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'1'his paper investigates which outcomes result in a game when the order of the
moves is endogenous. To that end we study a model in which players can move

in one of two periods, i.e. players face the trade-off between committing early

and forcing the opponent to best respond, and moving late so as to be able to
play a best response against the opponent. It is shown that most mixed strategy

equilibria of the original game are not viable when the sequencing of the moves is

endogenous, hut that any pure strategy equilibrium is a perfect equilibrium out-
come of the timing game. Mote refined equilibrium concepts with an evolutionary

flavor, however, allow the conclusion that only equilibria in which no player has
an incentive to move first are viable.

'This paper is a substantial revision of our paper "Endogenous Timing and Strategic Commitment"

that was circulated in October 1992.
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1 Iritroduction

Onc of the most irnportant idcas in game theory is the value of comrnitment, the idea
that it nray be advantageous t.o constrain one's own behavior in order to induce others
t.o behave in a way tltat is favorable to oneself. Schelling's (1960) classic The Stmtegy oJ
GonJiicl is filled with examples that illustrate this idea that it might pay to reduce one's

Hexibility, that it rnay be optimal to burn one's bridges behind oneself. The simplest
commitment possibility that Schelling discusses (and what he calls the "pure uncondi-
Lional cornmitment") is equivalent to obtaining the first move: to preempt one's rivals
by choosing and communicating one's action before they do. That there might be a

first-mover advantage has also been pointed out by other authors. For example, in the
economics literature it has been known at least since Von Stackelberg's (1934) Markt-
Jor-m unrl Cleichyewicht that in a yuantity setting duopoly game, the leader has higher
pro(it.s, hc~nco, t.hat cach duopolist will want. to move before the other.

V:ui,~u, ,cnlb,~r, bnw. ;cr~,n~.,l Ili;rl Ihr ('~,niu„1 ,.~~iiilibrinni ia y~unrwlial. nunl~rrl. ex

actly bex:ause of Lhis facL that each duopolist has an iucentive to move earlier than his

opponent. Of course, if the duopolists are indeed forced to move simultaneously (as the
standard game model of the duopoly situation assumes) then there is nothing wrong
wit.h thc~ Cournot cyuilibrirnn, buL one rnay wonder whether in real situations the rules

are indeed that rigid as to prevent commitments from being made. Hence, it is a natural
question to ask which Nash equilibria are still viable when players have the opportunity

to commit themselves. This question has been addressed in Rosenthal (1991). That
papcr dcfines an equilibriurn of a 2-playcr game to be commitment robust if there is no
player who can improve his payoff by moving first and by communicating this move to

the opponent before the latter moves. Hence, according to Rosenthal a Nash equilibrium

is cornmitment robust only if it is also a Stackelberg equilibrium of each of the two games

where. onc of the players is allowed to move first.

Whilr Rosenthal's definition is attractive, it also is not entirely compelling. The si-
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multaneous move game is compared with the two perfect information sequential move

games in which the leader is exogenously specified, but it is not clear why the latter games

are relevant to the study of the former situation. The original problem derives from the

possibility that each player might or might not choose to move before the other, hence,

one would like to aee Lhe order of thc movc~s bcing determincd endogenously. Ro,~-nt.bal

is aware of this problem. He writes: "In defining commitment-robustness, one might

require consideration of more than just the alternative games GI and G~i; after all there

could be opportunities for both players to invest in commitment possibilities. It seems

best, therefore, to think of the defining conditions here as being in the nature of nec-

essary conditions." The issue we would like to raise is whether Rosenthal's definition

indeed gives necessary conditions. Namely, if the order of the moves is endogenous could

it not be that, even though each player could profit from moving first, no player dares to

move first since he fears that the opponent might commit simultaneously, hence, could

it not be that, as a consequence, the players end up in the Nash equilibrium after all?

Certainly, the latter seems a possibility for games in which the two Stackelberg equilibria

differ like in the ordinary quantity setting duopoly game.

The question we address in this paper is which outcomes will arise when the order

of the moves is endogenous, hence, when each player has the opportunity to commit

himself. The formal model we use to resolve this issue is the 2-stage game of act.ion

commitrnent that wa.9 introduced in Hamilton and Slutsky (1990). The rulcs of f,his

game are as follows: '1'here are two periods and each player has to move in exactly onc of

these periods. Choices are simultaneous, but, if one player chooses to move early while

the other moves late, the latter is informed about the former's choice before making his

decision. It is assumed that players can commit only to pure actions, if a player chooses

to randomize in the first, period, the realised action is revcalcd tu thc oppuncnt. 'I'hc

program of this paper is to investigate which equilibria of the origirral game can arise

as "sensible" equilibrium outcomes of the action commitment game. Say that a player

has an incentive to move first at the Nash equilibrium s if this player's payoff is higher

when she is allowed to act as a Stackelberg leader and to commit herself. The question
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that the paper addresses is whether indeed only equilibria at which no player has an
incentivc to rnovc first. are viable. Will a player that profits when she is the only one
Lhat cau cunmiiL hcrsclf actually makc a conuuitnrcuL whcu the oppouent can conrmiL
at the sarne point in time?

A first important result is that a mixed strategy equilibrium indeed is viable only if
no player has an incentive to move first at this eyuilibrium. Only in this case does the
action cornrnitrnent game have a Nash equilibriurn producing the same outcome. Hence,
endogenous timing will eliminate most mixed strategy eyuilibria. The intuition is quite
st,raight,forward: The actions actually resulting from the players' mixed strategy need
not be in eyuilibrium, ex post players have arr incentive to deviate. Hence, each player
will havc .rn inccnl,ivc to wa.it, t,herrby guaranl.r~c,ing that he is besl. responding no matter
which acl,iuu tbe opponenL is actually choosiug. Iirrt if a player waits, Lhe oppuueuL fre-
quently has the incentive to move first, i.e, to commit to his Stackelberg leader strategy.

For pure strategy equilibria, the situation is much different and the answer to the ques-
t.ion of which eyuilibria are viable with endogenous Liming depends crucially on which
eyuilibria of the action commitment game one considers to be "sensible." In particular,
the answcr depends on whether one adopts an evolutionary or an eductive interpretation

of equilibria. A first result is that any pure strategy eyuilibrium can arise as the outcome
of a subgamc perfcct cyuilibriurn of the associated garne of action cornmitment. However,
sornc of t.hcwc subgamc pcrfccl. cquilibria appcar fragilc. 'fo oliminatc such "irnplausible"
eyuilibria we have to work with more refined eyuilibrium notions. As these are more
rcadily defined in the normal form we take a normal form perspective in most of this
paper.

It Lurns out LhaL, unde~r a ruild rogularity cundition, an irmnediate commitment, to a
pure cyuilibriuni uf Lhc origiual gamc constitutes a perfecL (hence, undorninated) equilib-
rium in thc norrnal form of the action commitment game. Hence, requiring perfectness
docs uot allow one to concludc thaf. only pure eyuilibria in which no player has an incen-



tive to move first are viable when the timing is endogenous. Intuitively, if each playc~r

expects an unattractive outcome in case the timing game reaches the second stage, t.hen

it is optimal for each player to commit to the pure equilibrium immediately if he expec~ts

his opponent to do the same. Still, it turns out that the intuition that only equilibria

at which no player has an incentive to move first are viable, can be formalized, provided

one is willing to accept a consistency requirement on top of the perfection requirement.

In Lhis papcr we de(inc an equilibriurn s' to be commit,menl, rohust. if, whencwc~r playi~r:ti

are sure that they will play s' if they come to the second period, there is a períect

equilibrium of the first stage game that induces the outcome s'. We show that indeed

only equilibria in which no player has an incentive to move first are commitment robust.

A major part of this paper is devoted to the question of whether in a game wiL}r a

unique and pure commitment robust equilibrium, this equilibrium is the unique "sensi-

ble" equilibrium of the 2-stage action commitment game. We have already seen that the

answer has to be no if "sensiblen is defined as "perfect". It turns out that the answer

also is no if one substitutes "propern or "stable" for "sensible." A main result of this

paper, however, is that the answer is in the affirmative for a variety of set-valued solu-

tion concepts that have an evolutionary flavor, i.e. these concepts seem to corresponcl

more closely to the interpretation of an equilibrium as a fixed point of an unspecified

dynamic process, than to the interpretation of an equilibrium as a self-enforcing agree-

ment. Specifically, we show that the concepts of persistent equilibria (Kalai and Samef.

(1Jt3~1)), curb-eyuilibria and curb~-equilibria (I3asu and Weibull (1991)) foru~ playc,rs tu

coordinate on the commitment robust equilibrium whenever this is unique and pure.

