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Abstract

This paper introduces a new class of cooperative games arising from cooper-
ative decision making problems in a stochastic environment. Various examples
of decision making problems that fall within this new class of games are pro-
vided. For a class of games with stochastic payoffs where the preferences are of
a specific type. a balancedness concept is introduced. It is proved that the core
of a game within this class is non empty if and only if the game is balanced.
Further, other types of preferences are discussed. In particular. the effects the

preferences have on the core of these games are considered.

KEYWORDS: cooperative games, stochastic variables, core. balancedness, pref-

erences.
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1 Introduction

In general, the payoff of a coalition in cooperative transferable utility games is as-
sumed to be known with certainty. In many cases, however, payoffs to coalitions are
uncertain. This would not raise a problem. if the agents can await the realizations of
the payoffs before deciding which coalitions to form and which allocations to settle
on. But if the formation of coalitions and allocations has to take place before the
pavoffs will he realized. standard cooperative game theory does no longer applv

Charnes and Granot (1973 considered cooperative games in stochastic charac-
teristic function form. For these games the value V(S) of a coalition S is allowed
to be a stochastic variable. They suggested to allocate the stochastic payoff of the
grand coalition in two stages. In the first stage, so called prior payoffs are promised
to the agents. These prior payoffs are such that there is a good chance that this
promise will be realized. In the second stage the realization of the stochastic payoff
is awaited and. subsequently. a possibly non feasible prior payoff vector has to be
adjusted to this realization in some way. This approach was elaborated in Charnes
and Granot (1976). Charnes and Granot (1977), and Granot (1977). Most of the
time the adjustment process is such that objections among the agents are minimized.

In this paper we will not follow the route set out by Charnes and Granot. Instead
we will introduce a different and more extensive model. The main reason for this is
that the model used by Charnes and Granot (1976) assumes risk neutral behaviour
of all agents. The model we introduce allows different types of behaviour towards
risk of the agents. Moreover. each coalition possibly has several actions to choose
from. which each lead to a (different) stochastic payvoff.

In Section 2 we introduce our model of a game with stochastic payoffs. Further-
more we give examples, arising from linear production problems, financial markets,
and sequencing problems, which fall in this class of games with stochastic payoffs.
Also the core of such a game is defined. In Section 3 we consider a special class of

preferences. The ordering of stochastic payoffs for these preferences is based on the



a-quantile of the stochastic payoff. So, these preferences are determined by the num-
ber a. Moreover. different kinds of behaviour towards risk of the agents will result in
a different value for a for each agent. For games with these preferences we provide
a new balancedness concept. which is an extension of the balancedness concept for
standard TU-games. We will show that the core of a game with stochastic payoffs is
non empty if and only if this game is balanced.

Ir. Section 4 we look at other tvpes of preferences of the agent:. Examplesiliustrate
the effect of the preference relation on the core of the game. Furthermore, we show
that for some preferences a similar result as obtained in Section 3 can be derived. if

the balancedness concept is slightly adjusted.

2 The model and some examples

In this section we will introduce a general framework to model cooperative games with
stochastic payoffs and transferable utilities. Moreover, we will give some examples of
situations which can be captured within this framework.

A game with stochastic payoffs is defined as a tuple (N, (As)scy. (Xs)scn. (&, )ien):
where .V = {1.2..... n} is the set of plavers. As is the set of all possible actions coali-
tion S can take. and Xs: As — L'(R) a function assigning to each action a € As
of coalition S a real valued stochastic variable Xs(a) with finite expectation, repre-
senting the pavoff to coalition S when action a is taken. Finally. &, describes the
preferences of agent ¢ over the set L'(R) of stochastic variables with finite expecta-
tion. For any X.Y € L'(R) we denote Xz} when the payoff X is at least as good
as the payoff ¥ according to agent 7, and X >, Y when agent 7 strictly prefers X
to Y. The set of all games with stochastic payoffs and player set N is denoted by
SG(N). An element of SG(.N) is denoted by T.

If we compare a game with stochastic payoffs to a standard TU-game, we can

distinguish two major differences. First, the payoffs can be random variables, which



is not allowed in the standard case. Second, in a game with stochastic payoffs the
actions a coalition can choose from are explicitly modelled as opposed to the standard
case. In the standard case coalitions possibly can choose from several actions, but
since the pavoff they want to maximize is deterministic there is no doubt about the
optimal payoff. Therefore, the actions of a coalition can be omitted in the description

of a TU-game.

