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Abstract

We study the location equilibrium in Hotelling's model of spatial competition.

Aa d'Aspremont et al. (1979) have shown, with quadratic consumer transportar

tion cost the two sellers will seek to move as far away from each other as possible.

This generates a coordination problem which the literature typically ignores by

restricting firm 1 to locate in the first half and firm 2 in the second half of the

market. We study the non-cooperative outcome in the absence of such a coordina-

tion device and find that the location game possesses an infinity of mixed atrategy

Nash equilibria. In these equilibria coordination tailure invalidates the principle of

`maximum differentiation' and firme may even locate at the same point.
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1 Introduction

The location problem of firms selling homogeneous goods is attributed to Hotelling

(1929). In his seminal paper, Hotelling presents a model of two firms competing over loca-

tions and then prices in a two-stage aubgame perfect equilibrium. Since then, Hotelling's

spatial model has triggered an increasing flow of research in industrial organization (im-

perfect competition) and marketing (choice of new product). Indeed, either firms com-

pete over physical locations in the geographical space, or over product design in the

characteristic space. In the latter case transportation cost measures the disutility of not

purchasing the ideal product.

Assuming that transportation costs are linear in distance, Hotelling (1929) argues

that each firm gets higher profits by moving closer to its competitor so that in equi-

librium both locate at the center of the market. Yet, d'Aspcemont, Gabszewicz and

Thisse (1979) point out that this argument contains a flaw because the price subgame

in Hotelling's modcl fails to have a pure strategy equilibrium if firms are located too

close to each other (but not at the same location). Indeed, in general one should not

expect `minimum differentiation' as advocated by Hotelling. When the firms are not

spatially differentiated, Bertrand competition in the pricing subgame will reduce their

profits to zero. By selecting different locations, however, they can ensure themselves

positive Eirofits.

This intuition is confirmed in a number of articles that study various formulations

of Ilotelling's location problem. Osborne and Pitchick (1987) study Hotelling's original

model using a result of Dasgupta and Maskin (1986) that guarantees the existence of

a mixed strategy price equilibrium. They show that the overal] game has a subgame

períect equilibrium with pure strategies in the location stage. D'Aspremont et al. (1979)

introduce a quadratic transportation cost function to sidestep nonexistence of a pure

price equilibrium. Lederer and Hurter (1986) study the location game when firms use

discriminatory pricing to differentiate between consumers at different locations. In Bester

(1989) buyers and sellers bargain over prices after the sellers have chosen their locations.

In all these versions of Hotelling's spatia] competition model the firms wish to avoid
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identical locations. An exception is the model by de Palma et al. (1985) who confirm the

principle of `minimum differentiation' when conaumer choicea are probabilistic enough,

or equivalently, preferences are suf6ciently dispersed.

When the firms do not want to locate at the same point, the literature generally

imposes a coordination device concerning the ranking of the firms' locations along the

market segment. Typically, firm 1 is assumed to be to the left of firm 2. This device

can be interpreted as a collusive rule which restricts the firms' strategy spaces. In the

absence of this restriction the duopolists find themselves in a coordination game. This

results in a number of possible equilibrium configurations that have been overlooked in

the literature.

To make our point, we focus on Hotelling's model in the version of d'Aspremont et

al. (1979) with quadratic consumer transportation cost. This has the advantage that

the pricing subgame has a unique pure strategy equilibrium for all locations and that

the firms' payofFs in the location game can easily be explicitly computed. Also, this

version is of special interest since the firms will seek to move away from each other as

far as possible. Under the above mentioned coordination device this leads to `maximum

difFcrentiation' as the firms will locate at the endpoints of the market. We study the

non-cooperative outcome without coordination and find that there is an infinity of mixed

strategy equilibria. In these equilibria `maximum differentiation' does not occur because

of coordination failure. Indeed when the firms adopt identical location strategies, they

may end up being located at the same point with positive probability. Our subgame

perfect equilibria involve mixed strategies over location and pure strategies over prices.

Ilere location can be interpreted as product design, about which the opponent has no

information in the design phase. Once products have been developed and presented to

the public, their characteristics are revealed and then firms compete in prices.

We describe the model in Section 2. Section 3 characterizes various types of asym-

metric equilibria, in which the two players adopt different location strategies. Section

4 demonstratcs that thcre is a uniyue player-symmetric equilibrium in mixed strategies

and provides a characterization of the equilibrium distribution function. Concluding

remarks are gathered in Section 5.
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2 The Game

Hotelling's (1929) model can be viewed as a three-stage game: In the first stage there

are two firms that simultaneously select a location at which to operate. Then, having

observed location decisions, the duopolists aimultaneously post prices. In the final atage,

the consumers take their purchasing decisions conditioned on the firm's locations and

prices.