Hence, if we accept curb or persistent equilibria as the relevant solution concept, the

results in this paper allow us to identify two classes of games for which we can unam-

biguously determine the outcome if the order of the moves is endogenous, viz. zero-sum

~;:rrnrw anci gamcs with romn[ou intcrest. Whilc thc rc~sult conrcrning zc~ru-sunr };a,rnc.~

is not surprising, it is remarkable that one has to turn Lo very restrict.ive equilibrium

notions to "justify" playing the Pareto-efficient equilibrium in common interesL games.



'I'he remainder of the paper is organized as follows. In Section 2 we give an example

of a coordination game to show that the intuition that only equilibria in which no player

has an incentive to rnove first when the timing is endogenous might not be correct. In

Scctiun a we iul.roduce uotation as well as the regularity assumptions that we itnpose

on the underlying game. The 2-stage game of action commitment is formally introduced

in Sc~ction 4. In Section ~i wc show Ihat a mixccl st.rategy equilibriurn is viable with

endogeuous timing only i( it yields each player at least his Stackelberg leader payoff.

In conl.rast it. is shown in Sect.ion 6 that requiring perfectness in the timing game does

not clirninate pure equilibria of the underlying game. In this section we also discuss

thc related work of Hamilton and Slutsky ( 1990). ln Section 7, commitment robust

equilibria are defined and characterized, and we also compare our approach to that of

Rosenthal ( 1991). Section 8 investigates whether players will automatically coordinate

un a runuuil.nu~nt. robust eqnilibrium whcn the ordc~r of the rnoves is endogenous. Section

9 cuncluclcs.

2 A coordination game

In t.his sec Lion we discuss a simple exarnplo tu show Lhxt Ihe intuition that,, when the

I,irning of tlu~ rnoves is endogenous, only equilibria in which no player has an incentive

to move first are viable is not completely reliable. We show that one needs to employ

quite restrictive solution concepts in order to arrive at this conclusion. Specifically, the

fulluwin}; c~zaniplc~ denionsl.rates LhaL c,vcn if a};ainc~ h.w~ a atrid. cvluilihrimn I,hat is alsu

the unique Stackelberg equilibrium outcome in each of the two games where one of the

players is forced to move first, it is by no means obvious that players will necessarily

c~ourdinate on t.his equilibrium when the order of the moves is determined endogenously.

Consider the common interest coordination game g given in Table la. When players have

to move simultaueously, thcre are three equilibria: (T, L), ( B, R) and a mixed equilib-

rium that. yields each player the payoff ,~-t. When one of the players is forced to move first,

wit.h this playc~r's rhoic'c~ hc,ing rcvcalc~d tu Lhe ul.hcr, Ihc outcurnc is ('I', h), irrespcctivc

of which player has the right to move first. According to Rosenthal's definition only the
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equilibrium (T, L) is commitment robust.

L
L'

T'
T2

B~
B'

L2 R2 R'

B
2 2
0 0

R
0 0
1 1

2 2 2 2 2 2 0 0
2 2 2 2 0 0 1 1
2 2 0 0 1 1 1 1
0 0 1 1 1 1 1 1

Table la: A coordination game. Table lb: The ( reduced) normal form of

the 2-period game of endogenous timing

associatcd wit.h thc gainc, fruni 'I'abh~ I a..

Let us investigate whether this equilibrium is the unique "sensible" outcome of the

2 titagi, ga.ini~ of act.ion co~nmitment, descrihed in the introduct.ion, in whi~h Lho ord~~r of

the moves is endogenously determined. The reduced normal form of the 2-period game

derived from the coordination game of Table la is given in Table 16. Here X' denotes

the pure strategy "commit to X in period 1", while XZ denotes "wait till period `l and

play the unique best response against the opponent's action if the latt.er has alr~~ady

moved in period 1, otherwise, i.e. if the opponent has not yet moved, play X." Hence,

the question to be addressed is whether "2,2" is the unique "sensible" outcome in the

game of Table lb or whether perhaps one can also give good arguments in favor of "1,1",

or in favor of the mixed equilibrium.

Inspection shows that the game from Table lb has three Nash equilibrium outcomes:

'I'h~~m is a ronneeted se~t. of i~quilihria with payoff (2,~2), t.hi,m i, :rlao a ronn~~ite~d ti~~t „I'

equilibria with payoff ( 1,1) and there is a completely mixed equilibrium in wlrich each

player plays ( 1,2,4,8)~15. The latter yields each player the payoff 14~15. Hence, we see

that endogenous timing allows both pure equilibria of the coordination game to survive

~G, Nash rquilibriunt outcotncs, but thaL il. climinat~~s i.hi, niixrd straL~,gY cquilihriniu.

The intuition for the latter is simple. If rny opponent commits himself to the mixed

equilibrium in the first stage, I have an incentive to wait since in that case I guarantee
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t.hat we eit.her coordinate on (T, L) or (B, R), i.e. I prevent a disequilibrium outcome.

Iluwever, if 1 wait, my oppouent does better by comrnitting to his Stackelberg leader

stralegy.

Having eliminated the mixed equilibrium from Table la, let us now turn to the "in-

ferior" pure strat,egy equilibrium. A glance at Table 16 shows that this is not as easily

e~liminated. Namcly, Br and Rr are undominated strategies in Table 16 so that (Br, Rr) is

a perfect rquilibriutn. i;ven stronger, (Rr, Rr) is a proper equilibrium (Myerson (1978)):

l~br any e) 0 that is sufficiently srnall the strategy pair in which each player plays the

completely mixed strategy (e3, e2, e, l-e-t:'z -f3) is a 2e-proper equilibrium in Table lb.

In fact, one may show that, in the game of Table Ib, the connected set of equilibria with

payulf "I I" cont~rins a stahle sct as dcfincd in I~uhlbcrg and Mcrtcus (198G). (Uctails

are available frorn the authors upon request.) Intuitively, what is going on is that, if each

player expects mistakes to occur with a relatively ]arge probabiGty in the second period,

or if players believe that the unattractive rnixed strategy equilibrium would be played

in catie Lhe seconcl period would be reached, Lhc~n each player has a strong incentive to

comrnit to the equilibrium "l,l" in the first period if he expects his opponent to do

the same. Hence, it seems that Rosenthal's (1991) conclusion that only (T, L) makes

sense in t,he game of Table la when timing aspects are taken into account was premature.

Nevertheless, t,here is a sense in which the equilibrium (B', Rr) of Table 16 is fragile.

Narnely, if playen would be sure that t.hey would contimre with (B, R) if they both still

h~rd Iu rnuvr in I hc~ sccuud sl.agc, I,hc~y would bol.h lind il, uptinral Lu dcviatc tu (1', l,) in

the first stage. Namely, if players are sure of (B, R) in the second stage, then playing

this equilibrium already in the first stage becomes dominated: By moving in the first

sl.age, one risks a coordination failure, which, by assurnption, does not exist in the sec-

und prriud. 'fhorrfun~, eacli player ca.n count un Lhc oppuncut not playiug thc infcrior

ac'1.ion in t.hc~ lirsf. period and each can safely connnit Lo the preferred equilibrium action.

(I~onnally, beiug sure of continuing with (B, R) in the second stage corresponds to elim-

inating 'I'2 and I,2 from Table 16, and the unique perfect equilibrium of the resulting
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reduced game is (T',Lr).) In Section 6 of this paper we elaborate this idea. We define

.ui cquilibrium .v' to bc romnritnicnt robusl. if, whem~vcr playcr;ti are sun~ that. t.h~ry will

play s" if they come to the second period, there is a perfect equilibrium of the first stage

game that induces the outcome s'. Hence, the definition forces players to play s' in the

second period, and second period mistakes are excluded. We then show that an equilib-

rium s' of a 2-person normal form game is commitment robust if no player can improve

his payoff by acting as a Stackelberg leader. Hence, if s' is a pure equilibrium Lhat. is

commitment robust, then s' must also be the outcome of a subgame perfect equilibrium

of the two games in which one player acts as the Stackelberg leader.