A first application can be found by modifying linear production games. which
were introduced by Owen (1975). In a linear production game each agent 1 € N
owns a resource bundle b, € R,. The resources can be used to produce quantities
S TRE Z, of goods 1.2...., m according to some technology matrix M € R™*™,
which can be sold for prices ¢;,¢;,..., ¢m. The value of a coalition S of agents then

equals the maximal revenue this coalition can obtain given their resources, i.e.

v(S)=max{d) ez, | Mx <Y b, 2 ={(z1.22:+... Zm ) =00,
=1 1€S

Now suppose that the compositions of the resource bundles are not known with
certainty. i.e.. the resources of agent : are represented by some nonnegative stochastic
variable B' € L'(R.). Moreover, agents are not allowed to await the realizations of
these variables. before deciding upon a (joint) production scheme.

The above situation cannot be modelled as a traditional TU game. However, it
can be modelled as a game with stochastic payoffs in the following way. Let N be
the set of agents. and define the set of actions of a coalition S C N by As = {a €
R™a; 210 ' = Ta2hosss m}. the set of all possible production bundles. Now we
define the pavoff of a coalition S C .V with respect to the action a € As as the
stochastic variable Xs(a) given by
ca, ifMa<Y, B
0, otherwise.

Hence, the payoff Xs(a) equals c"a for any realization of resources for which the

production scheme is feasible and it equals zero otherwise. As a consequence coalitions



could Jecide on going for a production plan which is feasible with little probability but
yields relatively high revenues when feasible, or, a production scheme which is feasible
with high probability but yields relatively low revenues when feasible. Obviously, this
decision is highly influenced by the agents’ valuation of risk.

In the case considered above, only the resources were assumed to be stochastic.
Clearly. one could also assume that prices and/or technology are stochastic. These

situations can be modelled as games with stochastic payoffs in a similar way.

The second application concerns financial markets. For a general equilibrium
model on financial markets the reader is referred to Magill and Shafer (1991). The
examples we provide will show some substantial differences with the model considered
by Magill and Shafer (1991). First, our models focus on cooperation between the
_agents, and second, the assets we consider are indivisible goods.

In the first example, we have a set .V of agents with each agent having an initial
endowment m' of money. Furthermore, we have a set F of assets, where each asset
f € F has a price 7, and stochastic revenues R/ € L'(R). Now. each agent can
invest his money in a portfolio of assets and obtain stochastic revenues. We allow
the set F to contain identical assets. so that we do not need to specifv the amounts
agents buy of a specific asset. For example. if a firm issues k shares of type f. then
all the shares fi, f,,..., fx are contained in F (cf. Modigliani and Miller (1958)).
Instead of buying portfolios individually, agents can also cooperate. combine their
endowments of money, and invest in a more diversified portfolio of assets. This
behaviour can, on the one hand, result in a less risky investment. but, on the other
hand, creates a problem, namely, how to divide the returns and the risk involved over
the participating agents. This situation can be modelled as a game with stochastic
payoffs by defining for each S C .V, S # 0

As={ACF| ERISZm'}

fEA 1€S



as the se: of all possible portfolios coalition S can afford. and for all A € As

Xs(4)= z R!
fea
the stochastic revenues with respect to the portfolio A.
In the second example, we assume that each agent : already possesses a portfolio
A, of assets with stochastic revenues R* € L'(R). Again. it is allowed for the agents
to combine their portfolios and redistribute risk. In that case, each coalition S C .V
K. Of course. the problem of

OniY Las OnLe action with stochasiic payoll Xs = 3

how to divide the returns and the risk remains, just as in the first example.

The final application we consider arises from sequencing problems. In a one
machine sequencing problem a finite number of agents all have exactly one job that
has to be processed on a single machine. which can process at most one job at a time.
Moreover. each agent incurs costs for every time unit he has to wait for his job to be
completed. Further. we assume that there is an initial processing order of the jobs
and that each job has a ready time, this means that the processing of a job cannot
start before its ready time. Corresponding to such a sequencing problem one can
define a cooperative game. where the value of a coalition equals the cost savings this
coalition can obtain with respect to the initial order by rearranging their positions
in an admissible way: we refer to Curiel, Pederzoli and Tijs (1989) for the case with
affine cost functions and all ready times equal to zero. and Hamers, Borm and szé
(1993) for ready times unequal to zero.

However. the results obtained by Curiel et al. (1989) and Hamers et al.(1993)
only apply for the case that processing times are deterministic. When processing
times and ready times are uncertain, a sequencing problem can be modelled as a
game with stochastic payoffs in the following way. Let N be the set of agents and
let P € L'(R) and R' € L'(R) describe the stochastic processing time and ready
time of agent 7. respectively. Denote by ¢ : N — {1,2,...,n} a processing order

of the jobs, where (i) denotes the position of job 7 in the processing order o. In



particuiar. oo denotes the initial processing order. Finally, denote by &' : R, = R
the cost function of agent :. Then k'(t) equals the cost agent 7 incurs when he spends
t time units in the system. The set As of actions of coalition S will then be the set
of all processing orders which are admissible for coalition S. Here, admissible can be
defined in several ways. for instance, a processing order o is admissible for coalition
S if no member of S passes an agent outside S (cf. Curiel et al. (1989)).

