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lï

LcLLer nacne, we call crrdiGlc suhgauce pcrfect eyuilibrium (CSPE). ln the next section,

wc show Lhat crcdiLility Icads to a drastic rcduction in thc numbcr of cyuilibria.

"1'o motivate our rc(inement, considcr Lhe following game.

~Vlcen it is his t,n'n to n,ovc, player'l is indilfcrcut betwecu 1 aud r. 1'laycr 1's optimal

strategy Lherefore depcncls ou Lis belief aLout Icow player will play iu tlce face of Llcis

indifferencc. llarsanyi ancl Selteu (1998) argue that a rational player shoulcl randomizc

cyually aucong all alLcrnal.ivi~s ovcr which hc is iucli(fcrcnL. 1f playcr 1 bclicvcs that playcr

2 will choose ! auel r with oyual probahility, t.Lcn player 1 should choose i, and player

2 will obtain a payofT of 0. Ilowevcr, i[ playcr I helievcs that playcr 2 will play r, thcn

pla.ycr 1 will choosc 1, aud playcr'l will obtain a payo(Tof ~i. "1'hc thrcat by playcr 2 Lo

play r is cocnplctcly ratioual, sincc plavor 2 is iudilTcrcnL I,ctwcen 1 and r. Morcovcr,

the threat, if hclic~ccl, }'iclds playcr 2 a highcr payo(T. In our view, thcre(ore, player 2

will indccd thrcatcn to play r and playcr I has evcry rcason to bclicvc LhaL playcr 2 will

carry out his thrcnt, so playcr 1 shonld cliootic l,.

"I"hc logic ahovc is rlnilc di(fcrcnL froni tliat undcrlying forward induction arguments.

"I'he usual forward incluction argumcnt (sec, for example Van I)amme (1989)) is that

pla}'er 1, hy his actiou, can iudicate his desire to play a particular subgame perfect eyui-

librinm in the suLgacne thaL follows this action. In demand cornmitment games, as well

as thc gamc aUovc, thc furward iuduction logic is not compclling: although player 1 may

indiattc his desire tu play a particular sul,game perfect strategy combination, Le has no
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Abstract

An apex game is a bargaining situation in which there is one major (apex)

player and n"minorr players. The only profitable coalitions contain either the

apex player and any one of the minor players or else all of the minor players. The

demand commitment model is a bargaining procedure, i.e. an extensive form game.

This paper investigates the payoffs that result (as subgame perfect outcomes) for

apex games when playera use the demand commitment bargaining procedure. We

show that whenever the apex player has the first move he forms a coalition with a

minor player and obtains the fraction (n - 1)~n of the coalition's value while his

(minor-player) partner obtains the remaining l~n. When a minor player has the

first move he either forms a coalition with the apex player (and obtains l~n) or

else forms a coalition with all of the remaining minor players. When this minor-

player coalition torms there are many subgame perfect payoff distributions. A

refinement of subgame perfection is proposed and is shown to select a unique

payo(f distribution (l~n for each minor player) for the minor-player coalition.
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for its support and hospitalíty. They thanlc Bill Zame for helpful discussions and for auggestions that

improved the presentation. The first author is also grateful to the CentER Cor Economic Research at

Tilburg Univereity for its support and hospitality and to the National Science Foundation grant for its

support through grant SES-8706631.
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1 Introduction

In this paper we present a noncooperative model for bargaining in characteristic fuuc-

tion games, and explore its implications for the class of apex garnes. An aprx gnmc is

a bargaining situation in which there is one major (apex) player aud u rninur playc~n;

only Lhe coalitions co.. isting of the apex player and any one of the minor playe~rs, ancl

the coalition consisting of all of the minor players are profitable, and these coalitions

have equal value. (It is convenient, and involves no loss of generality, to normalize pay-

offs so that the value of each of these coalitions is n, the number of minor players.)

[n our model, bargaining takes place by means of a procedure which we call demand

commitment.r I:ach player in turn may set a price (a payoff demand, expressed in utility

torrns) for his participation in any coalition. Ilaving set his price a player cau forni a

CoiLllt,l011 If IUS partners in the roalition have already named their prices and the cualition

can afford these prices. The game terminates as soon as one coalition is formed; players

not belonging to the "successfuln coalition receive a payoff of zero.

Our purpose in this paper is to investigate the effects of the existence of alternative

coalitions on bargaining outcomes. The demand commitment model is wel]-suited to this

purpose: In this model, each player must make a trade-off between the higher payoff he

might obtain by setting a higher price and the possibility of pricing himself out of th~

rnarkeL eutirely. We focus on apex games since they represent the sirnplest situations in

which competition for partners is relevant.~

Considerable attention has been focused on providing extensive form models for bar-

gaining in characteristic function games. The seminal work in this direction is that oí

Nash (1953) on the two-person simple bargaining problem. Nash argued for the im-

port.ance of modeling the bargaining process explicitly by means of an exten.ive form

~'1'he demand commitment procedure was firet euggeated by Iizinhard Selteu. We are gratcful to him

stimulating us to carry out the reeearch described in thie paper.

~An apex game can be viewed as a unanimity game played among the minor playere sugmented with

a single outaide option for each player (that of forming a coalition with the apex player).
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game, and viewed cooperative and noncooperative approaches as complementary. The

cooperative theory avoids any specification of the bargaining process, hence, it achieves

great generality, is tractable and easy to apply. However, it is typically difficult to assess

(the reasonableness of) the intuitions (axioms) underlying a cooperative solution, or thc

range of situations in which it should apply, without having a specific bargaining proce-

dure in mind. A cooperative solution is in serious doubt if it is not compatible with sorne

sensible noncooperative bargaining procedure. Conversely, a noncooperative bargaining

procedure is not likely to be sensible if its outcomes are not supported by (the intuition

of) some cooperative solution. Seminal papers on extensive form models for situations

with niauy playi~rs and niany potential coalitious (i.c., chara.ctcristic functioii };a,nu,n) ,i.n~

Lhusi~ of Ilarsauyi (1!)71 ) and Sclten (1981). 'I'Iwse papers exemplify thc insight Lha,t ~.an

be gained by reinterpreting cooperative solution concepts as equilibria of noncooperativ~~

games. As is the case in many other models where time pressure plays no role, the

models of Harsanyi and Selten are plagued with a mulitude of equilibria; Harsanyi and

Selten use equilibrium selection to argue for "sensiblen outcomes.

