain the stacked X_{i} and Y_{i}. Estimates of the individual group variances are then obtained from

$$
\begin{equation*}
\tilde{\sigma}_{1}^{2}=\frac{\left(Y_{1}-X_{1} b\right) \cdot\left(Y_{1}-X_{1} b\right)}{n_{1}-k} \tag{3}
\end{equation*}
$$

Let us call the EGLS estimators of β based on (2) and (3) the unrestricted and restricted estimators. Binkley (1989) provides simulation results comparing these estimators. The evidence suggests that for extreme heteroskedasticity the unrestricted estimator is more efficient in finite samples, whereas for moderate and low degrees of heteroskedasticity the restricted estimator is more efficient. Asymptotically, both estimators are of course fully efficient.

For applied work, Binkley expresses a preference for the unrestricted estimator. This preference is reinforced by his view that this estimator is also computationally more convenient. With reference to the restricted estimator he comments that:
"This is somewhat more troublesome to employ, since it requires the partitioning of a residual vector." Binkley (1989, p660),
and concludes that:
> "Since in general it is more troublesome to employ, we see little recommendation for this method when the sample size is adequate." Binkley (1989, p. 664).

Unfortunately this particular criticism is misplaced. Computation of (3) can be carried out in an entirely simple and straightforward manner. The key is to recognize that this particular heteroskedastic model falls into the class of additive heteroskedasticity models where the disturbance variance is specified as a linear function of a set of exogenous variables. Importantly, this relationship is conveniently represented by a secondary equation which facilitates the computation of estimates of disturbance variances. Moreover we suggest that this framework has the added advantage
of providing a ready framework for testing hypotheses and imposing restrictions on these variance parameters.

III Additive heteroskedasticity

The additive heteroskedasticity model postulates the following particular relationship

$$
\begin{equation*}
\sigma_{j}^{2}=z_{j}, \alpha \quad j=1, \ldots, n ; \quad n=\Sigma n_{1} \tag{4}
\end{equation*}
$$

where z, is a $1 \times p$ vector of exogenous variables and α a conformable vector of unknown parameters. Notice that this represents a general situation where variances are allowed to vary over the individual observations. In order to obtain estimates of α and ultimately σ_{j}^{2}, one estimates a secondary equation of the form

$$
\begin{equation*}
\hat{u}_{\jmath}^{2}=z_{j}, \alpha+\varepsilon_{j} \tag{5}
\end{equation*}
$$

where $\hat{u}_{\text {, }}$ are the OLS residuals from the estimation of the primary equation given by (1). For extensive analysis of this model see Amemiya (1977, 1985).

For the special case of the grouped heteroskedasticity model, the secondary equation in matrix form is given by
(6)

$$
\left[\begin{array}{l}
\hat{u}_{1}^{2} \\
\hat{u}_{2}^{2} \\
\vdots \\
\hat{u}_{n}^{2}
\end{array}\right]=\left[\begin{array}{lllll}
\iota_{1} & 0 & 0 & \ldots & 0 \\
0 & \iota_{2} & 0 & \ldots & 0 \\
0 & 0 & \iota_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & . & \vdots \\
0 & 0 & 0 & \ldots & \iota_{m}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1}^{2} \\
\sigma_{2}^{2} \\
\vdots \\
\sigma_{m}^{2}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

where ι_{1} is an $n_{1} \times 1$ vector of unit elements and $\alpha=\left(\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right)$. Calculation of (3) is simply a matter of running an OLS regression of the squared residuals from OLS estimation of (1) on a matrix of dummy variables.

In the case of $M=2$, both methods discussed by Binkley (1989) involve two OLS regressions to determine estimates of σ_{1}^{2} and hence would seem to be computationaliy equally convenient. It is true that as M increases there is a difference in computational convenience. However it is the method preferred by Binkley that becomes somewhat troublesome, as it requires M OLS regressions while the alternative method still only requires two. While the weight of the simulation evidence in favour of either estimator depends on the degree of heteroskedasticity, the computational aspects surely favour the restricted estimator that utilizes the secondary equation.