The market region A-[0,1] is represented by a line segment of length normalized

to one. The two firms offer products that are identical in all respects except for the

location of availability. Both firms employ the same constant returns to scale technology

and production costs are normalized to zero. Initially, each of the duopolists chooses a

location in A; let x denote the location of firm 1, and let y denote the location of firm 2.

Consumers are unitormly distributed on A; we identify consumer a E A with his initial

location. Each consumer seeks to buy a single unit of the good. To make a purchase he

has to visit the store of one of the sellers'. He faces a transportation cost t(.) that is a

function of Euclidean distance d. Accordingly, he buys the good from the firm for which

price plus travel cost is the lowest. Let p; be the price charged by firm i. Then the set

of all consumers who buy from firm 1 is given by

Di(Pi,Pz,x,y) -{a E A I Pi f t(d(x,a)) ~ Pz f t(d(y,a)) }. (1)

Each consumer a E DZ (pl, p2, x, y) - A- D~ (p~, pz, x, y) purchases the good from firm
2. Thus the payoff of firm i is

1~(Pr,Ps,x,y) - I Ptda. (2)
Dan,.v~s.v)

Following d'Aspremont et al. (1979) we assume that transportation costs are

quadratic, i.e. t(d) - da. This guarantees that the price setting subgame between

the duopolists has a unique equilibrium for any given location pair ( x,y). Indeed,

d'Aspremont et al. (1979) computed the price equilibrium ( pi,pz) and obtained the

solution

Pi(x,y) - (y - x)(2 f x f y)~3,Pz(x,y) -(y - x)(4 - x - y)I3 if x C y. (3)
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By symmetry we get the equilibrium prices

Pi(x,Y) -(x - Y)(4 - x- Y)I3, Ps(x,Y) -(x - Y)(2 t x f Y)I3 if x 1 y. (4)

With quadratic transportation costs one obtains D~ (pi,p2, x, y) - {a E A~a(y - x) G

0.5(p~ - p~ f y~ - x~)}. This allows us to compute each firms i's payoff in the location

stage, If;(x,y) - R;(pi,pzix,y), as a function of location decisions. These payoffs are

II~(x,y)-(y-x)(2fy~x)'I18ifxCy,

nr(x,Y) -(x - Y)(4 - x - Y)ZI18 if x 1 y

for firm 1, and

n2(x,Y) -(Y - x)(4 - x- y)~I18 if x G Y,

ns(x,Y) -(x -Y)(2 t x -f' Y)2I18 if x~ y

for firm 2. Notice that payoffs are symmetric in the sense that

ni(x,Y) - ns(1 - y, l- x), Ri(x, l - x) - nz(x, l - x).

(5)

(6)

(7)

The remainder of our analysis is devoted to studying the Nash equilibria of the game

where firm 1 and 2 choose x E A and y E A, respectively, with payoffs given by (5) and

(6).

3 Asymmetric Equilibrium

This section studies asymmetric equilibria where the two firms adopt different location

strategies that may involve randomization. D'Aspremont et al. (1979) observed that each

firm can increase its profit by moving further away from the location of its competitor.

This immediately implies the following result.

Proposition 1: There are exactly two pure strategy equilibria. These are (x', y') -

(0, 1) and ( x`,Y') - (1,~).
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Proof: Consider all (x, y) such that x G y. Then one has

an~(x,y)li3x - -(2 f y-~ x)(2 f 3x - y)Ils ~ o
BIIz(x, y)~8y -( 4 - y- x)(4 -~ x - 3y)~18 ~ 0. (8)

Therefore there is exactly one equilibrium such that x' c y', namely ( x', y') -(o, l).

By symmetry of payoffs there is exactly one equilibrium such that x' 1 y', namely

(x~,y') - (1,~). Q.E.D.

The literature typically imposes the restriction that firm 1 locates in the first half and

firm 2 in the second half of A. With this restriction the equilibrium is obviously unique.

Removing this restriction generates a second pure strategy equilibrium by symmetry of

the game. Yet, this is not the only consequence. The duopolists' game can be viewed as

a coordiciation game; both gain an advantage from moving as far away as possible. In

this situation, the restriction x C 0.5 C y works as a coordination device. Without such

coordination the firms may end up at locations in the same half of the market. In what

followa we adopt a purely non-cooperative view to analyze equilibrium configurations

when there is a possibility of coordination failure.

