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Abstract

This paper investigates which outcomes result in a game when the order of the
moves is endogenous. To that end we study a model in which players can move
in one of two periods, i.e. players face the trade-off between committing early
and forcing the opponent to best respond, and moving late so as to be able to
play a best response against the opponent. It is shown that most mixed strategy
equilibria of the original game are not viable when the sequencing of the moves is
endogenous, but that any pure strategy equilibrium is a perfect equilibrium out-
come of the timing game. More refined equilibrium concepts with an evolutionary
flavor, however, allow the conclusion that only equilibria in which no player has

an incentive to move first are viable.
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1 Introduction

One of the most important idcas in game theory is the value of commitment, the idea
that it may be advantageous to constrain one’s own behavior in order to induce others
to behave in a way that is favorable to oneself. Schelling’s (1960) classic The Strategy of
Conflict is filled with examples that illustrate this idea that it might pay to reduce one’s
flexibility, that it may be optimal to burn one’s bridges behind oneself. The simplest
commitment possibility that Schelling discusses (and what he calls the “pure uncondi-
tional commitment”) is equivalent to obtaining the first move: to preempt one’s rivals
by choosing and communicating one’s action before they do. That there might be a
first-mover advantage has also been pointed out by other authors. For example, in the
economics literature it has been known at least since Von Stackelberg’s (1934) Markt-
form und Gleichgewicht that in a quantity setting duopoly game, the leader has higher

profits, hence, that each duopolist will want to move before the other.

Variows anthors have argued that the Conrnot equilibrinim is somewhat, snuspect ex
actly because of this fact that each duopolist has an incentive to move earlier than his
opponent. Of course, if the duopolists are indeed forced to move simultaneously (as the
standard game model of the duopoly situation assumes) then there is nothing wrong
with the Cournot cquilibrium, but one may wonder whether in real situations the rules
are indeed that rigid as to prevent commitments from being made. Hence, it is a natural
question to ask which Nash equilibria are still viable when players have the opportunity
to commit themselves. This question has been addressed in Rosenthal (1991). That
paper defines an equilibrium of a 2-player game to be commitment robust if there is no
player who can improve his payoff by moving first and by communicating this move to
the opponent before the latter moves. Hence, according to Rosenthal a Nash equilibrium
is commitment robust only if it is also a Stackelberg equilibrium of each of the two games

where one of the players is allowed to move first.

While Rosenthal’s definition is attractive, it also is not entirely compelling. The si-



multaneous move game is compared with the two perfect information sequential move
games in which the leader is exogenously specified, but it is not clear why the latter games
are relevant to the study of the former situation. The original problem derives from the
possibility that each player might or might not choose to move before the other, hence,
one would like to see the order of the moves being determined endogenously. Rosenthal
is aware of this problem. He writes: "In defining commitment-robustness, one might
require consideration of more than just the alternative games G; and Gyy; after all there
could be opportunities for both players to invest in commitment possibilities. It seems
best, therefore, to think of the defining conditions here as being in the nature of nec-
essary conditions.” The issue we would like to raise is whether Rosenthal’s definition
indeed gives necessary conditions. Namely, if the order of the moves is endogenous could
it not be that, even though each player could profit from moving first, no player dares to
move first since he fears that the opponent might commit simultaneously, hence, could
it not be that, as a consequence, the players end up in the Nash equilibrium after all?
Certainly, the latter seems a possibility for games in which the two Stackelberg equilibria
differ like in the ordinary quantity setting duopoly game.

The question we address in this paper is which outcomes will arise when the order
of the moves is endogenous, hence, when each player has the opportunity to commit
himself. The formal model we use to resolve this issue is the 2-stage game of action
commitment that was introduced in Hamilton and Slutsky (1990). The rules of this
game are as follows: There are two periods and each player has to move in exactly one of
these periods. Choices are simultaneous, but, if one player chooses to move early while
the other moves late, the latter is informed about the former’s choice before making his
decision. It is assumed that players can commit only to pure actions, if a player chooses
to randomize in the first period, the realised action is revealed to the opponent. The
program of this paper is to investigate which equilibria of the original game can arise
as “sensible” equilibrium outcomes of the action commitment game. Say that a player
has an incentive to move first at the Nash equilibrium s if this player’s payoff is higher

when she is allowed to act as a Stackelberg leader and to commit herself. The question



that the paper addresses is whether indeed only equilibria at which no player has an
incentive to move first are viable. Will a player that profits when she is the only one
that can commit hersell actually make a commitment when the opponent can commit

at the same point in time?

A first important result is that a mixed strategy equilibrium indeed is viable only if
no player has an incentive to move first at this equilibrium. Only in this case does the
action commitment game have a Nash equilibrium producing the same outcome. Hence,
endogenous timing will eliminate most mixed strategy equilibria. The intuition is quite
straightforward: The actions actually resulting from the players’ mixed strategy need
not be in equilibrium, ex post players have an incentive to deviate. Hence, each player
will have an incentive to wait, thereby guaranteeing that he is best responding no matter
which action the opponent is actually choosing. But if a player waits, the opponent fre-

quently has the incentive to move first, i.e. to commit to his Stackelberg leader strategy.

For pure strategy equilibria, the situation is much different and the answer to the ques-
tion of which equilibria are viable with endogenous timing depends crucially on which
equilibria of the action commitment game one considers to be “sensible.” In particular,
the answer depends on whether one adopts an evolutionary or an eductive interpretation
of equilibria. A first result is that any pure strategy equilibrium can arise as the outcome
of a subgame perfect equilibrium of the associated game of action commitment. However,
some of these subgame perfect equilibria appear [ragile. "T'o climinate such “implausible”
equilibria we have to work with more refined equilibrium notions. As these are more

readily defined in the normal form we take a normal form perspective in most of this

paper.

It turns out that, under a mild regularity condition, an immediate commitment to a
pure equilibrium of the original game constitutes a perfect (hence, undominated) equilib-
rium in the normal form of the action commitment game. Hence, requiring perfectness

does not allow one to conclude that only pure equilibria in which no player has an incen-



tive to move first are viable when the timing is endogenous. Intuitively, if each player
expects an unattractive outcome in case the timing game reaches the second stage, then
it is optimal for each player to commit to the pure equilibrium immediately if he expects
his opponent to do the same. Still, it turns out that the intuition that only equilibria
at which no player has an incentive to move first are viable, can be formalized, provided
one is willing to accept a consistency requirement on top of the perfection requirement.
In this paper we define an equilibrium s to be commitment robust if, whenever players
are sure that they will play s* if they come to the second period, there is a perfect
equilibrium of the first stage game that induces the outcome s*. We show that indeed

only equilibria in which no player has an incentive to move first are commitment robust.

A major part of this paper is devoted to the question of whether in a game with a
unique and pure commitment robust equilibrium, this equilibrium is the unique “sensi-
ble” equilibrium of the 2-stage action commitment game. We have already seen that the
answer has to be no if “sensible” is defined as “perfect”. It turns out that the answer
also is no if one substitutes “proper” or “stable” for “sensible.” A main result of this
paper, however, is that the answer is in the affirmative for a variety of set-valued solu-
tion concepts that have an evolutionary flavor, i.e. these concepts seem to correspond
more closely to the interpretation of an equilibrium as a fixed point of an unspecified
dynamic process, than to the interpretation of an equilibrium as a self-enforcing agree-
ment. Specifically, we show that the concepts of persistent equilibria (Kalai and Samet
(1984)), curb-equilibria and curb*-equilibria (Basu and Weibull (1991)) force players to
coordinate on the commitment robust equilibrium whenever this is unique and pure.
Hence, if we accept curb or persistent equilibria as the relevant solution concept, the
results in this paper allow us to identify two classes of games for which we can unam-
biguously determine the outcome if the order of the moves is endogenous, viz. zero-sum
games and games with common interest. While the result concerning zero-sum games
is not surprising, it is remarkable that one has to turn to very restrictive equilibrium

notions to “justify” playing the Pareto-efficient equilibrium in common interest games.