IV Hypothesis testing

Notice that (6) does not contain an intercept. We can consider an alternative form of (6) where say the first group dummy is replaced by an intercept. In this reparameterization of the model, the coefficients on the remaining group dummies; say $\alpha_{2}^{*}, \ldots, \alpha_{M}^{*}$, represent deviations from the disturbance variance of the first group. This serves to highlight an additional advantage of using the secondary equation approach to estimate the σ_{i}^{2}. Namely it provides a ready framework for testing hypotheses and imposing restrictions on these variance parameters.

Estimation of the secondary equation would naturally provide "t-statistics" for use in the testing of hypotheses regarding individual α_{1}^{*} parameters. More importantly the null hypothesis of homoskedasticity is represented by the restriction $\alpha_{2}^{*}=\ldots=\alpha_{M}^{*}=0$. The LM test of this hypothesis is based on a statistic given by the regression sums of squares from this regression divided by $2 \hat{\sigma}^{4}$, where $\hat{\sigma}^{2}$ is the average of the squared residuals from the OLS regression of (1); see Breusch and Pagan (1979) for further details. Moreover, a simple alternative that is asymptotically equivalent to the Breusch-Pagan statistic but which is robust to nonnormality can be calculated as n times the R^{2} from this regression; see Koenker (1981). See Buse (1984) for some Monte Carlo comparisons of alternative methods of testing for additive heteroskedasticity.

As an example of a framework that facilitates the imposition of restrictions on the form of the heteroskedasticity, suppose one has a priori information
of the form $\sigma_{1}^{2}<\sigma_{2}^{2}<\ldots<\sigma_{M}^{2}$. The secondary equation then becomes

$$
\left[\begin{array}{l}
\hat{u}_{1}^{2} \tag{7}\\
\hat{u}_{2}^{2} \\
\vdots \\
\hat{u}_{n}^{2}
\end{array}\right]=\left[\begin{array}{lllll}
\iota_{1} & 0 & 0 & \ldots & 0 \\
\iota_{2} & \iota_{2} & 0 & \ldots & 0 \\
\iota_{3} & \iota_{3} & \iota_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & . & \vdots \\
\iota_{M} & \iota_{M} & \iota_{M} & \ldots & \iota_{M}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{*} \\
\alpha_{*}^{*} \\
\vdots \\
\alpha_{M}^{*}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

where $\alpha_{1}^{*}=\sigma_{1}^{2}$ and $\alpha_{1}^{*}=\sigma_{1}^{2}-\sigma_{1-1}^{2} \geq 0, i=2, \ldots, M$. A special case is the model proposed by Nerlove (1971) as an alternative reparametrization of an error components model with individual effects. Here $M=2$ with $\sigma_{1}^{2}=\sigma_{v}^{2}$ and $\sigma_{2}^{2}=\sigma_{\nu}^{2}+\mathrm{T} \sigma_{\mu}^{2}$, where σ_{μ}^{2} is the variance of the individual effect, σ_{v}^{2} is the variance of the disturbance and T is the number of time series observations avallable for each cross-section. The reparameterization leads to $\alpha_{1}^{*}=\sigma_{v}^{2}$ and $\alpha_{2}^{*}=T \sigma_{\mu}^{2}$.

As another example, suppose $M=3$ and that the variance in one group is the sum of the other group variances. Here the secondary equation takes the form

$$
\left[\begin{array}{l}
\hat{u}_{1}^{2} \tag{8}\\
\vdots \\
\hat{u}_{n}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\iota_{1} & 0 \\
0 & \iota_{2} \\
\iota_{3} & \iota_{3}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{*} \\
\alpha_{2}^{*}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

where $\alpha_{1}^{*}=\sigma_{1}^{2}, \alpha_{2}^{*}=\sigma_{2}^{2}$ and $\alpha_{1}^{*}+\alpha_{2}^{*}=\sigma_{3}^{2}$. Again the secondary equation framework proves to be very convenient.