It has to be admitted that the combination of perfection and truncation consistency

as employed in our definition of commitment robustness is somewhat artificial: What is

thc rationale of allowing mistakes in the first period, but elimiual.ing thcm in thc secund

period? Hence, the question remains whether one can give a more convincing argument

to eliminate the equilibrium outcome "1,1" in the game of Table lb, that is, whether

there exist solution concepts that force players to coordinate on "2,2" in that game. It

turns out t~hat the answer is in the affirmative for a variety of set-valued solution concepts

that. have an evolutionary [}avor, i.e. these concepts seem to correspond rnore closcly

to the interpretation of an equilibrium as a fixed point of an unspecified dynamic pro-

cess, than to the interpretation of an equilibrium as a self-enforcing agreement. Specifi-

cally, the e~oncepts of persistent equilibria (Kalai and Samet (1984)), curb-eqnilibria a.nd

curb~`-equilibria (Basu and Weibull (1991)) force players to coordinate on (T, L). Let us

illustrate this result for curb-equilibria, i.e. for equilibria that belong to minimal sets of

mixed strategy pairs that are closed with respect to taking best responses. The game oí

Table lb has two sets that are closed under best responses, viz. the entire strategy set

and the set of strategies in which zero probability is assigned to Bl and R'. Obviously,

only the latter set is minimal. Furthermore, each equilibrium in this set induces the

outcome "2,2r, hence, each curb equilibrium of the game of Table 16 produces the com-

mitment robust equilibrium of Table la. In Section 7 we show that the above argument

generalizes to any game that admits a unique and pure commitment robust equilibriurn.
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In parl,ic ular, for r~an c ~ornnron intcrest garnc wc, hcncc, have a"justificat.ion~ for playing

thc I'arcLu-dominant eyuilibriurn.

3 Preliminaries

We start our analysis from a given finite 2-person normal form game g- (At, A2i ut, u2).

We write .S, - ~(A;) for the set of mixed strategies of player i in g and we denote a
generic mixed strategy by s;. We write C(s;) -{a; E A; : s;(a;) ~ 0}. The set of mixed
st.rategy pairs is ,S - Sz x S2i and, for s E S, C(s) - C(st) x C(s2). Throughout the

paper we assurne the mild regularity condition that, whenever a player i is indifferent

between the strategy pairs a and a' in A - Az x Aa, the same holds true for player j,

h~.nr.,.i

if u;(a) - u;(a'), then uj(a) - uj(a'). (3.1)

hor ., E.ti'; and a, E A;, we define

u~(s;) - max{u~(s;,a,) : aj E Aj} (3,2)

B(s;) -{a~ E A~ : ui(~s;,ai) - ui(s;)} (3.3)

u{a;) - u;(a;,a~) wherc a, E B(a;) (3.4)

zl; - max u;(a;) (3.5)
a, E A,

Ilr,urr~, n,(a,) is playr.r i's payoff when hi~ ~~onnnits Lo a, aud u; is this player's payoff

when hc~ acts as the Stackelberg leader. '1'hese concepts are meaningfully defined because

of Lhc rcgularity assumption (3.1): Although player j may have multiple best responses

r Whenever i and j occur in this paper, then i, j E{1, 2}. If i and j occur in combination, it is

understood that i ~ j.



10

against a;, player i docs not care which best reply is taken. We say that. player i has an

incentive to move first at s if u;(s) G u;, that is if this player would be better oIf if hc

would be allowed to act as a Stackelberg leader.

Note that any pure strategy Nash equilibrium s satisfies u;(s) C u; for i- 1, 2. Hence,

if no player i has an incentive to move first at such s, then u;(s) - u; for i- 1, 2 and

s is a subgame perfect equilibrium outcome in each of the two games where one of the

players is forced to move first. Conversely, if s is pure and a subgame perfect equilibrium

outcome of each of these two games, then s is a Nash equilibrium of g and no player has

an incentive to move first at s. Obviously, any such equilibrium must Pa,reto-dominate

any other pure Nash equilibrium and we have proved

Curollary 1 No playcn c~as an irlccnlive lo m.avc firsl at. flcc pv.rr .aralr~~y rqvilrbriunr

s iJ and only if s is an SPE outcome of the two games in which one oJ the players i.s

forced to move first. A pure equilébrium at which no player has an incentive to move first

I'am.to-dorninates any other pure Nash equilibrium, hP.TLCe, two pur~e cquilibria al whirh

no player has an incentive to rrcove first are payoff eguivalent.

This corollary is no longer correct for mixed equilibria. For example, the zero-sum

game of matching pennies has a unique (Symmetric) mixed strategy equilibrium, it is

not. an SPI: outcome of the game where i has to move first: Although player i has no

incentive to move first (he is sure to lose this game if he is forced to disclose his action

before j moves), a pure equilibrium at which no player has an incentive to move first

may also be Pareto dominated by a mixed equilibrium: Add to Matching Pennies a third

strategy for each player such that if both play this strategy both ]ose half a penny, but

ho1.h playc~rs lose one penny if only one player c:hooses Lhis st.rategy. In ea.c-h St.ackc~lhc~rg

outcome, both players choose the third strategy, but the resulting equilibríum is Pareto

dominated by the original mixed equilibrium of Matching Pennies.
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IL is easy to construct an example of a game that does not have an equilibrium at
which no player has an incentive to move first. In fact, most games will not have such
an equilibrium, although the set of games having such an equilibrium certainly is not
of ineasurc zero: All games in the neighborhood of the coordination game from Table
la have Lhis property. Two classes of garnes that admit equilibria at which no player
Iras an incentive to move first are strictly competitive games (Friedman (1983)) and
cornrnon interest games (Aumann and Sorin (1989)). The game g is said to be strictly
competitive if for all s,s' and i~ j, if u;(s) ~ u;(s'), then u~(s) G u~(s'). The game
q is a game~ with comrnon interest, if there exist.s .c such that u;(s) 1 u;(s') for all i and s'.

Lemma 1 a~ !j y is strictly cornpetitive and s is a Nash equilibrium of g, then no player
has an inr.entive tn move frrst at s.

hJ Ijry Ira.ti rnmrrrnn interest. and s is a Par~elo dnminant Nash equilibr~ium of g, then no
plrc~rr Ir.as ara incenlivc lo rnove first al s.

Proof. `fhe proof of b) is trivial, so we only prove a). Assume s is an equilibrium of
a st.rictly rompot.itive garne y and ur(s) C iir. Let ur - ur(ar) - ur(ar,az), Then
uz(Qr,az) 5 uz(ar,az) for all azi hence, ur(àr,az) ~ u~(ár,áz) ~ ur(s) for all az. But
then by playing ár player 1 could guarantee himself more than the equilibrium payoff
ur(s), which is impossible. ~

Somc~l,inres wc~ will make use of st.ronger regularity condit,ions than (3.1). One such
r~ondition is Lhat dilferent outcomes are associated with different payoffs, i.e.

if a~ a', then u;(a) ~ u;(a') (a E{1,2}). (3.6)

Obviously, (3.6) is satisfied generically. The final regularity condition that we will use
has first been introduced in Lemke and Howson (1964) and is also satisfied generically.
I~or s~ E.S'„ define the matrix u;,~ as the restriction of u; to B(s~) x C(s~). The regularity
condition that Lemke and Howson impose is
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rank ( u;,~) 1 ~B(s~)~ for all j E{1,2} and all s~ E S~ (3.7)

where ~B(s~)~ denotes the cardinality of the set B(s~). Note that (3.7) does not im-

ply (3.1) but that, for a game satisfying (3.7), the expressions (3.4) and (3.5) are st.ill

well-defined since ~B(a~)~ - 1 for each a~. Also note that the class of 2-person garnes

satisfying both (3.6) and (3.7) is still generic. The following Lemma lists some properties

of games that satisfy (3.7).

T.emma 2 Lrt g satisj~~ (,?.7) and let s be nn rquilihr7um ajg Nraf i.c nnt parr. 7'l~rn

(2i ~c(sr)~ - ~C(sz)~ - ~B(sr)~ - ~B(ss)~

(iiJ !j s' is an equilibrium and C(s') - C(s), then s' - s.

(iii) For each a; E C(s;), there exists a~ E C(s~) such that a~ ~ B(a;).

(iv) f"ór each a; E C(s;), there exists a~ E C(si) such that a; ~ B(a~).

Proof.

(i) Since s is an equilibrium, we have C(s;) C B(s~) for i, j E{1,2}. Since the rank

of a matrix cannot exceed the number of columns, ( 3.7) implies ~B(s~)~ G ~C(s~)~

for all s~. Combining these observations yields ~C(sl)~ G ~B(sZ)~ G ~C(s2)~ G

~B(sl)~ G ~C(sr)~, hence, all inequalities must be equalities.

(ii) Assume s and s' are equilibria with C(s) - C(s'). If u;(s) - 0, then the columns

oí the matrix u;,~ are dependent, hence, ( 3.7) is violated. So assurnc u,(s) ~

0. ('onsider the vector v with a~-th coordinate equal to v(a~) - u;(s')s~(n,) -

u,(s)s~(a~). 'I'hen, if we premultiply v by u;,~ we get zero, hence by (;3.7) v rnust.

be the zero vector. Therefore, u;(s')s~ - u;(s)s~ and since both s~ and s~ are

probability vectors u;(s') - u;(s). But then s, - s~. A similar argument implies

~.llil~. .ti, -- .Y~.
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(iii) 'I'his follows immediately from the fact that ~B(a;)~ - 1 and ~C(s~)~ 1 2.