The remainder of the paper is organized as follows. In Section 2 we give an example
of a coordination game to show that the intuition that only equilibria in which no player
has an incentive to move first when the timing is endogenous might not be correct. In
Section 3 we introduce notation as well as the regularity assumptions that we impose
on the underlying game. The 2-stage game of action commitment is formally introduced
in Section 4. In Section 5 we show that a mixed strategy equilibrium is viable with
endogenous timing only if it yields each player at least his Stackelberg leader payoff.
In contrast it is shown in Section 6 that requiring perfectness in the timing game does
not eliminate pure equilibria of the underlying game. In this section we also discuss
the related work of Hamilton and Slutsky (1990). In Section 7, commitment robust
equilibria are defined and characterized, and we also compare our approach to that of
Rosenthal (1991). Section 8 investigates whether players will automatically coordinate
on a commitment robust equilibrium when the order of the moves is endogenous. Section

9 concludes.

2 A coordination game

In this section we discuss a simple example to show that the intuition that, when the
timing of the moves is endogenous, only equilibria in which no player has an incentive
to move first are viable is not completely reliable. We show that one needs to employ
quite restrictive solution concepts in order to arrive at this conclusion. Specifically, the
following example demonstrates that even if a game has a strict equilibrium that is also
the unique Stackelberg equilibrium outcome in each of the two games where one of the
players is forced to move first, it is by no means obvious that players will necessarily
coordinate on this equilibrium when the order of the moves is determined endogenously.
Consider the common interest coordination game g given in Table 1a. When players have
to move simultaneously, there are three equilibria: (T, L), (B, R) and a mixed equilib-
rium that yields each player the payoff % When one of the players is forced to move first,
with this player’s choice being revealed to the other, the outcome is (7', L), irrespective

of which player has the right to move first. According to Rosenthal’s definition only the



equilibrium (7, L) is commitment robust.

n I* R R

L R 2 2l @2 2[00 o
T|2 2|0 0 7% 2 202 2)j0 01 4
B|(o 0|1 1 B*|2 20 01 1(3 4
B¥ 0 wof1 w3 1|1 1
Table la: A coordination game. Table 1b: The (reduced) normal form of

the 2-period game of endogenous timing

associated with the game from Table Ta.

Let us investigate whether this equilibrium is the unique “sensible” outcome of the
2-stage game of action commitment, described in the introduction, in which the order of
the moves is endogenously determined. The reduced normal form of the 2-period game
derived from the coordination game of Table la is given in Table 1b. Here X' denotes
the pure strategy “commit to X in period 17, while X? denotes “wait till period 2 and
play the unique best response against the opponent’s action if the latter has alrcady
moved in period 1, otherwise, i.e. if the opponent has not yet moved, play X.” Hence,
the question to be addressed is whether “2,2” is the unique “sensible” outcome in the
game of Table 1b or whether perhaps one can also give good arguments in favor of “1,17,

or in favor of the mixed equilibrium.

Inspection shows that the game from Table 1b has three Nash equilibrium outcomes:
There is a connected set. of equilibria with payoff (2,2), there is also a connected set of
equilibria with payoff (1,1) and there is a completely mixed equilibrium in which each
player plays (1,2,4,8)/15. The latter yields each player the payoff 14/15. Hence, we see
that endogenous timing allows both pure equilibria of the coordination game to survive
as Nash equilibrium outcomes, but that it eliminates the mixed strategy equilibrium.
The intuition for the latter is simple. If my opponent commits himself to the mixed

equilibrium in the first stage, I have an incentive to wait since in that case I guarantee



that we either coordinate on (7', L) or (B, R), i.e. I prevent a diéequilibrium outcome.
However, if | wait, my opponent does better by committing to his Stackelberg leader

strategy.

Having eliminated the mixed equilibrium from Table la, let us now turn to the “in-
ferior” pure strategy equilibrium. A glance at Table 1b shows that this is not as easily
eliminated. Namely, B' and R' are undominated strategies in Table 1b so that (B, RY)is
a perfect equilibrium. Even stronger, (B', R') is a proper equilibrium (Myerson (1978)):
lor any € > 0 that is sufficiently small the strategy pair in which each player plays the
completely mixed strategy (% ¢%,6,1—e—e?—¢?) is a 2¢-proper equilibrium in Table 1b.
In fact, one may show that, in the game of Table 1b, the connected set of equilibria with
payoll “L,1™ contains a stable set as defined in Kohlberg and Mertens (1986). (Details
are available from the authors upon request.) Intuitively, what is going on is that, if each
player expects mistakes to occur with a relatively large probability in the second period,
or if players believe that the unattractive mixed strategy equilibrium would be played
in case the second period would be reached, then cach player has a strong incentive to
commit to the equilibrium “1,1” in the first period if he expects his opponent to do
the same. Hence, it seems that Rosenthal’s (1991) conclusion that only (7',L) makes

sense in the game of Table 1a when timing aspects are taken into account was premature.

Nevertheless, there is a sense in which the equilibrium (B', R!) of Table 1b is fragile.
Namely, if players would be sure that they would continue with (B, R) if they both still
had to move i the sccond stage, they would both find it optimal to deviate to (2, L) in
the first stage. Namely, if players are sure of (B, R) in the second stage, then playing
this equilibrium already in the first stage becomes dominated: By moving in the first
stage, one risks a coordination failure, which, by assumption, does not exist in the sec-
ond period. "Therefore, cach player can count on the opponent not playing the inferior
action in the first period and cach can safely commit to the preferred equilibrium action.
(Formally, being sure of continuing with (B, R) in the second stage corresponds to elim-

inating 7% and L? from Table 1b, and the unique perfect equilibrium of the resulting



reduced game is (7, L').) In Section 6 of this paper we elaborate this idea. We define
an equilibrium $* to be commitment robust if, whenever players are sure that they will
play s* if they come to the second period, there is a perfect equilibrium of the first stage
game that induces the outcome s*. Hence, the definition forces players to play s* in the
second period, and second period mistakes are excluded. We then show that an equilib-
rium s* of a 2-person normal form game is commitment robust if no player can improve
his payoff by acting as a Stackelberg leader. Hence, if s* is a pure equilibrium that is
commitment robust, then s* must also be the outcome of a subgame perfect equilibrium

of the two games in which one player acts as the Stackelberg leader.

It has to be admitted that the combination of perfection and truncation consistency
as employed in our definition of commitment robustness is somewhat artificial: What is
the rationale of allowing mistakes in the first period, but eliminating them in the second
period? Hence, the question remains whether one can give a more convincing argument
to eliminate the equilibrium outcome “1,1” in the game of Table 1b, that is, whether
there exist solution concepts that force players to coordinate on “2,2” in that game. It
turns out that the answer is in the affirmative for a variety of set-valued solution concepts
that have an evolutionary flavor, i.e. these concepts seem to correspond more closely
to the interpretation of an equilibrium as a fixed point of an unspecified dynamic pro-
cess, than to the interpretation of an equilibrium as a self-enforcing agreement. Specifi-
cally, the concepts of persistent equilibria (Kalai and Samet (1984)), curb-equilibria and
curb*-equilibria (Basu and Weibull (1991)) force players to coordinate on (7', L). Let us
illustrate this result for curb-equilibria, i.e. for equilibria that belong to minimal sets of
mixed strategy pairs that are closed with respect to taking best responses. The game of
Table 1b has two sets that are closed under best responses, viz. the entire strategy set
and the set of strategies in which zero probability is assigned to B! and R!. Obviously,
only the latter set is minimal. Furthermore, each equilibrium in this set induces the
outcome “2,2”, hence, each curb equilibrium of the game of Table 1b produces the com-
mitment robust equilibrium of Table 1a. In Section 7 we show that the above argument

generalizes to any game that admits a unique and pure commitment robust equilibrium.



