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NEW PROPOSALS FOR THE VALIDATION OF
TRACE-DRIVEN SIMULATIONS

J.J.A. Moors and L.W.G. Strijbosch

Abstract

Simulations try to mimick reality. Hence, it is desirable that simulated values
resemble the values observed in real life. Although the problem how to validate a
simulation model has received quite a lot of attention, even recent literature offers
no generally accepted standard method.

This paper proposes a general approach. For trace-driven simulation, three
different objectives are formulated. At the one extreme, the individual outcomes
of a real life process and the simulated process should agree. An intermediate
objective is that the outcomes of the two processes should have a symmetric joint
distribution. And at the other extreme, only the marginal distributions of both
outcomes have to be comparable. For all three objectives, validation measures
and/or tests are proposed. For the last objective, a simulation study is presented,

comparing two competing tests.

Keywords: Kleijnen test, mimicking simulations, simulation objectives, Stuart test,

trace-driven simulations, validation.

1 Introduction

General discussions on validation of simulation models can be found in all textbooks
on simulation, c.g., LAW & KELTON (1991, p. 298-324) and PEGDEN et al. (1990,
p. 133-162). Recent survey papers on this subject are BALCI (1994) and KLEIJNEN
(1995), including 102 and 61 references, respectively. The extensive literature, however,
does not offer a standard theory on validation, nor a standard criterion to measure the
quality of simulation models.

This paper will differentiate between the following two types of simulation experi-

ments; attention will be focussed on the first type.



(1) Fach simulation is related to precisely one real life situation, because the same
input values are used; hence, the simulated value should be close to the observed

real life value. Simulationists call this trace-driven simulation.

(i1) No one-to-one relation exists between the simulation experiments on the one hand
and the real life situations on the other. Interest centers on the distribution of the
simulated values and the observed values separately. The simulation is considered
successful if these two distributions are similar.  We will call this independent

simulation.

Both the real life values and the simulated values can be scen as outcomes of a
random variable; denote these by X and Y, respectively. Statistically speaking, in trace-
driven simulation the joint distribution of the pair (X,Y) is of interest. In independent
simulation on the other hand, there is no relation between individual X and Y values:
only the marginal distributions of X and Y can be taken into account.

IYigure 1 pictures the two types of simulation experiments.

Figure 1. Trace-driven versus independent simulation.
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Inputs are generated from either an experimental or a theoretical distribution; ‘real



life” s seen as a black box that has been modeled by the simulationist. Note that the
segregation between the two types is not always complete: data from the black box may
be used in the model.

In case (ii), the only possible validation question is: Are the distributions of X and Y
identical? To answer this question, a number of well-known tests is available - since the
obscrvations on X and Y are independent. Examples are the two-sample Kolmogorov-
Smirnov test (also called the Smirnov test) and the x?-test for homogeneity; see LIND-
GREN (1976) or ’AGOSTINO & STEPHENS (1986). Note that the corresponding test
statistics can be used as validation measures. Since case (ii)allows numerous well-known
answers, only case (i) will be considered henceforth.

The most recent attempt to formulate validation criteria for case (i) — trace-driven

simulation — was offered by KLIELINEN et al. (1997). They assumed a bivariate normal

model for (X, Y):
Pz "f POy
y)’ po .o, n;‘:

and proposed the following ‘stringent validation requirement’:

(X, ¥)~ N

Pz = Py = I, a': = 0': = 0’2, p>0 (1'1)

Arguing that in most trace-driven simulations p will be positive, they do not test the last

part of (1.1). Their validation procedure therefore consists of testing the joint hypothesis
ot pe = Yy 07 = 03 (1.2)

A simulation model is considered satisfactory, il Iy is not rejected. The new test they
developed is explained in some more detail in Section 4.

In our view, the Kleijnen validation procedure described above is very satisfactory -
within the limitation of their assumptions. We think, however, that these assumptions
are 1oo restrictive to make their procedure generally applicable. To make this argument

more precise, three main objections are listed below.

1) The requirement on p in (1.1) is rather weak. In general, the purpose of trace-
driven simulation is to achieve a high (positive) correlation between X and Y.
Further, we fail to see why a model with, say, p = 0.1 is satisfactory, whereas

p= —0.1is not.



2) In the subsequent testing problem, p does not take part: instead, p > 0 is as-
sumed to hold. Il a positive p is a ‘stringent validation requirement’, the validation

procedure should test this assumption.

