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Cooperative games with

stochastic payoffs

.TEROE~ SL~IJS i PETER BOR~f :~tiJA DE ~~-AEGE~AERE
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August 29. 199~

Abstract

This paper introduces a nea class of cooperative games arising from cooper-

atice decision ma};ing problems in a stochastic encironment. ~~arious examples

of decision making problems that fall within this nex. class of games are pro-

~ided. For a class of games aith stochastic pacoffs where the preferences are of

a specific t~pe. a balancedness concept is introduced. It is pro~ed that the core

of a game uithin this class is non empt~ if and onl}~ if the game is balanced.

Further. other t~ pes of preferences are discussed. In particulat. the effects the

preferences ha~.e on the core of these games are considered.

Iievti'OSiDS: cooperati~e games, stochastic variables, core, balancedness, pref-

erences.
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1 Introduction

In general, the pa}~off of a coalition in cooperati~-e transferable utilit}. games is as-

sumed to be known with certaint}-. In man~~ cases, however, pa}.offs to coalitions are

uncertain. This would not raise a problem. if the agents can await the realizations of

the pa}~offs before deciding which coalitions to form and which allocations to settle

on. But if the formation of coalitions and allocations has to take place before the

r,~.,-,?~ ~~i'.' !~... ,. .'nr~~ard roopera?~~e eamP theor~ dne~ nn lonePr ar~.,'..

Charnes ár,d C;rcr,ot , 197~; cor.sidered cooperat~~e games in stochastic charac-

teristic function form. For these games the value L'(S) of a coalition S is allowed

to be a stochastic variable. They suggested to allocate the stochastic payoff of the

grand coalition in two stages. In the first stage, so called prior payoffs are promised

to the agents. These prior pa}offs are such that there is a good chance that this

promise will be realized. In the second stage the realization of the stochastic pa}off

is a~caited and, subsequentl~, a possibl~ non feasible prior pa}-off vector has to be

adjusted to this realization in some wa~.. This approach was elaborated in Charnes

and Cranot (1976j. C'harnes and Granot (1977J, and Cranot (1977J. hlost of the

time the adjustment process is such that obiections among the agents are minimized.

In this paper ~~e ~till not follo~~~ the route set out b} Charnes and Granot. Instead

we will introduce a different and more estensive model. The main reason for this is

that the model used b~- Charnes and Granot (1976) assumes risk neutral behaviour

of all agents. The model ~~~e introduce allows different t~-pes of behaviour towards

risk of the agents. ~loreover, each coalition possibl}~ has several actions to choose

from. which each lead to a(different) stochastic payoff.

In Section 2 we introduce our model of a game with stochastic payoffs. Further-

more we give examples. arising from linear production problems, financial markets,

and sequencing problems, which fall in this class of games with stochastic payoffs.

Also the core of such a game is defined. In Section 3 we consider a special class of

preferences. The ordering of stochastic pa}~offs for these preferences is based on the
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~-quantile of the stochastic pa}.off. So, these preferences are determined b}~ the num-

ber o. lforeo~er, different kinds of behaviour towards risk of the agents will result in

a different value for Q for each agent. For games with these preferences we provide

a new balancedness concept, which is an extension of the balancedness concept for

standard TL~-games. ~~'e will show that the core of a game with stochastic pa}'offs is

non empt} if and onl~ if this game is balanced.

1' - llu.~Y,. ~ .r.,. uL.r. ,~~P~uli~ -...:E-Iltc~.~tLt-á~-r;...- C-.~án1p;P51iiU~iid:a~

the effect of the preference relation on the core of the game. Furthermore, we show

that for some preferences a similar result a,s obtained in Section 3 can be derived. if

the balancedness concept is slightl}' adjusted.

2 The model and some examples

In this section we will introduce a general framework to model cooperative games with

stochastic payoffs and transferable utilities. ~loreover, we will gice some examples of

situations w'hich can be captured within this framew'ork.

A game w ith stochastic pa}offs is defined as a tuple (.~. (-1s)sc ~-(-~s)sc ~~(~, )~e.~ )-

w.here `- -{ 1. 2. .... n} is the set of pla}~ers. .4S is the set oí all possible actions coali-

tion S can take. and .~~ : AS --. L'(R) a function assigning to each action a E As

of coalition ti a real valued stochastic variable .YS(a) with finite expectation, repre-

senting the pa~~off to coalition ti when action a is taken. Finall~~. ~~ describes the

preferences of agent r o~er the set L'(R) of stochastic ~ariables w~ith finite expecta-

tion. For an~ .~".}~ E L'(R) we denote X~~}~ when the pa}-off .~ is at least as good

as the pa}-off } according to agent i, and .Y r, }- when agent i strictl}' prefers X

to }'. The set of all games with stochastic pa}-offs and placer set :~' is denoted b}-

SG(.~~). .~in element of SG( ~-j is denoted b}~ r.