Proposition 2: There is a mixed strategy equilibrium in which firm 2 chooses y' - 0

with probability 1~2 and y' - 1 with probability 1~2 and firm 1 chooses x' - 1~2.

Symmetrically, there is an equilibrium in which firm 1 chooses x' - 0 with proóability

1~2 and x' - 1 with proóability 1~2 and firm 2 chooses y' - 1~2.

Proof: To prove the first part, we first show that, given the behavior of firm 2, firm 1

cannot gain by deviating from x' - 1~2. Indeed, firm 1's payoff from choosing x E[0,1~2~

is

~p(x) - 0.5II1(x, l) f 0.5II,(x, 0) -(1 - x)(3 f x)2~36 f x(4 - x)Z~36. (9)
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Accordingly for x E ( 0, 1~2) one has

~p (x) - (4 - x)(4 - 3x)~36 - (3 -}- x)(1 f 3x)~36 - (13 - 26x)~36 ~ 0. (10)

This proves that x' - 1~2 maximizes ~p(x) subject to z E[0,1~2]. A symmetric argument

establishes that x' - 1~2 also maximizes [II,(x, 1) t II,(x, 0)]~2 aubject to x E[1~2,1].

As a result x' - 1~2 is an optimal response of firm 1 to firm 2's strategy.

Using the computations in the proof of Proposition 1, one has

8II2(x",y)~8y ~ 0 for y~ x', 8IIz(x`,y)~13y G 0 for y G x'. (11)

As Il~(x',0) - II~(x',1), this implies that both y' - 0 and y' - 1 maximize firm 2's

payoff. This proves that randomizing over y' - 1 and y" - 0 is a best reply of firm 2 to

firm 1's strategy.

The second part of the Proposition follows by symmetry. Q.E.D.

The distance between the firms' locations in the equilibrium of Proposition 2 is only

one half of that in the equilibrium with `Maximum Differentiation' in Proposition 1. As

a result, their payoffs are decreased from 1~2 to 49~148. This welfare loss is due to coor-

dination failure. Proposition 2 shows that when one firm chooses both endpoints of some

interval with positive probability, its opponent may wish to locate strictly in the interior

of this interval. This suggests equilibrium configurations in which firm 1 will have an

incentive to locate at a point strictly between any adjacent set of firm 2's locations. As

a consequence, locations of firm 1 and 2 alternate. This intuition is rigorously proved

in Proposition 3 and 4, in which the nature of these equilibria is also described. The

following result shows that for any arbitrary number n there is an equilibrium such that

onc of the firms randomizes over n]ocations and the other over n- 1 locations.

Proposition 3: hór any number n~ 2 there is a pair of location vectors ~-(x,, ..., x„)

and v- (y,,...,y„-,) such thnt firm 1 chooses x; with probability q; ~ 0 and firm 2

chooses y; with probability r; ~ 0. Moreover, x; G y; G x;}, for all i- 1, ..., n- 1.
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Proof: Define Z C Rzn-' by Z-{~,v~0 G x; G y; G x;}1 G 1 for all i- 1,...,n - 1}.

Clearly, Z is convex and compact. Let

~i(x,v,r) - ~ini(x,yi)ri,

~Pz(y,~,9) - ~inz(xi,y)qi. (12)

Note that óz1l~ (x, y)~óxz G 0 for x] y and x G y. Therefore ip~ (., v, r) is a atrictly

concave function of x for all x E (y;-i, y;), where yo - 0 and y" - 1. This together with

the Maximum Thcorern implies that

Ïir(v, r) - argmax se[v:-,.v:] `Pl (x, v, r)

is a continuous function of (v, r). Similarly

Ïz;(~, 4) - argmax ve[~„~~t,1 `Pz(y, ~, 4)

(13)

(14)

is a continuous function of ( ~,q). Define f~(.) -[fll(.),...,fl"(.)] and fz(.) -

[Ïz~(.), ..., fz,"-~(.)].
Define Sl -{q E R"~E;q; - 1} and Sz -{r E R"-'~E;r; - 1}. Then

9i (~, v, r) - argmin9ES, ~tq;E~IIi(x;, y~)ri,

9z(~,v,9) - argmir4es.E~r~~iDz(xi,y:)qi, (15)

are convex valued, upperhemicontinuous correspondences. As a result, the correspon-

dence h(e:, v, r, q) - f~ (v, r) x fz(~, q) x gl (~, v, r) x gz (~, v, q) maps Z x Sl x Sz into itself.