V Comments

Before concluding, there are several points worth noting that relate to the additive heteroskedastic model and the special case of grouped heteroskedasticity. First, in (5), the condition that $E\left(\varepsilon_{j} \mid z_{j}\right)=0$ is only satisfied asymptotically. Hence, even though the olS estimates of α in (6) are identical to (3), inferential procedures in regard to α are asymptotic.

Second, Amemiya (1977, 1985) notes that the $\varepsilon_{\text {, }}$ in (5) are themselves heteroskedastic with an asymptotic variance (under normality) equal to $2(z ; \alpha)^{2}$ and hence recommends a second step in the estimation of (5) in which the equation is reestimated using weights derived from the OLS estimates of α to obtain EGLS estimates.

Interestingly, a special feature of the grouped heteroskedastic model is that this additional step is unnecessary because GLS produces estimates of α that are identical to OLS. (See the Appendix for a proof of this proposition.) Hence there is no efficiency gain in carrying out Amemiya's second step. It is true that the standard errors of the α 's produced by OLS will be biased, so that the full 2-step procedure should be carried out for making (asymptotically) correct inferences about α.

A pervasive problem in the estimation of secondary equations is that of ensuring nonnegative estimates of the variances, σ^{2}. Again it is interesting to note that the special case of the grouped heteroskedastic model is one situation where this problem does not appear. The estimates of the σ^{2}, generated by the secondary equation are nonnegative with probability one. This is easily seen from the form of the estimates given in (3). On the other hand OLS (or EGLS) estimates generated from the secondary equations of other models such as (7) and (8) are not necessarily guaranteed to satisfy the appropriate nonnegativity constraints. Notice here the distinction between nonnegativity of estimates of α and of σ_{j}^{2}; the former is not necessary for the latter. In fact unconstrained estimation of (7) will guarantee nonnegative estimates of σ_{j}^{2}, but not of α as required by the specification. Fortunately an easily computed constrained version of the Amemiya 2-step method, has recently been suggested by Bartels and Fiebig (1990). This method has good small sample properties and has been successfully implemented in the empirical work of Fiebig, Bartels and Aigner (1988).

Ronning (1985) provides a more detailed analysis of the violation of nonnegativity constraints. In the case where the dependent variable is nonnegative with probablity one, as it is in the secondary equation, Ronning provides easy to check conditions for predictions of the dependent variable, here estimates of σ_{j}^{2}, to be nonnegative with probability one.

For the secondary equation in (5), let Z be the $n \times p$ full-rank matrix of regressors and suppose it has $r \leq n$ nonproportional rows. If B is the $r \times p$ matrix containing these rows then we can write $Z=A B$ with A having exactly one nonzero element in each row. A necessary and sufficient condition for the nonnegativity of the σ^{2}, estimates is that $p=r$ and that each column of A is either nonnegative or nonpositive. Immediately we see the potential pervasive nature of the nonnegativity problem. A typical situation would have $r>p ; i . e$ there would be many distinct nonproportional rows of Z. However, for the grouped heteroskedastic model of (6) $\mathrm{Z}=\mathrm{A}$ and B is an $\mathrm{M} \times \mathrm{M}$ identity matrix; the conditions of Ronning are satisfled. On the other hand the model in (8) yields

$$
A=\left[\begin{array}{lll}
\iota_{1} & 0 & 0 \\
0 & \iota_{2} & 0 \\
0 & 0 & \iota_{3}
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

where rank $(B)=2<r=3$. Hence variance predictions from the secondary equation of this model are not guaranteed to be nonnegative.

VI Conclusion

The paper of Binkley (1989) is important because it alerts practitioners to differences in the efficiencies of EGLS estimators of β that may be attributable to the use of different estimators of the group disturbance variances. We have nothing to add to his Monte Carlo results and we agree with his conclusion that the choice of alternatives is somewhat problematic. Our purpose has been to provide extra information that may ald the practitioner in making the choice between methods. In particular we show that the method that restricts β to be equal over groups in the first stage OLS regression can be put into a framework which involves estimation of a secondary equation for the variance parameters.