3) While in fact equality of the marginal distributions of X and Y is of interest,
the Kleijnen procedure is only concerned with equality of means and variances.
Of course, if indeed the binormality assumption is satisfied, (1.2) is equivalent to
cquality of the two marginal distributions. Il not, however, identical means and

variances can occur for quite different distributions.

In view ol these objections, new validation measures will be proposed for trace-driven
simulation. Qur measures depend on the purpose of the simulation experiment; three

different cases will be treated.

A) In general, the objective of the simulation experiment will be to mimick a real
process or phenomenon. We will call this kind of experiment (real life) mimicking
simulation. The ideal, utopian situation is that cach simulated value exactly equals

the observed real life value: X =Y.

B) At an intermediate level, the simulation experiment can be considered satisfactory,
if the joint distribution of (X, Y') is symmetric. In the terminology of DE FINETTI

(1974), this means that X and Y are exchangeable.

) Finally, even if trace-driven simulation is used, interest may be centered on the
marginal distributions of X and Y only. Now the carlier validation question re-
turns: Are the distributions of X and Y identical? Note, however, that X and Y

are dependent now.

Observe the following chain of implications:

A) = B) = ).

A validation measure for the most important case A) - mimicking simulation - is presented
in Scction 2; an estimator for this measure is also discussed. Section 3 treats cases B)
and C); in Section 4 the test proposed for case C) is compared with the test suggested
by KLELINEN et al. (1997), by means of a simulation study. The final Scction 5 gives

some conclusions and discussion.
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A validation measure for mimicking simulations

I any trace-driven simulation experiment, the ideal situation is that each simulated value

exactly equals the observed value. In this utopian case Y = X holds or, equivalently,

fy = Pzy Oy =0z, p=1 (2.1)

The proposed measure is based on the deviations from this utopy, that is, on the differ-

CHCCS fly — fly, 0y — 04, and | — p. More specifically, we propose as validation measure

M for real life mimicking simulations (case A):

M = [(l‘y = l‘-’v)2 + (oy — Ur)z +2(1 ~ P)”z”y]/"z (2:2)

Nine advantages and interesting features ol M are listed below.

a)

b)

All three terms in the numerator are non-negative; hence, lower values of M can be

attained only by moving into the general direction of the utopian situation (2.1).

Positive and negative differences p, — i, and o, — 0o, are treated identically, because
of the squares in the numerator. This agrees more or less with intuition, although
0, < 0z may tend to occur more frequently in practice, because minor causes of

variability might not be represented in the model.

M is dimensionless: X and Y have the same dimension, and the same holds for all

three terms in the numerator.

M is location-scale invariant: the simultancous transformations X* = aX 4b,Y* =
aY + b lecave M unchanged.

Define D =Y — X with mean gy and variance o3. Because of the relation
2 2 2 2
(0y —0:)" +2(1 — p)oso, = T, — 2po.0y+ 0, =0y
our validation measure may be written as
2 2\ 2 _ 10 192 [ 2 9.
M = (l‘d + 01[)/01 g l’/(l) )/”7 (2",)
In words, M measures the expectation of the squared deviation Y — X in units o2.

The smaller this deviation is on average, the better the simulation experiment, is;

Lhis is intuitively appealing.



) Introducing
v=jifo,r =ayf0,

(2.2) can be rewritten again as

M= (tv,—v:) + (1 = 7)2 +27(1 — p) (2.4)
So M depends only on four parameters, viz. the coefficients of variation v, and vy,

the relative standard deviation 7, and the correlation coefficient p.

g) The optimal value M = 0 implics the utopian situation (2.1), or X = Y. The
practical implication is that for low M-values, the joint distribution of (X,Y) is

almost degenerated. Hence, in this case it is not necessary to check the objectives
BB) and ().

Admittedly, criterion (2.2) shows some arbitrary clements; in particular, the choice of
cqual weights in the numerator may be questioned. In particular, differences between
means might be considered to be more serious than differences between the two standard
deviations. However, giving (s, — p.)? a larger weight than (o, — 0,)? would imply the
loss of the attractive property e).