Morc recenL papers in this area include those of Binmore (1985) and Chatterjec ct

al (f990). Both papers can be viewed as offspring of a mating between Rubinstein's

noncooperative model of the two-person simple bargaining problem and Selten's nonco-

operative model of characteristic function games. Rubinstein (1982) describes a model

in which two players alternate in making offers on the division of their total payoff, until

agreement is reached. Pressure to reach agreement comes because players discount fu-

ture payoffs. Selten (1981) describes a model in which many players bargain over which

coalition to form and the division of payoffs within the coalitions. In Selten's model (the

proposal-rnaking model) players (sequentially) propose coalitions and feasihlc divisionti

of the payofís obtainable in these coalitions. Binmore's "telephone bargainiug" uiodcl

and Chatterjee et al's model explore the effects of time pressure in the proposal-rnaking

model. In Section 7 we discuss the results obtained by Chatterjee et al, for now it suffices

to remark that Binmore (1985) argues that an instability is built into this model since

it imposes constraints that players would like to violate.
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In our model and Binmore's (1985) "market demand" model players make demands

and not proposals. This distinction is important because commitment to a demand

means that bargaining takes place in many different coalitions simultaneously (a player's

price is a demand for payoff which is uniform across al! of his potential coalitions while

a proposal specifies payoffs for only one coalition). The importance of this difference

can be seen by contrasting the outcomes of Binmore's "telephone bargaining~ and his

"markct dcmand" rnodel.

Our model is also different in a second important way: competition among coalitions

for players and not time pressure is the driving force in determinirrg the division of pay-

offs and consequently in determining which coalitions are going to form. See Section 7

for further discussion of this issue.

Demand commitment games are extensive form games with perfect information. As

is well-known, finite extensive form games with perfect information that have different

payoffs for each player at different terminal nodes, have unique subgame perfect equilib-

ria. Although demand commitment games are games with perfect information and finite

horizons, they are not finite since each player's payoff demand can be any nonnegative

real number. Moreover, for each player there will be many terminal nodes that yield the

player the same payoff. As a consequence, it will typically be the case that players are

faced with choices among which they (but not the other players) are indifferent and in

such cases multiplicity of subgame períect equilibria may result.

W~~ show that such niultiplicity ch~es ~wt arise wheu the apex player nioves IirsL or

when there are only two minor players: in the first instance the apex playcr fonns a coali-

tion with one of the minor players and, in the second instance, the first two players to

move - whether or not one of them is the apex player - form a coalition. In either case

successful3 minor players each obtain a payoff of 1 and the apex player, when successful,

3"Succeasful" means that the player is a member of the coalitíon that forms.
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obtains a payoff of n- I. [n cases in which there are at least three minor players and

a minor player moves first, however, one can generate a continuum of subgame perfect

equilibrium outcomes by varying players' conjectures about the choices other players will

make when faced with choices among which they are indifferent.

In our view, not all conjectures about how players will resolve their indifferences

are equally convincing. We introduce, in Section 5, a refinement oí subgame perfection,

called credible subgame perject equilibrium which is based on the idea that players strate-

gically exploit their indifferences. We assume that a player i can credibly threaten player

j to resolve his indifferences in a particular way, if carrying out the threat will not reduce

i's payoff, will reduce j's payoff and if j's best response to the threat will increase i's

payoff.

In Section 6 we show that allowing credible threats drastically reduces the number

of equilibrium outcomes. 1'he only outcomes resulting from credible subgame perfect

strategies are: formation of the coalition of all minor players with each minor player

obtaining a payoff of 1 and formation of a coalition consisting of the apex player and

one of the minor players with the apex player obtaining a payoff of n- 1 and the ininor

playcr obtaining a payoff of 1.

Section 7 concludes the paper with a discussion the relationship between our model

and other cooperative and noncooperative models for apex games.

2 Apex Games and Demand Commitment

Let No -{0,1, ..., n} be the set of players. We call the players in N-{ 1, ..., n} the

minor players and call player 0 the apex player. The characteristic function of the apex

game is given by
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v(S) -
( nifS-{O,j}withjENorS-N

Sl 0 otherwise

In demand cornmitment games play proceeds by each player, in turn, setting a price

(a demand for payoff :n utility terms) for his coalitional participation. Having set his

price a player can form a coalition if his partners in the coalition have named their prices

and the coalition can afford these prices. If the player doesn't form a coalition, he selects,

as the player to have the next move, any player who hasn't announced his price. Before

stating the rules more formally, we introduce the following notation.

Let p~ denote the price demanded by player j. The coalition S is jeasióle for i if

n(.S) - n(i.e., ,S is a profitable r.oalition), S contains player i, every player in j E S has

already announced his price, and ~~ES p~ G v(S).

The demand commitment game is played according to the following rules. Nature

randomly selects a player from No to move first. This player announces a dernand (a

nonnegative real number) which is then made known to all players and selects a player

(any player who has not yet moved) to move next. When it is player i's turn to move,

he announces a demand and either forms a feasible coalition or selects a player to move

next. (I[ every other player has already moved and the last player to announce a de-

mand dces not form a coalition, the game ends and each player obtains a payoff of 0.)

If a feasible coalition dces form the game ends: each player in the coalition is paid his

demand while players who are left out obtain nothing.