In particular, for cach common interest game we, hence, have a “justification” for playing

the Parcto-dominant equilibrium.

3 Preliminaries

We start our analysis from a given finite 2-person normal form game g = (Aj, Ay, up,uy).
We write S; = A(A;) for the set of mixed strategies of player ¢ in g and we denote a
generic mixed strategy by s;. We write C(s;) = {a; € A; : si(a;) > 0}. The set of mixed
strategy pairs is § = S; x S, and, for s € S, C(s) = C(s;) x C(s3). Throughout the
paper we assume the mild regularity condition that, whenever a player i is indifferent
between the strategy pairs a and a’ in A = A; x A,, the same holds true for player j,

hence!

if ui(a) = u;(a’), then u;j(a) = u;(a’). (3.1)

lor s; € S; and a; € A;, we define

uj(si) = max{u;(s;,q;): a; € A;} (3.2)
B(si) = {aj € A; 1 u;(si,0;) = uj(s:)} (3.3)
w(a;) = wui(ai,a;) where a; € B(a:) (3.4)

W = maxu(a) (3.5)

Hence, u(a;) is player ’s payofl when he commits to a; and w; is this player’s payoff
when he acts as the Stackelberg leader. These concepts are meaningfully defined because

of the regularity assumption (3.1): Although player j may have multiple best responses

'Whenever i and j occur in this paper, then i,j € {1,2}. If i and j occur in combination, it is

understood that i # j.
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against a;, player i does not care which best reply is taken. We say that player ¢ has an
incentive to move first at s if u;(s) < u;, that is if this player would be better off if he

would be allowed to act as a Stackelberg leader.

Note that any pure strategy Nash equilibrium s satisfies u;(s) < @, forz = 1,2. Hence,
if no player 7 has an incentive to move first at such s, then u;(s) = @; for ¢ = 1,2 and
s is a subgame perfect equilibrium outcome in each of the two games where one of the
players is forced to move first. Conversely, if s is pure and a subgame perfect equilibrium
outcome of each of these two games, then s is a Nash equilibrium of g and no player has
an incentive to move first at s. Obviously, any such equilibrium must Pareto-dominate

any other pure Nash equilibrium and we have proved

Corollary 1 No player has an incenlive lo move first al the pure stralegy cquilibrium
s if and only if s is an SPE outcome of the two games in which one of the players is
forced to move first. A pure equilibrium at which no player has an incentive to move first
Pareto-dominates any other pure Nash equilibrium, hence, two pure equilibria at which

no player has an incentive to move first are payoff equivalent.

This corollary is no longer correct for mixed equilibria. For example, the zero-sum
game of matching pennies has a unique (symmetric) mixed strategy equilibrium, it is
not an SPE outcome of the game where ¢ has to move first: Although player 7 has no
incentive to move first (he is sure to lose this game if he is forced to disclose his action
before j moves), a pure equilibrium at which no player has an incentive to move first
may also be Pareto dominated by a mixed equilibrium: Add to Matching Pennies a third
strategy for each player such that if both play this strategy both lose half a penny, but
both players lose one penny if only one player chooses this strategy. In cach Stackelberg
outcome, both players choose the third strategy, but the resulting equilibrium is Pareto

dominated by the original mixed equilibrium of Matching Pennies.
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It is easy to construct-an example of a game that does not have an equilibrium at
which no player has an incentive to move first. In fact, most games will not have such
an equilibrium, although the set of games having such an equilibrium certainly is not
of measure zero: All games in the neighborhood of the coordination game from Table
la have this property. Two classes of games that admit equilibria at which no player
has an incentive to move first are strictly competitive games (Friedman (1983)) and
common interest games (Aumann and Sorin (1989)). The game g is said to be strictly
competitive if for all s,s" and i # j, if u;(s) > u;(s'), then u;(s) < u;(s’). The game

g 1s a game with common interest if there exists s such that u;(s) > u;(s’) for all 7 and .

Lemma 1 a) If g is strictly competitive and s is a Nash equilibrium of g, then no player
has an incentive to move first at s.
b) If g has common interest and s is a Parelo dominant Nash equilibrivm of g, then no

player has an incentive Lo move first at s.

Proof. The proof of b) is trivial, so we only prove a). Assume s is an equilibrium of
a strictly competitive game ¢ and ui(s) < @,. Let @, = uy(@;) = uy(a@,a;). Then
uz(ar, az) < up(ay,az) for all a,, hence, u(ay,a;) > uy(ay,az) > uy(s) for all a;. But
then by playing a, player 1 could guarantee himself more than the equilibrium payoff

uy(s), which is impossible. m]

Sometimes we will make use of stronger regularity conditions than (3.1). One such

condition is that different outcomes are associated with different payoffs, i.e.

if a # a', then u;(a) # uy(a') (i€ {12} (3.6)

Obviously, (3.6) is satisfied generically. The final regularity condition that we will use
has first been introduced in Lemke and Howson (1964) and is also satisfied generically.
For s, € §,, define the matrix Uis, as the restriction of u; to B(s;)x C(s;). The regularity

condition that Lemke and Howson impose is
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rank (u;,,) > |B(s;)| for all j € {1,2} and all 5; € S; (3.7)

where |B(s;)| denotes the cardinality of the set B(s;). Note that (3.7) does not im-

ply (3.1) but that, for a game satisfying (3.7), the expressions (3.4) and (3.5) are still

well-defined since |B(a;)| = 1 for each a;. Also note that the class of 2-person games

satisfying both (3.6) and (3.7) is still generic. The following Lemma lists some properties

of games that satisfy (3.7).

Lemma 2 Let g satisfy (3.7) and let s be an equilibrium of g that is not pure. Then

(i) 1C(s1)] = C(s2)| = |B(s1)| = |B(s2)|

(11) If ' is an equilibrium and C(s') = C(s), then s’ = s.

(i11) For each a; € C(s;), there exists a; € C(s;) such that a; ¢ B(a;).

(iv) For each a; € C(s;), there exists a; € C(s;) such that a; ¢ B(a;).

Proof.

(i)

(i)

Since s is an equilibrium, we have C(s;) C B(s;) for 7,5 € {1,2}. Since the rank
of a matrix cannot exceed the number of columns, (3.7) implies |B(s;)| < |C(s;)|
for all s;. Combining these observations yields |C(s,)| < |B(s2)| < |C(s;)| <

|B(s1)| <|C(s1)|, hence, all inequalities must be equalities.

Assume s and s’ are equilibria with C(s) = C(s'). If u;(s) = 0, then the columns
of the matrix u,,, are dependent, hence, (3.7) is violated. So assume u(s) #
0. Consider the vector v with a;-th coordinate equal to v(a;) = u(s')s;(a;) —
u;(s)s(a;). Then, if we premultiply v by u;,, we get zero, hence by (3.7) v must
be the zero vector. Therefore, ui(s')s; = ui(s)s} and since both s; and s are
probability vectors u;(s’) = ui(s). But then s; = s}. A similar argument implies

q e !
that s, = 4.
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(iii) This follows immediately from the fact that [B(a;)| =1 and |C(s;)| > 2.

(iv) Il a; € B(a;) for all a; € C(s;), then {a;} = B(a;) for all such aj, hence {q;} =

B(s;) contradicting (i).

4 The Action Commitment Game

To formally consider the questions of which outcomes will result when the timing of
the moves is endogenous and of which equilibria of the original game are still viable in
this context, we use the 2-stage game of action commitment that has been introduced
in Hamilton and Slutsky (1990). In this game, which will be referred to as ~?%, each
player can choose between committing to an action in period 1 or to wait till period 2.

Formally, the rules are as follows

Stage 1: Simultaneously the players choose to commit to actions in A; and A,, respec-

tively, or to wait till stage 2.

Stage 2: FEach player i who did not yet choose an action in A; is informed about what
action his opponent j took in stage 1. After having received this information, the
player is required to choose an action in A4; with players moving simultaneously if

both still have to make a choice.