(iv) If a, E Ll(a~) for all a~ E C(s~), then {a;} - B(a~) for all such a~, hence {a;} -
B(s~ ) contradicting (i). p

4 The Action Commitment Game

'I'o formally consider the questions of which outcomes will result when the timing of
the moves is endogenous and oí which equilibria of the original game are still viable in
Lhis conl.ext., we usc t.he 2.st,age game of act,ion cummitrnent. that has bc~n introduced

in IlaniilLou aud 5lutsky (1990). In this game, which will be reïerred to as y1, each

player can choose between committing to an action in period 1 or to wait till period 2.

Formally, the rules are as follows

Stage 1: Sirnultaneously the players choose to commit to actions in Ar and A2i respec-

tively, or to wait till stage 2.

Stage 2: I;ach player i who did not yet choose an action in A; is informed about. what

action his opponent j took in stage 1. After having received this information, the

player is required to choose an action in A; with players moving simultaneously if

both still have to make a choice.

Payoffs: Thc~ players' actions in yz lead to a unique outcome in A. If a E A results,

then player i's payoff in yZ is u;(a). Hence, there is no discounting, moving late

does uoL entail any cost.

Wc will usc~ o, to denotc a st.ratcgy of playcr i in ry2. Playcr i's payo(f resulting from

a-(ai,a.z) is dc,noted by Il;(rr). We will be intcrcwted in SPG of ry2. '1'here arc three

Lypes of subgarnes in yZ: a) the original game, b) tlte stage-2 subgame in which both

players st.ill have Lo move and c) for each i ancí a;, a subgame in which player i already

has committed to a; in stage 1 but in which player j still has to move. Assumption (3.1)

implies that. these latter subgames are completely determined as far as the payoffs are
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concemed: The assumption of persistent rationality embodied in the SPE concept implies

t.hal. playcr j will chousc an clc~nent in !f(a;) and Lhat. Lhc payolfs will b~~ (v,(a,), u~(n,)).

We will write ryzr for the extensive form game that results from yz if wc raplai~i~ ~~arh

subgame a; E A1 U Az with the terminal payoff ( ur(a;), uz(a;)). Note that each SPE of

ryzr can be seen as a representative of an equivalence class of SPE of ryz. Because of this

onr-t.o-on~~ c.orrespondence, we will henceforth restrict attention t.o ryz'.z

A behavior strategy v; of player i in ryzr is a rule that tells this player which action

from A; U{w;} to choose in stage 1 and what to do in stage 2 in the information

se1, tu - (wl, wz) that corresponds to the case where both players waitecí. We writc

a; -(a;,a?) where v; denotes the randomization at time 1 and o; is the mixed action

in information set w. For the case where a;(w;) G 1, i.e. player i moves with positive

probability in the first period, it will also be convenient to write

wt - Q;(wt), s; -(1 -~~) tv;, and sz - Qz

hence, s,r is the mixed action that player i plays if he moves in period 1. In this case we

will also write Q; -(w;, s„s?). The normal form of yz' will be denoted as g1'. In this

normal form several pure strategies appear as equivalent rows, resp. columns, because of

t.ho fact that. t.he second stage mat.ters only if w; was chosen in st.age 1 t.hat is, any t.wu

pure strategies á; -(0, á; , á? ) and Q; - ( 0, á; , á; ) with ~; - á; are equivalent. ' 1'aking

a representative from each such equivalence class of pure strategies, we see that a pure

strategy a; is equivalent to a rule that assigns to exactly one time point t E{1,2} an

action in A;. If a; E A;, then we will write a; for the pure strategy "commit to a; in

period 1" while a? denotes the strategy "wait till period 2 and best respond if the oppo-

ncnt moves in period 1, otherwise play a;". Hence, the set of pure strategies of player i

in gzr is {a~ : a; E A;,t E{1,2}}.

zln the appendix we show that most of our results do not depend on this, and how the other results

can be preserved by a slight adjustment.
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For a game g satisfying (3.6) or (3.7) we define

- f I if a; E H(ai)
ó~(a) Sl (4.2)

0 otherwise

Note that, for a~ given, ó;(a) is equal to 1 for exactly one a;. If v is played in y2r, then
the outcome a E A results with probability

P(a) - al(a) f(1 - wr)~2Qi(at)ó2(a) f Wr(1 - wZ)as(az)ór(a) ~~iW2az(a), (4.3)

where we have used or(a) as a shorthand notation for al(a~)QZ(a2). The probability
distribution p~ on A defined by (4.3) is called the outcome of o and a is said to induce
tlre outcome s i[ po - s. If q does not satisfy (3.6), then one has some freedom to speci[y
the behavior in stage-2 subgames where already one of the players has moved, hence,
each strategy pair v in g2r induces a set of outcomes, which are all payoff equivalent. In
this case we will say that o induces s if t.here exist ó-(ór,ó2) with ó; : A~ --~ S; and
h;(a~) E Olj(a~) such that, [or p' as de(ined in (4.3), we have po - s.

5 Nonrobustness of Mixed Strategy Equilibria

Thc relevanc-e of mixed strategy eyuilibria has frequently been questioned. In particular,

the I,raditional, naive', interpretation according I,o wltich players consciously randomize
tlreir actions is intuitively not, very appealing. 'I'hc reason a player must randomize in
equilibriutn is only to kecp t.he othen from deviating; Lhe player hirnsclf will not lose
if he deviatr~s and instead uses any of the pure strategies in the support of the mixed
st.ra.tc'gY. I~nrt.hr~rtnurc~, nnliko a pum rquililrriuni, a tnixcd sl.ratcgy cyuilibrium Lypically

`rWc do uot consider here rnore sophisticated intcrpretations like mixed strategies as beliefs or as
population frcyucncies.
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is not ex post self-enforcing in that, given the realizations of the actions, some player

would like to deviate. Aspects of timing only compound these difficulties and as a result

it is unlikely that a mixed strategy equilibrium is viable in the action commitment game.

Namely, consider an equilibrium s' of a game g satisfying ( 3.7) in which at least one of

the players randomizes. Then, according to Lemma 2, each player randomizes and there

is positive probability that the realized actions do not constitute an equilibrium ex post.

I lc~n~ r, if pla.Yc'c' 7 Izlays .y ~ in pt~riud I o( yx~ Lhen playc.r i vl.rirtly lm~fi~rs wa.il.int~, tu

moving in the first period, and, consequently, both players playing s' in the first period

is not a Nash equilibrium of y2r. Obviously, we also have that both players waiting t.ill

Lhc sccond pcriod of yzr and thcn playing s' is an equilibriutn unly if no playcr has an

iucentivc to utove first at s'. In thc next proposition we show thaL the latter is act.ually

a necessary and sufficiettt condition for the existence of a Nash equilibrium of ry~' with

outcome s'. Hence, only a very limited set of mixed strategy equilibria is viable when

the timing of the moves is endogenous and the following Proposition can be viewed as

a foundation and formalization of the critique of mixed strategy Nash equilibria in the

applied literature ( cf. f3ester ( 1992)).

Proposition 1 Let g be a game that satisfies the regularity condition (3.7) and let s' be

an equilibriunz of g that is not in pure strategies. Then there exists a Nash equilibria~a

0 of ry2r with outcome s` if and only if no player has an incenlive to rnove first at s'.

Proof.

Sufficiency. No player has an incentive to move first at s' if and only if u;(s') ~ u; for

i- I,'l. In Lhis c~asc~ thc stratcgY Pair a-(o~,a.!) with a~ - ~o„ ~l -.Y~ is a N:c.,h

equilibrium (in fact a subgame perfect equilibrium) of yZ' with outcome s'.

Necessity. Assume u;(s') C u; for some i and that a is a Nash equilibrium of y2r with

outcome s'. We will derive a contradiction. Without loss of generality we may

assume uz(s') G ut. The proof is divided into a number of steps.
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Step 1. w; - rr,!(w;) G 1 for i- 1,2, hence, each player moves with positive probability

in the first period.

Clearly, we must have a~(w2) G 1, for otherwise player 1 can guarantee the payoff

uI by fomlTllttlRg in the first period, hence UT(a) ~ uI and o cannot have the

outcolnc .,'. Supposc Lhat player I waits Lill Lhe sccoud period, i.c. oi(wI) - 1.

Let a' be such that at(az) ~ 0 and a~ E C(s~)`B(a2). Then the outcome a` can

only be obtained if it is played in the second period, hence, po(a') C w2s'(a'), a

contradiction.

