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Abstract

Condítional demand analysis (CDA) is a statístícal
method for allocatíng the total household electricity
load during a period into its constituent components,
each assocíated with a particular electricity-using
appliance or end-use. This is an indirect approach to
the estímation of end-use demand and qulte naturally it
often generates imprecise estimates. One of the possible
methods for SmprovinR these estimates tnvolves the
Incorporation of data obtalned by dlrectly metering
specíflc applíances. It Ss argued that an extremely
natural approach to the use of thls extra information
follows directly from a reformulatlon of the standard
CDA model Snto a random coefficient framework. Some new
results on the possible efflclency galns from such an
approach are developed. Illustrationa based on an
empirícal study of households in the state of New South
Nales, Australia are also provided.
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1.INTRODUCTION

Conditional demand analysis (CDA) ís a statistical method for allocating the

total household electricity load during a period into its constituent

components, each assocíated with a particular electricíty-using applíance or

end-use. The method, introduced by Parti and Parti (1980), assumes that the

electricity load of a household is linked via a linearly additive regression

model to a set of dummy variables representing the household's appliance

ownershíp. The estimated coeffícients of the dummy varlables can be

interpreted as the mean contribution of each end-use to the total load.

End-use load profiles through the day can be obtained by applyíng CDA for

each hour through the day, an approach pioneered by Aigner, Sorooshían and

Kerwín (1984).

As revealed in a recent investlgation by Huss (1985), accurate information

about end-use loads is increasingly seen by electricity utilities as

important for their generation planning, marketing and rate-making

activitíes. However, CDA is an indirect approach to the estimation of

end-use loads and the estimates it produces are not always precise or

plausible. Negative loads, or technically implausibly large loads, are

difficult to ~ustify. The problem primarily arises because the ownershíp of

appliances among households in the sample is generally not very

heterogeneous.

To overcome this weakness of CDA it ís natural to look for additional

sources of Snformation with whích to supplement the analysis. Caves,

Herriges, Train and Wlndle (1987) consíder end-use proflles produced by

engineering models based on thermodynamic prlnclples, and propose a Bayeslan

approach for combining these profiles with CDA. Engineering models are only

appropriate, however, in situatíons where lndividual behavior plays a minor

role, for example, heatíng and cooling Sn extreme cllmates. Most applíance

use depends on the life style; in temperate climates, even heating and

cooling appliances are in many households only used when the occupants are

at home.

An alternative way of obtaíning additional Snformation about end-use

electrícity consumption ís to meter specifíc appliances directly. Ad hoc
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direct metering of specífic appliance types is sometimes carríed out by

utilities to assist ín developing marketing strategies. As technícal
advances reduce the cost of such metering, thls option ís now also becoming
Sncreasingly attractive as a way of supplementing the usual household load
data collected for load research purposes.

Recently, methods of integrating the data gathered using dlrect metering on
selected appliances Sn a sample of households Sn a load research study with

CDA have been suggested. The basis for our discussion is the Fiebíg, Bartels
and Aígner (1988) approach that follows directly from a reformulatlon of

the standard CDA model into a random coeffícient framework. However, an
alternative approach suggested by Aigner and SchBnfeld ( 1988), Caves et al.
(1987) and Hsiao, Mountain and Ho (1990) where the direct metering
information is treated as stochastic prior informatíon is shown to generate
ídentical estimates.

The primary focus of this paper is to characterize the efflciency gains
resulting from supplementing CDA with direct metering data. Both a
synthetic example and a real situation based on an actual load study
ínvolving 400 households in the state of New South Wales, Australia are used
to illustrate these gains.

2. A RANDOM COEFFICIENT CDA MODEL HITH DIRECT METERING

2.1 Basic model
The basíc CDA model for electricity consumption (possibly annual, monthly,
daíly, or hourly) is of the form

(1) y~ - z~~m t d~'7~ 1-1,...,N

where y~ - electricity consumption of customer i,
z~' ~ row vector of observations on 1 explanatory varlables,
d1' z row vector of observations on k appllance dummies, the first

of which is always unity.