Also, it is convex-valued and upperhemicontinuous so that by Kakutani's Theorem it has

a fixcd puiut (~', v', y', r'). Wc will show that (~', v', q', r') satisfics thc conditions o[

Proposition 3.

First we show that cpl (x; , v', r' ) - ~p~ (x;~„ v', r' ) for all i- 1, ..., n. Suppose the

contrary. Note that by definition ofgl (.) one has q; - 0 for all i such that ~p~ (x~, v', r") ~

min~,p~(x~,v',r'). Suppose there is a k 1 1 such that ~pl(x;,v",r') ~ min~,pl(x~,v',r')

for all i G k and ipl (xk, v', r`) - min~ ~pl ( x~, v', r'). Then ,pz(y, ~', q') is strictly decreas-

ing over [xi,xk] because q; - 0 for i G k. Accordingly, by definition of jz;(.) one has
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y; - x; for all i G k. Therefore, by definition of flk(.),xk must maximize ~pr(x,v',r')

subject to xk-1 G x G yk. As ~pl(x,v',r`) is strictly concave over [xk-l,yk] thia yielda a

contradiction to ~pl(xk-„v',r') ~ ~pl(xk,v',r'). The same argument showa that there

cannot be a k G n such that ~pl(x; , v', r') ~ min~ ~pl (x~, v', r') for all i ~ k.

Suppose there ís a k and an l such that k G!-1 and ~pl (x; , v', r') 1 min~ ~pl(x~, v', r')

for all k G i G l, and ipl(xk,v`,r') - ~p~(xj,v',r') - min~~pl(x~,v',r'). Then

~pz(y, {', q') is strictly concave over [xk, x~] and so one has yk - xk}r and~or y~-t - xj-1.

In the first case, xk must maximize ~pl(x,v',r') subject to yk-~ G x G xk}l. But then

cpt(xk}l,v',r') ~ ~pl(xk,v',r') leads to a contradiction because ~p~(.,v',r') is strictly

concave over [yk-1, xk}i]. In the second case, a similar argument yields a contradiction.

This proves ~p~ (x~ , v', r') - ~p~ (x;};, v', r') for all i- 1, ..., n. The same arguments as

above can be used to show that ~pz(y; ,~', q') - cpz(y~}1, f', q') {or all i- 1, .., n- 1.

Next we show that x; G y; G xi}1 for all i- 1, ..., n- 1. Clearly, one cannot

have xi - xn because otherwise lowering xl or increasing x„ would increase firm 1's

profit ~pl(x,v',r'). Suppose there is a k such that xk - y~ G x~}1. Then xk}1 must

maximize ~p~(x,v',r') subject to xk G x C yk}~. As ~p~(x,v',r') is strictly con-

cave over [xk, yk}1] this leads to a contradiction to cpl (xk, v', r') - ~pt (xk}l, v', r').

By the same argument one can rule out that xk G yk - xk}3 for some k. Finally,

yk-1 - xk G yk Or yb G xk}I - yk}I would contradict that yk maximizes ~pz(y,~",q')

subject to xk G yk G xk}1 because ~pz(y, ~', q') is strictly concave over (xk, xk}1] and

~z(y; ,~~, 9~) -~Pz(yi}i, f~, 4~) for all i.

It remains to show that q; 1 0 and r; ) 0 for all i. Suppose q~ - 0. Then ~pz(y, l:', q")

is strictly decreasing over [xi, x~] and so y~ - x„ a contradiction to our above result

tliat x; G y; for all i - 1,...,n - 1. Similarly, we can rule out q;, - 0. Suppoae there

isakandanlsuchthatkGl-landqk70,qi 10,andq; - 0fora1lkGiGl.

Then ~pz(y, ~', q') is strictly concave over [xk, xj] and so yk - xk}1 and~or y~-1 - x1-1.

This again contradicts our above result. The same argument proves that r~ ~ 0 for all
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i- 1, .., n- 1. Q.E.D.

Again, by symmetry of payo(Ts we can simply reassign the firms' indicca to ahow that

there also is an equilibrium in which firm 1 randomizes over n- 1 and firm 2 over n

locations. Moreover, the same arguments as in the proof of Proposition 3 can be used to

prove existence of an equilibrium in which both firms randornly select one of n locations.

Proposition 4: Forany number n~ 2 there is a pair of location vectors {-(xl, ..., x„)

and v- (yl, ..., y„) such that firm 1 chooses x; with probaóility q; ~ 0 and firm 2 chooses

y; with probability r; ~ 0. Moreover, x; G y; G x;}1 G y;tl for all i- 1, ..., n- 1.