The demand commitment game is a finite length extensive form game with perfect

infornration and continuous action spaces. (We prefer to work with the continuurn rather

than with discrete money units to avoid making additional case distinctions.) The so-

lution concept we will employ is subgame perfect equilibrium in pure strategies, i.e. we

will be looking for a pure strategy profile that induces a Nash equilibrium in every sub-

game. As this concept has by now become a standard element in the economist's toolkit



7

there is no need to be more formal at this point. There is just one special feature of

SPE in extensive form games with continuous action spaces of which the reader should

be aware. This is the fact that in such a game not every SPE of a subgame can be

extended to an SPE of the overall game because ties cannot always be broken in an

arbitrary way. Requiring a strategy combination to be an SPE of the overall game may

constrain a player to choose one actión (consistent with one SPE of the subgame) rather

than another action (consistent with a different SPE of the subgame) in situations where

the player making the decision is indifferent between the two actions, this in order to

ensure that players moving earlier in the game indeed have best responses. The simple

analysis of the 3-person 3-cakes problem in Section 3 suffices to acquaint the reader with

this peculiar property of SPEa in continuum games. For general results on SPEa in

continuum games the reader is referred to Hellwig et al (1990).

3 The Three Player ~ Three Equal Cakes Problem

We begin with the simple case of an apex game with two minor player to familiarize

the reader with the basic steps of the general argument. The apex game with two mi-

nor players is special because the apex player is not in a distinguished role - any two

players can form a profitable coalition. In the literature, such bargaining situations have

become known as 3-player~3-calms problems (see for instance Binmore (1985)). Since

apex games with two minor players are entirely symmetric, we deviate from our general

notation and refer to the players simply as 1, 2 and 3. For this case the characteristic

function is given by

v(S) -
( 2 if ~S~ - 2

Sl 0 otherwise.

We will show that the game has a unique' SPE and that this SPE results in the outcom~~

'There is a recurring nonuniquenesa which we ignore and will continue to ignore: the nonuniqueness

which occura when a player muat choose among otherwise indiatinguishable players. In this case the
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whrrr thr two IirsL moving playcrs divide their cake equally.

The SPE is found by backwards induction, so w.l.o.g. let us assume that the players 1

and 2 have already moved and that they have demanded prices pt, resp. pz. The optimal

choice for player 3 is to form a coalition with the player that asked the lowest price, at

least when min(pr,pz~ G 2. If both players have demanded the same price, he may pick

either one.

Next, consider the decision problem faced by player 2 after player 1 has demanded

pr. Assume pr 1 0. If player 2 acceptss the demand of player 1 his payoff is 2- pr. If

player 2 rejects this demand, then he can (in SPE) count on the cooperation of player

3 only ií he demands pz G pt, hence accepting pr is strictly optimal if 2- pr ~ pl, or

p~ G 1. If pl ~ 1, then player 2 is sure that player 3 will accept his demand if p2 G pi,

hence player 2 can almost (but not quite) guarantee pt. We see that, if it would be

the case that in the subgame where both player 1 and player 2 have demanded pl with

p~ ~ 1, player 3 would form the coalition with player 1, then playrr 2 would not havc a

best response after player 1 has demanded p~ ~ 1. Hence, to guarantee existencr of an

SPE, playcr 3 has to break ties iu the favor of player 2 ií player 1 de~nands rnorc than

l. Consrquently, in any SPE, if player 1 dcmands p~ ~ 1, then playcr 2 puts ps - 1'~

and player 3 forms the coalition with player 2. By the same argurnent one sees that

the subgame with p~ - 1 admits two SPEa: player 2 accepts the demand of player 1 or

player 2 rnatches player 1's demand and 3 forms the coalition with 2.

Finally, consider player 1's decision problem. The above analysis has shown that

player 1 will end up with zero if he demands p~ 1 1 and that any demand pr G 1 will be

accepted by player 2. Again we have that player 1 dces not have a best response unless

player 2 breaks the tie in 1's favor if pt - 1. Hence, player 2 shonld break the ties in

firet player muat select one of two indiatinguishable playera, in subsequent eectiona the apex player must

aelect one among aeveral indistinguishable minor playera.

6By "player i accepte the demand of player j" we mean that player i accepts the residual payoff in

the coalition {i, j} ae his price and fnrms the coalition {i, j} .
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this way, and wc havc shown

Theorem 1. For the 3-person apez game, fhe demand commitment model has a unique

SPE. The outcome of this equiliórium is that the two first moving players agree on an

equal split of theér cake.

4 The n-player Apex Game - Subgame Perfect

Equilibria

In this section we derive two main results for apex games with at least 4 players

(i) if the apex player starts the game there is a unique SPE outcome: the apex player

demands n- 1 from some minor player and the latter accepts, (i.e. he demands 1

and forms the coalition with the apex player)

(ii) if a ~ninor playcr ytarts thc game them are inGnitely mauy SYh; outconu~s aud thc

(irsL nioving minur player may obtain atty payoff betweeu 1 and n(heuce, h~~ niay

actually obtain the entire cake).

We proceed by proving a series of lemmas about SPEa in the various continuation games

that may arise. 1t will be notationally convenient (and without loss of generality) to as-

sumc~ that the minor players have to move in the order 1,2, ..., n. (Alternatively one

siinply dcesn't fix the players' names in advance, player i is the ith moving minor player.)

For a vector p- (p1,...,P;-1) E R} 1 with i G n it is also convenient to write

0 if i-1
P; - ~-1

~ p~ if i11
~-i

( oo if i-1

(l min p~ if i~ l
~~;

(4.1)

(4.2)
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r;(P) -(n - P;) ~(n - i f 1) (4.3)

Note that r;(p) is the per capita remainder in the coalition N of all minor players when

player i has to move. p` is the minimal demand of all minor players that moved before

minor player i: If i wants the cooperation of the apex player then he can demand at

most p'. Intuitively it is therefore clear that player i's optimal decision will depend on

p` and r;(p). We will analyse only those subgames with 0 C po C n, 0 G p; C n (for all

i E N) and r„(p) ? 0, this to avoid having to make uninteresting case distinctions. The

reader can easily verify that subgames that do not satisfy these restrictions will not be

reached by any SPE.