The typical assumption that the coefficients of the appliance dummies are
flxed, is unrealistíc. There are two Smportant sources of varlation:
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(1) during any particular hour the intensity of use of a particular
appliance will vary from household to household,

(ii) the dummies indicate only absence or presence of the appliance and

do not allow for variations in size or capacity.

Followíng Fiebig et al. (1988), we assume that

. v(2) }2' i - 7 1

where 7 is a kxl vector of non-stochastic mean response coefflcients, and

v~' -(vl~,vzf,...,v~~) ís a vector of random disturbances.

Notice that (1) is written without a separate disturbance term. This

omission is deliberate, as a separate disturbance can not be distinguished

from v, the disturbance associated wíth the Sntercept.i~

At this stage it is appropriate to recogníze that some care needs to be
exercised in defining random coefficients for dummy varíables. According to

t(2), all elements of 7~ are random. However, on observing the realized
sample values for the dummy variables, ( here appllance holdings), it is
posslble to identífy some elements as identically equal to zero. Now a
modifíed version of (2) is appropriate, namely

(2' )
~ i

~~ " o~~~
where 0~ is a k dimensional diagonal matrix whose diagonal elements are the
appliance dummles, which are zero or unity depending on the appllance
holdings of the ith customer.

Because d~'A~-d~', the combínatíon of (1) wíth either (2) or (2') yields a
model of the form

(3) y~ - z~ ~ r
d~~r } ui

where

(4) u~ - d~'v~

Assuming,

(S) E(v~) - 0, E(v~v~') - A, E(v~vl') - 0 for ixj,
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ít follows that

(6) E(u~) - 0, E(u~) - d~'Adi, E(u1u~) - 0 for isj.

This is a variant of the Híldreth-Houck random coefficient model (RCM). In
Fiebig, Bartels and Aigner (1988), A was assumed to be a diagonal matrix,
which implies a heteroskedastic error variance of the form:

(7) ci ~ E(ui) - d~'a

where a' -(a1.a2,...,a~) is a vector comprlsing the diagonal elements of A.

In obvious notatíon write (3) as

(8) Y~ - xt'R ' u~

and let the full error covariance matrix be fl, which is a diagonal matrix
with typical diagonal element gíven by (7). Now for known n the GLS
estimator of s is gíven by

(9) i~ - (X'n-1X) 1X'~-lY

It is also possible to predict the índividual random response vector. The

predictor

(10) 7~ - A~T f Ad1(d~'a)-1( Y~ - x~'S )

is best linear unbíased; see Gríffiths (1972). For our particular problem

these best linear unbiased predictors (BLUPs) are of great ínterest. They

represent predictions of actual customer end-use loads and as such can be

used to develop distributions of end-use loads over indlvlduals. Operatlonal

variants of the estlmator in (9) and the predlctor ln (10) have been

proposed by Fiebig, Bartels and Aigner (1988). See also Bartels and FSeblg

(1990) for further discussion.

2.2 Incorporating direct meteríng
Conditíonal demand analysis arríves at estimates for the load contribution

of different end-uses by statistically disaggregating the total household
loads for a sample of households. This Ss an índírect approach and the
estimates i t generates are often ímprecíse. The RCM Ss likely to provide
some efficiency galns relatlve to OLS procedures but ít remains the case
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that there is considerable room for improvement in these estlmates. One

obvíous alternatíve is to dlrectly meter specific appliances for a subsample

of households. Suppose meters were allocated to all households possessing

the kth appliance. Treatment of the resultant direct metering data would be

straightforward: the mean of the observed loads being the estimate of the

average load for that particular end-use. For the remaining end-uses the CDA

model would be estlmated a[ter having subtracted the appllance loads of the

kth appllance from the totals for the relevant houaeholds, and, after

omltting the assoclated appliance dummy variable.

Complete metering ís typically not a cost-effectlve alternative but in some

cases a limited direct metering program may be feasíble. Consequently we

need to consider an appropríate method of incorporating direct metering data

ínto the CDA framework.