I'or the case n- 2, the equilibrium described by Proposition 3 is the one identified in

Proposition 2. One can also easily compute the equilibrium of Proposition 4 for n- 2.

Here, firm 1 chooses xi - 0 with probability qi and some 0.5 G x2 G 1 with probability

qz - 1- qi . The equilibrium strategy of firm 2 is symmetric; it chooses y~ - 1- xz with

probability ri - q2 and yz - 1 with probability rZ - qi. Accordingly, x2 must maximize

(1 - q~)Hl(x, l- xz) ~ qilIl(x, l). This yields the first-order condition

4i(3 f xs)(1 -f 3xz) -(1 - 4i)3(5 - 4xz). (16)

The second equilibrium condition requires that firm 1 is indifferent between locating at

x~ and x2, i.e. one must have qilll(0,1) t(1 - qi)IIl(0,1 - x~) - q;IIl(xz, l) ~(1 -

qi)II~(x2, 1- x~) which is equivalent to

99i f(1 - 9i)(1 - x~)(3 - x~)2 - 9i(1 - xs)(3 f xx)2 f(1 - 4i)9(Zxx - 1). (17)

Solving equations (16) and (17) for qi and x2 gives the solution

q; ~ 0.344, xs ~- 0.730. (18)

Equation (18) together with xi - 0 and q2 - 1-qi defines firm 1's equilibrium strategy.

Clearly, firm 2's behavior (yl,yZ) -(1 -xz,l),(ri,r2) -(1 -q„qi) is optimal simply

by symmetry. As an interesting property of the equilibrium each firm is more likely
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to select a location in the interior of the market than at the endpoint. Indeed, their

expected distance in location in this equilibrium is approximately 0.437, whereas it is

1 in the equilibria of Proposition 1 and 0.5 in the equilibria of Proposition 2. This

points to a reduction in the expected distance of location as the number of points in the

support of the equilibrium strategies increases. It is a likely conjecture that letting n go

to infinity in both Proposition 3 and 4 leads to convergence of the respective equílibria to

an equilibrium with full support on [0,1]. Unfortunately, we were not able to confirm this

conjecture. However, the following Section shows that an equilibrium with this property

exists and is symmetric in the sense that both firms adopt identical (mixed) strategies.

4 Symmetric Equilibrium

Propositiou 1 reveals that there is no pure strategy equilibrium in which both firms adopt

identical location strategies. However since the players' payoffs are symmetric, one should

expect that there is such an equilibrium in mixed strategies. This is confirmed by the

following result which also establishes uniqueness of the player-symmetric equilibrium.

The proof employs four lemmas that are proven in the Appendix. To state the result,

we define the coefficients (a~,,, azn), n- 0,1, 2, ..., recursively by

aro - 0, aii - 1, azo - 1, azi - 0,

2(n f 1) 2nz -~ 2n - 1
atn - 5n a;~„-il - 5n(n - 1) a;~„-Zl, n 1 2,i - 1,2.

rurthermore, define cl and cz by

104 f 39 ~~o az„~(n ~ 1) 39 - 40c1
cr - 200 -~ ~~o(40az„ - 2Ha~„)~(n t 1)' cz - 28 ~

(19)

(20)

Proposition 5: There exists a unique (player-J symmetric equilibrium oj the location

game. It has each player playing a mixed strategy with c.d.f. F over (0,1~. On (0,1), F
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is strictly increasing, conténuously di~erentiable, and has a density f- F' given by

J(x) - ~(elaln ~ C7a2n)x~.
n-0

F has mass points at x- 0 and x- 1 given by

F(0) - F(1) - F(1') - 2c~ - 8.

Approximately, we have c1 - 0.61, cz - 0.52, and F(0) - 0.18.

Proof: The location game is symmetric, and the payoffs II~ and II~ of firm 1 and 2 from

choosing ( x, y) E[0,1] are continuous and defined on the product of non-empty, compact

subsets oï R. Hence, the location game has a symmetric mixed etrategy equilibrium

(Dasgupta and Maskin (1986), Lemma 7). Let F:(0,1] ~[0,1] denote the cumulative

distribution function of the (common) equilibrium strategy. By definition, F is non-

decreasing and continuous from the right. Recall that

a 1 -(2fx~y)(2f3x-y) COifxGy;
BxBi(x'y) - 18 (4-x-y)Í4-3x-f-y) 10ifx~y;

~z 1 I 4~-3xfy GOiíxGy;
exzn,(x,y) - -9 SI 8-3x-y GOifx~y.