Lemma 1. Assume that the apex player (player OJ has already moved and that he

demanded po. Consider the subgame starting with player i after each player j G i has

demanded p~. Then

(iJ IJr;(p) G n-p~, then in the unique SPE oJthe subgame player i jorms tlae coalition

with !he apex playcr.

(iiJ Ijr;(p) ) n- po, then in the unique SPE of the subgame player i asks for n- f; -

(n - po)(n - i) and the coalition N jorms with each remaining minor player j~ i

asking jor n - po.

(iiiJ If r;(p) - n-po, then there are exactly two SPEa in the subgarne: Player i demands

p; - n- po and either

(aJ jorms the coalition with the apez player or

(6J se lrr'ts annthr'r minor plnyer and rnrry remaining minnr playrr rfrnuinds p~ -

n- t~, arerl Ihr neiuor-plnyrr rnalitinn, N, Jnrm,~.

Proof. 'I'he proof is by induction with respect to i in N. The result is obviously true
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for i - n, so assume the statements have all been proved for j 1 i and consider player

i's dccision probkm.

(i) Suppose r;(p) G n-th). Then player i can guarantee n-t~ by forming the coalitiuu

with playcr 0. Assmne player i asks p; ~ n- po and gives the tnove to i-} 1. "1'heu

r;t) (p) G n- po o that i~ 1 will form the coalition with 0. Hence, the coalition N

is suboptimal for player i, player i's unique optimal action is to form the coalition

with player 0.

(ii) Suppose r;(p) ) n-po. If playeri asks forp; with n-po G p; G n-P;-(n-po)(n-

i), then r;}i(p) ~ n- p~ and, by induction, the coalition N will form with player

i getting the payoff p;. To ensure that player i has a best response, the players

j ~ i also have to continue with the equilibrium from (iiiJb if player i demands

p; - n- P, -(n - po)(n - i). Hence, the unique equilibrium is as described.

(iii) Suppose r;(p) - n- po. Player i gets payoff n- po by forming the coalition with

player 0. Player í cannot get more from the coalition N since if p; ~ n- po, thet)

r;t)(p) C n- po and i t 1 forms the coalition with 0. Hence, there is an SPE in

which i accepts the demand of player 0. On the other hand, the induction step

and (iii)6 guarantee that there exists an SPE in which N is formed if player i de-

nianda p, - n-~h, aIl(I KIV('ti t111` InOVe t0 i.{-1. lt fO110Wtl t}lat tlll'rC aI'C tWU SI'1~a. O

Corollary 1 . IJ the ape2 player starts the game there is a unique SPE outcome: the

apex player demands po - n- 1 Jrom a mínor player and the tatter accepts.

Proof. This follows immediately from Lemma 1 together with the fact that the first

moving minor player should, in equilibrium, resolve ties in favor of player 0. ~

I3efore moving to the most interesting case where player i has the choice between

calling the apex player or calling player i f 1, let us consider the behavior of the apex

player when he is called.
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Lemma 2 . Assume that player i gives the move to player 0. Then in the subgame

slarting wifh the move of player 0

(i) If i- n or if p`t' C r;t~(p), then in any SPE player 0 jorms a coalition with some

player j G i wilh p~ - p't~.

(iiJ !f i C n and p't' 1 r}~(p), then in the unique SPE, player 0 rejects a!1 previous

demands, instead he asks jor po - n- r;~l(p) and gives the move to player i f 1

who accepts.

(iii) If i G n and p't' - r;t~(p), then there are multiple equilibria that correspond to

thosc of lhe cases (i) and (ii).

Proof. The assertion clearly holds if player 0 is the last one to move ( that is, i- n),

so assume i G n. Player 0 ia guaranteed n- p't' by forming a coalition with some

player j G i. ( Recall ï rom (4.4) that p' is the minimum price of any player preccedi~ay

player i.) [f p'tt C r;tl(p) and player 0 demands po ? n - p`tl from player i f 1, then

r;~~(p) ) n- po so that ( by Lemma 1) the coalition N will be formed. This proves

(i). To prove ( ii) one notices that, if p't~ 1 r;~~(p), then player 0 is guaranteed of the

cooperation of player i~- 1 as long as he asks po G n - r;~~(p). ( Of course, one also

invokes the usual tie-breaking argument.) The prooí of (iii) is a combination of the above

arguments. ~

Lemma:! shows that if t.he playcrs precerding i have made modcst dF~ma.nds (so LhaL

the per capit.a remaiuder cxceeds the IowesL previous price), the minor-player coalition

will recessarily fonn. Lcmrna 4 on the other hand shows that, if one or ruore of Lhc

preceeding players has been ugreedy" (so that the per capita remainder is less than the

lowest previous price), then ( in some SPE continuation) player i may form a coalition

with the apex player.

Lemma 3. Consider a subgame where i has to move and where the apex player has

not yet moved. Then, if r;(p) ~ p', in the unique SPE player i demands p; -(n -
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i) (r;(p) - p') ~ r;(p), each player j 1 i demands p' and the minor-player coalition N is

jormed.

Proof. Induction w.r.t. i. The statement clearly holds if i- n(with the obvious modi-

fication that n forms the coalition N). Assume i G n and that the statement has already

been proved for j 1 i. If player i demands p; with p' G p; G(n - i) (r;(p) - p') -F r;(p),

then r;}~(p) 1 p't' so that, by the induction hypothesis i will end up with p;. Hence,

player i can guarantee (n - i) (r;(p) - p') t r;(p) by cooperating with N. On the other

hand, player 0 will accept i's demand only if p; C p'. Clearly, i's unique optimal action

is to cooperate with N and to demand the highest poasible price that doesn't jeopardize

the formation of that coalition. ~

Lemma 4 . Consider a suógame where p(ayer i has to move and where the apex player

has nol yel moved. Then ijr;(p) G p', there exists an SPE where player i calls thc rq~ex

player who jorms the coalition with i. In thés SPE player i demands p; - p' ij i- n anrl

p; - r;(p) iji G n.