The suggested approach follows directly from our random coeffícient

framework. Suppose dírect metering information is available on the kth

applíance for a total of n households where n Ss less than the number of

households in our sample who have this appliance. For these households we

observe a realization of the random response coefficíent. Agaln this load

can be subtracted from the household's total observed load and for these

observations the appliance dummy set to zero. FSnally, these ad,Justed

observatíons are augmented to Snclude the additíonal n observations that

constltute the actual response coefflcíents of ihe kth appllance dummy. The

stacked regressíon allows ~o1nt estímatlon of the mean response associated

with the kth applíance, utilízing the data from households that were and

were not directly metered.

The assumption that the covariance matríx for vr is díagonal ensures that

the error covariance matrix for the stacked regresslon is also dlagonal with

a heteroskedastic structure of the form discussed previously. In fact, it Ss

as íf there is an additional sample of n households with only one appliance.

Notice also, that in the limíting case where every household with the kth

applíance ís directly metered, there is no gain from joint estimatlon and

therefore this procedure reduces to that suggested for complete metering

data.



2.3 A general model and alternative interpretation

Suppose direct metering information is available for p appliances and that
these data were recorded for only a subset of the customers who have the
respective appliances. Also, any single customer has at most one metered
appliance. Consider two models, Model I being the basic CDA model and Model
II íts generalization that incorporates the direct metering data. For an
arbitrary hour, these can be written in matrix form as:

(11) y-X S f u h-I,II
h h h

where

(12)

and

YI- L

(13) u1- f

ya
tYb yc

Ua

u t ub c

Y

yII - Yb
Y c

uII

i
u a
Ub
U
c

while the design matrices for these models

2 d ... dO 01

(14) XI-

Op

ZI d11 ... d1D

z a ... d
P P1 DD

can be wrítten as

and



8

(ís) XII-

Zo dol doz .. doP

"LI o d1z ... dIP

22 d21 0 ... dZP

2 d d ... 0
D DI PZ

0 l o ... o1
0 0 0 ... 0

2

0 0 0 ... i

where ~~ ís an n~ column vector of unlt elements. The top block of

observations refers to the N-n (n - En~) customers who were not metered

while the n customers who were metered have been arranged into groups

according to the metered appliance to form the second block. For Model II

there is a thírd block of n observations representing the observations on

the directly metered appliances. In obvious notatlon these two design

matrices can be written as

X Xe 1
(16) XI- ~ x~tX~~ ' XII- Xr. I

I
J

Xc

In a similar fashion the variance covarlance matrices of the dísturbance

vectors are given by

(17) Var(uI) -
- r i 0 1La J~I 0 Eb}~c

E 0 0
e

(18) Var (u II) - ~II- I 0 ~b O
0 o E

c

where Eh, h- a,b,c are diagonal matrices.
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While we have set up the model so that meters are assumed to be attached to

individual applíances our framework could just as easily apply to the

situatlon where meters recorded the load of a group of appliances. It could

be that certain appllances are often put on the same circuit. In this case

there would be p groups of appliances and the d1~ and t.l vectors would

simply become matrices with the number of columns equal to the number of

appliances in the jth group.

Aigner and Schbnfeld ( 1988) and Caves, Herriges, Train and Windle (1987)
have recently suggested that llmíted direct metering Snformatlon could be
incorporated into CDA by treating it as stochastic prior information.
Formally, defíne such a model, say Model III, by

(19)

where

-X StuyIII III III

y X u. . .
y y t y` , X X f X and u u f u
IIIL b IIIs b c IIIs b c

Y~ X~ u~

Notice that as in Model II, the basic data are augmented by the dírect
metering information, but unlike Model II, there is no adjustment of total
loads or appliance dummies. The other difference is that the disturbance
covariance matrix is no longer díagonal as the observations in the second
and third blocks are correlated. The question of the comparison of the two
approaches embodied in Models II and III is answered by the following
proposítion:

Proposition A: The GLS estímator associated with model II is identícal to
that associated wíth model III.