Having made this connection, it is clear that, despite Binkley's contention, the restricted estimator which takes advantage of the secondary equation representation is computationally convenient and its comparative advantage
over the alternative method of estimating M separate first stage regressions increases with the number of groups. Moreover, the secondary equation also provides a framework that is extremely convenient and flexible for the purpose of testing hypotheses and imposing restrictions on the variance parameters.

While with hindsight the relationship between grouped heteroskedasticity and the model of additive heteroskedasticity that utilizes a secondary equation may seem obvious, it appears as though Binkley is not alone in missing the connection. The econometrics texts of Amemiya (1985), Fomby, Hill and Johnson (1984) and Johnston (1984) all refer to the two models of heteroskedasticity without indicating the relationship that has been described here.

Appendix

Proof of the equivalence of OLS and GLS estimation of (6)
Let the design matrix in (6) be given by Z and let var $(\varepsilon)=2 \Omega$. The equivalence of the OLS and GLS estimators of α requires Kruskal's (1968) condition to hold, namely there exists a nonsingular G such that $\Omega \mathbb{Z}=\mathbb{Z}$. Here

$$
Z=\left[\begin{array}{lll}
\iota_{1} & & 0 \\
& \ddots & \\
0 & \ddots & \iota_{M}
\end{array}\right], \quad \Omega=\left[\begin{array}{ccc}
\sigma_{1}^{4} \mathrm{I}_{1} & & 0 \\
& & \ddots
\end{array}\right]
$$

and the required G is given by

$$
\mathrm{G}=\left[\begin{array}{cccc}
\sigma_{1}^{4} & & & 0 \\
& \ddots & \\
& \ddots & \\
0 & & \sigma_{M}^{4}
\end{array}\right]
$$

References

Amemiya, T. (1977). "A note on a heteroskedastic model", Journal of Econometrics, 6, 365-370.

Amemiya, T. (1985). Advanced Econometrics. Harvard University Press: Cambridge.

Bartels, R. and Fiebig, D.G. (1990). "Constrained estimation of the Hildreth-Houck random coefficient model", University of Sydney, Econometrics Discussion Papers, \#90-02.

Binkley, J.K. (1989). "Estimation of variances in the grouped heteroskedasticity model", this REVIEW 71, 659-665.

Breusch, T.S. and Pagan, A.R. (1979). "A simple test for heteroskedasticity and random coefficient variation", Econometrica, 47, 1287-1294.

Buse, A. (1984). "Tests for additive heteroskedasticity: Goldfeld Quandt revisited", Empirical Economics, 9, 199-216.

Fiebig, D.G., Bartels, R. and Aigner, D.J. (1988). "A random coefficient approach to the estimation of residential end-use load profiles", University of Sydney, Econometrics Discussion Papers, \#88-05, forthcoming Journal of Econometrics.

Fomby, T. B., Hill, R.C. and Johnson, S.R. (1984). Advanced Econometric Methods. Springer-Verlag: New York.

Koenker, R. (1981). "A note on studentizing a test for heteroskedasticity", Journal of Econometrics, 17, 107-112.

Kruskal, W. (1968). "When are Gauss-Markov and least squares estimators identical? A coordinate-free approach", Annals of Mathematical Statistics, 39, 70-75.

Nerlove, M. (1971). "A note on error components models", Econometrica, 39, 383-396.

Ronning, G. (1985). "On the nonnegativity of XX^{+}and its relevance in econometrics", Metrika, 32, 35-47.