The completion time of agent 7 in a processing order o is a stochastic variable

(o) e L'{R) dehined b
C'(o) = max{C’(o), R'} + P",

where j is the agent exactly in front of agent ¢, that is, (i) = o(j) + 1. Then the
stochastic payvoff Xs(o) for coalition S with respect to an action o € As becomes
Xs(o) = =3 k(C'(a)).
1€S
So the payoff of coalition S equals minus the waiting costs of all members of S. Again,

the action taken by a coalition will be influenced by the agents™ valuations of risk.

As was the case for traditional TU games. the main issue for games with stochastic
pavoffs is to find an appropriate allocation of the stochastic pavoff of the grand
coalition. For this. however. we first need to know how an allocation of a stochastic
payoff is defined. For deterministic payoffs: the definition of an allocation is quite
obvious. For stochastic payoffs an allocation could be defined in several ways. For
instance. let X' € L'(R) be the payoff and let .V be the set of agents. Then an
allocation of X' can be defined as a vector (X', X2...... XV) e LY(R)" such that
Zien A" = X. So. each agent 7 gets a stochastic payoff X' such that the total payoff
X is allocated. Note that the probability distribution of an agent's pavoff need not
be of the same type as the probability distribution of the payoff X. Hence, this

definition induces a very large class of allocations. which, on the one hand, is nice,



on

but. on the other hand. will give computational difficulties. Therefore we reduce the
class of allocations by adopting a more restrictive definition.
Let S C .V.a € As and let Xs(a) € L'(R) be the stochastic payoff. An allocation
for S can be represented by a tuple (d.r|a) € RS x RS such that
(1) Zd, = E(Xs(a))
1€S

(1) Zr, =landr,>0forall2€ S,
with the interpretation that the corresponding payoff to agent 1 € S equals
(d.rla), = dl + T,(.Xs(a) = E(-\,S(a)))

So. an allocation of Xs(a) is described by an allocation of the expectation E(Xs(a))
and an allocation of the residual Xs(a)— E(Xs(a)). which we will call the risk of the

pavoff A's(a). The set of all possible allocations for coalition S is denoted by Z(S).

Example 2.1 Consider the following situation, where two agents each possess a
portfolio 4,. ¢ = 1.2. The portfolio A; consists of riskless bonds, worth $100 and
paving interest of 57%. The portfolio 4, consists of one asset with stochastic revenue
X where X ~ [7(0.8). Hence. we have R' = 5 and R? = X. If the agents cooperate
and combine their portfolios. their joint payvoff equals R' + R? = 5+ X. The expected
pavoff of this combined portfolio equals 9. Consequently. the risk R'+ R>— E( R' + R?)
of this portfolio equals X — 4 ~ ["(—=4.4). Then. an allocation (d.r) results in the
payoff d, + r,(X — 1) for agent i = 1.2. Note that if d = (5.4) and r = (0.1) then

the pavoff to agent 1 equals R' and the pavoff to agent 2 equals R?.

Now that we have the definition of an allocation, we can define the core of a
game with stochastic payoffs. Let I € SG(/V). Then the core of this game is defined
as the set of all allocations for N for which no coalition S has an action and an

allocaticn of the corresponding stochastic payoff such that all members of S prefer



this ailocation to the former one. More formally. an allocation (d.r|a) € Z(N) is a
core allocation if there does not exist a coalition S and an allocation (d. rla) € Z(S)
such that (d.#|a), >, (d.r|a), for all i € S. The core of a game I' € SG(N) is denoted
by Core(T).

3 Balancedness for games with stochastic payoffs

In this section we imtroduce a balancedness concept for a special class of games with
stochastic payoffs. This class consist of all such games with the following type of
preferences. Let X.} € L'(R) with distribution function Fx and Fy, respectively.
Take @ € (0,1). Then Xx_Y if and only if uX > u¥ with uX :=sup{t | Fx(t) < a}
the a-quantile of X. A game where X, represents the preferences of agent ¢ for all
1 € N is denoted by I', where a = (a;,04,..., a,) € (0,1)".