The proof is supplied in the Appendlx.

Notice that this equivalence refers to a partícular method of handling
stochastic prior ínformation. The result is unlikely to hold for
alternatives that could come from a richer Bayesian framework.
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3. EFFICIENCY GAINS FROM DIRECT METEAING

3.1 Direct metering implies efficiency gains
An immediate question of interest is the characterization of the efficíency

gaíns that arise from incorporating dlrect meteríng data, relative to the
alternative of simply ígnoring the information. In particular, this Snvolves
a comparíson of the relative efficiency of the GLS estlmators of Models I

and II.

Propositíon B: The GLS estimator assocíated with model II ís more efficient
than the estimator associated with model I. Denoting the
variance-covariance matrices of the txo estimators by VI and VII it is the
case that:

(i) the dífference between the varíance-covariance matrices, VI - VII'
ís positive semi-definite (psd),

(ii) the trace of this difference, tr(VI - VII), is strictly positive.
The proof ís supplied in the Appendix.

Different configurations of ineters imply dífferent forms for the X matrix
and the error covariance matrlx which translates Snto dífferent covaríance
matríces for the S estimates. Glven an actual data set and values for the
variances of the random responses these covarlance matrlces can be
determined and compared. Ne now do this for two particular models in order
to further characterize the gains from dírect metering.

3.2 Efficiency gains in a simple model
In order to further characterize the gain from dlrect metering, consider a
simple CDA model comprising an intercept and tvo appliance dummies where
dlrect metering is avaílable for the flrst appliance. The model
íncorporating the direct meteríng information is given by,

(20) yI2-

~ ~ i1 I I
~z ~z 0 ~I
~3 O ~3 S2 } uII
~ 0 0

1 3

~ l ~
5

vhere there are a total of N1 households that oxn both appliances, Nz
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households that own only the first appliance, N3 households that own only

the second appllance, and N~ households that do not own elther appliance.
Chere are a tutal oC n houscholds lhat have the flr'st appllance metered, nr
having been taken from the flrst group of households and the remaining n2

from the second group. Consequently, ~1.....~5 are unit vectors with
dimensions: N1 - n1, NZ - n2, N3 4 n1, N` t nz and n. The disturbance

variance-covariance matrix is given by,

(21) Var(u11) - diag(vi I1, cz I2, Q3 I3, P4 I~. PS IS)

wherevZ-a aa t a. cz ~a aa. e2-a ta. P2-a. andvz-a.
1 1 2 3 2 1 2 3 1 3 4 1 S 2

The fírst estimator of this model, denoted by S1, does not incorporate the

direct metering information while the second, denoted by ~11, does. Two

experlments were conducted in order to compare the efficiencíes of these two

estimators the designs of which are given as:

Experiment 1: N1 ~ 200, NZ ~ 100, Na ~ S0, NO a 50, n~ 50

a1 - a3 - 1, a2 - 0.04, 0.25, 1, 4, 25

n1 - 0, 10, 25, 40, SO

Experlmeni 2: N1 ~ 200, Nz s 100, N3 ~ 50, N~ a 50
a1 - a3 - 1, aZ s 0.04, 0.25, 1, 4, 25

n - n - 10, 20,...,100
1

Both experiments allow for a range of values for the relative variabillty of

the random response of the metered appliance. In Experiment 1, thls is

coupled with variation in the compositíon of the type of household

(according to appliance holdings) that is metered, while Experiment 2 varies

the number of inetered households.

For the purposes of comparison, the crlterion chosen was the relative traces
of the covariance matrices of S11 and ~1. These quantities will be less than
unity, with smaller values índicating greater effíciency gains from direct
metering.

Resulis for Experiment 1 are given Sn Table 1. Numerically, these efficíency

gains can be quite dramatic and dlsplay a strong ínverse relatlonshlp with
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az. Nhíle the effect of varying nl is small, notíce the systematic tendency

for the preferred value of n~ to íncrease with larger az values. In other

words, the efficiency gains from direct metering are greatest when the
variance of the random response of the metered appliance is relatively
small, in which case there are small gains to be made from metering
households with fewer appllances and hence smaller disturbance variances.