Payoffs: The players’ actions in 4% lead to a unique outcome in A. If a € A results,
then player 2’s payoff in 4% is u;(a). Hence, there is no discounting, moving late

does not entail any cost.

We will use o; to denote a strategy of player 7 in 4. Player i's payoff resulting from
o = (01,0,) is denoted by Ui(a). We will be interested in SPE of 2. There are three
types of subgames in 4% a) the original game, b) the stage-2 subgame in which both
players still have to move and c) for each i and a;, a subgame in which player i already
has committed to a; in stage 1 but in which player j still has to move. Assumption (3.1)

implies that these latter subgames are completely determined as far as the payoffs are
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concerned: The assumption of persistent rationality embodied in the SPE concept implies
that player j will choose an clement in B(a;) and that the payofls will be (u,(a,), 1, (a,)).
We will write v%" for the extensive form game that results from 42 if we replace cach
subgame a; € A; U A; with the terminal payoff (u;(a;),us(a;)). Note that each SPE of
4% can be seen as a representative of an equivalence class of SPE of 4%. Because of this

one-to-one correspondence, we will henceforth restrict attention to y*".2

A behavior strategy o; of player i in 4% is a rule that tells this player which action
from A; U {w;} to choose in stage 1 and what to do in stage 2 in the information
sel w = (wy,w;) that corresponds to the case where both players waited. We write
o; = (0},02) where o} denotes the randomization at time 1 and o7 is the mixed action
in information set w. For the case where o}(w;) < 1, i.e. player : moves with positive

probability in the first period, it will also be convenient to write

wi = oM (w;), st = (1 —w; ~15}, and s? = o? (4.1)

hence, s! is the mixed action that player i plays if he moves in period 1. In this case we

will also write o; = (w;, s}, s?

). The normal form of 4?" will be denoted as ¢g*". In this
normal form several pure strategies appear as equivalent rows, resp. columns, because of
the fact that the second stage matters only if w; was chosen in stage 1 that is, any two
pure strategies &; = (0,a},a?) and &; = (0,a!,a?) with a} = a} are equivalent. Taking
a representative from each such equivalence class of pure strategies, we see that a pure
strategy o, is equivalent to a rule that assigns to exactly one time point ¢t € {1,2} an
action in A;. If a; € A;, then we will write a! for the pure strategy “commit to a; in
period 17 while a? denotes the strategy “wait till period 2 and best respond if the oppo-
nent moves in period 1, otherwise play a;”. Hence, the set of pure strategies of player ¢

in g is {a!: a; € A;,t € {1,2}}.

2In the appendix we show that most of our results do not depend on this, and how the other results

can be preserved by a slight adjustment.
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For a game g satisfying (3.6) or (3.7) we define

i 1 if a; € B(a;) (4.2)

0 otherwise

Note that, for a; given, §;(a) is equal to 1 for exactly one a;. If o is played in 4?7, then

the outcome a € A results with probability

p°(a) = o'(a) + (1 — wi)wz01(ay)6,(a) + wi(l — wp)oy(az)6y(a) + wiwya?(a), (4.3)

where we have used o'(a) as a shorthand notation for o1(a1)o5(az). The probability
distribution p? on A defined by (4.3) is called the outcome of o and o is said to induce
the outcome s if p” = s. If g does not satisfy (3.6), then one has some freedom to specify
the behavior in stage-2 subgames where already one of the players has moved, hence,
each strategy pair o in g% induces a set of outcomes, which are all payoff equivalent. In
this case we will say that o induces s if there exist § — (81, 62) with &; : A; — S; and

b:(a;) € AB(a;) such that, for p° as defined in (4.3), we have p? = s.

5 Nonrobustness of Mixed Strategy Equilibria

The relevance of mixed strategy equilibria has frequently been questioned. In particular,
the traditional, naive®, interpretation according to which players consciously randomize
their actions is intuitively not very appealing. The reason a player must randomize in
cquilibrium is only to keep the others from deviating; the player himself will not lose
il he deviates and instead uses any of the pure strategies in the support of the mixed

strategy. Furthermore, unlike a pure equilibrium, a mixed strategy equilibrium typically

3We do not consider here more sophisticated interpretations like mixed strategies as beliefs or as

population frequencies.
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is not ex post self-enforcing in that, given the realizations of the actions, some player
would like to deviate. Aspects of timing only compound these difficulties and as a result
it is unlikely that a mixed strategy equilibrium is viable in the action commitment game.
Namely, consider an equilibrium s* of a game g satisfying (3.7) in which at least one of
the players randomizes. Then, according to Lemma 2, each player randomizes and there
is positive probability that the realized actions do not constitute an equilibrium ex post.
Henee, if player g plays 53 in period 1 of 4%, then player i strictly prefers waiting to
moving in the first period, and, consequently, both players playing s* in the first period
is not a Nash equilibrium of 42". Obviously, we also have that both players waiting till
the second period of 4%" and then playing s* is an equilibrium only if no player has an
incentive to move first at s*. In the next proposition we show that the latter is actually
a necessary and sufficient condition for the existence of a Nash equilibrium of %" with
outcome s*. Hence, only a very limited set of mixed strategy equilibria is viable when
the timing of the moves is endogenous and the following Proposition can be viewed as
a foundation and formalization of the critique of mixed strategy Nash equilibria in the

applied literature (cf. Bester (1992)).

Proposition 1 Let g be a game that satisfies the regularity condition (3. 7) and let s* be
an equilibrium of g that is not in pure strategies. Then there exists a Nash equilibrium

o of ¥¥ with outcome s* if and only if no player has an incentive to move first at s*.

Proof.

Sufficiency. No player has an incentive to move first at s* if and only if u;(s) > u; for
i = 1,2. In this casc the strategy pair ¢ = (01,0) with o} = w;, 07 = s7 is a Nash

equilibrium (in fact a subgame perfect equilibrium) of 7*" with outcome s”.

Necessity. Assume u;(s*) < @; for some 7 and that o is a Nash equilibrium of ¥* with
outcome s*. We will derive a contradiction. Without loss of generality we may

assume u;(s*) < @;. The proof is divided into a number of steps.
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Step 1. w; = o/(w;) < 1 for 7 = 1,2, hence, each player moves with positive probability
in the first period.
Clearly, we must have oj(w;) < 1, for otherwise player 1 can guarantee the payoff
u; by committing in the first period, hence U;(d) > i, and ¢ cannot have the
outcome s*. Suppose that player | waits till the second period, i.e. o}(w;) = 1.
Let a* be such that o}(a3) > 0 and o} € C(s})\B(a}). Then the outcome a* can
only be obtained if it is played in the second period, hence, p?(a*) < wos*(a®), a

contradiction.

Step 2. w; = o}(w;) > 0 for i = 1,2, hence, with positive probability each player waits
till the second period of %" in o.

Namely, assume o}(w;) = 0 for some i. Then o}(a;) = s?(a;) for all a; and i
chooses at least two strategies with positive probability (Lemma 2). Furthermore,
since there does not exist a; € A; with a; € B(a;) for all a; € C(s}), we have

Uj(ai,a}) > Uj(oi,a}) for all a;, hence, o} (w;) = 1. This contradicts step 1.

From the steps | and 2 we can conclude that the stage-2 subgame (w, w,) is reached
with positive probability if o is played in ¥*". Since ¢ is a Nash equilibrium of 42,
o? must be a Nash equilibrium of g. Furthermore, obviously C(0?) C C(s*). We will
distinguish two cases:

Case A ((0?) = (C(s"), hence (by Lemma 2) 0% = s*.
Case B C(0?) # C(s"), hence (by Lemma 2), there exists for each player i a strategy
a; such that a7 € C(s*)\C(0?).

We first continue the proof for case A.