Proof. Induction w.r.t. i. The statement is obviously true for i- n. Consider player

i G n and suppose that the statement has already been proved for j 7 i. Also assume

r;(p) G p'. If i demands p; with p; G r;(p), then p; - p't' C r;}1(p) and Lemma 2

guarantees that in this case the apex player accepts the demand of player i. Hence,

by the usua] argument, player i can guarantee r;(p) from the apex player. Lemma 2

also shows that the apex player will reject i's demand if p; ~ r;(p). Assume i demands

p; 1 r;(p) írom i f 1. Then r;~l(p) C p't', so that by the induction hypothesis there

exists an SPE continuation where i-~ 1 calls the apex player. If player i~ 1 chooses the

latter continuation for each p; 7 r;(p), then it is optimal for player i to put p; - r;(p)

and to call the apex player. ~

The condit,ion from Lemma 4 is obviously satisfied for the first moving minor playcr,

hence
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Corollary 2 .!f player 1 starts the game there exists an SPE where player 1 demands

pl - 1 and calls the apex player who accepts player 1's demand.

Note that Lemma 3 implies that player 1 can also enforce that the coalition N is formed

by demanding p~ slightly leas than 1. Hence, player 1 has at least a payoff of 1 in any

SPE. ln fact, the previous Lemmas (together with the usual tie breaking arguments)

imply that there exists an SPE in which each minor player i demands p; - 1 and in

which the coalition N of all minor players is formed. In this SPE, player 2 threatens

to call the apex player (i.e. to play the SPE from Lemma 4) as soon as pl 1 1. Note,

however, that Lemma 4 dces not imply that in a subgame with p~ ~ 1, player 2 neces-

sarily calls the apex player. Indeed, also in subgames with r;(p) G p' there exist SPEa

in which the coalition N is formed, hence, player 1 may obtain more than 1 in some

SPE. In fact it is easy to see that player 1 can obtain the entire cake. Namely, suppose

player 1 demands pl - n. Then player 2, as well as any other remaining minor player,

knows that his payoff will be zero anyhow. (The payoff is zero in the coalition N, but

the apex player will exploit this fact and demand the entire cake for himself as well when

given the move.) Facing this fait accompli, one may as well accept it and agree to the

formation of N. The following corollary, describing the worst and best payoffs player 1

can receive in the minor-player coalition, summarizes the above discussion.

Corollary 3 .

(a~ If player 1 starts the game there is an SPE where player 1 demands pl - 1, every

other minor player demands 1 and the minor-player coalition forms.

(b) If player 1 starts the game there is an SPE in which player 1 demands pl - n

every other minor player demands 0 and the minor-player coalition forms.

The previous lemmas also allow us to describe the set of all SPE payofis that can

result in the demand commitment game if the coalition of all minor players is formed.
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Theorem 2 . If player 1 starts the game, then there c. r.~t~ aa SPE in which the minor-

player coalition N jorms and agrees on the payoff vector p E Di-F if and only iJ p satisfies

t-i

O C r;(p) C p; (all ti~

(4.4 )

Pn-1 - rn-1(P) (4.6)

Proof. (Necessity.) Condition (4.4) is obvious. Since each player i can guarantee a

payoff zero (by putting p; - 0) we must have r;(p) 1 0. Lemma 3 implies that if there

exists an SPE with payoffs p, then r;(p) G p' for all i- 2,...,n. Namely, if r;(p) ~ p',

then player i- 1 can increase his demand without jeopardizing the formation of the

coalition N. Therefore, for i- 1, ..., n- 1, we must have

Pt ? p'ti ) r~ti(P) - rr(P) -
P;n r~(P)

which showa that p; ~ r;(p) for i - 1,...,n - 1. Condition ( 4.4) already implies that

p„ 1 r„(p). We finally must have p„-1 - r„-~(p) since otherwise (by (4.7)) r„(p) C p"

and player n prefers to form the coalition with the apex player.

(Sufficiency.) Assume p satisfies the conditions ( 4.4) -(4.6) and consider the following

strategy combination:

For the apex player: Play in accordance with the strategies from Lemma 2,

breaking ties in favor of that minor player who moved last.

For a minor player i E N:
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(i) If the apex player has already moved, play in accordance with Lemma

1, breaking ties in favor of the apex player.

(ii) If the apex player has not yet moved

a) if each j C i demanded p„ demand p; and call player i f 1(if you

are i- n, form Lhe coalition N in this case);

b) if you are in a aubgame covered by Lemma 3, continue with the

SPE described in that Lemma.

c) In all cases not covered by a) or b), play in accordance with the

SPE from Lemma 4.

By construction, this strategy profile constitutes an SPE for each subgame that starts

with a move of the apex player or that is covered by the cases (ii) a) or (ii) c). Hence,

it remains to be verified that along the equilibrium path no profitable deviations are

possible i.e. it suffices to check that the strategies form a Nash equilibrium. Now note

that since p satisfies (4.4) -(4.6) we have that

r;(p") C p (all i) and r„(p) - p~` (4.8)

su that deliuitely player u caunot profitably deviate if all other players conform. 1f player

i G n is the first minor player to deviate to a demand p; ~ p;, then Lemma 2 and (ii)

c) guarantee that the coalition {O,i f 1} will be formed after this deviation. Hence, no

player can profit by deviating unilaterally and we have an SPE. o

5 Credible Subgame Perfect Equilibria

In the previous section we found a plethora of equilibria with a corresponding contin-

uum of payoff divisions in the minor-player coalition. However the strategies that support

many of these equilibria rest on logic that seems uncompelling. In this section, we for-

malize this intuition as a refinement of subgame perfect equilibrium which, for lack of a
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better name, we call credióle subgame perfect equilibrium (CSPE). In the next section,

we show that credibility leads to a drastic reduction in the number of equilibria.