Results for Experiment 2 are given Sn Table 2. Again these efficiency gains

can be quite dramatíc. While efficiency gains are directly related to n, the

number of ineters, ít ís very interesting to note the considerable decrease

Sn the rate of gain from additlonal meters especially when az is small. In

other words we rapidly reach a poínt where the gains from additional meters

are likely to be outweíghed by their costs. As an alternatlve xay of viewing

this phenomenon, consider aZ 1.0. Here substantially more than 100 meters

are requíred to obtaln the type of efficiency gains provided by 10 meters

when a - 0.04.z
Table 1: Relatlve Efficiencíes: Exaeriment 1

az
n 0.04 0.25 1.0 4 25

i

0 0.459 0.545 0.686 0.808 0.890
10 0.459 0.542 0.668 0.766 0.849
25 0.460 0.543 0.661 0.738 0.820

40 0.462 0.552 0.674 0.746 0.821
I 50 0.464 0.562 0.696 0.773 0.840

Table 2: Relative Efficiencies: Exoeriment 2

a2
n 0.04 0.25 1.0 4 25

10 0.538 0.751 0.882 0.926 0.948
20 0.494 0.659 0.809 0.872 0.910
30 0.478 0.611 0.760 0.831 0.881

40 0.469 0.582 0.723 0.799 0.858

50 0.464 0.562 0.696 0.773 0.890
100 0.453 0.516 0.621 0.696 0.785



13

3.3 Efficiency gains in a second model
For the second model we draw heavily on the appllcation of Fiebig, Bartels
and Aigner (1988). The data for thís study were compiled as part of the
Domestíc End-Use study conducted for the state of New South Wales (N.S.W.)
in Australia under the auspices of an Industry Working Group comprising
representatives from the Electricity Commíssion of N.S.W., the N.S.W.
Department of Energy, the Local Government Energy Assoclation and the County
Councíls of Sydney, Prospect, Southern Riverina, Illawarra and Shortland.

Load data consisted of hourly integrated demands for each customer averaged

over working days for the month of July 1986. The resultant 24 observatíons

for each customer represent the household's average working day load profile

for that month. A selection of nine appliance dummies was chosen. These,

together with their estimated population penetration rates, are provided in

the followíng list:

FREEZ - separate freezer (47'I.),
FRIGAUT - automatic defrost fridge (53~),

COOK - electric oven or hotplates (73~),

DSH - dishwasher (22'I.),

DRYER - clothes dryer (52~),
HEAT - electric maín or secondary heating (79K),
HWPK - main tariff water heater (32ti),
HWOP - offpeak tarlff water heater (SIK),
POOLPUMP - poo 1 pump ( 6'I. ).

The total sample size was 348. Direct metering information was available for
two appliances, namely, HWOP and HWPK.

E:mpirlcal results From thls study indlcate substantlal efflciency galns from

the use of a random coefflcient model and from the lnclusion of directly

metered observations. The improvements attributable to the latter were

especíally noteworthy prompting Fiebig et al. (1988, p.22) to recommend

that: "... in future residential load studies every effort should be made to

record loads of all applíances such as offpeak water heaters or ranges which

are on a separate circuit running from the maín board."

While their study highlights the potentlal gains from dlrect metering it
provídes líttle guidance on the appropriate allocatíon of ineters across
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households and appliances. The actual allocation in the study xas ad hoc.

Would lt have been better to allocate the avaílable meters to ranges or some

othcr mix of appliances? Glven the actual data from thls study and assuming

the unknoxn variances to be glven by their estímated values we are able to

investlgate such questions. These variances are not re-estimated for

dlfferent configuratíons of ineters.

In all our experiments xe only consider those appllances most líkely to be
metered; namely COOK, IiNPK and HNOP. Again the basic criteria used in
evaluating alternative configurations of ineters are the relative traces of
the coefficient variance-covariance matrlces. Because the estlmation of the
coefficients of the appliance dummíes is our main concern these are only
partial traces taken over the appllance coefficients and including the
intercept.