If we compare a game with stochastic payoffs to a standard Tli-game, we can

distinguish two major differences. First, the pa}'offs can be random variables, which



is nct allowed in the standard case. Second, in a game with stochastic payoffs the

actions a coalition can choose from are explicitl~~ modelled as opposed to the standard

case. In the standard case coalitions possibl~. can choose from several actions, but

since the payoff the}~ want to maximize is deterministic there is no doubt about the

optimal pa}-off. Therefore, the actions of a coalition can be omitted in the description

of a Tl--game.

a first application cazi be found b~ modif},ng Lnear production games, which

were introduced bt Ou~en (1995). In a linear production game each agent i E IV

owns a resource bundle 6, E R;. The resources can be used to produce quantities

.r~,.r2.. .., zm of goods 1.2.. .. , m according to some technology matrix 1l1 E R'xm

which can be sold for prices c~, rz.. .. , c,,,. The ~~alue cf a coalition S of agents then

equals the maximal re~enue this coalition can obtain gi~.en their resources, i.e.

t'(S) - max{~c~a~ j.ti1.r C~b,. a-(.z~.a2......r~;Í 1 U}.
~-1 - ~ES -

tiow suppose that the compositions of the resource bundles are not known with

certaint}, i.e.. the resources of agent : are represented b~. some nonnegati~~e stochastic

~ariable B' E L~1R.1. ~foreo~.er, agents are not allowed to aw.ait the realizations of

these ~~ariables. before deciding upon a(jointj production scheme.

The abo~.e situation cannot be modelled as a traditional TG game. However, it

can be modelled as a game with stochastic pa}~offs in the following wa~-. Let .~' be

the set of agents, and define the set of actions of a coalition S C.ti- b}~ As - {a E

R~' ~a~ ~ 0. j- 1. Z. .... m}. the set of all possible production bundles. ?~ow we

define the pa~off oí a coalition S C.~- ~~-ith respect to the action a E As as the

stochastic ~-ariable .l~.la) gi~-en b}~

I CTa. lf Sia G~ ES B~

.~.(al -
(1l 0, otherwise.

Hence, the pa~-off Xs(a) equals cTa for any realization of resources for which the

production scheme is feasible and it equals zero otherwise. As a consequence coalitions
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could uccide on going for a production plan which is feasible with little probabilit~ but

}~ields relativel}. high revenues when feasible, or, a production scheme which is feasible

wíth high probability but yields relatively low revenues when feasible. Obviously, this

decision is highly influenced by the agents' valuation of risk.

In the case considered above, onl~- the resources were assumed to be stochastic.

Clear]}. one could also assume that prices and~or technolog}~ are stochastic. These

situations can be modelled as games with stochastic pa}~offs in a similar wa}~.

The secoud application concerns financial mazkets. For a general equilibrium

model on financia; markets the reader is referred to bfagill and Shafer (1991J. The

examples we provide will show some substantial differences with the model considered

by ,4laqil! and Shafer (1991 J. First. our models focus on cooperation between the

agents, and second, the assets we consider are indi~~isible goods.

In the first example, we ha~~e a set .ti' of agents with each agent ha~-ing an initial

endowment m' of mone~.. Furthermore, we have a set F of assets, where each asset

f E F has a price r,; and stochastic revenues R~ E L'~R). tiow-. eacó agent can

in~est his mone} in a portfolio of assets and obtain stochastic recenues. 1~'e allow

the set F to contain identical assets. so that ~~~e do not need to specif}~ the amounts

agents bu~ oí a specific asset. For example, if a firm issues k shares of t}-pe f, then

all the shares fl, f~...., jk are contained in F(cf. :1lodigliani and .1fi!(er (19~8J).

Instead of buying portfolios individually, agents can also cooperate. combine their

endowments of money, and invest in a more di~ersified portfolio of assets. This

behaciour can, on the one hand, result in a less riskv investment, but, on the other

hand, creates a problem, namely, how to divide the returns and the risk in~~olved o~er

the participating agents. This situation can be modelled as a game ~~-ith stochastic

pa}offs by defining for each S C.`~, S~ 0

As-{ACF~ ~~rlC~m'}
)EA ~ES



a~ the ~e; of aii possible portfolios coalition S can afford, and for all .4 E.4:

.~"; I .4 ) - ~ RJ
JEA

the stochastic re~~enues with respect to the portfolio A.

In the second example, we assume that each agent i already possesses a portfolio

A, of assets with stochastic re~~enues R' E Lt(R). Again, it is allowed for the agents

to combiue their portfolios and redistribute risk. In that case, each coalition h C~~

i : .... , .. ~. . .. .. . .... . . .-,.á-,: 1,a ~ti .~ . - .-.. - f-' U: r~'.:: ~. . the prul~~ir-!. -

how to di~ ide the returns and the risk remains, just as in the first example.

The final application we consider arises from sequencing problems. In a one

machine sequencing problem a finite number of agents all have exactly one job that

has to be processed on a single machine, which can process at most one job at a time.

~loreo~er. each agent incurs costs for even- time unit he has to wait for his job to be

completed. Further. ~ce assume that there is an initial processing order of the jobs

and that each job has a read~~ time, this means that the processing of a job cannot

start before its read} time. Corresponding to such a sequencing problem one can

define a cooperati~e game. ~rhere the ~alue of a coalition equals the cost sa~-ings this

coalition can obtain ~cith respect to the initial order b~- rearranging their positions

in an admissible wa}: ~ce refer to Curiel, Peder,oli and Tijs (1989j for the case ~ti-ith

affine cost functions and all read}- times equal to zero, and Hamers, Borm and Tijs

i1993i for read~ times unequal to zero.

Ho~~~e~er, the results obtained b}- Curiel et al. (19d9j and Hamers ef al.(1993J

onl~ appl~ for the case that processing times are deterministic. ~~'hen processing

times and read}~ times are uncertain, a sequencing problem can be modelled as a

game with stochastic pa}.offs in the following wa~-. Let ib' be the set of agents and

let P' E L'(R) and R' E C(R) describe the stochastic processing time and read}-

time of agent i, respecti~-el}'. Denote by o: A' y{1,2,....n} a processing order

of the jobs, where o(i) denotes the position of job i in the processing order v. In



parti~uiar. oo denotes the initial processing order. Finall~-, denote b}~ k' : Rrt y R

the cost function of agent :. Then k'(f) equals the cost agent a incurs when he spends

t time units in the s}.stem. The set As of actions of coalition S will then be the set

of all processing orders which are admissible for coalition S. Here, admissible can be

defined in several wa}~s. for instance, a processing order a is admissible for coalition

~ if no member of S passes an aeent outside S(cf. Cunel et al. (19B9J).