Step A3. For each player i: If 0}(a;) > 0, then u;(a;) > u;(s*), hence, a player commits
himself only to strategies that yield more than the equilibrium payoff.
Suppose, to the contrary, that there exists some a; such that o}(@;) > 0 but
u;(a;) < uy(s*). Since player 7 must be indifferent between a! and a? for any

a; € C(s"), we must have
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E a;-(a,-)u.-(é;,a,-) + wjui(a;) = Ea’}(aj)u;(aj) + w;ui(s”)
hence
u;(@;) = wui(s”) and

ui(@i,a;) = ui(a;) for all a; € C(o]}).

In particular, @ must be a best response against any pure action that player j
plays with positive probability in the first period. From Lemma 2 we can conclude
that there exists a} € C(s}) such that a; ¢ B(a;) and o}(a3) = 0. We may assume

that a] € B(a;), since otherwise by (4.3)

p° (@i, 6}) = ww,s™(a;, a}) < s°(a;,aj).

Applying Lemma 2 once more we see that we can find a] such that a} ¢ B(a]).

Then, for a* = (a},a3),

p°(a*) = wyw,s*(a*) < s™(a%),
another contradiction.

Step A4. Conclusion of the proof for case A.

We have seen up to now that each player must move in both periods with positive
probability and that for each player 1 and for each action a; with ol(a;) > 0 we
have u;(a;) > ui(s*). Since U;(0) = ui(s*) and since waiting is a best response for

each player we have

3" o} (a;)ui(a;) + wjui(s™) = ui(s”)

so that there must exist a} with a}(a;) > 0 and u;(a}) < u;(s™). Hence, o}(a;) >0
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and u;(a;, a}) < u(s”) for all a; € A;, and, therefore

0}(a;) >0 and q} ¢ B(a;) for all ¢; with o!(a;) > 0.

Consider a* = (aj,a3). Then p’(a*) = ¢'(a”) + wiw;s*(a*), hence, since p? = s*,

we must have

o'(a”) = (1 — wyw;)s™(a*). (5.1)

On the other hand, for cach player 7, we have by summing up (4.3) over all a;,

P’ (a}) = o (a]) + wiwss;(a;), hence

ol(a”) = (1 — ww,)%s™(a”). (5.2)

Combining (5.1) with (5.2) and using a* € C(s*) yields wyw, € {0,1}. But this

contradicts the steps 1 and 2 and completes the proof for Case A.

We now continue with the proof of case B. Let a* be such that, for each player 1,

a; € C(s\C(a?).

Step B3. For all players ¢,; and all actions, if ¢; € C(s}) and a; ¢ B(a]), then a} €
B(a;).
Assume there exists a; € C(s}) such that a; ¢ B(q}) and a} ¢ B(a;). In o the

outcome (a],a;) can occur only if both players play it in the first period, hence

3-(a:vaj) = Ul(a;yaj) (5.3)
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By summing up (4.3) over all g, it follows that, for k # 1, s;(ax) = p°(ax) > o}(ak).
Combining this with (5.3) and (4.3) it follows that

oi(a}) = si(aj) and  af & B(a;) if 5}(a;) > 0.

This implies that any outcome (a],a;) with a; € B(a}) can occur only in the first

period, hence,

s*(af,a;) = o'(al,q;) for all a; € B(a]),

and hence, s}(a;) = o’(a;) for a; ¢ B(a}). This implies that if player j acts in
period two, then he plays the unique a; € B(a}) for sure. But this implies (by
Lemma 2(i)) that a; € B(a;) for all a; € C(s}). This contradicts Lemma 2(iv).

Step B4. Conclusion of the proof for case B.

6

Consider the pair a* = (aj,a3). Without loss of generality, step B3 allows us to

assume that a € B(a;). By Lemma 2 we have

if a; € C(s]), a; # aj, then a; & B(a}).

By step B3, therefore a3 € B(a,) for all such a;. But then we have that a; € B(o?)
and a3 ¢ C(0?). By Lemma 2 this is impossible since ¢? is an equilibrium of g and

g satisfies the regularity condition (3.7). o

Robustness of Pure Strategy Equilibria

In this section we show that for pure strategy equilibria of g the situation is fundamen-

tally different from that for mixed equilibria: Each pure equilibrium is a subgame perfect
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equilibrium outcome of the action commitment game, and each pure equilibrium that
satisfies a mild regularity condition corresponds to a perfect equilibrium of that game.
Specifically, if @ is a pure equilibrium of g and if my opponent J decides to commit to a;

in ¥*" whenever he has to move I can do no better but to commit to a; as well.

Proposition 2 If a is a pure strategy equilibrium of g, then the strategy profile o =
(01,02) with o} = a; (i,t € {1,2}), i.e. each player i chooses a; whenever he has to

move is a subgame perfect equilibrium of 4*".
Proof. Trivial. (]

To eliminate pure equilibria of g we, hence, have to use equilibrium refinements. As
most of these refinements have been defined in the strategic form of the game, we take
a normal form perspective in the rest of this paper. The next proposition shows that
all pure equilibria that satisfy a mild regularity requirement satisfy the weakest of these

more refined criteria, i.e. they are perfect (undominated) equilibria.

Proposition 3 If g satisfies (3.6) and a is a pure equilibrium of g with u;(a) >
min,, u;(a;,a;) fori = 1,2, then there ezists a perfect equilibrium of g% with outcome a.
Proof. The strategy profile ¢ = (0y,0,) defined by o; = a! (i.e. each player i commits
to a; in period 1) is a Nash equilibrium of ¢g*". We will show that o; is an undominated
strategy in g*". Since &; is undominated in g and g satisfies (3.6), @; can be dominated
in g% only if it is dominated by a strategy in which player i moves only in period 2. If
st (with meaning “play the mixed action s, in period 27) is such a dominating strategy
we must have ui(s;,a;) > ui(a;) = ui(a), but then s; must be a best response against
a; in g. The regularity condition (3.6) implies that the best response is unique, hence,
si = a;. Now, since u;(a) > min,, u;(d,,q;) we have u;(a;) > u;(a;, a;) for some a;, hence
Ui(a/,a?) > Ui(a},a}) for some a;. But this implies that @! is not dominated by a? in

g%, hence (a},a}) is perfect. u}
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Let us remark that the result does not hold for games that satisfy just the weaker con-
dition (3.1). One obvious reason for why the proposition might fail is that @ might not
be a perfect equilibrium of g. However, it can fail even for perfect equilibria. Consider
the game g from Table 2a. In this game, B; is a weakly dominated strategy for player ¢,
hence, a perfect equilibrium of g must be a Nash equilibrium of the 3 x3 game that results
if B; and B; are eliminated. However, in this 3 x 3 game C; is strictly dominated and in
the 2 x 2 game that results after C; and C; have been eliminated D; is strictly dominated,
so that (A;, A7) is the unique perfect equilibrium of g. The game ¢*" is given in Table 2b.

A, B, C, D,

A |1 1|1 1|3 3|0 0
B 1 T|1 LjR2 20 O
0 8

8 2

C,|-3 3|2 2
D,{0 0|0 O

Table 2a: Game g.

AL U1 1ps -Fpe oy 3|8 111 WL X
Bi|l1 1ifn uj2 2o W02 212 2[(2 2(2 2
ct{-3 3|/2 2(o o0|-1 8(f-1 8|-1 8|-1 8|-1 8
pDl|o 0|0 0|8 -1(-2 -2{0 0|0 OfO 0[O0 O
A2 11 1(2 2(8 1|00 @)1 1(2 |8 3|0 O
iy 102 2|8 L Oy 11y A2 20 0
c?ll 12 2|8 -1l ©|-3 3|2 2|0 of-I B8
Dil1L 1|2 2|8 -1(0 0|0 Of0O 0|8 -1{-2 -2

Table 2b: Game g*".
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The important observation is that A} is weakly dominated by 3B! + 1A% Further-

more, C!, D} and 182 are all weakly dominated by A?. Hence, any perfect equilibrium
of g* has to be a Nash equilibrium of the game in which player i is restricted to choose
from the set {B}, A?, C}, D}}. Now it is easily seen that any Nash equilibrium of this
4 x 4 game either results in the payoff (2,2) or is the strategy pair in which each player
1 chooses %B" + ,1—,/1,2 Hence, each perfect equilibrium of ¢* yields each player a payoff
of at least £ and there is no perfect equilibrium of g% with outcome (A;,A4;). It is
also easy to construct an example showing that the condition u;(a) > min,, u(8;,a;) in
Proposition 3 is essential. Let g be as in Table 3a. Then g satisfies (3.6) and A is a
perfect equilibrium of g. In g%, however, A! is dominated by A?, hence, each player can
guarantee the payoff 4 by committing to B;. Every perfect equilibrium of g?" results in

the outcome (B, By).