Initlally assume that each appliance is metered separately. Further suppose

each appliance ís completely metered; in other words all households

possessing the appliance are asswoed to be metered. The efflclency gains

relative to the base of no metering are presented in FSgure 1. Complete

metering of any one of the three appllances would provide substantial

efficiency gains throughout the day. No one appllance dominates the others

throughout the day although metering HUOP provides the most gain for hours

1-15, 20-21 and 23-24, whíle in the remalning hours COOK is the best.

Hoxever, COOK has 265 meters, H610P 189 meters and HWPK only 105 meters. In

fact the gains from metering HWPK seem qualitatívely simllar for say the

hours 7-22 and yet involve substantially fexer meters and hence lower

metering costs.

In order to focus our attentlon let us concentrate on hour 19. The results
from Figure 1 for this hour are reproduced in Table 3, together with a
series of other configurations of ineters.
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Table 3: Efficíency aR íns for hour 19

Meters Ratio to
Partial base of no

COOK FíWOP fIWYK trace metering

0 0 0 0.318 1.000

265 0 0 0.177 0.558

0 189 0 0.245 0.773

0 0 105 0.232 0.729

90 0 0 0.251 0.792

0 0 90 0.242 0.763

45 0 45 0.232 0.729

0 125 21 0.217 0.686

Notice that metering HWPK is unambiguously preferred to metering HWOP; it

produces more efficient estimates with substantlally fewer meters. This ís a

somewhat surprising result in view of the fact that the random coefficient

variances are 0.118 for HWOP and 0.573 for HWPK. Results from the simple

model of section 3.2 suggest that metering of appliances with lower

variances is preferable. Naturally, this comparison does not control for

other factors such as dífferences ln the type of households. Apparently

these factors have moderated the influence of the differences ín variances.

For the comparison between COOK and HWPK the situatíon is unclear and an
attempt was made to control for the differences ln the number of ineters.
There is a group of 90 households that possess both COOK and HWPK. By

metering households within this group a comparison can be made that controls

for the number of ineters and household characteristics. Again metering of
IiWPK is preferred. Because the random coefflcíent variance of COOK ls 0.828

this result is consístent with the strategy of inetering the lower variance
appliance.

The effíciency comparisons have been llmited to metering single appliances.

Given the dimínishíng returns that were evídent in the simple model of

sectíon 3.2 it is important to consider the possíbility of inetering more

than one appliance.
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E.'icbly, et. al. (19881 report. results where meters were avallable for I1WOP and
IIWI'K. A total of 125 out of the 189 households owníng }iWOP were directly
metered while it was 21 out of 105 for HWPK. Results from this configuration
of ineters and a second example using the 90 households possessing both COOK

and HWPK are presented ín Table 3. For this second example the households
were arbitraríly divíded into two groups: the first 45 households were
assumed to have COOK metered while the remaining 45 have HtrPK metered.

It is clear that spreading the meters over dlfferent appliances is a good
strategy. The 146 meters spread over the two hot-water appliances produces

more efficient results than the 189 employed to totally meter HWOP.

Similarly, spreading 90 meters between COOK and HWPK is preferred to
locating them solely to only one of these appliances.

4. CONCLUSION

Imprecise end-use load estimates have been a major problem associated wlth
conditional demand analysís. The use of direct meteríng ínformation Ss one

posslble method of Smproving this situation. As the cost of direct metering

comes down thís approach will become increasingly attractive. The random

coefficient formulation discussed here, provides a simple and intuitively

appealing framework for the íncorporatíon of limited direct metering data

into conditional demand analysis. Importantly, it has been illustrated using

both an artíficial example and a real-lífe application that the efficiency

gains from limited direct metering can be quite substantlal.