Iistimators for M are readily available. Let n denote the number of i.i.d. replications,
i.c., the number of observed pairs (X,,Y;). If 62 were known, (2.3) would lead to the

unbiased estimator
M = 7172 D?/o? (2.5)
i=1
for M. For unknown o2, a straightforward extension is
M =13 DYS? (26)
=1

with 2 = 32%(X; — X)?/n. (Note that M will be asymptotically unbiased.)
Some properties of the (common) numerator 7' = L37" | D? in (2.5) and (2.6) arc

n =1

presented now. Denote for any random variable X

p=EX); pe=E(X-p)k, k=2,3,1,....



Then well-known results are

I(X?) = py + p*
(X)) = pa + Apps + 6p2py + pt
V(X?) = pa + Apps + ApPpg —

(2.7)

The variance of D? follows, as well as the variance of 7". The Central Limit Theorem

gives that 7' is approximately normally distributed.

Il (X,Y) has the binormal distribution, (2.7) reduces to

V(X?) =2p2 + 14 py
s0 thal

V(D?) = 20%(03 + 2u3%)
Consequently

T= N |p3+ 03, 203 (aj + 24} )/n]

where & means ‘approximately distributed as’.

3 Tests for symmetry and homogeneity

In this section, tests (and measures) for the cases B) and C) will be considered, based on

x*-distributions. Split the range of possible values of X and Y into ¢ classes A;; denote

the joint probability P(X € A;, Y € A;) by p;;. See Table .

Table 1. Cross-classification of (X,Y)

y A Ay --- A, Total
&
Ay Pir Piz <** Pie Pr-
Ay P21 P22 " Pz P2.
An Pct P2 " Pee Pe-

Total Pa P2 o Pe 1




The corresponding (random) frequencies of the n replications of the trace-driven simu-
lation experiment are denoted by N;;, N;. and Nz
Case B) considers the question of exchangeability; il X and Y are exchangeable, Table

I should be symmetric, so that the testing problem is

Hy z i = piss Torall 15 3
Iy 2 piy # pjiy Tor some pair (4, 7).

An approximate x*-test for this problem is casily derived. The unconditional Maximum
Likelihood (ML) estimators for the p;; are Ny, /n, whereas under 1y the ML-estimators

Nii/n, (N + Nji)/(2n)

By consequence, the well-known x2-statistic, say G, becomes

(Ni; = (Ni; + N;i) /2]
ZZ (Nij + Nji)/2

1#1

which may be simplified to

(Nij = N;i)? .
ZZ No TN, (3.1)

l<]

Under Iy, the approximate distribution of (7 is given by
SO .
(2 Xi(eo1)/2 (3.2)

Note that for ¢ = 2, this test reduces to the well-known McNemar test; see McNEMAR
(1947).

The testing problem in case C) - homogeneitly - can be formulated as

Hy :pi. = pi for all 2
1, : p;. # p.i for some 2



The dependence between X and Y implies that the standard y2-test for homogeneity does
not apply. Since the ML-cquations appear to be intractable in this case, the problem
15 more complicated. STUART (1955) gave a solution. Since his paper scems Lo be
relatively unknown, we present a more detailed description of the Stuart test.

Natural starting point in testing Hy are the statlistics

I),' = N,'.— N.,, g = 1,2,"',(

with the following expectations and (co)variances:

15(D;) = n(pi. — ps)
V(D; ) n(pi. + pi — 2pi) — n(pi. — ps)? (3.3)
C(D., D;) = —n(pi; + pji) — n(pi. — pi)(pi. —pj)

Since 370, Di = 0, the D; are lincarly dependent and the limiting distribution for n — oo

ol

B = (0 B, = oo Bl

is a (¢ — 1)-dimensional normal distribution. So, under /1, and for large n, the approxi-

madlion

D~ N._,(0,C)

holds, where the elements of the covariance-matrix € follow from (3.3):

ci = n(pi. + pi — 2pii)
¢i; = —n(pij + pji)

Consequently, DTC='D = x%_,; the same limiting distribution arises when € is replaced

by the matrix V of estimated covariances with elements

Vi; = —Ny; —

Vi = Ny + g — 2ng; (3.4)
i '
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lence, Stuart’s test statistic G is

e =P'V='p (3.5)

with G's = x2_, holding under Hy.
Note that (3.1) and (3.5) can be used not only as (validation) test statistics, but as

validation measures as well.