The cor.inletion time of aeent i in a processing order o is a stochastic ~~ariable

C~` i.~; c L' ~, R~ dehned ~~-

C'(o) - max{C'(o), R'} t P',

~chere j is the agent exactl}- in front of agent i, that is, a(i) - o(j) f 1. Then the

stochastic pa}off .~';(o) for coalition S with respect to an action o E As becomes

.~s(al - - ~ k'(C'(
~E~

))-

So the pa}~off of coalition S equals minus the waiting costs of all members of S. Again,

the action taken bc a coalition w~ill be influenced b~ the agents~ caluations of risk.

As ~-as the case for traditional TL" games, the main issue for games ~~ ith stochastic

pà~offs is to find an appropriate allocation of the stochastic pa~~off of the grand

coalition. For this, howe~-er. we first need to know how an allocation of a stochastic

pa}~off is defined. For deterministic papoffs: the definition of an allocation is quite

ob~ious. For stochastic pa~offs an allocation could be defined in se~-eral ~ca~~s. For

instance, let .1- E L'(Ri be the pa}-off and let ~ be the set of agents. Then an

allocation of .l- can be defined as a ~-ector (.~.'..1-......~"~) E L'(R)~ such that

~,E~ .l"' -.l". So. each agent i gets a stochastic pa}off .~i' such that the total pati-off

.~" is allocated. `ote that the probabilit~~ distribution of an agent's pa}~off need not

be of the same t}-pe as the probabilit}- distribution of the pa~~off X. Hence, this

definition induces a very large class of allocations, which, on the one hand, is nice,



but. ou the other hand. tti.ill gi~-e computational diffiiculties. Therefore we reduce the

class of allocations b}~ adopting a more restricti~~e definition.

Let ti C.~-. a E As and let .l's(al E L'(R) be the stochastic payoff. An allocation

for ~ can be represented bc a tuple (d.r~a) E R' x Rs such that

(iï Ld~ - EÍ-~~s(a))
,E`

(ii! ~ r, - 1 and r, ~ 0 for all t E S.

with the interpretation that the corresponding pa}off to agent i E S equals

(d. r~a), :- d, ~ r,(-tCs(a) - E(.Xs(a)))-

So, an allocation of .~~cíai is descnbed bv an allocation of the expectation E(Xs(a))

and an allocation of the residua] .~~s(a) - E(.Ks(al). K~ hich H-e will call the risk of the

pa~-off .tt~,íal. The set of all possible allocations for coalition S is denoted by Z(S).

Exarnple 2.1 Consider the folloHir.g situation, K~here tw.o agents each possess a

portfolio .-1;. i- l.'?. The portfolio ,-11 consists of riskless bonds, H~orth 5100 and

pa~ine interest of :i`i. The portfolio .-12 consists of one asset ti-ith stochastic re~.enue

.~- ~chere .l~ -~- (~(O.i;). Hence, ne ha~e R' - 5 and R' -.~t~. If the agents cooperate

and combine their portfolios, their joint pa~off equals R' f R~ - ~ t-~~. The expected

pa}~off of this combined portfolio equals 9. Consequentl}-. the risk R' f R~-E( R' ~-R2)

of this portfolio equals .~~ --1 -r (~(-~.~1L Then. an allocation (d.ri results in the

pa~ofF d: - r,Í.~- --11 for agent i- 1.?. `ote that if d- (5.-f) and r-(0.1) then

the pa~off to agent 1 equals R' and the pa~off to agent '? equals R2.

~ow- that ~ce ha~e the definition of an allocation, we can define the core of a

game H~ith stochastic pa}-offs. Let C E SG(.~-). Then the core of this game is defined

as the set oí all allocations for ,ti- for w~hich no coalition S has an action and an

allocaticn of the corresponding stochastic pay.off such that all members of S prefer
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this ailocation to the former one. lfore formall}. an allocation (d. r~a) E Z(.~') is a

core allocation if there does not exist a coalition S and an allocation (d, r~à) E Z(~)

such that (d. r~á), r, ( d, r~a), for all i E S. The core of a game F E SG(.~') is denoted

b~ Core(F).

3 Balancedness for games with stochastic payoffs

In this sF~c'.~~:. ~~,~- :,,:r~~d~,.ce á l,á;aucednes~ concept for a speciai cla.:- of game~ ~ti~;'i.

stochastic pa}offs. This class consist of al] such games with the following t~~pe of

preferences. Let .l'. }' E L'(R) with distribution function FX and Fy, respectivel}'.

Take o E(0, 1). Then .tti~~}` if and only if uá ~ uá with uo~ :- sup{t ~ FX(t) C a}

the a-quantile of .1~. .a game where ~~ represents the preferences of agent i for all

i E.~~ is denoted b}~ Fo ~~'here a-(at,a,....,a„) E(0,1)".

For relating different ~~alues of a to difíerent t}~pes of risk beha~-iour we first need

to ïormalize the concepts risk neutrality, risk aversion and risk lo~.ing. Therefore.

let ~ describe the preferences of an agent over the set L'(R) of stochastic variables.