For relating different values of a to different types of risk behaviour we first need
to formalize the concepts risk neutrality, risk aversion and risk loving. Therefore,
let x describe the preferences of an agent over the set L!(R) of stochastic variables.
Then we say that x implies risk neutral behaviour of the agent if for all X € L'(R)
we have X' ~ E{X'). So. the agent is indifferent between the stochastic pavoff and its
expectation with certainty. Subsequently. we say that & implies risk averse behaviour
if YZE(X) holds for all X' € L'(R) with strict preference for at least one X € L'(R),
and risk loving behaviour if Xz E(X) holds for all X € L'(R) with strict preference
for at least one X' € L'(R). So. a risk averse agent prefers the expectation of a
stochastic pavoff to the stochastic payoff itself. while a risk loving agent rather has
the stochastic payoff than its expectation. Moreover, let x, and &, be the preferences
of agent 7 and j respectively. Then agent j behaves more risk loving than agent 1, or.
equivalently. agent 7 behaves more risk averse than agent j. if for all X € L'(R) we

have that

(Y| YE,E(X)} C {Y]| Yx,E(X)}.
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Returning to the x -preferences, we can say that agent ¢ is more risk averse than
agent j if and only if @, < a,. Note, however, that according to the definitions above
the x - preferences cannot be interpreted as either risk averse, risk neutral, or risk
loving behaviour in the absolute sense.

Before we introduce the balancedness concept we recall the definition of a balanced
map. For that we define for each coalition § C N the vector es € R vnth (es)y =1
ifieSand(es),=0ifi g S. Then. a map g : 2¥\{@} — [0.00) is called balanced
if Teen pu(S)-es = ex. Subsequent.:. « game [, < 55 V) is called balanced if for
each balanced map y we have!

max max uA”(“’ > Z -max max qu(a)

a€AN 1EN =% a€As 1€

Note that for deterministic TU-games the expression maX,e4. MaX;es uZ s(2) boils
down to max,es ul!®) which is equal to ©(S). So, for deterministic TL'-gamcs this
new balancedness concept coincides with the original balancedness concept for such
games. In order to prove that the core of I' is non empty if and only if I is balanced.

we need the following lemma.

Lemma 3.1 Let [, = (V. (4s)scn. (Xs)scn (&, )ien) € SG(N) and let (d.r|a) €

Z(.N). Then coalition S has no incentive to split off if and only if

Z (d, + r,(ui".\":) - E(.\’_\'(a)))) > max maxux s(a)
1€S ' 9€ds €S

PRrRoOF: Let S C \. We will prove the lemma by showing that the coalition S has

an incentive to split off if and only if

Z (d. - r.(u,fl-”'(” - E(.\’,\-(a)))) < max maxuxs“’)

s GEAs 1€S

!We assume that the maximum over the set As of actions exists for all S C N'. For the applica-
bility of the forthcoming results. however, this assumption will hardly be any restriction, since often

the set of actions will either be finite or can be modified in that way.
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We start with the “only if" part. If S has an incentive to split off then there exists

an allocation (d.7|a) € Z(S) such that
d, + 7(Xs(a) — E(Xs(a))) >o, d: + 1(Xn(a) — E(Xn(a)))
for each 1 € S. This implies that

d, + #(u¥s® — E(X5(a))) > d. + ri(uf¥®) — E(Xn(a)))

i

lis far &}l £ S. Summing over all memtb. < of S vields
¥ (d + A(uds® - E(Xs(a)))) Py Z; (d + r(u2¥) — E(Xx(a)))) .
1€S 1€
Using $,csd, = E(Xs(a)) and Tes 7, = 1 results in
S ouls® S T (d 4+~ E(Xx(a)) .

1€S t€ES
Since 0 < 7, <1 for all : € S we have

mea\u\“” >Z (d -rr(u\"'” E(.\',\'(GJ)J)‘

1€5

Then the result follows from

max ma\u\ #(3) > max 11\5“"
a€4. 1€S 3 €S

For the "if " part of the proof. it suffices to show that if

Z (d, + rfulse) - E(.\'_\-(a)))) < max max qu(n)
i€s $ aEAs 1€S

there exists an allocation (d.7,|a) € Z(S) with @ € argmaxsea. MaX,es ufl-“f" such

that
d, + F(uXs® — E(Xs(a)) > d, + ri(ui™® — E(Xn(a)))

for all : € S. So. it suffices to show that the system of linear equations L1 (see page
23) has a solution for some £ > 0. Without loss of generality we may assume that
1

0<e< m ( measxu"S(“) z (d. + r.(uf‘"(”) - E(XN(G))))> -
= 1€S



Applving a variant of Farkas' lemma 2, L1 has a solution if and only if there exist

no (z,)ex 2 0.p1.P2.¢1,92 2 0, (yi)ies 2 0 such that

=5 =0, for all : € N\S
vi(uXs® — E(Xs(a))) +p—p2+2,=0, forallie§
v+ qa-—-¢=0, foralli € S

u (d + ) - E(Xx(a)) +£) + (@ — ) E(Xs(@)) + pr — p2 > 0.