4 Simulation of homogeneity tests

The central question in case C) is: Are the (marginal) distributions of X and Y identical?
Two tests were proposed. The distribution-free approach in Section 3 leads to the null

hypothesis

Hy: p;. = p; Torall 4 (4.1)

with p. = P(X € A;) and p; = P(Y € A;). 'The Stuart x2-test is then applicable.
In KLELJNEN et al. (1997) the null hypothesis

ooy = pg, 0= a_: (4.2)

was proposed; under the assumed binormality of (X,Y), this is equivalent to identical

marginal distributions. Using the notation

D=X-Y, S=X+4Y

and the lincar regression model

D=v%+mS+e

(1.2) is equivalent to

][u:"yo:O, ¥ ={) (43)



This hypothesis can be tested by means of a familiar 1-test. Denote the estimated model

by

D=Cy+CS
where Ordinary Least Squares is used to estimate the regression coefficients Yo and 7.
Then the test statistic (e in the Kleijnen test is

n—25" D = (D; - ;)2
2 Y (D — D)2

(x = (4.1)

Now, (i ~ Iy, holds under null hypothesis (4.3).

To compare the power of these two tests a simulation study was performed. (As a
byproduct, this study gives insight into the properties of the relatively unknown Stu-
art test.) This simulation study consists of two scparate parts. In part A, the joint

distribution of X and Y is given by

xv~m| [ LI ”"“) (4.5)

2
Hy poy 0O,

Henee, the binormality assumption is satislicd. Since this assumption is essential for the
Kleijnen test and irrelevant to the Stnart test, the latter is expected 1o be inferrior in
this case. More precisely, for the same level of significance o the Kleijnen test should
have higher power. Part A of our simulation experiment, was designed to check this.
For different sets of values for the parameters g, o, and p, 2000 random samples of
size 200 were drawn from the joint distribution (1.5). Lor cach sample the outcomes gy
and gy of the test statistics in (1.4) and (3.5) were caleulated. When applying the Stuart
Lest, ¢ = 10 equi-probable classes were formed, based on the standard normal. Then,
using the notation #A for the number of occurrences of event A, the following fractions

were calculated:

g Han > Foaosel s #igs > \;z»;..}
P = S R T T
2000 2000

(1.6)

For the parameter choice g, = 0,0, = 1, the null hypotheses (4.1) and (4.2) are true;
then the expectations of the above fractions should equal «. For other values of (u,,a,),

(1.6) estimates the power £ of the two tests.
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Ilignre 2 shows a typical picture of the behaviour of Gy and G for 1ty = 0 and
@y I5 here po— 030 Figure 2(a) shows the frequency distribution of the (2000) gx-
values, as well as the corresponding theoretical distribution I ,98; Figure 2(b) pictures

the gg-values and the y2-distribution.

Figure 2. Empirical and theoretical distributions of the test statistics Gx and Gg

under /y; normal case with p = 0.3.

(a) Kleijnen test (17 198)
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(b) Stuart test (x2)

0.12 ———— | T T T T T T
01 J
008} - Bl
0.06 - |
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Both empirical distributions are in close agreement with the theoretical ones.

The results of onr extensive simulations are summarized in Table 1, which consists
ol four sub-tables. Tor different values of the pair (p,,0,) the simulated probabilities of
rejecting /1y are presented; the numbers between parentheses refer to the Stuart test.
Bold faced numbers refer to the size of the test (a). To indicate the numerical precision
of the tabulated fractions: the 95%-confidence margin for the true power 8 increases
from 0.010 (for /} = 0.05 or 0.95) to 0.022 for 3 = 0.5. The sub-tables relate to different

values ol o and p.
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Table 1. Simulated powers 3y and (/35); normal casc.