Then ke sa~ that ti imp!ies risk neutral beha~.iour of the agent if for al] .X E L'(R)

~ce ha~e .~- ti Ei.~ ~. So, the agent is indifferent between the stochastic pa}off and its

expectation ~~ith certaint~. Subsequentl~.. we sa~ that ~ implies risk a~erse behaviour

if .l',~„ Li -l~ I holds for al] .~~ E L' ( R)~ti ith strict preference for at least one .l E L' ( R),

and risk lo~ing beha~.iour if .1~E(.l~) holds for al] X E L1(R) with strict preference

for at least one .~~ E L' Í R 1. So, a risk a~erse agent prefers the expectation of a

stochastíc pa~off to the stochastic pa~-off itself, while a risk lo~-ing agent rather has

the stochastic pa~~off than its expectation. :~loreo~~er, let lr~ and ~~ be the preferences

of agent : and j respecti~-e1~. Then agent j beha~~es more risk locing than agent i, or.

eyui~alentl~. agent i beha~~es more risk acerse than agent j, if for all .~ E L'(R) we

ha~e that

{~-~ }-z,E(x)} c {}~~ ~~~,E(.~)}.
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Returning to the ~o-preferences, w.e can say that agent i is more risk a~~erse than

agent j if and onl} if o, C Q~. 1ote, hok~ever, that according to the definitions above

the ~o- preferences cannot be interpreted as either risk averse, risk neutral, or risk

lo~ ing beha~ iour in the absolute sense.

Before we introduce the balancedness concept we recall the definition of a balanced

map. For that w~e define for each coalition ~ C.~~ the ~~ector es E R, w.ith ( es), - 1

if i E ti and ( es), - 0 if i~ S. Then. a map {r : 2,~`{Q} --~ ( 0. x) is called balanced

ii ,J,-~ F~~ ~~ . e~ - e~. SubseGu~-:.t.. ., -... - ~.'~ ~ is called balanced if for

each balanced map ~ we have'

max max uó"'ta' ? ~ p(S)
aE.~1:v ~E 4 SC ~.

max max uá5~a1
aEA- ~ES

~ote that for deterministic TL'-games the expression maxaEA~ max,ES uo`tal boils

dott~n to max,ES uó,s~ tc-hich is equal to t~( ti j. So, for deterministic TL--games this

neK~ balancedness concept coincides K~ith the original balancedness concept for such

garnes. In order to pro~~e that the core of I is non empt} if and onl~~ if F is balanced,

t~~e need the ïollo~ti-ing lemma.

Lemma 3.1 Let F, - Í ~-.Í.-l;lsc~~.(-~s)sc~~.(~o,1,E~~) E SC(.1~1 and let ( d,rla) E

Zi ~ I. Then coalition ` has no incenti~'e to split off if and onl}~ if

~~d, ~- r,(.u-;~,~"~ - Ei.l~ía)))) 7 max maxu;,'r'i.
- áE.4s ~E~

~ES

PROOF: Let ~~ `~. ~~e tcill prote the lemma b} show~ing that the coalition ~ has

an incenti~'e to split off if and onl~' if

~ ~d~ ~ r,(u;;`~I'I - E(-~~.~(a)))~ G
,E~

max max u X`tal.
áEAs ES '

' 1i'e assume that the maximum o~er the set AS of aztions exists for all S C n-. For [he applica-

bility of the forthcoming results. however. this assumption will hardly be any restricuon, since often

the set of acuons will either be finite or can be modified in that way
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`1e start t~-ith the ~ onl~ if~ part. If ti has an incenti~~e to split off then there exists

an allocation (d.r;ál E Z(S) such that

d, t i",(.~~~lál - E(.~'s(à))) ro, d, t r,(.titi'(a1 - E~-K.v(a)))

for each r E ti. This implies that

d, - r,í u~~~,`~~' - E(.~'s(àl)) 1 d, f r,(u'~~"ta~ - E(.ti'.~~a)))

. - a : ; - ~. Summing over all men:'' .

~ ~d~ T r,luás(e~
-

E(.~s(á)))~ 1 ~ ~d, -~ r,(u~"íai - E(.l'.v~a)))~ .
,ES ,ES

lising ~,E,d, - Fl.l',(á)) and ~,E~r, - 1 results in

~ r , u.a,-~ai ) ~ ~d, t r,(uó `'I'~ - E(-kn'(a)))~ .
,E` ,E`

Since 0 c r, G 1 for all i E S w'e hace

t;~:~ x,~~imazi;~, ~~ d, t r,~u~,' - El-~~(ol)l~.

Then the result follo~cs from

maz maxu~'~s~ 1 rnasi;t`'~
~EA, ,E~ " - ,E. .~..

For the'~if~ part of the prooí. it suffices to sho~~' that if

~~d, ~ r,lu:~,`I'I - E(.~~~Íall)~ G max maxuo~`t~i
E~ dEAg ,ES

there exists an allocation i d. i~, là ~ c Z( ~ 1~cith à E are mas,E.a~ max,Eq u;~ `~" such

that

d~ f r~lu.t,u~ - Ei.~-,lá'~il ~ d, ~- r,(u.~,(~~ - El-~.v(a)))~, ~,

for all t E S. So. it suffices to shoN- that the system of linear equations L1 (see page

23j has a solution for some ~~ 0. ~~'ithout loss of generality w.e may assume that

0 G: G ISI ~ ID SXUó~`In) - L (d, t Ti~uo Nl~) - E~XNIa))))~ .
` ,ES



.~1pp'.} ing a ~~ariant oí Farkas~ ]emma ~, L1 has a solution if and onl~ if there exist

no I-,),E~ ~ 0.pt.p~.q~.qz ? 0.(Y,),ES ? 0 such that

-,-0, foralliE.~'`S

y,(uó,`~'~ - E(XS(á))) t pt - ps t z, - 0, for all i E S

y,fql-q2-0. foralli ES

~ y~ ~d, f r,lu~t,`Iai - E(.~t~n~la))) t e~ t(9t - g~)El-~s(á)) t pi - p~ ~ 0.