Step 2. w; - o~ (w;) ~ 0 for i- 1,2, hence, with positive probability each player waits

till the second period of ry2r in Q.

Namely, assume o,'(w;) - 0 for somc i. 'I'hen rr,!(a;) - s;(a;) for all a; and i

chooses at least two strategies with positive probability ( Lemma 2). Furthermore,

since there does not exist a~ E A~ with n~ E B(a;) for all a; E C(s;), we have

Ih(a„a~) ~ U~(~;,a~) for all a~, hence, Q~(w~) - 1. T'his contradicts step 1.

From the steps 1 and 2 we can conclude that the stage-2 subgarne (wr, w2) is reached

with positive probability if o is played in yzr. Since o is a Nash equilibrium of ry2',

07 tnusL be a Nash equilibrium oí g. Furthennore, obviously C(o2) C C(s'). We will

distingnish Lwo cases:

Case A C(á~) - C(s'), hencc (by Lemma'l) ó~ - s'.

Case B C(a2) ~ C(s'), hence (by Lemma 2), there exists for each player i a strategy

a; such that a; E C(s')`C(aZ).

We first continue the proof for case A.

Step A3. For each player i: If a; (a;) ~ 0, then u;(a;) ~ u;(s'), hence, a player commits
himself only to strategies that yield more than the equilibrium payoff.

Suppose, to the contrary, that there exists some á; such that a; (á;) ) 0 but

u;(á;) G u;(s'). Since player i must be indifferent between á~ and a~ for any

a; E C(s'), we must have
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~ a~(ai)u;(a;,ai) f ~iu;(a~) - ~ Q~(ai)u;(ai) } Wiui(s~)
a, a~

hence

u;(á;) - u;(s') and
u;(á;,ai) - u;(ai) for all ai E C(o~).

In particular, á; must be a best response against any pure action that player j

plays with positive probability in the first period. From Lemma 2 we can conclude

that there exists a~ E C(s~) such that á; ~ B(aj) and o~(aj) - 0. We may assume

that a~ E B(a;), since otherwise by (4.3)

Po(a~,a~) - Wrwzs~(a;,ai s~(á;,a~).

Applying Lemma 2 once more we see that we can find a~ such that a~ ~ B(a,`).

Then, for a' - (ai,a2),

po(a`) - ~rwzs~(a~) G s~(a~),

another contradiction.

Step A4. Conclusion of the proof for case A.

We hav~~ smn np to now that cach plsyer mnst, niovr in h~,1.h periu~ls with positiv~~

probability and that for each player i and for each action a; with v; (a;) ~ 0 we,

have u;(a;) ~ u;(s'). Since U;(o) - u;(s") and since waiting is a best response for