To motivate out refinement, consider the following game.

When it is his turn to move, player 2 is indifferent between 1 and r. Player 1's optimal

strategy therefore depends on his belief about how player will play in the face of this

indifference. Harsanyi and Selten (1998) argue that a rational player should randomize

equally among all alternatives over which he is indifferent. If player 1 believes that player

2 will choose l and r with equal probability, then playet 1 should choose R, and player

2 will obtain a payoff of 0. However, if player 1 believes that player 2 will play r, then

player 1 will choose L and player 2 will obtain a payoff of 5. The threat by player 2 to

play r is completely rational, since player 2 is indifferent between ! and r. Moreover,

the threat, if believed, yields player 2 a higher payoff. In our view, therefore, player 2

will indeed threaten to play r and player 1 has every reason to believe that player 2 will

carry out his threat, so player 1 should choose L.

The logic above is quite different from that underlying forward induction arguments.

The usual forward induction argument ( see, for example Van Damme ( 1989)) is that

player 1, by his action, can indícate his desire to play a particular subgame perfect equi-

librium in the subgame that followa this action. In demand commitment games, as well

as the game above, the forward induction logic is not compelling: although player 1 may

indicate his desire to play a particular subgame perfect strategy combination, he has no
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means of enforcing this strategy combination since he has no further moves in the game.

An intuition similar to ours 1ed Leininger (1986) to define a refinement of subgame

pertection called strategic equilibriumm However hia formalization of this intuition is dif-

ferent from ours. One manifestation of this difference is that every credible subgame

perfect equilibrium is self-conaiatent while strategic equilibria need not be. That is,

a credible subgame perfect equilibrium necessarily induces a credible subgame perfect

equilibrium in every aubgame; a strategic equilibrium need not induce a strategic equi-

librium in every subgame.e

We now turn to the formal description. Some terminology first. We restrict atten-

tion to the class of demand commitment games but the definition of credible subgame

perfect equilibria can be readily extended to the clasa of all extensive form games with

perfect information. Let I" be a demand commitment game based on an (n ~ 1)-person

apex game. Let I' be a subgame of I" and denote its length, i.e. the maximum num-

ber of moves on a path in I, by !(I'). Let v be a strategy combination in I'. If r, is

an alternative strategy of player i in I' then o`r; denotes the strategy profile in which

all players play in accordance with o except player i who plays r;. The subgame y is

said to be consistent with o if ry is reached if a is played. We say that ,' is an e-best

replyof player á to o in i' if h;(o`r~) ~ sup,. h;(o`r,)-e, where h; is player i's payofíin 1'.

We define credible threats and credible subgame perfect equilibria (CSPE) by induc-

tion on the length of the game. If !(I') - 1, then there are no credible threats so every

SPE is a CSPE. If CSPEa have been defined in all subgames of length l(I') - 1, then we

define credible threats in I' as follows:

DeBnition 1. Credible Threats.

Let o be an SPE of a subgame I' with !(I') 7 1. Let j be a player who has to move when

o is played. The strategy r~ of player j is a credible threat of player j against i at o if

eAn example ie available from the authore upon requeat.
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the following three conditions are satisfied

(a) Ex post indifference: h~(o`r~) - h~(o)

(b) Ex ante improvement: There exists e 1 0 such that for every e-best reply o; of

player i against o`r~ wé have h~(o`r~`o;) ~ h~(o).

(c) Credibility: For each choice o; of player i, the strategy combination o`r~`a; induces

a CSPE in the subgame that follows o;.

Condition ( a) requires that if j is called upon to carry out his threat, his is no worse off

than by following the equilibrium strategy. Condition ( b) captures the idea that i's best

response must improve j's payoff. Since, however, players' demands are continuous vari-

ables, player i may not have an exact best response against j's threat. Hence, condition

(b) requires that every 'almost best' response of player i to j's threat improves j's payofF.

Definition 1 assumes that a player k (k ~{i, j}) will not deviate from v. Condition (c)

from the definition guarantees that this assumption is juatified: No matter what player

i will do, player j's threat results in the players continuing with a credible equilibrium.

Hence, condition ( c) formalizes the idea that credible threats are accompanied by credi-

ble promises.

A credible subgame perfect equilibrium (CSPE) is an SPE in which there are no cred-

ible threats. Formally:

Definition 2. Credible subgame perfect equilibrium (CSPE).

(i) Initialization: Every SPE of I' is a CSPE if !(I') - 1.

(ii) Induction: let Ibe a subgame with 1(I') ~ 1 in which player i has the first turn to

move. An SPE o of I' is a CSPE if

(a) The strategy combination v, that o induces in ry is a CSPE of ry for each

proper subgame ry of I', and

(b) no player j who has a move on the path of o has a credible threat against a.



20

6 Credible SPEa of Demand Commitment Games

We next investigate the extent to which the credibility requirement reduces the set of

SPEa in apex games. We show that only two types of outcomea survive: coalitions con-

siating of the apex player and a minor player, with payoffs of n- 1 and I respectively,

and the coalition of ~.; minor players, with a payoff of 1 for each minor player.

In the demand commitment model a threat of player i againat player j takes the form:

"If you don't reduce your demand - thereby allowing me to obtain a higher payoff -

I will not form a coalition with you." Such a threat is credible exactly when player i

can in fact obtain the same payoff in a coalition without player j, while player j cannot

obtain the same payoff in a coalition without player i.

We first consider subgames that have a unique SPE. The next lemma shows that for

such a subgame the SPF is credible.

Lemma 5 . Ij [' admits a unique SPE o, then a is a CSPE oj I'.