Or eyui~'aientl~. tnere exis: no p.g c K. (y,i,E-; 1 U such that

y,(u~st"~ - E(.~S(á))) f p C 0, for all i E S

y,-fq-0, foralliES

~ y, ~d, f r,(uo"'~a~ - E(.~',~-(a))) -~ E~ t 9' El.~s(á)) ~- P~ 0.
~ES

From the equalities abo~~e we deri~'e y, - y for all i E S. B~' combining the two

inequalities and substituting q--y. the statement abo~e is equi~.alent to the non

eaistence of a y j 0 such that for all i E S we ha~-e

y(u;,-`'o~ - EI.~~;(á))) c y~~d~ t r,(uo~,.fa) - E(.fi,~.(a))) t-~ - y' E(-l"slàl).
,G;

Equi~alentl~'. there is no y 1 0 such that

`' gld) ~'i~(a)ymaxuó, Gy~~d,rtr,(u~ -E(.l~(a)))t::
~E~ ,ES

t.-sing - G ~~ max,ES u;','~ai -~,E: ~d, f r,(u,;~~n~ - E(.tt~v(a)))~~ ~-ieldss~

r~~ai t';laiy max u , G y max u'-
,ES ,ES

Ob~'iousl~'. such y do not exist. Hence, the system of linear equations L1 has a solu-

tion and the proot is finished. 0

'The cariant of Farkas' lemma w~e use óere is: Ar ~ 6 has a solution if and onlv if there exists

no y 7 0 such that yT A- 0 and yT6 1 0.
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Theorem 3.2 Let r, -(.~~, ).~15 jSC ~.(.iS )SC,ti-, (~o ),E,ti ) E SG(:~-). The core oí I'a

is non empt} if and onlc if r, is balanced.

PROOF: From Lemma 3.1 w~e know that an allocation ( d,r~a) E Z(~~`) is stable

against de~iations from coalition S if and onl~ if

~~d,-r,~a"~~''~'-Ei,.l'~Ialll~ ~ max maxu;`!'~.
. . - áEA~ iE~

Hence. tl:erc ~~~~.;~~ ~ ~ corr aÍiot ati~.~. ~ c'. r" r. , c Z~ ~" ~ if and onl~~ if the s~~stem of linear

equations L'2 (see page 2-4) has a solution.

Appl} ing the same ~-ariant of Farlas~ lemma as in Lemma 3.1, L2 has a solution

if and onl~- if there exist no (~ ,1,E~ ? O.p~.pz.q~.q~ ? 0,(p(S));c.v ? 0 such that

~ p(~I~u.t,.:~~!-EI-~.~~(al~) ~ Pi-p~~r,-0, foralliE
~.

S` ~' ~E.i

~ l~(`)-9i-9~-0. foralliE.1'
.-~:E~

~! ` I maz mas u;t~`r'~ ~- lELtt"~- n-t~ ~ 0.~ F . E.~~ ,E~ ( 4i -qz ( )) Pi -Pz
Sc ~'

Eqtii~alentl~. there esist no p.g E R.Ip( ti Ilcc~ ~ 0 such that

~ pl ~ li ic~ `!'! - E1.1~~ (o )11 -~ p G 0. for all i E.`~
c ~ :~-

~ Fi( ~ i- y. for all i E.~~
cC ~" ~E:

~ E~íS'1ma~maxu;~`!" - q.E(-Y~(a))tp10.
`C`. EA~ ~E~

This is equi~alent to the e~istence of q E R and (p( ti))SC~ ~ 0 such that ior each

t E ~

~ p(y)lu~;`~a~-E(.k~(a)))~ ~p(ti)maamaxuásla) - q.E(X.v(a))
SC~":,E~ ~CA. àEAS ,ES

and

~ p(S)-q, foralliE~~'. (1)
SC ~":~ES
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Substitu~ing ( 1) and rearranging terms }ie]ds equi~-alently that there exist no q E R

and (N~ ~j)5~~. ~ 0 such that for all i E ~~ we ha~e

~ ~( ti~u.zxlol G~ p( ~) maX max ux`~~) (~)
~C ~~ ~EJ ,~ jC ~. àEA~ ~ES a,

an d

~ {iIS).es-e~ q,
s- ~

,,e f~~ ~l - 0 for all ~ -.~ ,,.,, a sc,:~~tio:: o; -,. we niust ha~~e iha: q) U.

Hence, we may assume that q- 1. Then we ha~e that there exists no balanced map

p such that for all t E .~~ w'e ha~e

uox,`t'~ G ~ ~(S)maxmaxu'~'t'~.
SC`. uEA; ES

Or eyui~'alently. there is no balanced map p such that

max u~,'ta~ G~ N(S) max max u, `cal
~E`' `.C`. áEA- ~ES '

.-~gain. this is equicalent with the fact that for all balanced maps {r we must ha~~e

~"x1a~ ~ a--(à)max u; ~ Ni ~ i max max u'
.è ~~ ' - iEA; ~ES ':C ~'

(3)