each player we have

~~~(ar)u;(ai) -I-wiu;(sw) - u;(,5~)
a,

so that there must exist a~ with v~(a~) ~ 0 and u;(a~) G u;(s'). Hence, v~(a~) ~ 0
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and u;(a„a~) G u;(s') for all a; E A;, and, therefore

o~(a~) ~ 0 and a~ ~ EJ(a;) for all a; with o;(a;) ~ 0.

Consider a` -(ai,az). Then po(a') - o~(a') -~wlw2s"(a'), hence, since po - s',

we must have

o~(a~) - (1 - w,wz)s'(a'). (5.1)

On Lhc~ othcr haud, for cacL playcr i, wc havc by sunutung up ( 4.3) ovcr all a~,

Po (ai ) - a;~ (ai ) f wtwssi ( ai ), hence

ot(a') - (1 - w,w2)2s`(a').

Combining (5.1) with (5.2) and ttsing a' E C(s`) yields wlw~ E{0,1}. But this

contradicts the steps 1 and 2 and completes the proof for Case A.

We now continue with the proof of case I3. Let a' be such that, for each player i,

a~ E C(s~ )`C(a2).

Step B3. 1~'or all players i, j and all actions, if a~ E C(s~) and a~ ~ B(a;), then a; E

B(a~ ).

Assume there exists á~ E C(s~) such that á~ ~ B(a;) and a; ~ B(á~). In v the

outcome (a; , á~ ) can occur only if both players play it in the first period, hence

s~(ai,ai) - a~(a;,ái) (5.3)
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By summing up (4.3) over all ai it follows that, for k~ 1, sk(ak) - po(ak) ? ak(ak).

Combining this with (5.3) and (4.3) it follows that

v; (a;) - s,'(a,') and a; ~ B(a~) if o~(a~) ~ 0.

This implies that any outcome (a„a~ ) with a~ ~ B(a; ) can occur only in the first

period, hence,

s'(a;,ai) -vr(a;,ai) for all a~ ~ B(a;),

and hence, s~(a~) - vr(a~) for a~ ~ B(a;). This implies that if player j acts in

period two, then he plays the unique á~ E B(a; ) for sure. But this implies (by

Lemma 2(i)) that á~ E B(a;) for all a; E C(s~ ). This contradicts Lemma 2(iv).

Step B4. Conclusion of the proof for case B.

Consider the pair a' -( a~, a2). Without loss of generality, step B3 allows us to

assume that ai E B(a2). By Lemma 2 we have

if ar E C(s~), ar ~ a~, then ar ~ B(aZ).

By step B3, therefore a~ E B(ar) for all such ar. But then we have that a2 E B(a~ )

and a2 ~ C(QZ ). By Lemma 2 this is impossible since a2 is an equilibrium of g and

g satisfies the regularity condition (3.7). ~

6 Robustness of Pure Strategy Equilibria

In this section we show that for pure strategy equilibria of g the situation is fundamen-

tally different from that for mixed equilibria: Each pure equilibrium is a subgame perfect
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eyuilibrium outcorne of the action commitment game, and each pure equilibrium that
satisfies a mild regularity condition corresponds to a perfect equilibrium of that game.

Speci(ically, if a is a pure equilibriurn of g and if rny opponent j decides to commit to á~

in ry!' whenever he has to move [ can do no better but to commit to á; as well.

Proposition 2 ~J a is a pure strategy equiliórium oJ g, then the strategy profele a-

(or,o~) with o~ - a; (i,t E {1,2}), i.e. each player i chooses a; whenever he has to

move is a subgnme perfect equilibrium of ry~'

Proof. `I'rivial. p

To eliminate pure equilibria of g we, hence, have to use equilibrium refinements. As

most of these refinements have been defined in the strategic form of the game, we take

a normal form perspective in the rest of this paper. The next proposition shows that

all pure eyuilibria that satisfy a mild regularity requirement satisfy the weakest of these

morc refined criteria, i.e. they are perfect (undominated) equilibria.

Proposition 3 Ij g satisfies (3.6J and á is a pure equilibrium oJ g with u;(á) 1

mina~ u;(á;,a~) jor i- 1,2, then there exists a perject equilíbrium ojg2' with outcome á.

Proof. "1'he strategy profile a- (or,o2) defined by v; - á~ (i.e. each player á commits

to a; in pcriod l) is a Nash equilibrium of g2r. We will show that o; is an undominated

strategy in gZ'. Since á; is undominated in g and g satisfies (3.6), á; can be dominated

in ,qZ' only if it is dominated by a strategy iu which player i moves only in period 2. If

..1 (wit.h nx~aning "play the rnixed act.ion s; in p~~riod 2") is such a dominating strategy

wc niust havc u,(s;,ai) ~ u,(a;) - u;(a), but then s; must be a best response against

á~ in g. 'Phe regularity condition (3.6) implies that the best response is unique, hence,

s; - á;. Now, since u;(á) ~ mina~ u;(ár,a~) we have u;(á;) ~ u;(á;,a~) for some a„ hence

(I;(a;,á~) ~ U;(a?,aJ) for some a~. But this implies that á; is not dominated by á? in

g~', hence ( ii~,áz) is perfect. p
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Let us remark that the result does not hold for games that satisfy just the weaker con-

dition (3.1). One obvious reason for why the proposition might fail is that á might not

be a perfect equilibrium of g. However, it can fail even for perfect equilíbria. Consider

the game g from Table 2a. In this game, B; is a weakly dominated strategy for player i,

hence, a perfect equilibrium of g must be a Nash equilibrium of the 3 x 3 game that results

if Bt and B2 are eliminated. However, in this 3 x 3 game C; is strictly dominated and in

the 2 x 2 game that results after C~ and Cz have been eliminated D; is strictly dominated,

so that (A~, A2) is the unique perfect equilibrium of g. The game g2r is given in Table 26.

A,

Br

Cr

Dr

Table 2a: Game g.

B2

A2 B2 Cz DZ

1 1 1 1 3-3 0 0

1 1 1 1 2 2 0 0

-3 3 2 2 0 0 -1 8

0 0 0 0 8-1 -'2 -2

C? D2 AZ B2 C2 D2

1 1 1 1 3-3 0 0 1 1 1 1 1 1 1 1

1 1 1 1 2 2 0 0 2 2 2 2 2 2 2 '

-3 3 2 2 0 0 -1 8 -I 8 -1 8 -1 8 -1 r.

0 0 0 0 8 -I -2 -2 0 0 0 0 0 0 0 0

1 1 2 2 8-1 0 0 1 1 1 1 3 -3 0 0

I 1 'l 2 8- I 0 0 1 l I l 2 'l 0 U

I 1 2 2 8-1 0 0 -3 3 2 2 0 0 -1 ~

' 1 . „ ~ . ~-

Table 26: Garne gzr.
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'I'h~. iinpuii.:rnt ubservat.ion is that A~ is wcakly rlorninated by ZEf~~ } j A?. Fnrther-

inurc, (~~, U~ :utd if~~ are all wcakly dotninated by A;. Ileuce, any perfect eyuilibriutn

of g2r has to be a Nash equilibrium of the game in which player i is restricted to choose

from the set {[~,', A; , C;, D? }. Now it is easily seen that any Nash equilibrium of this

4 x 4 garne either results in the payoff (2,2) or is the strategy pair in which each player

i chooses ZIl' t ZAZ. Hence, each perfect equilibrium of g1r yields each player a payoff

of at least z and there is no perfect equilibrium of gzr with outcome ( A1i AZ). It is

also easy to const.ruct an example showing that the condition u;(á) ) min,~ u;(s;,a~) in

Proposition 3 is essential. Let g be as in Table 3a. Then g satisfies ( 3.6) and A is a

perfect equilibrium of g. In g2r, however, A; is dominated by A?, hence, each player can

guarantee the payoff 4 by committing to B;. Gvery perfect equilibrium of g~r results in

the outcome ( I3t, B2).

A2

At

B,
2 2
0 3

Bz

3 0
4 4

c~i Az If2

Ai

B~

A~

B~

Az

2 2 3 0 2 2 '2 2

0 3 4 4 4 4 4 4
2 2 4 4 2 2 3 0
2 2 4~1 0 3 ~1 4

`I'able 3a: Game g. Table 3b: Game g2r.

At this stage it is appropriate to compare our work with Hamilton and Slutsky (1990).

Ilamilton and Slutsky considcr the game g2r where g is the standard quantity setting

Cournot duopoly game. In their Theorem VIII they claim

"the two Stackelberg equilibria are the only pure strategy equilibria in un-

dominat.ed strategies. Playing the Cournot equilibrium strategy at the first

turn is dominated by waiting to play after one's rival."

I`It.huugh thi~ sl,andard C'ournot duopoly gamc docs not lit our context., discretized

vcrsions of this game do and the Counwt equilibrium satisfies the conditions from Propo-

sition 3. llence, it follows that the above claim is wrong. Playing the Cournot equilibrium
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strategy at the first stage would indeed be dominated if players could be sure that they

would continue with the Cournot equilibrium in the second stage in case both players

sl.ill havc tu nwvc, but, if uiistakcs arc possiblr~, playcrs r annut bi~ surc uf Lhi.. ' I'h~~ t„I:,I

quantity in the second period might be above the Cournot quantity, if only by mistake,

and in this case it pays to commit to the Cournot quantity if the opponent does the

same. It is the impression of the present authors that, although not stating it explicitly,

Hamilton and Slutsky actually had this truncated game in mind when making the above

claim. (See also their companion paper Hamilton and Slutsky (1993) in which in the

proof of Theorem III they display the payoff matrix of the truncated game rather than

of the full game g2r. In the next section we will analyze this truncated game and show

that only equilibria in which no player has an incentive to move first are perfect in it.

Note that in the economic context studied by Hamilton and Slutsky, there is some justi-

fication for studying the truncated game rather than the full game g~'. It is well-known

that the 2-person quantity setting duopoly game is dominance solvable, i.e. by iterative

elimination of weakly dominated strategies, the game can be reduced to the Cournot

quantities. This implies that any quantity choice in the second period that is difíerent

from the Cournot quantity is iteratively dominated in g2r and, hence, can be eliminated.

Hence, if g is the Cournot duopoly game, then by iterative elimination of weakly dom-

inated strategies the game g2r can be reduced to the truncated game and in the latter

the above claim of Hamilton and Slutsky is correct. (Recall, however, that the example

in Section 2 has shown that the full game cannot always be reduced this way.) Finally,

it is interesting to note that, again for the special case of Cournot duopoly, whether the

equilibrium á from Proposition 3 is proper or not depends on the descritization. Le~L q"

be the Cournot quantity and let q- (resp. q}) be the largest (smallest) quantity in the

grid that is less (more) than q'. (Assume that q` is in the grid as well.) Then cornmitting

to q' is a proper equilibríum in gZ' if and only if u;(q-,q') G u;(qt,q').
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7 Commitment Robust Equilibria

1'he SPG that was described in proposition 3 is fragile in the sense that, if a player is sure
that a will be played in period 2, then he has nothing to lose from waiting. However, if
player j waits and u;(a) C u;, then player i has an incentive to commit. To put this more
formally, we have that committing to a in period 1 is not a perfect ( i.e. undominated)