Let

(21)

(22)

P(x) - f ~ II,(x,y)dF(y) (23)
0

denote firm 1's payoff from choosing x, given that firm 2 plays its equilibrium strategy.

Note that P is continuous on [0,1]. In the sequel, in order to characterise F, we shall

first prove some regularity properties of P and F.

Lemma 1: For all x E (0,1), 8P(x)~óx- and 8P(x)~8xt exist, and

8P(x)~8xo - ~18II~ ( x, y)~BxodF(y), o - f, -.
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Lemma 2: F is continuous on (0, 1) and P is differentiable on (0,1).

As P ís differentiable on (0,1), P'(x) - fó áIIl(x, y)~BxodF(y), for o - t, -. By

Lemma 2, P' is continuous on (0,1). Furthermore, we have for 0 G x f h G 1

18P'(x f~) - P'(x) - rs(6x ~ 2y - 16 -~ 3h)dF(y) (24)

- f}n(6x -I- 2y f 8 t 3h)dF(y) f h 1z}h(x -~ y- 4-}- h)(3x - y- 4~- 3h)dF(y)

} h rxfn(x
-F y f 2)(3x - y d- 2)dF(y).

Hence, for any x E ( 0,1) the existenceof limh-,o n(P'(xth)-P'(x)) implies the existence
of limhyo n(F(x f h) - F(x)) and vice versa, and the two are related by

n~ó
P'(x t hh - P'(x) - f 1 ax2 H~(x, y)dF(y) (25)

~-2(2x2 - 2x f 5) lim
F(x -F h) - F(x).

9 nyo h

Lemma 3: F is strictly increasing on [0,1].

Lemma 3 implies that P is constant on [0,1]. In particular, P" - 0 on (0, 1), whence,

by (25), F is differentiable (everywhere) on (0,1). Since F is non-decreasing, its deriva-

tive is integrable, and Theorem 8.21 in Rudin (1974, p. 179) implies

F(b) - F(a) - f 6 F'(t)dt t10 G a G b G 1. (26)

Hence, F has an integrable density f - F' on ( 0,1). Denote F's possible mass in

x - 0 and x- 1 by p- F(0) and q - F(1) - F(1-), respectively. (The proof of Lemma

3 shows that p and q must, in fact, be strictly positive.) Then Lemma 3 implies

px(4 - x)~ ~- fs(x - y)(x t y- 4)'.f(y)dy ~- f~(y - x)(x f y f 2)zf(y)dy (27)

-{-q(1 - x)(3 f x)~ - const
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on [0, 1]. Differentiating ( 27) twice yields, for x E[0,1]

fx(3x - y- 4)(x f y- 4)Í(Y)dy - Ir(3x - y t 2)(x f y f 2)f(y)dy (28)

-~p(x - 4)(3x - 4) - q(x t 3)(3x f 1) - 0,

IS(8 - 3x - y)f(y)dy t Il (4 -1- 3x -~ y) f(y)dy -(4x2 - 4x f 10)f(x)

-}-(8 - 3x)p -I- (3x -F 5)q - 0. (29)

(29) shows that f is even differentiable. Differentiating (29) twice yields

31z f(y)dy - 3 f~ f(y)dy t(4x2 - 4x ~ 10)f'(x) t 8(zx - 1)Ï(x) -F 3p - 3q - 0, (30)o :

(zx~ - zx t 5) f"(x) f(lzx - s)p(x) t 11f(x) - o. (31)

In addition to the information contained in the differential equation (31), the fact that

(28) -(30) hold in the endpoints of [0,1] gives additional information. Letting x- 0

and x- 1 in (30) and using

~1 f(J)dY f P f q- 1 (3z)

yields

8f(0) - lOf'(0) - 6p f 3- 0, (33)

8f(1) -F lOf'(1) - 6q t 3- 0.

Letting x - 0 and x- 1 in ( 29) gives

~l y.f(y)dy - lOf(0) - 4p - q- 4,

lOf(0)~-lOf(1)-4p-4q-9-0.