So. there exists a core allocation (d.rjQ) of the pay'off .l'~.(a) if and only~ if (:3) holds

for all balanced maps u. Hence. the core is non empty~ íf and only- ií for each balanced

map Fi we ha~e

maxmaxtr~':~'~ ~ ~ f~lti)maxmaxuo~'~'~
cE~.. ~E~ ' - ti``. ~E4: iEi ,

Example 3.3 Consider the following three person situation, where agents 1 and 2

possess the same technology~ and agent 3 possesses some resources. To produce a good

out of the resources of agent 3 the technology' of agent 1 or 2 is needed. iLforeover,

the good can be sold for a price, which is not known with certainty beforehand,
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but is un~forml~ distributed on the inter~.al [0,6~. This situation can be modelled

as a game with stochastic pa}~offs. with a' -{1.2,3}. I~sI - 1 for all coalitions

SC.~'..~"s-0for ti-{3}andallSCA"with3~5',and.~ti's-X-rC'(0,6)

otherwise. `ote that since each coalition onl~ has one action to take, the action a is

omitted as an argument in .l~s. `ow, let the preferences of the agents be such that

oi - az - os - o E(0.1 ). Then (d.r) E Z( ~~j is a core allocation if and only if no

coalition }.a~ ar i,~~P-,.i~.e to lear~ the erand coalition. Appl~ine Lemma 3.1 }ields

that

~ ~d, rt r,lv`k, - E(.fi".v))~ ? uó`
,ES

has to hold for all S C 1'. If S-{i},t E,ti~ this results in d, t r,(6o - 3) ~ 0 for all

2 E:~~. Re~t-ritine then gi~es d, ~ r,13 - 6a). If S- {1.2} we get

d, t dz ~ Ï rt t r2 )( 60 - 31 ? 0.

Substituting d, ~ dz - 3- d~ and r, -} rz - 1- r3 and rearranging terms yield

d3 c 6Q t rs(3 - 60 ). Ií S-{ 1. 3} we get

d, T d~ ~ r r, - rsli, 60 -:3 i~ 6Q.

Substitutine d, - d, -:3 - dz and rt t r3 - 1- rz and rearranging terms yield dz C

rz(:3 - 6o i. Similarl~. one deri~~es for S-{'?. 3} that dt C rl(3 - 6n). Combining the

results abo~~e. (d. r) is a core allocation if and onl}- if dt - rt(3-6n), dz - rz(3-6a)

and d~ - 6ct - r3(:3 - 60).

~o~ti let us tn to interpret these results. Because o, - o, i E.~" all three agents

ha~~e the same beha~iour to~~~ards risk. Let us take o-o. ~ext, consider the core

allocation ~~-ith d- í'; rt.'S'rz,? ti;r3) and ~,E,.,.r, - 1, r, 1 0, i- 1,2,3. Then the

pa~~off for aeent 1 equals 1?r, f rl(.~ - 3). Moreover, uo,~'}~'~~-3~ - 0. So, for a

core allucation. agent 1 is with probability ó worse off than his initial situation, that

is, pa}~off zero. The same reasoning holds for agent 2. For agent 3, the payoff equals

; fur3 ~ r3(.l- - 3). Consequently, uó,~ u"}r'~X-3~ -;. So, agent 3 is worse off than
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pa}oft ; ~ti'ith probabilit~' ~. Since all agents ha~'e the same behaviour towards risk.

we ma}' sa}- that agent 3 is slightl}' better off than the other two agents. Hence, a

more or less similar result is achieved if we consider the core of this same situation

with deterministic expected pa}~offs, i.e. t~(S) - 0 if 3~ S or ~S~ c 2 and v(S) - 3

otherwise. Then the core equals {(0,0,3)}, and indeed for that case agent 3 is also

better off than the other two agents.

11e conc}ude this section with some remarks First, note that the action taken

b}' the grand coalition at a core allocation maximizes max,ENUoN~') with respect

to a. Indeed, if ~(S} - 1 when S-,ti' and ~(S) - 0 otherwise, the balanced-

ness condition implies for a core allocation (d,r~a) E Z(i~') that max,E~-uó"ia) 1

maxàE,4,. max,E ~ u;~,`'''i. Aforeo~.er, it follows írom Lemma 3.1 that for a core alloca-

tion (d.rja) the risk -l~~(a) - E(.l",,~(a)) must be allocated o~'er the most risk lo~'ing

agentís). i.e. the agents who maximize max,E~ uá ""~'). For, if this is not the case, we

get

~á~ }
r~(u;~;`iai - E(.~~'Ía)))~ - ~~E~ r, . uv,,.(a)

~~E ~

G max,E.~.u~',,cu)

C max~E.a~. max,E~' u~ "'~'~.

This, ho~se~'er, contradicts the fact that the allocation must be Pareto optimal for

coalition ~" (cf. Lemma 3.1 for J-:~-).

For our final remark ~~'e tal:e a closer look at the balancedness condition. If we

define for each game F E SG( ~-) a corresponding deterministic TL--game (.~-,rr)

with rr( S) - maxaE.a; max,E c uos1') for each S C.ti', then I' is balanced if and

onlc if (.~~, rr) is balanced. A similar reasoning holds for allocations. An allocation

(d, rja) E Z( ~-) is a core allocation for I' if and onl}- if (d, fr,(uo~"~')-E(.~,v(a))));E;v

is a core allocation for (~~, t,~). This result follows immediatel}' from Lemma 3.1.

1ote, howe~.er, that the relation between the allocation (d, r~a) and the vector (d; t

r;(uóN~a) - E(X~-(a)))),E.v is not a one-one correspondence.



The results obtained in this section hold for a special class of preferences. In the

next section we consider other t~.pes of preference relations. Dloreover, we show that

the results obtained in this section can be extended to some of these preferences.