(For previous papers please consult previous discussion papers.)		
No.	Author (s)	Title
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Guth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Random Utility Model for Continuous Choice
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	Dual Capacity Trading and the Quality of the Market
8944	C. Hsiao	Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data
8945	R.P. Gilles	Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure
8946	W.B. MacLeod and J.M. Malcomson	Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alternatives
8947	A. van Soest and A. Kapteyn	The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution
8948	P. Kooreman and B. Melenberg	Maximum Score Estimation in the Ordered Response Model
8949	C. Dang	The D_{3}-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations
8950	M. Cripps	Dealer Behaviour and Price Volatility in Asset Markets
8951	T. Wansbeek and A. Kapteyn	Simple Estimators for Dynamic Panel Data Models with Errors in Variables

No.	Author(s)	Title
8952	Y. Dai, G. van der Laan, D. Talman and Y. Yamamoto	A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron
8953	F. van der Ploeg	Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem
8954	A. Kapteyn, S. van de Geer, H. van de Stadt and T. Wansbeek	Interdependent Preferences: An Econometric Analysis
8955	L. Zou	Ownership Structure and Efficiency: An Incentive Mechanism Approach
8956	P.Kooreman and A. Kapteyn	On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply
8957	E. van Damme	Signaling and Forward Induction in a Market Entry Context
9001	A. van Soest, P. Kooreman and A. Kapteyn	Coherency and Regularity of Demand Systems with Equality and Inequality Constraints
9002	J.R. Magnus and B. Pesaran	Forecasting, Misspecification and Unit Roots: The Case of AR(1) Versus ARMA $(1,1)$
9003	J. Driffill and C. Schultz	Wage Setting and Stabilization Policy in a Game with Renegotiation
9004	M. McAleer, M.H. Pesaran and A. Bera	Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment
9005	Th. ten Raa and M.F.J. Steel	A Stochastic Analysis of an Input-Output Model: Comment
9006	M. McAleer and C.R. McKenzie	Keynesian and New Classical Models of Unemployment Revisited
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multivariate t Regression Models
9008	G.W. Imbens	Duration Models with Time-Varying Coefficients
9009	G.W. Imbens	An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling
9010	P. Deschamps	Expectations and Intertemporal Separability in an Empirical Model of Consumption and Investment under Uncertainty

No.	Author(s)	Title
9011	W. Guth and E. van Damme	Gorby Games - A Game Theoretic Analysis of Disarmament Campaigns and the Defense Efficiency-Hypothesis
9012	A. Horsley and A. Wrobel	The Existence of an Equilibrium Density for Marginal Cost Prices, and the Solution to the Shifting-Peak Problem
9013	A. Horsley and A. Wrobel	The Closedness of the Free-Disposal Hull of a Production Set
9014	A. Horsley and A. Wrobel	The Continuity of the Equilibrium Price Density: The Case of Symmetric Joint Costs, and a Solution to the Shifting-Pattern Problem
9015	A. van den Elzen, G. van der Laan and D. Talman	An Adjustment Process for an Exchange Economy with Linear Production Technologies
9016	P. Deschamps	On Fractional Demand Systems and Budget Share Positivity
9017	B.J. Christensen and N.M. Kiefer	The Exact Likelihood Function for an Empirical Job Search Model
9018	M. Verbeek and Th. Nijman	Testing for Selectivity Bias in Panel Data Models
9019	J.R. Magnus and B. Pesaran	Evaluation of Moments of Ratios of Quadratic Forms in Normal Variables and Related Statistics
9020	A. Robson	Status, the Distribution of Wealth, Social and Private Attitudes to Risk
9021	J.R. Magnus and B. Pesaran	Evaluation of Moments of Quadratic Forms in Normal Variables
9022	K. Kamiya and D. Talman	Linear Stationary Point Problems
9023	W. Emons	Good Times, Bad Times, and Vertical Upstream Integration
9024	C. Dang	The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations
9025	K. Kamiya and D. Talman	Variable Dimension Simplicial Algorithm for Balanced Games

No.	Author(s)	Title		
9026	P. Skott		\quad	Efficiency Wages, Mark-Up Pricing and
:---				
Effective Demand				

No.	Author(s)	Title
9043	S. Chib, J. Osiewalski and M. Steel	Posterior Inference on the Degrees of Freedom Parameter in Multivariate-t Regression Models
9044	H.A. Keuzenkamp	

P \cap R $\cap \times$ an1.5. $50 \cap \cap$ I F TII RIJRG. THE NETHERLANDS
Bibliotheek K. U. Brabant

17000011175396