I'rom (28) we then obtain

~1 y~Ï(y)dy - -20P - q f 4,

(34)

(35)

(36)

(37)
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20f(0) ~ 12p - 20q - 9- 0. (38)

Each symmetric mixed strategy equilibrium hence has to satisfy (31) -(38). From

the theory of second order ordinary differentia] equations we know that each solution of

(31) has the form

Í - cifi f csfs, (39)

where cl, c2 E R are constants, and f~ and fz independent solutions of ( 31), i.e. solutions

satisfying

fl fz - f~ fz ~ 0 on [0, 1]. (40)

Considering equation (31) in the complex plane shows that its solutions are analytic on

the open disk around 0 with radius z 10. (The radius is determined by the zeros of the

leading coefficient, 2x2 - 2~ ~ 5). Hence their restrictions to the real interval (0,1] can

be expressed as convergent power series:

f(z) - ~ anxn, 2 E [0,1]. (41)
n-o

By substituting ( 41) in (31) and rearranging terms, we find that for any solution f

the coefficients {an}„o o have to obey the following recursion formula:

2(n -F 1) 2n~ f 2n - 1
an - 5n an-1 - 5(n - 1)n an'2, n~ 2. (42)

For the remainder of the proof fix two independent solutions {aln},~ o and {a~n},~ o

by setting a~o - 0, a~l - 1, a~o - 1, az1 - 0. Let

ain
Ai - ~ atn, Bt - ~ nain, cr - ~ , : - 1, 2, (43)

n-0 n-0 n-0 n~ 1

(These sums exist because the solutions to (31) are analytic on [0,1].) Any f obtained

from (39) then satisfies

f(o) - ~~, f(1) - ~,~, ~ ,az~z, r~(o) - ~~, r~(1) - Q,~~ ~ ~2~,. (44)
By means of ( 44) we can restate (32) -(38) as a system of seven equations in the

unknowns cl, ez, p, and q. The equilibrium described by F will be unique if this system
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has a unique solution. In order to prove uniqueness, let us single out the four equations

(32), (33), (36), and (38) and show that they already determine a unique solution. (Note

t}iat it is not possible that the seven equations contradict each other, since we know a

forteriori that there is a syminetric equilibrium and hence a solution to (31) -(38).)

C1clfCzc~fPfq-1-0 (32')

8cz - lOci - 6p f 3- 0 (33')

l0A~c1 t 10(Az f 1)c~ - 4p - 4q - 9- 0 (36')

20cz ~- 12p - 20q - 9- 0 (38')

By eliminating p and q this system reduces to

5(15A1 ~ 16)cl f(75A2 - 19)c~ - 78, 5(3Cr - 8)cr -h (15C2 f 47)c2 - 39~4. (45)

The determinant of system (45) is

D - 75(15(A1C2 - A2C1) f 47A1 ~- 40Az -F 5Cl t 16C~ -} 40). (46)

Tlte following lemma, which is an exercise in numerical mathematics, implies the desired

uniqueness result.

Lemma 4: D ~ 0.

liaving established the uniqueness of F we immediately conclude that the distribution

given by F must be symmetric around x- 0.5. For, if this were not so, the distribution

function

1-F(1-) ifx-0,

G(x)- 1-F(1-x) ifOGxCl,

1 ifx-1

(47)

would, by the symmetry of the location game, define a different (player-)symmetric

equilibrium, which would contradict the uniqueness of F.
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It follows that p- q, that the equations (36') and (38') are identical, and, from solving

(32')-(36'), that F is given by

c' - 200 3928C, f 40Cz' c~ - 28 (39 - 40c, ), 5 9
P - 2c~ - g. (48)

A numerical calculation using (A8) in the Appendix yields Cl ~.5091, C2 ~.6293 so

that cl ~.61, cz ~.52, p~.18. Q.E.D.

At the symmetric equilibrium the two firma end up at the same location with a prob-

ability of approximately 0.065. Thus, with some chance the outcome yields `minimum

differentiation' instead of `maximum differentiation', which occurs in the pure strategy

equilibrium desctibed by Proposition 1.

5 Conclusion

We have demonstrated that Hotelling's (1929) model with quadratic consumer trans-

portation costs possesses an infinity of equilibria in which the duopolists randomize over

locations. These equilibria have been overlooked in the literature because tlie cootdi-

nation problem underlying the location game has not been recognized. Interestingly,

most of our results in Section 3 do not rely on the specific form of the firms' payoff func-

tions. The proofs in this Section essentially require that payoffs satisfy certain symmetry

properties, that each player's payoff is increasing ín the distance from the other player,

and that payofís are strictly concave over each interval in which the other player is not

located. Unfortunately, we have not been able either to rule out or to verify equilibria

whcrc the playcrs'strategies are represented by a distribution function with an infinite

number of masspoints. With this exception, our results provide a full characterization

of all possible equilibcium configurations.
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6 Appendix

Lemma 1: ['or all x E (0,1), ~P(x)~8x- and 8P(x)~8x~ exist, and

8P(x)~axo - f 18II1(x, y)~Bx,dF(y), o-~, -'

Proof: Let x E(0,1). Consider any sequence {hn}ó such that 0 C hn C 1 - x t1n and

hn --~ 0. Let

fn(x,y) - hn(111(x i' hn,y) - ~1(xry))'

By (21) and since II1 is continuous, we have

fn(x,y) -' 8II1(x,y)~é3xt dy E[0,1], ~ fn(x,y) I S const b'n,b'y E[0, 1].