equilibriiun of the game in which players are forced to play a in the second period of
ryt'. 'fhis se~rtion is devoted t.o proving that only cquilibria in which no player has an
incentive to tnove first can be perfect in this game.

We introduce some notation first. If s' E S, we will write y2r(s') for the extensive

form game that results from ry2r if we replace the subgame w at stage 2 in which both

players still have to move by an endpoint with payoff vector (ut(s'),u2(s')). Hence, we

assume that players will play s' if both still have to move. (To have an SPE of yzr we

must of cvurse require that s' is a Nash equilibrium of g.) The associated normal form
game is denoted by g~'(s'). In this game, the set of pure strategies of player i is S; U{w;}
and payo(fs are determined by g if no player waits, by (3.2) and (3.4) if only j waits,

and they are eyual to (ur(s'),u~(s')) if both players wait.

Our definition of commitment robustness formalizes the idea that "sensible behavior"

in the. first. stage of ry2r should produce the outcome s if players foresee that in the second
stage play will continue with s.

Definition 1 An equilibrium s' of g is commitmenl robust (is a CRE~ if there exists a

perfect equilibrium o of q~'(s') wilh outcome s'.

Proposition 4 ~n equilibrium s' of g is commitment robust if and only if no player

hns an incentive to move first at s', i.e. u;(s`) ~ u; for i- 1,2.

REMARK Note that if s is mixed and g satisfies the regularity requirement (3.7), then
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this statement follows from Proposition 1. The proof of this Proposition is straightfor-

ward if s' is pure (the steps 1- 4 below). In the case s' is mixed, the proof will rely on

the proof of Proposition 1(see step 7).

Proof.

Sufficiency: If u;(s') ? u; for i- 1,2, then waiting is a dominant strategy for each

player in g2r(s'), hence (wl, wZ) is a perfect equilibrium and this equilibrium results

in the outcome s'.

Necessity: Assume u;(s`) C u; for some i. We have to show that there does not

exist. a perfect equilibrium of g~r(s') with OULCOrnC S'. We assurno Lhal. such an

equilibrium, v, exists and derive a contradiction. "I'he proof is divided in a numbcr

of steps.

Step 1. We may assume u;(s') G u; for i- 1,2.

Namely, assume u;(s') G u; but u~(s') 1 u~. Then in gZ'(s') we have that w~ is a.

dominant strategy for j. If o~(w~) - 1, then player i can guarantee u; 1 u;(s') by

committing to a Stackelberg leader strategy. Hence, o cannot result in outcome

s'. If Q~(w~) C 1, then player j must have a dominant strategy á~ in the game

g, hence u~(a;,á~) - u~(a;) for all a;, and, therefore, u;(a;,á~) - u;(a;) because of

Assurnption ( 3.1). Hence, all of j's dominant strategies are equivalent for i. and

í's best response to a~ yields u; ~ u;(s'). Consequently, there cannot be a perfect

equilibrium with outcome s'.

Step 2. o;(w;) C 1 for i- 1,2.

The argument is the same as in step 1. [f player j waits for sure then i can commit

himself and thereby guarantee more than u;(s').

Step 3. If o;(a;) ~ 0, then u;(a;) 7 u;(s') with the inequality being strict if a; is not a

dominant strategy in g.

This follows from the observation that, if the condition is not satisfied, a; is domi-

nated in g2r(s') by w;.
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Step 9. s,' cannot be pure for i- 1,2.

Avsuinr .,~ is pur~~, .}~ - a~. 13y stckr 2, pl:ry~~r i must play a~ wil.h positivc proba-

bility in the first period. However, u;(a~)- u;(a'), so that, by step 3, a~ must be

a dominant strategy in g. Then u~ - maxa~ u~(a„a~) - u~(s"), contradicting step

1.

Step 5. We must have a;(w;) ~ 0 for all i.

Assume v;(w;) - 0, hence, player i moves for sure in period 1. Assume there

exists a; E C(s;),a„d E C(s~) such that u~(a;,a~) ~ u~(a;,a'~). Then, since

u~(s;,a~) - u~(s,', d), there must exist a' E C(s;) with u~(a',a'~) ~ u~(a;,a~).

This implies that w~ is a strictly better response in g2r(s") against s~ than any

a~ E C.(s~), hence v~(w~) - 1, contradicting step 2. Consequently, we must have

u~(a;,a~) - u~(a;,a~) for all a; E C(s~),a„a'~ E C(s~). Assumption (3.1) then

implies u;(a;, a~) - u;(a;, d) for all such a;, a„ a~. Hence, since s' is an equilibrium

u;(a;,a;) - u;(a„a~) for all a;,a~ E C(s~),a~ E C(s~). Using (3.1) once more we

see that both players' payoffs must be constant. and equal to u(s') on C(s'). If

Lh~~n~ i~xitiL. u, l!'(.y~ ) wil.h u~(~t,) ~ u~(.~'), Lh~~n playrr ~'n uuiqnr, br~sl. rr~npunnr

to s' is to wait and o cannot result in s`, hence, we must have u~(a;) - u~(s')

for all a; E C(s; ). By step 3, all a; with s; (a,) ~ 0 must therefore be dominant

strategics in q. But then, for any such a; we have, i~~ - maxa~ u~(a;,a~) - u~(s'),

~ unl.ra~li~ linh stcp I.

Step 6. [f a; E C(s; ) is a dominant strategy in g, then a;(a;) - 0.

Assume a; is dominant in g, s; (a;) ) 0 and o;(a;) ~ 0. Then u;(a;) C u;(s') by step

Fi and u;(a;) ~ u;(s') by stcp 3. l:xactly as in tbe proof of the previous step one

can show that. both players' payoffs must be constant on C(s'). The contradiction

is obtained in exactly the same way as before.

Step 7. Conclusion of the proof.

Wc have seen up to now that each player must move in both periods with positive

probability, that in the first period a player cannot choose a strategy that is dom-
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inant in g, and that for each strategy a; with o;(a;) ~ 0 we have u;(a,) ~ u;(s').

We can now mimic the proof of step A4 oí Proposition 1(in which no use was

made of the regularity requirement (3.7)) to derive a contradiction. ~

To conclude this section, we will compare our concept of commitrnent robustness with

that proposed in Rosenthal (1991). Rosenthal defines an equilibrium s to be cornnrit-

ment robust if s is an SPE outcome of each of the two games in which one of the players

moves first. Hence, Proposition 4 seems to establish the equivalence of Rosenthal's con-

cept to ours. However, whereas we assume that only commitments to pure actions are

possible, Rosenthal assumes that a player can commit to a mixed strategy and that the

mixture can be communicated. Hence, Rosenthal works with what Schelling (1960, p.

185) calls "fractional commitmentsn and Schelling already points out that these may

be more efficient than pure ones. (Compare our discussion of the extended matching

pennies game in Section 3 in which a mixed strategy equilibrium Pareto dominates the

pure st.rategy equilibrium.) Of course, having the opportunity to commit to a rnixed

action can never be worse than having the opportunity to commit to a pure action and,

hence, any equilibrium that is commitment robust according to Rosenthal, which will be

called an RCRE, is also a CRE. Of course, frequently there will exist no CRE and it is

easy to construct a game that admits a CRE but no RCRE. To conclude this section we

derive an alternative characterization of RCRE for a game satisfying (3.7).

Proposition 5 For a game g and a player i define u; by means of

u; - max max u;(s;,a~)
a,ES, n~EB(e,)

Let s` 6e a Nash equilibrium oJg. If u;(s') ~ u; for i- 1,2, then s' is an RCRE. !f g

satisfies (3.7J, then s' is an RCRE if and only iju;(s') ~ u; for í- 1,2.

Proof. Consider the game ry" in which player i is allowed to act as a Stackelberg leader,

with this player's mixed action being revealed to player j. Because of the bilinearity of
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u;, player i's payoff if he chooses s; and j best responds, is at most maxa~EB~,;I u;(s;, a~ ).

Ilonce, cach SPI? yields player i at most u; . IC u;(s') - u; , then any strategy pair o

wil.lr o, -.e~ and cr~ with o~(s,') - s~ and a~(s;) E B(s;) for all s; is an SPE of ry'~. This

proves the first part of the proposition.

7ó prove the second part, let s; E S; and a~ E B(s; ) be such that u;(s; ,a~)- u; .

Hecause of (3.7), there exists x E RA' with x(a;) - 0 if a; ~ C(s}) such that u~(x, a~)~ 0

and u~(x,a~) - 0 for all a~ E B(s; )`{a~ }. (Here u~(x,a~) is shorthand notation for

~a x(a,)u~(a;,a~).) Write t -~a x(a;) and s;(E,t) -(1 f et)-'(s; -~ ex). Then

s;(e,t) E S; if E is sufficiently small, B(s;(e,t)) - {a; } and s;(e,t) -r s; as e-~ 0.

Ilcnce, if .. is an SPE outcorne of ry" we must have u,(s) ~ 7i;(s;(e, t), a~ ), and, therefore,

u,(..) ~ u,("t, a~ )- tit. "l'his coniplctcs thc proof uf thc, sccond part of the proposition.

O

8 Endogenous Timing and Coordination

In this section we return to the untruncated game from section 6 and we investigate

whether, by employing more refined equilibrium notions, we can obtain the conclusion

that only commitment robust equilibria are viable when the order of the moves is en-

dogenous. Specifically, we address the question of whether in a game that has a unique

and pure CRE players will automatically coordinate on this CRE if the timing of the

rnoves is endogenous. We will show that some set-valued "evolutionary" concepts, viz.

the notions of persistent eyuilibria (Kalai and Sarnet (1989)) and of curb and curb`

equilibria (Basu and Weibull (1991)) do indced allow this conclusion. We first formally

define these concepts. Write !i(s;) for the seL of all mixed best replies against s; hence

Ci(s;) - 0L3(s;) and 8(s) - Ci(sz) x L3(sr). For a set S of mixed strategy pairs, write

Ci(S) - U,E.SL3(s). Similarly, define Ci'(S) for the set of all undominated best replies

against .S, i.e. best replies that are undominated strategies.
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Definition 2 Let g be a 2-person norma! form game

(i) A retract is a set R- Rl x RZ where R; is a nonempty, closed and convex subset

of S;. -

(iiJ Given a certain pmperty (X ) of retracts, an X-retract is a retract R that is minima(

with respect to this property, i.e. there does not exist a retract R' with R' C R, R' ~

R having property (X).

(iiiJ An X-equilibráum is an equilibrium that óelongs to an X-retract.

( vJ Persistent retracts, curb retracts and curb~ retracts are defined, respectively, b,y the

properties (P), (C) and (C'):

Ci(s) fl R~ 0 for all s in some open neighborhood C) of R

Ci(R) C R

!i'(R) C R

(P)

(C)

We will make use of the following proposition which proof can, for example, be found

in Balkenborg (1992).

Proposition 6 (iJ Every curó retract contains a curb' retract and every curb" n~h~act

contains a persistent retract.