1€ 8

Or equivalently. there exist no p.qg € R. (y.).es = 0 such that

vi(ufs@ — B(Xs(a))) +p<0, forallie S
yi+q=0, foralli e S

S u (d+n(uXr®) — E(Xn(a) +€) + ¢ E(Xs(a)) +p > 0.

1€S
From the equalities above we derive y, = y for all2 € S. By combining the two
inequalities and substituting ¢ = —y. the statement above is equivalent to the non
existence of a y > 0 such that for all 7 € S we have

(s — E(Xs(a))) < y 3 (d + rn(ud*®) = E(Xn(a))) +£) — y - E(Xs(a)).

1€S

Equivalently. there is no y > 0 such that

yma\u\ s(8) « yZ (d + ri(ug x*(“’ — E(Xx~x(a)))+ 5) ;

1€S

Using = < l—l—] ( maxes u\ s@ _ 5 s (d, + r,(ug‘l-"‘“) - E(_\',v(a))))) vields

y max u““” < ymaS\u\ s(8),

Obviously. such y do not exist. Hence, the system of linear equations L1 has a solu-

tion and the proof is finished. =]

?The variant of Farkas' lemma we use here is: Az > b has a solution if and only if there exists

no y > 0 such that y"4=0and y7b> 0.
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Theorem 3.2 Let I', = (N, 45)50\'.(.\’s)sg\;,(ka,).g n) € SG(N). The coreof T',,

is non empty if and only if ', is balanced

PROOF: From Lemma 3.1 we know that an allocation (d,r|la) € Z(N) is stable

if and only if

against deviations from coalition S
)))) > max maxuj ““’
GEA: 1€ES

') if and only if the system of linear

Z (d, o r,lui-""“' — E{Xx(a

es

Hence. there exists a core allocation (d.rja) € Z(.\\

equations L2 (see page 24) has a solution
Applying the same variant of Farkas' lemma as in Lemma 3.1, L2 has a solution

if and only if there exist no (z,),en > 0.p1.p2.¢1.92 2 0, (p(S))scny 2 0 such that
p(S)(uX> — E(Xx(a))) + pp—p2+2 =0, forallie N
SCN1ES
S uS)+qa-g=0 forallie N
SCNuES
Z (£) rrela4\mea\u ') + (g1 —q2)E(Xxn(a))+p1 —p2 > 0.
SCAN a s 1€5
Equivalently. there exist no p.q € R.(u(S))scy > 0 such that
> u(S)uXst2) — E(Xx(a))) + p<0. forallie N
SCN €S
Z Sy = g: forallie N
SCNu€gs
3; w(S) :x;itrpeasx uXs® — g.E(Xx(a))+p>0.
This is equivalent to the existence of ¢ € R and (u(S))scy 2> 0 such that for each
€N
y(S)(uf."'"“)—E(.X’x( Z u(S) maxmaxu"s“‘) — q¢-E(X~(a))
ScNaES Scn a€As 1€S
and
(1)

for all : € N.

> w8 =g

SCNu€S
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Substituting (1) and rearranging terms yields equivalently that there exist no ¢ € R

and (u(S))scx > 0 such that for all 2 € N we have

z u(S) \‘m < Z u(S) maxmax u, ‘(") (2)
Na€es ScN agAs 15
and
u(S)-es=¢€x-q.
SCN
Since u(S) = 0 for all S C .V is not a solution of 12). we must have that ¢ > 0.

Hence, we may assume that ¢ = 1. Then we have that there exists no balanced map

p such that for all : € N we have

uX¥® < 3" 4(S) maxmaxu) @

SCAN a€EA: 1€S
Or equivalently. there is no balanced ma such that
q ) p u

ma\u\"(“’ & Z u#(S) max maxuxs“"
1EN Scw aEAs 1€S

Again. this is equivalent with the fact that for all balanced maps p we must have

< 1€S "'

ma\u\""’)> ZpS max max u¥std), (3)

So. there exists a core allocation (d.r|a) of the pavoff Xx(a) if and only if (3) holds
for all balanced maps u. Hence. the core is non empty if and only if for each balanced

map u we have

ma\ma\\u’““‘ = y(S)ma\maxu‘-“) o

a€dN 1€ = - a€A: 1€S

tn

Example 3.3 Consider the following three person situation, where agents 1 and 2
possess the same technology and agent 3 possesses some resources. To produce a good
out of the resources of agent 3 the technology of agent 1 or 2 is needed. Moreover,

the good can be sold for a price, which is not known with certainty beforehand,
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but is uniformly distributed on the interval [0,6]. This situation can be modelled
as a game with stochastic payoffs. with N = {1.2,3}. |As| = 1 for all coalitions
SCN, Xs=0for S={3}andall S C N with3 ¢ S, and Xs = X ~ U(0,6)
otherwise. Note that since each coalition only has one action to take, the action a is
omitted as an argument in Xs. Now, let the preferences of the agents be such that
ay=a;=a3=a € (0.1). Then (d.r) € Z(.V) is a core allocation if and only if no
coalition has an incentive to leave the grand coalition. Applving Lemma 3.1 vields
that

Y (d+rudr - E(Xx))) 2 ulfs

1€S
has to hold for all SC N. If S = {i}.z € N this results in d, + r,(6a — 3) > 0 for all
1 € N. Rewriting then gives d, > r,(3 — 6a). If S = {1.2} we get

d] -+ d2 - (7‘1 -+ T2)(60 — 3) 2 0.