By Lebesgue's Dominated Convergence Theorem, limny~ fó fn(x, y)dF(y) exists, and

~P(x)~axt - fo an, (x,y)~BxtdF(y). The argument for 8P(x)~8x- is analogous.

Q.E.D.

Lemma 2: F is continuous on (0,1) and P is differentiable on (0, 1).

Proof: By Lemma 1, for x E(0,1),

aa}P(x) - a~-P(x) -(a~}n](x,x) - a~n](x,x))(F(x) - F(x-))' (A1)

By (21), the first factor on the right hand side of (A1) is strictly positive. Since P

is continuous, in order for firm 1 to put a strictly positive mass F(x) - F(x-) ~ 0 on

x, it would be necessary that óP(x)~8x} C 8P(x)~8x-. Hence F(x) - F(x-). This

together with (A1) implies that P is differentiable on (0,1.) Q.E.D.

Lemma 3: F is strictly increasing on [0,1].

Proof: Suppose there is an a~ 0 such that F(x) - F(0) for x E [0, a]. By continuity,

there exists a maximal interval [0, aJ - F-'(F([0,a])) on which F is constant. Again by

continuity, there exists an e~ 0 such that F is strictly increasing on (a, a-~ e]. Since F
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defines an optimal mixed strategy, firm 1 must be indifferent between all x E[a, a f e],

hence P(x) - lí Vx E [a,a ~- c]. Also, P(x) G K Vx E(O,a). By ( 21) and Lemma 1,

for x E (0,1)

P~(x) - F(o)a n~(x,o) t ~~ án~(x,y)dF(y) (A2)

- 18 ~F(0)(4 - x)(4 - 3x) - f~(x f Y f 2)(3x - Y f 2)dF(y)~.

If F(0) - 0, (A2) implies that P'(x) G 0, hence P(x) 1 K on (0, a), a contradiction.
If F(0) ~ 0, the distribution given by F puts positive weight on x - 0, hence P(0) - K.
Since F'(x) - 0 everywhere on (0, a), (25) implies that P" exists everywhere on (0, a)

and

P~~(x) - ~1 áxzn~(x,y)dF(Y). (A3)

By (22) and (A3), P"(x) C 0 on (0, a). This, together with P(0) - P(a) - Ií implies

P(x) ~ Ií on ( 0, a), again a contradiction.

An analogous argument proves that there is no ~ C 1 such that F is constant on

[~,1], and finally ( only using (A3)) that F is strictly increasing on every interval [n„B],

o~a~~~~~. Q.E.n.

Lemma 4: D ~ 0.

Proof: For N~ 9, N E N, choose ó such that

N~ f N- 0.5 ~l t 1.~ 10(N - 1)N 1~ 6 C 1. (A4)5(N-1)N N~tN-0.51

(Note that the ]eft hand side of ( A4) is smaller than 1 for N 1 9). Suppose that for
n1N

~ a„-z ~ C ó"-2 and ~ a„-1 ~ C ón-~. (A5)

Then, by (42), the choice of ó implies

~an~ C2(n-Fló„-l~nz~n-zón-~)
5 n (n - 1)n

` 2 Nz i- N- 2 bn-,(1-~ ó) ~ an. (AS)5 (N - 1)N
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Using the identity
0o N-3 00

~ ain - ~ ain ~ ~ ain
n-0 n-0 n-N-Z

we get from (A6) for all N and ó satisfying (A4) and (A5)

N-3 bN-4 0o N-3 óN-2

~ Qin - ~ ~ ain ~ ~ ain f
n-o 1- ó n-o n-o 1- 6

and

(A7)

N-3 bN-7 ~ a N-3 áN-2ain in ain
~n~l-1-ó~~n~-l~~n-~1}1-Á (A8)

for i - 1, 2. A numerical calculation shows that (A4) and ( A5) are satisfied for N- 30
and ó-.9015, and that the estimates for A; and C; given in (A7) and (A8) yield D~ 0.

Q.E.D.
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