4 Preferences on stochastic payoffs

A common ~ca~ of orderine stochastic variables is b~ the use of

von Neumannj ~1.,:~~ :. ~: ii utili:: íurctions. In that case, an agei;t prefer~ u;;~.

stochastic payoff to another if the expected utility of the first exceeds the expected

utilitv of the latter. More formally, let X,Y' E Lt(R) be stochastic variables and let

u: R y R be the agent's monotonicall} increasing utility function, then X~ Y

ií and onl} if E(u(.k")) 1 E(u(}')). ~toreover, a concave utilit}- function implies

that the agent is risk averse. a linear utility function implies that he is risk neu-

tral and, finall}~. a convex utilit~ function implies that he is risk ]oving. So, von

tieumannlMorgenstern preferences are complete and transitive and can distinguish

between different kinds of behaviour of agents towards ri..k. However, for our game

theoretic approach these preferences lead to computationa] difficulties, as we sho~c in

the next example.

Example 4.1 Consider the situation described in example 3.3 but now~ with von

leumann~Aloreenstern preferences instead of ~~-preferences. Let the utility function

of agent t be given by the conca~e function u,(z) - 6- e-' and consider an arbitrarc

allocation (d.r) for ~~ of .~~. To check whether this allocation is in the core or

not, we first have to check whether (d. r) is individuall~- rational, that is, whether

E(u,(d, ~ r,(.~' - 3)) ? E(u,(0)). for al] i E ~~. Rewriting this inequality gives

6

E(u,(d, -~ r,(.l" - 3)) -} f 6- e-d,--,~~-s)d.r
0

- 6 -1(E-d,t3. - E-á -3r ) ) ~ -
E(u~(~)~
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if r, ~ 0. Hot~'e~er. this inequalit} is dif~icult to solve. Hence, an explicit condition on

the allocation ( d.r) is not a~-ailable. `ot surprisingl~, the problem will be even more

complicated to check t~'hether a two person coalition can improve upon the allocation

(d, r),

.~ natura] tt~at~ of ordering stochastic pa}offs is b}~ means of stochastic domination.

I.,. }} c( t, [; }„ ~~~,- ~~~r~ ~-r.riahle~ and denote b~ Fz and Fy the distribution

funcuons of .~ aná }. respecttte:, ~I't,e:: .~~ stoci;a:ticail~ dominates }~, in notatiu;,

X;uF}', ií and only if for all t E R it holds that Fa(t) c Fy(t). Moreover, we have

,~ rF Y" if and onh- if for all t E R it holds that F~(t) c Fy(t) and FX(t) c Fy(t)

for at least one t E R. Intuitivel} one ma}' expect that every- rationally behaving

agent, whether he is risk a~erse. risk neutral or risk lo~'ing, will prefer a stochastic

pa}-off .i o~er }' if X~F}'. Howe~'er, this preference relation is incomplete. Alan}'

stochastic s-ariables wil] be incomparab]e with respect to ZF. As we will see in the

next example. this incompleteness will lead to a relati~el} large core.

Example 4.2 Consider the situation described in example 3.3, but notti- with stochas-

tic domination as the preference relation for all agents. One can check3 that (d. r) E

3These tonditions for a core allocation are not obvious. Although i[ is not difficult to check them,

including the proot would lengthen the ezample with quite a few pages. A sketch of the proof goes

a.5 follows Consider an arbitrar~ allocation (d. r) E 2(.1") and check for each coalition S separately.

if there exists a better allocation Id.r) E Zlti). Fot one petson toalitions this is straightforward.

For two person coalrtions it ts a bit more difficult In that case. one has to distinguish nine different

ca,~es. namel~. r, ~ r, and r~ ~ r~. P, - r, and r~ ~ r~. etc.... Then, using the same variant of

Farkas' lemma a' in the proof of Theorem 3.2. one can derive for each case separately conditions on

the extstence of a better allocation. Then combining these conditions will give the abovementioned

result.
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Z( ~ i is a core allocation for this game if and only' if for i- 1, 2 it holds that

d, E(-3r„3r,), if r, 1 0 and

d,-0, ifr,-0.

and

d3 1-3r3, if r3 , 0 and

d~10. ífr-~-0.

Now let us compare the core of a game with rF- preferences with the core of a

game with ~o-preferences. First, note that the core of the first one no longer needs to

be closed. Second, the core of a game with ~F-preferences depends on the core of a

game with ~o-preferences in the following sense. Denote by rF the game I' with rp-

preferences, and by' I'o the game with ~o -preÏerences, where n- ( nt, a~, ..., n„ ).

Since .fi~ rF }~ implies .lZv}' it follows that Core(I'v) C Core(I'p). Aloreo~-er, this

holds for all n E(0, 1)'ti. Hence. UaE{o.I~.vCore(I'o) C Core(rp). The reverse however

need not be true. as we will show' in the next example.

Example 4.3 Consider again the situation described in example 3.3. From Example

3.3 and Example 4.2 we know that for d-((3-6n)r~. (3-6n)r2,6n~(3-6n)r3) both

(d.r) E Core(rv) and (d.r) E Core(1'p). From the results of example 4.2 we also

kno~c that d-(-1.1,3) and r-?(i,4,1) is a core allocation with respect to Y-F-

preferences. This allocation, however, cannot be a core allocation for the game with

~o-preferences. To see this, suppose that (d, r) is a core allocation. Then rl. r2, r3 ~ 0

implies that n~ - nz - a3 - n. Similarly to example 3.3 one can derive that (d,r)

i~ a core allocation if d~ -(3 - 6n)r~, d2 -(3 - 6n)r~ and d3 - 6n f(3 - 6Q)t"3.