Substituting d, + d, = 3 — d3 and r; + 7, = 1 — r3 and rearranging terms vield

d; < 6a + r3(3 —6a). If S = {1.3} we get
dy +ds+(r; = r3)(6a —3) > 6a.

Substituting d; + d3 =3 — d; and r; + r3 = 1 — r, and rearranging terms vield d; <
r2(3 —6a). Similarly. one derives for S = {2.3} that d; < r;(3—6a). Combining the
results above. (d.7) is a core allocation if and only if d; = (3 —6a), d; = r,(3 — 6a)
and d; = 6a + r3(3 — 6a).

Now let us try to interpret these results. Because @, = a. ¢ € .V all three agents
have the same behaviour towards risk. Let us take a =%. Next. consider the core

allocation with d = (¥r.8r;.3 +42r3) and Yy =1, 1, 2 0. 1 =1,2,3. Then the
12 ral X<

payoff for agent 1 equals i2r; + ri(X — 3). Moreover, uof,'l+ 143 — 0. So. for a

core allocation. agent 1 is with probability & worse off than his initial situation, that

is. payoff zero. The same reasoning holds for agent 2. For agent 3, the payoff equals

1+82ra4ry(X-3) _

3 4+4r3+r3( X —3). Consequently, ud; 1. So, agent 3 is worse off than
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pavofl ; with probability . Since all agents have the same behaviour towards risk.
we may say that agent 3 is slightly better off than the other two agents. Hence, a
more or less similar result is achieved if we consider the core of this same situation
with deterministic expected payoffs, i.e. v(S)=0if3 g S or |S| < 2 and v(S) =3
otherwise. Then the core equals {(0.0,3)}, and indeed for that case agent 3 is also

better off than the other two agents.

We conclude this section with some remarks. First, note that the action taken
by the grand coalition at a core allocation maximizes max,en uX¥(®) with respect
to a. Indeed, if u(S) = 1 when S = N and p(S) = 0 otherwise, the balanced-
ness condition implies for a core allocation (d,r|a) € Z(N) that max,en uX~(®) >

i
maXze4, MaXeyN ufl-‘ 1a

). Moreover, it follows from Lemma 3.1 that for a core alloca-
tion (d.7|a) the risk Xx(a) — E(.Xx(a)) must be allocated over the most risk loving
agent(s). i.e. the agents who maximize max,ex uX~(®). For, if this is not the case, we

ay

get

Tiex (d +m(uX¥®) - E(Xx(a)))) = Tienri-ulv®

maxX,en U ;’f'-“'(“)

<t

< maxzesy max,en ui @,

This. however, contradicts the fact that the allocation must be Pareto optimal for
coalition NV (cf. Lemma 3.1 for § = N).

For our final remark we take a closer look at the balancedness condition. If we
define for each game I' € SG(N) a corresponding deterministic TU-game (N, vr)
with vr(S) = maxses, MaXies uff(“’ for each S C N, then I is balanced if and
only if (.N.vr) is balanced. A similar reasoning holds for allocations. An allocation

(d,r

is a core allocation for (.V,vr). This result follows immediately from Lemma 3.1.

a) € Z(N)is a core allocation for I if and only if (d, -+-1'.-(u;"."’(“j —E(Xn~(a))))ien

Note, however. that the relation between the allocation (d,r|a) and the vector (d; +

ri(uX¥®) — E(Xn(a))))ien is not a one-one correspondence.
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The results obtained in this section hold for a special class of preferences. In the
next section we consider other types of preference relations. Moreover, we show that

the results obtained in this section can be extended to some of these preferences.

4 Preferences on stochastic payoffs

A common wav of ordering stochastic variables is by the wuse of
von Neumann/Morgensiern utility functions. In that case, an agent prefers omnc
stochastic payoff to another if the expected utility of the first exceeds the expected
utility of the latter. More formally, let X,Y € L'(R) be stochastic variables and let
u : R — R be the agent’s monotonically increasing utility function, then X > Y
if and only if E(u(X)) > E(u(Y)). Moreover, a concave utility function implies
that the agent is risk averse. a linear utility function implies that he is risk neu-
tral and. finally. a convex utility function implies that he is risk loving. So, von
Neumann/Morgenstern preferences are complete and transitive and can distinguish
between different kinds of behaviour of agents towards risk. However, for our game
theoretic approach these preferences lead to computational difficulties. as we show in

the next example.