Our analysis has provided some interestíng insíghts ínto the problem of

where, and, how many meters, need to be employed as part of a conditional

demand study. In particular it seems that quite substantíal gains may be

achieved with only a relatively small number of ineters. Given a choice

between appliances it seems preferable to meter appliances for which the

variation in use is smallest. Because of substantial dimínishing returns

uhen meteríng a single appliance, ít is also advisable to spread the meters

over different types of applíances.
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Some of these optimal experimental desígn questions have been addressed in

Aigner and SchSnfeld (1988). Their analysis is limited, however, to the

sítuation where households can only have two types of appllances. It is

unlíkely that useful algebraic results can be deríved for the more general

case of, say, 8 or 10 appliance types. A computational approach to the

problem of how best to allocate a given number of direct metering devíces ís

easily specífied but takes on horrendous combínatorial dimensions. In

practice, it ls likely that the most fruítful approach will be to follow the

example in this paper, and compare the efficiency gains from different

feasible allocation schemes. Done systematícally this could be llkened to an

heurístic optlmízation scheme. It is fair to conclude that a much more

comprehensive study of the optlmal placement ot meters remalns to be

undertaken.
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Appendix: Proofs of Proposítions
Proof of Proposition A:
The proof follows dírectly from noting that Model III can be rewritten as

(A.1)
B yII-

B XIIS i B
uII

IN-n 0 0

where B- 0 I I and Var (u )- B E B'.n n III II
0 0 I

n

Hence,

RIII-
(XIÍB ' (B EIIB ' )-IB XII)-IXIÍB ' (B

iIIB . )-IB yII
-1 -I -I " ,

- (XII~I[XII) XII~II yII - S11

Proof of Yroposition B:
i'he following lemmas are useful ín the proof:

Lemma 1: Let S be a positive definite, symmetríc matrix of rank (Ntn), and R
be an arbitrary matrix of dimension Nx(Ntn) and rank N, then C- S-I -
R'(RSR')-1R is positive semí-definite.

Proof of Lemma 1:
C- S I- R'(RSR')-IR is psd
J-t~zr cl~2n. ina-~n, -1;.,.,il~z,r~-t~z

,-.. iI .~ ~,..,~. ) ,o ,n psu

a B- I- SI~ZR' (RSR' )-IRSI~z is psd

But B is idempotent and hence psd ,

Lemma 7: Let X be an arbitrary matrix of dlmenslon (N4n)xk and rank k, then
the r:Inks: o( X'CX srnd CX are equal and X'CX - 0 líf CX z 0.
Prool of l.emma l:

Define X~ - S-1~ZX then X'CX - X~'BX~ -( BX~)'(BX~) since B is symmetríc
idempotent. Now r((BX~)'(BX~)) - r(BX ) and (BX~)'(BX~) - 0 iff BX. - 0.

.
But CX - S-I~ZBX and the same results apply to CX as S I~Z Ss nonsingular.

1
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Now note that XI- AXII and EI - AEIIA where A IN-n 0 0

0 I In n

Hence the GLS estimators associated with Models I and II have preclsíon

matrices given by

(A.2) P - V -I - X 'É IX - X 'A' (AE A' )-IAXI I I I I II II II

and

-1 -1
(A.3)

PII- VII - XII,~iIXII

From (A.2) and (A.3) we have

(A. 4) PII- PI- XII
( E~Í - A' (AEIIA' )-I A)XII

- XI ICXII

By Lemma 1, C ís psd and hence XIÍCXII is psd. Now VI - VII - PI-I - PII I

is pd, psd or zero iff PII- PI is pd, psd or zero.

Part (ii) of the Propositíon follows if XIÍCXII is also nonzero. Note that C

has the followíng structure

0 0 0

C- 0 E-1-(E tE )- I -(E tE )-I
b b c b c

L 0 -(E .E ) ~ E-I-(E ;E~)
b c c b

and thus

~

CXII- IEbI-(EbtEc)-I)Xb - (Eb4Ec)-IXc

-(Eb4Ec)-1Xb t (EcI-(EbfEc)-I)Xc

Since ail the E's are diagonal and X~ has unlt elements where Xb has zeroes,

it follows that CXII x 0 ímplying that XI~CXII ~ 0 and hence Lemma 2

applies. ,
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