Proof. The proof is by induction with respect to the length of I' and closely follows the

arguments given in Section 4. In particular it uses the fact that the player moving first in

such a subgame I' can, by lowering his demand slightly force the others to accept. Hence,

there can be no credible threats. For example, the minor player I has no credible threat

against the apex player if the latter demands po C 1. Consequently, the apex player

can counter the threat that player I will form the coalition N if po - 1 by demanding

slightly less and giving the move to another minor playec. Hence, player 1 does not have

a crediblc thre.at if rw - 1. Wc leave further detaila to the rcader. [7

Hence, we may concentrate on the interesting subgamea with multiple SPEa. We first

consider subgames starting with player i- n and in which the apex player still has to

move.
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Lemma 6 . Assume that the apex plnyer has not yet moved and consider a subgame r

starting with player i- n. Then any SPE of r is a CSPE.

Proof. The results from the previoua section imply that if r"(p) ~ p" there is a unique

SPE of the subgame T', hence, thia is a CSPE by Lemma 5. Asaume r"(p) - p" so that

there are two SPE. 1'he one in which N is formed ia a CSPE since no player is moving

after n. The SPE in which player n demaads r"(p) from player 0 is a CSPE since the

apex player's threat to form a coalition with j~ n, can be countered by forming the

coalition N. O

The next lemma describes two CSPEa for subgames starting with player i G n in which

the apex player has not yet moved.

Lemma 7 . Assume the apex player hns not yet moved and consider a subgame r

startíng with a move of n player i E N with i~ n and r;(p) C p'. Then the following

two outcomes can be sustained by CSPEa of r.

(i) Player i demands p; - r;(p) and givea the move to the apex player who accepts this

demand.

(iéJ Each player j~ i demands p~ - r;(p) and the coalition N is formed.

Proof. Statement ( i) follows immediately from Lemmas 2, 3 and 5: By demanding p;

slightly less than r;(p), player i forces any player to whom he gives the move to accept.

Statement ( ii) follows in a similar way by using an induction argument: If j E N`{i}

threatens not to accept player i's demand of r;(p), player i can counter by forming the

coalition {O,i}. O

The next Lemma ahows that the aubgames described in Lemma 7 have no other CSPE

outcomea.
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Lemma 8 . Assume the apez player has not yet moved and consider a subgame I'

starting with a move of player i E N with i~ n and r;(p) G p', Then in each CSPE oj

I' player i demands p; - r;(p).

Proof. Induction with respect to i. The results from the previous section imply that

for i- n- 1 or in case r;(p) - p' the statement holds even for any SPE. Therefore,

let i C n- 2, assume r;(p) C p' and consider an SPE in which player i has a pay-

off morc Lhan r;(p). Hence, i demands p; ~ r;(p) and gives the move to i~- 1. LeL

0 c r) C p; - r;(p). Player i f 1 has the following credible threat against this SPE: If

you demand p; C r;(p) t n then we continue with the CSPE from Lemma 7(ii), if you

demand p; ~ r;(p) f n, then we continue with the CSPE from Lemma 7(i). For an

appropriate value of E this threat indeed satisfies the conditions from Definition 1(if F

is small enough, then in any e-best response, player i atill gives the move to player i-~ 1

and the latter ex ante gains at least (p; - r;(p) - rt)~n), hence the SPE is not credible. O

The following theotem summarizes the results obtained in this section.

Theorem 3 . !n the demand commitment game the jollowing and only thc following

outcomes can 6e sustained by credible subgame perfect equilibria:

(i) the apex player starts the game, demands pa - n- 1 and forms a coalition with a

minor player.

(iiJ a tninor player starts the game, demands 1 and Jorms the cnalition wilh the apez

player.

(iiiJ a minor player starts the game, demands 1 and calls on a minor player, who

demands 1 and calls on another minor player ... and forms the minor-player

coalition N.

A natural question is whether one can give additional arguments in favor of, or to

dismiss, either of the outcomes described in Theorem 3(ii), (iii). At first it seems that
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the minor player might prefer the coalition with the apex player since the apex player

will accept for certain while attempting to form the coalition of all minor players seems

more risky. (The apex player accepts n- 1 for certain, because if he rejects he can

demand at most n- 1 from any other minor player, and riaka the possibility that this

player chooses the `wrong' continuation.) Upon closer inspection this argument is not

valid. Consider the deciaion situation faced by player i in N when each minor player

j C i has demanded p~ - 1 and the apex player has not yet moved. Clearly, if i- n,

then á will prefer to form N: By forming N á has 1 for sure, if he gives the move to

the apex player, he has to compete for this player's favor with the other minor players.

Continuing inductively, we see that each player i 1 1 will prefer to form the coalition N

to avoid the competition with the minor player that already moved. Hence, player 1 not.

only knows that the apex player would accept his demand pl - 1, he also knows that,

if he demands pl - 1 and gives the move to player 2, then the coalition N is formed for

sure. Hence, player 1 is indifferent and both equilibria are viable.

7 Discussion

Next we relate the results of our model to those of other cooperative and noncooperative

models.

In the early 1960's Davis and Maschler polled a number of prominent game theo-

rists about the 4-minor player version of the apex game asking them what they thought

should be the division of payoff between the apex player and a minor player. The replies

are reported in Davis and Maschler (1965). Not surprisingly, different people made dif-

ferent suggestions but the majority of responses favored the payoff division (3,1). The

discussion is quite interesting and reveals aeveral intuitions that one might have about

the game. Interesting is also the fact that two of the experts stress the importance of

the extensive form. Martin Shubik demanded more information about the rules of the

gatne, he did not want to commit himself using the argument that "one cannot predict

anything on a game given solely ín terms of the characteristic function formn. Lloyd
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Shapley noted that "A good deal depends here on the extensive form of the game; i.e.

on whether the game is actually presented to the players as a pure coalition-forming

exercise, or whether there is a structure of moves and strategies which just happen to

yield the indicated characteristic function. The paesage from extensive (or normal) form

to characteristic function form is not without pitfalls; its validity depends to some extent

on the nature of the solution-concept that is applied to the characteristic functiort."