Example 4.1 Consider the situation described in example 3.3 but now with von
Neumann/Morgenstern preferences instead of X _-preferences. Let the utility function
of agent 1 be given by the concave function u,(r) = 6 — ¢~ and consider an arbitrary
allocation (d.r) for N of X. To check whether this allocation is in the core or
not. we first have to check whether (d.r) is individually rational, that is, whether

E(u,(d, + r,(X = 3)) > E(u,(0)). for all : € N. Rewriting this inequality gives

E(u,(d, + (X =3))

6
g [ §=ertrrietigy
0

6 —d(e74* — ™) > 5 = E(ui(0))
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if r, > 0. However. this inequality is difficult to solve. Hence, an explicit condition on
the allocation (d.r) is not available. Not surprisingly, the problem will be even more
complicated to check whether a two person coalition can improve upon the allocation

(d.r).

A natural way of ordering stochastic payoffs is by means of stochastic domination.
[er YV ¥V & [YR he stachastic variables and denote by Fy and Fy the distribution
functions of X and Y . respectively. Then X stochastically dominates Y, in notation
Xz Y, if and only if for all ¢ € R it holds that Fx(t) < Fy(t). Moreover, we have
X =f¢ Y if and only if for all ¢t € R it holds that Fx(t) < Fy(t) and Fx(t) < Fy(t)
for at least one t € R. Intuitively one may expect that every rationally behaving
agent. whether he is risk averse, risk neutral or risk loving, will prefer a stochastic
payoff X over Y if Xx Y. However. this preference relation is incomplete. Many
stochastic variables will be incomparable with respect to xp. As we will see in the

next example. this incompleteness will lead to a relatively large core.

Example 4.2 Consider the situation described in example 3.3. but now with stochas-

tic domination as the preference relation for all agents. One can check® that (d.r) €

3These conditions for a core allocation are not obvious. Although it is not difficult to check them,
including the proof would lengthen the example with quite a few pages. A sketch of the proof goes
as follows. Consider an arbitrary allocation (d.r) € Z(N) and check for each coalition S separately,
if there exists a better allocation (d.#) € Z(S). For one person coalitions this is straightforward
For two person coalitions it is a bit more difficult. In that case. one has to distinguish nine different
cases. namely. 7, > r, and 7, > r,, #, = r; and 7, > r;. etc.... Then, using the same variant of
Farkas' lemma as in the proof of Theorem 3.2. one can derive for each case separately conditions on
the existence of a better allocation. Then combining these conditions will give the abovementioned

result.



Z(\) is a core allocation for this game if and only if for 2 = 1,2 it holds that

d, € (=3r,,3r;), ifr, >0 and
iy = 0 ifr;=0.

and

d3 > —3rs. if T3 > 0 and
d'g, 2 O lf s = 0

Now let us compare the core of a game with > - preferences with the core of a
game with x_-preferences. First, note that the core of the first one no longer needs to
be closed. Second, the core of a game with = p-preferences depends on the core of a
game with x_-preferences in the following sense. Denote by I'r the game I' with >p-
preferences, and by I', the game with x_ -preferences, where a = (a;, a2, . < o O
Since X > Y implies XY it follows that Core(Ta) C Core(I'r). Moreover, this
holds for all @ € (0,1)V. Hence, U,e(o,1)¥Core(I's) C Core(T'r). The reverse however

need not be true. as we will show in the next example.

Example 4.3 Consider again the situation described in example 3.3. From Example
3.3 and Example 4.2 we know that for d = ((3—6a)ry.(3—6a)r;,6a+(3—6a)rs) both
(d.r) € Core(T,) and (d.r) € Core(T'r). From the results of example 4.2 we also
know that d = (—1.1,3) and r =(7,4,1) is a core allocation with respect to >p-
preferences. This allocation, however, cannot be a core allocation for the game with
z -preferences. To see this, suppose that (d,r) is a core allocation. Then ry.72.73 > 0
implies that a; = a; = a3 = a. Similarly to example 3.3 one can derive that (J,f)
is a core allocation if d, = (3 — 6a)fy, d; = (3 — 6a)f, and ds = 6a + (3 — 6a)fs.
However. there exists no a satisfying —1 = (3 —6a)% and 1 = (3 — 6a)&. Hence,