AL B A2 B

A, B, Atz 209 0|2 22 2

Ay (2 213 @ Bl |0 3[4 4|4 4|4 4
B |0 3|4 4 All2z 204 42 213 0
B |2 2|4 4]0 3|4 4

‘able 3a: Game g. Table 3b: Game g% .

At this stage it is appropriate to compare our work with Hamilton and Slutsky (1990).
Hamilton and Slutsky consider the game ¢*" where ¢ is the standard quantity setting

Cournot duopoly game. In their Theorem VIII they claim

“the two Stackelberg equilibria are the only pure strategy equilibria in un-
dominated strategies. Playing the Cournot equilibrium strategy at the first

turn is dominated by waiting to play after one’s rival.”

Although the standard Cournot duopoly game does not fit our context, discretized
versions of this game do and the Cournot equilibrium satisfies the conditions from Propo-

sition 3. Hence, it follows that the above claim is wrong. Playing the Cournot equilibrium
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strategy at the first stage would indeed be dominated if players could be sure that they
would continue with the Cournot equilibrium in the second stage in case both players
still have to move, but, il mistakes are possible, players cannot be sure of this. The total
quantity in the second period might be above the Cournot quantity, if only by mistake,
and in this case it pays to commit to the Cournot quantity if the opponent does the
same. It is the impression of the present authors that, although not stating it explicitly,
Hamilton and Slutsky actually had this truncated game in mind when making the above
claim. (See also their companion paper Hamilton and Slutsky (1993) in which in the
proof of Theorem III they display the payoff matrix of the truncated game rather than
of the full game g?". In the next section we will analyze this truncated game and show
that only equilibria in which no player has an incentive to move first are perfect in it.
Note that in the economic context studied by Hamilton and Slutsky, there is some justi-
fication for studying the truncated game rather than the full game g* . It is well-known
that the 2-person quantity setting duopoly game is dominance solvable, i.e. by iterative
elimination of weakly dominated strategies, the game can be reduced to the Cournot
quantities. This implies that any quantity choice in the second period that is different
from the Cournot quantity is iteratively dominated in g?" and, hence, can be eliminated.
Hence, if g is the Cournot duopoly game, then by iterative elimination of weakly dom-
inated strategies the game g% can be reduced to the truncated game and in the latter
the above claim of Hamilton and Slutsky is correct. (Recall, however, that the example
in Section 2 has shown that the full game cannot always be reduced this way.) Finally,
it is interesting to note that, again for the special case of Cournot duopoly, whether the
equilibrium a from Proposition 3 is proper or not depends on the descritization. Let ¢~
be the Cournot quantity and let ¢~ (resp. ¢*) be the largest (smallest) quantity in the
grid that is less (more) than ¢*. (Assume that ¢~ is in the grid as well.) Then committing

to ¢* is a proper equilibrium in ¢*" if and only if u;(¢™,¢") < wi(¢*,q%).
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7 Commitment Robust Equilibria

The SPE that was described in proposition 3 is fragile in the sense that, if a player is sure
that a will be played in period 2, then he has nothing to lose from waiting. However, if
player j waits and u;(a) < w;, then player 7 has an incentive to commit. To put this more
formally, we have that committing to a in period 1 is not a perfect (i.e. undominated)
equilibrium of the game in which players are forced to play a in the second period of
7*". This section is devoted to proving that only equilibria in which no player has an

incentive to move first can be perfect in this game.

We introduce some notation first. If s* € S, we will write 7?7(s*) for the extensive
form game that results from v? if we replace the subgame w at stage 2 in which both
players still have to move by an endpoint with payoff vector (u1(s"), uz(s*)). Hence, we
assume that players will play s* if both still have to move. (To have an SPE of %" we
must of course require that s* is a Nash equilibrium of g.) The associated normal form
game is denoted by g%"(s*). In this game, the set of pure strategies of player 7 is S; U {w;}
and payoffs are determined by g if no player waits, by (3.2) and (3.4) if only j waits,
and they are equal to (u,(s*), uy(s*)) if both players wait.

Our definition of commitment robustness formalizes the idea that “sensible behavior”
in the first stage of 42" should produce the outcome s if players foresee that in the second

stage play will continue with s.

Definition 1 An equilibrium s* of g is commitment robust (is a CRE) if there erists a

perfect equilibrium o of g* (s*) with outcome s*.

Proposition 4 An equilibrium s* of g is commitment robust if and only if no player

has an incentive to move first at s*, i.e. u;y(s*) > @; fori=1,2.

REMARK Note that if s is mixed and g satisfies the regularity requirement (3.7), then
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this statement follows from Proposition 1. The proof of this Proposition is straightfor-
ward if s* is pure (the steps 1 — 4 below). In the case s* is mixed, the proof will rely on

the proof of Proposition 1 (see step 7).

Proof.

Sufficiency: If u;(s*) > @ for i = 1,2, then waiting is a dominant strategy for each
player in g%"(s*), hence (w1, w;) is a perfect equilibrium and this equilibrium results

in the outcome s*.

Necessity: Assume u;(s”) < @; for some i. We have to show that there does not
exist a perfect equilibrium of g% (s*) with outcome s*. We assume that such an
equilibrium, o, exists and derive a contradiction. The proof is divided in a number

of steps.

Step 1. We may assume u;(s*) < @, forz =1,2.
Namely, assume u;(s*) < @; but u;(s*) > u;. Then in g*"(s*) we have that w; is a
dominant strategy for j. If o;(w;) = 1, then player : can guarantee u; > u;(s*) by
committing to a Stackelberg leader strategy. Hence, o cannot result in outcome
s*. If o;(w;) < 1, then player j must have a dominant strategy a; in the game
g, hence u;(a;,@;) = u;(a;) for all a;, and, therefore, u;(a;,@;) = ui(a;) because of
Assumption (3.1). Hence, all of j’s dominant strategies are equivalent for 7z and
i's best response to o; yields @; > u;(s”). Consequently, there cannot be a perfect

equilibrium with outcome s*.

Step 2. o;(w;) < 1fori=1,2.
The argument is the same as in step 1. If player j waits for sure then 7 can commit
himself and thereby guarantee more than u,(s*).

Step 3. If o;(a;) > 0, then u;(a;) > u;(s") with the inequality being strict if a; is not a
dominant strategy in g.

This follows from the observation that, if the condition is not satisfied, a; is domi-

nated in g%"(s*) by w;.
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Step 4. s} cannot be pure for i = 1, 2.

Assume s} is pure, s7 = af. By step 2, player 1 must play a7 with positive proba-
bility in the first period. However, u;(a}) = u;(a*), so that, by step 3, a; must be
a dominant strategy in g. Then @; = max,, u;(a},a;) = u;(s"), contradicting step

1.

Step 5. We must have o;(w;) > 0 for all 1.