(iiJ Every game has at least one curb (resp. curb~, resp. persistent) equilibríum.

(iii) !f R is a curb retract (resp. a curb` retract), then R; - ~(A;) for some A; C A;.

(ivJ Different curb retracts are disjoint and so are different curb" retracts.

(:?J If no pla.yer i has equivalent strategies Ln g(i.e. there do not exist a;,a~ E il; ivith

a; ~ a; and u;(a;,a~) for all a~), then the properties (iiiJ and (iv) also hold for

persistent retracts, ti.e. each persistent retract is a convex hull of pure strategie.s

and different persistent retracts are disjoint.
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The main result of this paper is

Proposition 7 Assume g satisfies (,?.6J and á is a pure CRE of g. Then

(iJ Any curb (resp. curb', resp, persistentJ equilibrium of gZ' yields each player i a

payofj af at teast u;(á).

(iiJ If á is lhe nnique CRF, of g, then each curb (resp. curó~`. resp. persistentJ equilib-

rium of g~' resulls in the outcome á.

Proof. In this proof, let "xr stand for "curb", "curb~" or "persistentn. Note that since
g satisfic~s (3.fi), no player i has equivalent stratogics in gZ', hence x-retracts are convex

hulls of pure strategies and different x-retracts are disjoint (Proposition 6). Let the

retract R be defined by

Á;-{á;}U{a?: a;EA;}, R;-OA;, R-RrxR2.

Note that R satisfies the properties (C), (C') and (P). We will show that any x-retract

is contained in R.

The proof is easy in case some player i has a dominant strategy à; in g. Then à; - á;
and since á is a CRE wc have that for all a; ~ á;, a) is dorninated by á( (t - 1,2). This

implies thaL if R is a persistent retract, then

R C ~({á;,á?}) x 0(A~) C R.

Since any x-retract contains a persistent retract, and since R has properties (C) and
(C`), it follows that any x-retract is contained in R.

Now assurne that no player has a dominant strategy in g. Then it is easily seen that

á? is an undominated strategy for each player i. Furthermore, for each j there exists

some à~ surh that á; ~ B(à~). We will show that, if a~ ~ á„ then committing to a~

cannot helong to any x-retract. Note that if R is an x-retract and a~ E R„ then á? E R;.
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Namely, à? is an undominated best response against a~ (hence à? E R; if z stands for

curb or curb', and à? is the unique best response against (1 - 2E)a~ -} eá~ f eá~ (so that

ri,' E li, if x stands for persistent). Now, since a~ is Lhe uuiquc~ besl. n~pousc~ againsl

(1 - e)à? ~ eà; it follows that (à„ á2) E R whenever a; E R; for some a; ~ à;. Since

R satisfies the properties (C), (C') and (P), we have that any x-retracl. that contains

(á„à2) is contained in R and there does not exist an x-retract containing some a,' with

a; ~ à;. Hence, any a-retract is contained in R.

Now note that, if players are restricted to choose strategies from R, then each player

i can guarantee the payoff u;(à) by playing à~. Consequently, if a is an x-equilibrium

of g2r, then C,(o) C R and u;(o) ~ u;(à) for i- 1,2, which proves the first part of the

proposition.

Now assume that there exists an x-equilibrium Q that results in an outcome different

from à. Then for each player i we must have a;(à; ) G 1. Define the mixed strategy s; of

player i in g by

s,(a;) - (I - a;(n~)) ~a,(a~) (n, E A~)

Since a is an equilibrium of gZ' we have that s is an equilibrium of g and, furthermore

rr,(s) ~ u; for i- 1,`l, since each player i can guarantee u; by playing a;. llence, .v is a

CRE of g. This completes the proof. ~

Note that in the proof we did not use the full power of the regularity condition (3.6).

We used that à is a strict equilibrium, i.e. á; is the unique best response against á~,

and that, for each player í, à; is the unique Stackelberg leader strategy. The game from

Table 4 may show that the latter assumption is essential. Note that this game satisfies

(3.1). (T, L) is a CRE in this game, however, the unique curb retract of g2r is the entire

game, so that, in particular (Bl, Rl) is a curb equilibrium.
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!, M R

3 3 0 0 0 0
2 2 3 3 0 0
0 0 4 1 2 2

Table 4

9 Conclusion

We have addressed the question of whether only equilibria at which no player has an in-

centive to move first are viable when the order of the moves is endogenously determined

and players have the opportunity to commit themselves. Wc have seen that in order to

answer this question in the affirmative one needs quite strong equilibrium concepts, but

that, if one is willing to accept such concepts, one can indeed conclude that, with en-

dogenous timing, players will indeed coordinate on the commitment robust equilibrium

whenever the latter is pure and unique. We have restricted ourselves in this paper to

2-person garnes and we have only allowed one point. in time at, which a player can cotnrnit

IiimsclL II. is inrportant to invcwtigatc thc extent f.o which our results depend on these

assumptions. One can easily define the garne ry` in which Lhere are t- 1 periods in which

a player lras the opportunity to commit. (Obviously y' - g.) The reader can verify

that our main results remain valid in this extended context. Hence, mixed equilibria

are typically noL viable and any curb (resp. curb~`, resp. persistent) equilibrium of the

game in which the players }tave t- 1 opportunities to commit themselves results in the

commitment robust. equilibrium. We have not investigated whether our results extend

to games with more than two players, although we expect they do. It is clear, however,

that in sorne cases (as in the proof of Proposition 1) different techniques are needed.

It has to be admitted that the class of games with a commitment robust equilibrium,

i.e. the class for which we were able to determine the outcome with endogenous timing

in this paper is quite limited. In a companion paper (Van Damme and Hurkens (1993))

we address the question of which outcomes can be expected for some economic games
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without a commitment robust equilibrium. It turns out that in this case the length of the

timing game plays an important role. To illustrate the phenomena that arise, consider

the game g from Table 5a in which x~ 0.

L

T
B

0 0
1 x

R W

T
B
W

l,

2 1 0 0 2 1
3 0 1 x 1 x

~3 0 ~'~ ~'~ ~

2 1
3 0

Table 5a
Table 56

In game g, B is a dominant strategy, hence, s-(B, R) is the unique Nash equilibrium.

If we substitute (y, z) -(1, x) in Table 5b, then we obtain the game gZ'(s). In this game,

(7', W) is the unique perfect equilibrium. Only player 1 has an incentive to commit

himself and indeed this player commits. However, now assume that x~ 1 and consider

ry3, i.e. there are two time periods at which players can commit. Player 1 has no incentive

to commit himself right away: he is sure of getting his Stackelberg payoff if he waits one

more period. Player 2 foresees that, if he does not commit right away, player 1 will do so

in the next instance. Hence, if he does not commit, his payoff is 1, while committing to

R yields x 1 1. Formally, if players foresee that as of stage 2 (T, W) will be played, they

will analyze the stage 1 game by substituting (y, z) -(2,1) in Table 56 and in this game

the unique perfect equilibrium is (W, R). We come to the conclusion that the predicted

outcome is very sensitive with respect to how many times one has the opportunity to

commit themselves. If t is odd, the predicted outcome of ry` is (B, R), while it is ('I', 1,) if

t is even. Note that these problems do not arise in case one of the Stackelberg equilibria

Pareto-dominates the other. If x G 1, then for the sequence {s`}~ which is recursively

defined by (i) sl is a Nash equilibrium of g and, (ii) for each t~ 1, s`t' is a perfect

equilibrium of gZ'(si), then s~ is (T, L) if t ~ 3, hence, players coordinate on the Pareto

dominant Stackelberg equilibrium. More delicate issues are left for our companion paper.
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Appendix

In this appendix we show that the truncation we use throughout the paper -namely to

substitute the SPF, payoffs in subgames where one player has committed and one player

has waitid is innocuous for most results obtained in this paper. We show how the

propositions can be adjusted.

Let g2 denote the reduced normal form of ry2. Notice that g~r is obtained from g~ by

elimination of weakly dominated "waitingn-strategies.

Proposition 1 is not correct when ry2r is replaced by ry2, as can easily be seen from the

coordination game from Table la. Let s' denote the mixed equilibrium of this game.

Consider the following strategy for player i:

Wait until the second period;

If the opponent has also waited, play s; in period 2;

If the opponent has committed to a„ then respond with a; ~ B(a~).

These strategies constitute a Nash equilibrium of ryz that induces the outcome s'.

[lowever, Proposition 1 can be adjusted by replacing ryZ' by y2 and by replacing

"Nash" by "subgame perfect". The proof remains the same.

In Proposition 2(resp. Proposition 3) ry2r (resp. g2') can be replaced by ry2 (resp.

g~). The proofs remain the same. Propositions 4, 5 and 6 are not affected.

Proposition 7 is not correct for "curb" if g2r is replaced by g2. However, it remains

correct for "curb~"' and "persistent". This can be proved as follows:

Let "x" stand for "curb`" or "persistent". First, remark that x-retracts do not contain

pure wcakly dominated strategies. Hence, the strategic~s that are contained in an a-

retracl. of rj1 am not nlimiuatc,d and am, hence, a.lso strategic~s in yzr. In particular, wc

can use the samc notation a~ as before.

Furthermore, we use the following result from Balkenborg (1992) (Corollary 6.2.2,

page 80):
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If I' and I" are two games and I" is obtained from P by deleting pure weakly domi-

nated strategies, then any persistent retract oí I' contains a persistent retract of P'.

Now it follows from the above and the proof of Proposition 7 that, if R is a persis-

tent retract of g2 then R fl R~ 0, where R is as defined in the proof of Proposition 7.

Since R has properties (C`) and (P) in g2, it follows that every x-retract of g2 is con-

tained in R. The remainder of the proof is exactly the same as in the proof of Proposition

7.
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