Two concepts discussed in Davis and Maschler that do not yield the (3,1)-division are

the bargaining set and the kernel. The bargaining set of Aumann and Maschler (1964)

admits any division of payoff from (2,2) to (3,1); the kernel of Davis and Maschler (1965)

admits only the payoff vector (2,2).'.

The cooperative solution closest in spirit to our noncooperative model is that of bar-

gaining aspirations. Bargaining aspirations were introduced independently by several

authurs - undcr a varic~Ly uf uamcs - thc first was Albers (1974). Latcr is was rccug-

nized that bargaining aspirations are any extension of the bargaining set of Aumann and

IVfaschler to the aspiration solution space (see Bennett and Zame (1988)). Formally, a

vector p- ( po, pr, ..., p„) is an aspiration if: (a) there is no payoff leftover in any coalition

after its members are paid their prices (~;ESp; - v(S)), and (b) no player is priced out

of the tnarket (for player i there is a coalition S(i) containing i with ~;ESi;i p; - v(S(i))).

In the context of apex games, an oójection of player i against player j takes the form:

"If you don't lower your price - and thereby allow me to raise mine - I will not form a

coalition with you.~ This objection is justified when player i can in fact obtain the same

price in a coalition without player j, while player j cannot obtain his price in a coalition

without player i. A vector p is a bargaining aspiration if it is an aspiration and there are

no justificd objections against it. Clearly similar intuitions lie behind bargaining aspira-

''fhe bargaining eet and kernel were designed to analyze payoH divieione (or situatione with a fixed

roalit.ion xtnlcture, nnd nol for XILnaL1o11R with endogenoue conlitíon fonnal.ion. See Section 13 n(



25

tions and credible threats; so it may not be surprising that CSPE prices are related to

bargaining aspirations. For apex games with n minor players (n - 1,1,..., 1), the only

price vector consistent with CSPE strategies, is also the unique bargaining aspiration e

Chatterjee et al (1990) consider an alternative noncooperative bargaining model for

the class of TU games. Their model extends those of Rubinstein ( 1982) and Selten

(1981). In contrast to our model, in which each player announces a price, in their model,

players make, accept, or reject proposals. ( A proposal C S, x~ consists of a feasible

coalition S together with a payoff division x for that coalition.) For the class of apex

games, the rules are as follows. If there are no proposals on the table, the player who has

to move makes a proposal G S, x~, where S is a coalition containing the given player.

If there is a proposal on the table, the player who has to move may accept or reject it. If

he accepts it, the proposal remains on the table and the move passes to the next player

(the order of play within coalitions is given exogenously). If he rejects it, the proposal

vanishes from the table and he must make a new proposal. The game terminates as soon

as a proposal G S, x 1 has becn accepted by all players in S. Players discount payoífs by

a factor of ( 1 - e) for each rejection that has occurred, so if r is the number of rejections,

then each player j E S receives ( 1 - e)'x~; players not in S receive 0.9

Ctratterjee et al look for SPE of this game in stationary strategies. Let iy - n~(2-E),

let i, - n- ip and write i-(iD, i,). Then it is easily seen that the following strategies

constitutc such an SPE.

Ibr player 0: Once `rnatched' with minor player i, never leave this player; propose

G{0, i}, i~, and accept any proposal x that gives you at least i,..

aBinmore (1985) preaents a multilateral Nash bargaining model as the cooperative aolut~on concept

which supports his noncooperative model. A muttilateral Naeh bargaining model (aimilar in apirit but

different in details) can aleo be shown to support this noncooperative model. See Bennett (1990) for an

overview of multilateral bargaining modele.

9Equivalently, we could assume that playera do not discount payoffs, but interpret e as the probability

the game ends following a rejection.
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For player i E N: Propose C{0, í}, i 1, accept any proposal of player 0 that gives

you at least i,; reject any proposal to form the coalition N

unless you are the last, or next to last one to move in this

coalition and your acceptance guarantees a payoff of at least i,.

For small e, these strategies lead to the formation of a two person coalition (i.e., a coali-

tion of the apex player and one minor player); as e tends to 0, the payoff within this

coalition tends to equal division. Thus, even when there are 1,000 minor players, the

apex player dces not fully exploit his bargaining power: the apex player and his minor

partner each obtain 500.

This odd outcome sF.rms to result from the requirement that players use stationary

strategies. 'I'he apex player, ignoring the presence of other minor players to whom he

might switch, remains with the minor player to whom he is initially matched. This

strategy is sensible for the apex player only because the minor players also ignore the

presence of other minor players, so the apex player cannot gain from switching. Put

another way, the minor players "refuse to learn" during the game, and there is nothing

the apex player can do to teach them; this severely limits the bargaining power of t}ie

apex player.

Chatterjee et al do not provide a convincing motivation for the assumption of station-

arity. (They just note that without it, not much can be said: in strictly superadditive

games with at least 3 players, any individually rational, efficient allocation can be gen-

erated by a SPE, for e small enough.) In our opinion, stationarity is a strong behavioral

assumption, and is not justified. Furthermore, there appears to be no convincing alter-

native way (yet) to select among the infinity of nonstationary equilibria. In the demand

commitment model, there are also an infinity of SPE, but there ia a relatively straightfor-

ward ( and in our opinion convincing) way to reduce to multiplicity. We find the way in

which the outcomes depend on the number of minor players in the demand commitment

model to be considerably more satisfying.
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We expect that the demand commitment game, or natural variations of it, can give

interesting insights for other classes of cooperative games as well. Of course, the analysis

in the present paper depends on the assumption that demands cannot be renegotiated.

In general it may be more natural to allow for such renegotiation, that is to allow multiple

bargaining rounds with players in each round having the opportunity to quote a new

demand. Also in each new round one may want to select the player moving first in that

round at random, this to avoid monopoly power of the player moving first. We plan to

study such multiple-round demand commitment games in the future.
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