Assume o;(w;) = 0, hence, player i moves for sure in period 1. Assume there
exists a; € C(s7),aj,a; € C(s]) such that u;(a;,a;) > uj(a;,a};). Then, since
u;(s7,a;) = uj(s},a}), there must exist a/ € C(s?) with u;(ai,a}) > uj(al,a;).
This implies that w; is a strictly better response in g?(s*) against s! than any
a; € C(s}), hence gj(w;) = 1, contradicting step 2. Consequently, we must have
uj(a;,a;) = uj(a;,d}) for all a; € C(s}),a;,a; € C(s}). Assumption (3.1) then
implies u;(a;, a;) = u;(a;, a;) for all such a;, a;, a;. Hence, since s* is an equilibrium
ui(ai, a;) = ui(a}, a;) for all a;,a} € C(s}),a; € C(s})- Using (3.1) once more we
see that both players’ payoffs must be constant and equal to u(s*) on C(s*). If
there exists a, C C(s7) with u,(a,) » uy(s7), then player j's unique best response
to s is to wait and ¢ cannot result in s*, hence, we must have u;(a;) = u;(s*)
for all a; € C(s7). By step 3, all a; with s7(a;) > 0 must therefore be dominant
strategies in g. But then, for any such a; we have, u; = max,, u;(a;,a;) = u;(s*),

contradicting step 1.

Step 6. If a; € C(s}) is a dominant strategy in g, then o;(a;) = 0.

Assume a; is dominant in g, s}(a;) > 0 and 0;(a;) > 0. Then u;(a;) < uy(s*) by step
5 and w;(a;) > ui(s") by step 3. Exactly as in the proof of the previous step one
can show that both players’ payoffs must be constant on C(s*). The contradiction

is obtained in exactly the same way as before.

Step 7. Conclusion of the proof.

We have seen up to now that each player must move in both periods with positive

probability, that in the first period a player cannot choose a strategy that is dom-
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inant in g, and that for each strategy a; with o;(a;) > 0 we have u;(a;) > ui(s").
We can now mimic the proof of step A4 of Proposition 1 (in which no use was

made of the regularity requirement (3.7)) to derive a contradiction. O

To conclude this section, we will compare our concept of commitment robustness with
that proposed in Rosenthal (1991). Rosenthal defines an equilibrium s to be commit-
ment robust if s is an SPE outcome of each of the two games in which one of the players
moves first. Hence, Proposition 4 seems to establish the equivalence of Rosenthal’s con-
cept to ours. However, whereas we assume that only commitments to pure actions are
possible, Rosenthal assumes that a player can commit to a mixed strategy and that the
mixture can be communicated. Hence, Rosenthal works with what Schelling (1960, p.
185) calls “fractional commitments” and Schelling already points out that these may
be more efficient than pure ones. (Compare our discussion of the extended matching
pennies game in Section 3 in which a mixed strategy equilibrium Pareto dominates the
pure strategy equilibrium.) Of course, having the opportunity to commit to a mixed
action can never be worse than having the opportunity to commit to a pure action and,
hence, any equilibrium that is commitment robust according to Rosenthal, which will be
called an RCRE, is also a CRE. Of course, frequently there will exist no CRE and it is
easy to construct a game that admits a CRE but no RCRE. To conclude this section we

derive an alternative characterization of RCRE for a game satisfying (3.7).

Proposition 5 For a game g and a player i define ul by means of

+
u; = max max uU;(S;,a;
: $,€Si a;€B(si) l( . J)

Let s* be a Nash equilibrium of g. If ui(s*) > u} fori=1,2, then s* is an RCRE. If g
satisfies (3.7), then s* is an RCRE if and only if ui(s*) > ul fori=1,2.

Proof. Consider the game 4% in which player i is allowed to act as a Stackelberg leader,

with this player’s mixed action being revealed to player j. Because of the bilinearity of
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u;, player 1’s payoff if he chooses s; and j best responds, is at most maX,, eB(s;) Yi(8i, ;).
+

Hence, cach SPE yields player 7 at most u. If u;(s*) = u}, then any strategy pair o
with o; = s7 and o; with o,(s7) = s} and 0;(s;) € B(s;) for all s, is an SPE of 4%. This
proves the first part of the proposition.

To prove the second part, let sf € S; and a} € B(s}) be such that u;(sf,a}) = uf.
Because of (3.7), there exists z € R* with z(a;) = 0if a; & C(s}) such that u;(z,af) >0
and u;(z,a;) = 0 for all a; € B(s})\{a}}. (Here u;(z,a;) is shorthand notation for
Yo, z(ai)uj(ai,a5).) Write t = ¥, z(a;) and si(e,t) = (1 + et)~}(s7 + ez). Then
si(e,t) € S; if € is sufficiently small, B(s;(¢,t)) = {af} and s(e,t) — s} as e — 0.
Hence, if s is an SPE outcome of ¥/ we must have w;(s) > u;(si(e, t), a}), and, therefore,

ui(s) > wi(sf,at) = u}. This completes the prool of the second part of the proposition.

(m}

8 Endogenous Timing and Coordination

In this section we return to the untruncated game from section 6 and we investigate
whether, by employing more refined equilibrium notions, we can obtain the conclusion
that only commitment robust equilibria are viable when the order of the moves is en-
dogenous. Specifically, we address the question of whether in a game that has a unique
and pure CRE players will automatically coordinate on this CRE if the timing of the
moves is endogenous. We will show that some set-valued “evolutionary” concepts, viz.
the notions of persistent equilibria (Kalai and Samet (1984)) and of curb and curb*
cquilibria (Basu and Weibull (1991)) do indeed allow this conclusion. We first formally
define these concepts. Write B(s;) for the set of all mixed best replies against s; hence
B(s;) = AB(s;) and B(s) = B(s3) x B(s;). For a set S of mixed strategy pairs, write
B(S) = U,e5B(s). Similarly, define B*(8) for the set of all undominated best replies

against S, i.e. best replies that are undominated strategies.
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Definition 2 Let g be a 2-person normal form game

(i) A retract is a set R = Ry x R, where R; is a nonempty, closed and conver subset

of S;.

(ii) Given a certain property (X) of retracts, an X -retract is a retract R that 1s minimal
with respect to this property, i.e. there does not ezist a retract R' with R' C R, R' #
R having property (X).

(iii) An X -equilibrium is an equilibrium that belongs to an X -retract.

(iv) Persistent retracts, curb retracts and curb* retracts are defined, respectively, by the

properties (P), (C) and (C*):

B(s)NR#® for all s in some open neighborhood O of R (P)
B(R)CR )
B*(R)CR (c*)

We will make use of the following proposition which proof can, for example, be found

in Balkenborg (1992).

Proposition 6 (i) Every curb retract contains a curb* retract and every curb* relract

contains a persistent retract.
(it) Every game has at least one curb (resp. curb¥, resp. persistent) equilibrium.
(iii) If R is a curb retract (resp. a curb* retract), then R; = A(Aj) for some A} C A;.
(iv) Different curb retracts are disjoint and so are different curb* retracts.

(v) If no player i has equivalent strategies in g (i.e. there do not ezist a;,a. € A; with
a; # a, and ui(a;,a;) for all a;), then the properties (iii) and (iv) also hold for
persistent retracts, i.e. each persistent retract is a conver hull of pure strategies

and different persistent retracts are disjoint.
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The main result of this paper is

Proposition 7 Assume g satisfies (3.6) and a is a pure CRE of g. Then

(1) Any curb (resp. curb*, resp. persistent) equilibrium of g% yields each player i a
payoff of at least u,(a).

(i) If a is the unique CRE of g, then each curb (resp. curb*. resp. persistent) equilib-

rium of g% results in the outcome a.

Proof. In this proof, let “z” stand for “curb”, “curb*” or “persistent”. Note that since
g satisfies (3.6), no player 7 has equivalent strategies in g%, hence z-retracts are convex
hulls of pure strategies and different z-retracts are disjoint (Proposition 6). Let the

retract R be defined by

/i,‘ = {a,-'}U{a?: a; € A,‘}, R,‘ZAA;, R: Rl X Rz.
Note that R satisfies the properties (C), (C*) and (P). We will show that any z-retract
is contained in R.