Ho~ce~'er, lhere exiscs no n satisfy'ing -1 -(3 - 6aj,'-, and 1-(3 - óct)s. Hence,

(d,r) ~ Core(I'Q) for any- a E(0,1)'ti~.



?0

Th~- preference relation ,~p }ields man}' incomparabilities of stochastic variables.

As a result, the core is a fairly large set and, moreover, counter intuitive core alloca-

tions arise. Consider in example -{.2 the allocation with d- (-3 -}- e,0,6 - E) with

e small and r -( 1.0. 0). Then agent 1 bears all the risk and, on top of that, he

also has to pa}' an amount almost equal to 3. On the other hand, agent 3 bears no

risk and receives an amount of mone~ closel~~ equal to 6. This allocation wollld only

be crPhiblP a~ a core allocation if aeent ] is estremel~' risk loving. that is. he prefers

t~;:c p~.. ,. -. - - - ~.1 - E~.l ~~ -- (~~,-(~--.- . whicó g;~es him onl}' a Ismaiii

positive pa}'off with probability ,~;,, to a payoff zero with probability one. However,

the preference relation ~p does not reveal any information about w'hether the agent

is risk loving, risk neutral or risk averse. As a result, the core allocation mentioned

above, should also be stable if agent 1 is risk averse. ~~'hich, from the authors' point of

view, seems not ~'en' likel}'. Thus an important difference with the ~,- and the von

~eumann~'`Iorgenstern preferences is pointed out, namel}~ that different behaviour

of agents totti'ards risk cannot be captured when using preferences ~F.

A straightfor~~'ard way' of ordering stochastic variables. is looking at the expecta-

tion. Then. for t~t'o stochastic variables .~-.}~ E Lt(R) ~s'e have -k-~E}~ if and onlv

if Ei-1 I ~ E~}~l. `ote that -1~~E} whenever .I~ZF}". This preference relation is

complete and implies risk neutral beha~'iour of an agent. Hence, risk averse and risk

loving attitudes cannot be modelled. If, however, tt'e adapt preferences ~E in the

follo~cing ~ca~'. also these types of attitudes can be modelled.

Let -~~. } E Ltf Rl be stochastic variables with finite variance and let 6 E R be

arbitrar}. Then .l'~b}" if and only if E(X) f 6 E'(.tí ) 1 E(}') f b L'(}'). where

V'(.~ ) denotes the variance of .~. Note that if b- 0 the preference relation ~o

coincides ~s'ith ~E. For chese t}'pe of preferences, b G 0 implies risk averse behaviour,

b- 0 risk neutral behaciour and b~ 0 risk loving behaciour. hloreover, we can

derive counterparts of Lemma 3.1 and Theorem 3.2. For this, we replace uóSt'~ by

E(.~S(n)) f b, {'(.~S(a)) for all i E 1V and all S C N. The balancedness condition
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then becomes.

maxmaxE(.~'~(a)1f6, l'(.~'~(ajl ~
aEA~; ,E~~ -

~ N(SJ - mqxmax E(.Xs(a)) -~ ó , F'(Xs(a))
scs

for all balanced maps f,.

Theorem 4 4 I nt r-`~ ~~: ~:-~ ..~'.'~:-~.1~"'1„~ l F ~G1 ~'1. Then the core

of r is noc; ernpt~ it anci onlc iÏ I ts baiauceà

Although Z6 is complete and distinguishes different kinds of behaviour with re-

~1,ect to risk, it is not implied bc ~F. For example, 1et .k~ ~ C-(0, 6) and }' ti(~(0, 2).

Then .~~ rp }' but }' r~ .~~ ~henes-er G C--1. Although an agent with such preferences

is risk a~erse, it is still natural to expect that he prefers X o~~er }'.

5 Concluding remarks

This paper introduces a new class of cooperati~e games. with the aid of which various

cooperati~e decision making problems in a stochastic encironment can be modelled.

Besides a discussion on the applications of the model and the preferences of the

agents. our interests were focused on the core of the game. For special classes of

games it was shown that the core is non empt~~ if and onl}~ if the game is balanced.

An interesting question within this framework is if a similar result can be obtained for

other preferences. for example the ~-on :~eumann~~lorgenstern preferences discussed

in Section ~.

Other remaining questions concern solution concepts. How to define a Shapley

value or nucleolus for games with stochastic payoffs' In answering these questions

one has to know what is a marginal ~~ector and how to compare the complaint of one

coalition to the complaint of another coalition.



System of linear eryuat.ions L1:

~z~~~EN . . . . . . . .. . .. . . . . . .

Pi .....................

P2 .....................

4~ .....................

9s .....................

~y,)~ES...... di E S ~,~x s~oi - !;'(.Ks(,~))) ~ e;

d„

d~ ~ r~~t~.,,v~n) - i',~.Xly~a~ll f E

where Ifv denotes the N-di~nensional identity rnalrix and es dcnotes thc v~~ctor with (es), - I if i E S and (es), - 0 otherwis~.
The variables on the Icft denote the dual variables. Note that for notat.ional reasons we hav~' included r, and d, for i~,S. Since,

, the corresponding coe(Gcients for these variables arc ~~qual to ~cro, this dOCS not affect the rf~ti~ilt.



System of linear equations L2:

~Z)EN .....................

Pi ........................

Pa ........................

QI ......................:.

09z ........................

~l~~s))scN ... VS C N ~~ES~~~~
NÍ ") - f~

~,XN~(I))) ' ~~ ~~S

r,

i
!;(.KN~n))

-I;(.KN~R))

II~;iXoEAS fT18X~E5llX~si~)
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