12
(d,r) & Core(T,) for any a € (0, ).
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The preference relation X yields many incomparabilities of stochastic variables.
As a result. the core is a fairly large set and, moreover, counter intuitive core alloca-
tions arise. Consider in example 4.2 the allocation with d = (=3 +¢€,0,6 — ¢) with
¢ small and r = (1,0.0). Then agent 1 bears all the risk and, on top of that, he
also has to pay an amount almost equal to 3. On the other hand, agent 3 bears no
risk and receives an amount of money closely equal to 6. This allocation would only
be credible as a core allocation if agent 1 is extremely risk loving. that is. he prefers
the pavofi =3 — 2 =N = E{.X'); ~ U(=6 +z.2). which gives him only a (small)
positive payoff with probability 4, to a payoff zero with probability one. However,
the preference relation x does not reveal any information about whether the agent
is risk loving. risk neutral or risk averse. As a result, the core allocation mentioned
above. should also be stable if agent 1 is risk averse. which, from the authors’ point of
view, seems not very likely. Thus an important difference with the x_- and the von
Neumann/Morgenstern preferencés is pointed out, namely that different behaviour
of agents towards risk cannot be captured when using preferences X .

A straightforward way of ordering stochastic variables. is looking at the expecta-
tion. Then. for two stochastic variables X.Y € L'(R) we have Xz} if and only
if E(X) > E(Y). Note that X} whenever Xz Y. This preference relation is
complete and implies risk neutral behaviour of an agent. Hence, risk averse and risk
loving attitudes cannot be modelled. If, however, we adapt preferences Xz in the
following way. also these types of attitudes can be modelled.

Let X.Y € L'(R) be stochastic variables with finite variance and let b € R be
arbitrary. Then Xx%Y if and only if E(X) + b/V(X) > E(Y) + b\/i—'()_) where
V(X) denotes the variance of X. Note that if b = 0 the preference relation =0
coincides with xz. For these type of preferences, b < 0 implies risk averse behaviour,
b = 0 risk neutral behaviour and b > 0 risk loving behaviour. Moreover. we can
derive counterparts of Lemma 3.1 and Theorem 3.2. For this, we replace uXs(e) by

E(Xs(a)) 4 b,\/V(Xs(a)) for all 1 € N and all § C N. The balancedness condition
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then becomes,

:Telz:\fr.réa\E(X«(a)) b/V(Xx(a)) >
> u(s)- 23’5’?5"(5 (Xs(a)) + b\/V(Xs(a))

schN

for all balanced maps u.

Theorem 4.4 Tet T = (V. (4cie-v / Xele-v. (2")cv) € SGIN). Then the core

of I is non empty if and only if T 1s balanced

Although % is complete and distinguishes different kinds of behaviour with re-
-pect to risk, it is not implied by x . For example, let X ~ U(0,6) and Y ~ U(0,2).
Then X > Y but ¥ »* X whenever b <34. Although an agent with such preferences

is risk averse. it is still natural to expect that he prefers X over Y.

5 Concluding remarks

This paper introduces a new class of cooperative games. with the aid of which various
cooperative decision making problems in a stochastic environment can be modelled.
Besides a discussion on the applications of the model and the preferences of the
agents. our interests were focused on the core of the game. For special classes of
games it was shown that the core is non empty if and only if the game is balanced.
An interesting question within this framework is if a similar result can be obtained for
other preferences. for example the von Neumann/Morgenstern preferences discussed
in Section 4.

Other remaining questions concern solution concepts. How to define a Shapley
value or nucleolus for games with stochastic payoffs? In answering these questions
one has to know what is a marginal vector and how to compare the complaint of one

coalition to the complaint of another coalition.



System of linear equations L1:

(Zhien ooeeeeeeeeens ' In 0 r, 0 '
By 465804 LE08 0828108000 ) 0 3 |
i 24 260684 12 5300 RAR AR el 0 1
LT rem———— 0 el i N F(Xs())
R 0 - il = F(Xs(a))
; d, :
(idies -+ Vies (ugs® — E(Xs(a))) - e] €] : dy +r(u)¥® — E(Xn(a))) + €
: : J | d, | :
where Iy denotes the N-dimensional identity matrix and es denotes the vector with (es)i = 1'if 1 € S and (es); = 0 otherwise.

The variables on the left denote the dual variables. Note that for notational reasons we have included r, and d, for 1 € S. Since

the corresponding coefficients for these variables are equal to zero, this does not affect the resnlt.

44



System of linear equations L2:

(2)ien oo In o | [~] | 0
Rii cummosssiiid 1 abbe oReaRt el 0 % 1
i SRERIFARIEEFREIRABEVEETE —ef, 0 - -
Qi FUTEREEASEERIRIGII I 0 e T % E(Xn(a))
Qi GEESEEsRbe s iR 0 el d, - ~E(Xn(a))
: : d; :
(#(S))scn--- VSCN }:.es(“({,"(") - E(Xn(a))) - ".T f’; : MaXseas MaX,es uff('i)
d, .
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