The proof is easy in case some player ¢ has a dominant strategy a; in g. Then a; = a;
and since a is a CRE we have that for all a; # a;, a! is dominated by al (t=1,2). This

implies that if R is a persistent retract, then
R c A({a;,al}) x A(4)) C R

Since any z-retract contains a persistent retract, and since R has properties (C) and
(C*), it follows that any z-retract is contained in R.

Now assume that no player has a dominant strategy in g. Then it is easily seen that
a? is an undominated strategy for each player i. Furthermore, for each j there exists
some a, such that a; ¢ B(a;). We will show that, if a; # a;, then committing to a;

cannot belong to any z-retract. Note that if R is an z-retract and a; € R;, then a2 € R;.
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Namely, a?

1

is an undominated best response against a} (hence a? € R, if z stands for
curb or curb*, and a? is the unique best response against (1 — 2¢)a} + €d] + €a? (so that
a? € R; if ¢ stands for persistent). Now, since a? is the unique best response against
(1 —€)a? + ea! it follows that (a},a3) € R whenever a! € R; for some a; # @;. Since
R satisfies the properties (C),(C*) and (P), we have that any z-retract that contains
(a?,a?) is contained in R and there does not exist an z-retract containing some a! with
a; # a;. Hence, any z-retract is contained in R.

Now note that, if players are restricted to choose strategies from R, then each player
i can guarantee the payoff u;(a) by playing a!. Consequently, if o is an z-equilibrium
of g%, then C(0) C R and u;(0) > u;(a) for ¢ = 1,2, which proves the first part of the
proposition.

Now assume that there exists an z-equilibrium o that results in an outcome different

from @. Then for each player i we must have o;(a}) < 1. Define the mixed strategy s; of

player 7 in g by

‘ql(ai) = (I - ”i(ﬁ}))—‘”l(a?) (“. € Au)

Since o is an equilibrium of g?" we have that s is an equilibrium of g and, furthermore
w(s) > w, for ¢ = 1,2, since each player ¢ can guarantee u; by playing al. Uence, s is a

CRE of g. This completes the proof. u]

Note that in the proof we did not use the full power of the regularity condition (3.6).
We used that a is a strict equilibrium, i.e. @; is the unique best response against a;,
and that, for each player i, @; is the unique Stackelberg leader strategy. The game from
Table 4 may show that the latter assumption is essential. Note that this game satisfies
(3.1). (T, L) is a CRE in this game, however, the unique curb retract of ¢*" is the entire

game, so that, in particular (B*, R!) is a curb equilibrium.
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L M R
|3 3|0 0|0 O
M|2 2(3 3[(o 0
Bl 0|4 1[2 2
Table 4

9 Conclusion

We have addressed the question of whether only equilibria at which no player has an in-
centive to move first are viable when the order of the moves is endogenously determined
and players have the opportunity to commit themselves. We have seen that in order to
answer this question in the affirmative one needs quite strong equilibrium concepts, but
that, if one is willing to accept such concepts, one can indeed conclude that, with en-
dogenous timing, players will indeed coordinate on the commitment robust equilibrium
whenever the latter is pure and unique. We have restricted ourselves in this paper to
2-person games and we have only allowed one point in time at which a player can commit
himself. It is important to investigate the extent to which our results depend on these
assumptions. One can easily define the game 7' in which there are ¢t — 1 periods in which
a player has the opportunity to commit. (Obviously 4! = g-) The reader can verify
that our main results remain valid in this extended context. Hence, mixed equilibria
are typically not viable and any curb (resp. curb*, resp. persistent) equilibrium of the
game in which the players have ¢ — 1 opportunities to commit themselves results in the
commitment robust equilibrium. We have not investigated whether our results extend
to games with more than two players, although we expect they do. It is clear, however,

that in some cases (as in the proof of Proposition 1) different techniques are needed.

It has to be admitted that the class of games with a commitment robust equilibrium,
i.e. the class for which we were able to determine the outcome with endogenous timing
in this paper is quite limited. In a companion paper (Van Damme and Hurkens (1993))

we address the question of which outcomes can be expected for some economic games
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without a commitment robust equilibrium. It turns out that in this case the length of the
timing game plays an important role. To illustrate the phenomena that arise, consider

the game g from Table 5a in which z > 0.

L R W

E R
T2 vjo o2 1

T2 110 0
B8 @1 =|1 =

B3 0L =
W(3 0|1 z|y =z

Table 5a

Table 5b

In game g, B is a dominant strategy, hence, s = (B, R) is the unique Nash equilibrium.
If we substitute (y, 2z) = (1, z) in Table 5b, then we obtain the game ¢?"(s). In this game,
(T',W) is the unique perfect equilibrium. Only player 1 has an incentive to commit
himself and indeed this player commits. However, now assume that z > 1 and consider
73, i.e. there are two time periods at which players can commit. Player 1 has no incentive
to commit himself right away: he is sure of getting his Stackelberg payoff if he waits one
more period. Player 2 foresees that, if he does not commit right away, player 1 will do so
in the next instance. Hence, if he does not commit, his payoff is 1, while committing to
R yields = > 1. Formally, if players foresee that as of stage 2 (T', W) will be played, they
will analyze the stage 1 game by substituting (y,z) = (2,1) in Table 5b and in this game
the unique perfect equilibrium is (W, R). We come to the conclusion that the predicted
outcome is very sensitive with respect to how many times one has the opportunity to
commit themselves. If ¢ is odd, the predicted outcome of v* is (B, R), while it is (7', L) if
t is even. Note that these problems do not arise in case one of the Stackelberg equilibria
Pareto-dominates the other. If z < 1, then for the sequence {s'}; which is recursively
defined by (i) s' is a Nash equilibrium of g and, (ii) for each t > 1, s**! is a perfect
equilibrium of ¢g%"(s'), then s*is (T, L) if t > 3, hence, players coordinate on the Pareto

dominant Stackelberg equilibrium. More delicate issues are left for our companion paper.
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Appendix

In this appendix we show that the truncation we use throughout the paper —namely to
substitute the SPE payoffs in subgames where one player has committed and one player
has waited  is innocuous for most results obtained in this paper. We show how the
propositions can be adjusted.

Let g? denote the reduced normal form of 42. Notice that ¢*" is obtained from g% by

elimination of weakly dominated “waiting”-strategies.

Proposition 1 is not correct when 7% is replaced by 72, as can easily be seen from the

coordination game from Table la. Let s* denote the mixed equilibrium of this game.

Consider the following strategy for player i:

Wait until the second period;

If the opponent has also waited, play s} in period 2;

If the opponent has committed to a;, then respond with a; & B(a;).

These strategies constitute a Nash equilibrium of 42 that induces the outcome s*.
However, Proposition 1 can be adjusted by replacing 42" by 42 and by replacing

“Nash” by “subgame perfect”. The proof remains the same.

In Proposition 2 (resp. Proposition 3) 4*" (resp. ¢?) can be replaced by ~2 (resp.

g?%). The proofs remain the same. Propositions 4, 5 and 6 are not affected.

Proposition 7 is not correct for “curb” if g% is replaced by g2. However, it remains
correct for “curb*” and “persistent”. This can be proved as follows:

Let “x” stand for “curb*” or “persistent”. First, remark that z-retracts do not contain
pure weakly dominated strategies. Hence, the strategies that are contained in an z-
retract of g% are not eliminated and are, hence, also strategics in g*". In particular, we
can use the same notation a! as before.

Furthermore, we use the following result from Balkenborg (1992) (Corollary 6.2.2,

page 80):
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If T and I are two games and I" is obtained from I' by deleting pure weakly domi-

nated strategies, then any persistent retract of I' contains a persistent retract of I".

Now it follows from the above and the proof of Proposition 7 that, if R is a persis-
tent retract of g2 then RN R # 0, where R is as defined in the proof of Proposition 7.
Since R has properties (C*) and (P) in g2, it follows that every z-retract of g* is con-
tained in R. The remainder of the proof is exactly the same as in the proof of Proposition

1.
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