(a) v =0.05,p=0

(b) @ =0.05p=0.6

7, 0.9 1.0 1.1 1.2 o, 0.9 1.0 1.1 1.2
Ity Iy
0 0.24 0.05 0.20  0.63 0 0.34 0.05 0.30 0.84
(0.10)  (0.05) (0.09) (0.22) (0.13) (0.05) (0.11) (0.31)
0.1 0.34 013 0.31 0.69 0.1 0.59 0.27 0.51 0.89
(0.14)  (0.09) (0.11) (0.27) (0.23) (0.14) (0.18) (0.39)
0.2 0.63 0.10 0.56  0.83 0.2 0.91 0.81 0.87 0.97
(0.30) (0.21) (0.24) (0.39) (0.61) (0.48) (0.49) (0.65)
() e=0.1,p=0 () a=0.1,p=0.6
o, 0.9 1.0 1.1 1.2 ay; 049 1.0 .1 1.2
Iy iy
0 0.31 0.11 0.32 0.7 0 0.50 0.10 0.41 0.90
(0.18)  (0.10) (0.15) (0.35) (0.20) (0.08) (0.18) (0.42)
0.1 0.47 0.21 043  0.79 0.1 0.71 0.10 0.63 0.91
(0.23)  (0.14)  (0.20) (0.10) (0.36) (0.21) (0.30) (0.52)
0.2 0.75 0.55 0.68  0.90 0.2 0.97 0.89 0.93 0.99
(0.44)  (0.32)  (0.37) (0.54) (0.77)  (0.61) (0.64) (0.77)

Not surprisingly, both simulated powers increase with e and p. Indeed, the Kleijnen

test proves to be greatly superior to the Stuart test. More detailed tables for the cases

fy = 0 and o, = | arc presented in the Appendix.

The advantage of the Stuart test is its robustness:

it is also applicable if the

(bi)normality assumption is dropped. The Kleijnen test, on the other hand, uses the

I"-distribution and therefore heavily depends on normality. Therelore, in part I3 we in-

vestigate the behavior of the two tests when the normality assumption is not. satisficd.

Now, X and Y ecssentially have marginal gamma distributions; throughout part B, X

and Y both have zero mean and unit variance.



l‘or part, B, two dependent variables with marginal gamma distributions were obtained

as follows:

V ~1'(la)
VAW ~1(l,a+b
W~ 1'(1,b) . oy

2 V4 Z~T(late
¥ e P00, 6 M 542

V+W V42 = \/—[“
V, W, Z indep. p(V + +7)=a/\/(a+b)(a+c)

Next, the pair (X,Y) was obtained by standardization:

X:V+W—(u+h)’ y:V+Z—(a+c) (4.7)
Va+h a+ec
As in part. A, the variable X (and here YV oas well) has mean 0 and variance 1, while
ol /pg, where p = a by g =a+ c. Note that for p, g — oo, the distributions of X
and Y tend to the standard normal.
Table 2 shows the fractions (4.6); again, the sample size is 200 and the number of
replications 2000. The two sub-tables relate to different levels of significance. Recall

that the Kleijnen test is based on replacement of the original null hypothesis

X and Y are identically distributed

by (1.2):

X and Y have equal means and variances.

The two hypotheses are equivalent il and only if (X, Y) has a binormal distribution. In
part. B, the latter hypothesis is correct, whereas the former is correct only for b = ¢ (and
p = q). llence, for b = ¢, ﬂ should approximately equal «, whereas for b # ¢, higher
values ol [; are to be preferred. As in Table I, numbers between parentheses refer to the
Stuart test and bold-faced number give the simulated size. More detailed results can be

found in the Appendix.
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Table 2. Simulated powers B and (ﬂs), non-normal case.

(a) a=0.05 . (b) a=0.1
P 0 0.2 0.4 P 0 0.2 0.4
P 9 P 9
2 2 0.18 0.16 0.13 2 2 0.24 0.23 0.21
(0.04) (0.04) (0.04) (0.09) (0.09) (0.09)
6 0.12 0.12 0.11 6 0.20 0.18 0.19
(0.55)  (0.53)  (0.52) (0.69) (0.67) (0.67)
10 0.13 0.12 0.11 10 0.20 0.17 0:17
(0.71)  (0.72)  (0.67) (0.81) (0.82) (0.80)
Hh b 0.12 0.11 0.08 5 b 0.18 0.17 0.14
(0.04) (0.05) (0.04) (0.10) (0.10) (0.09)
15 0.08 0.08 0.08 15 0.11 0.11 0.13
(0.09)  (0.10)  (0.09) (0.16)  (0.18)  (0.16)
25  0.08 0.09 0.07 25 0.15 0.14 0.13
(0.12)  (0.11)  (0.11) (0.20)  (0.20)  (0.21)

The size of the Stuart test closely approximates the level of significance «; for the K-
leijnen test, however, the size exceeds o with about 50% (p = ¢ = 5, = 0.1) up to
300% (p = q = 2,a = 0.05). As to the power, the Stuart test performs satisfactorily -

5. However, for the Kleijnen test the probability of

although the power is low for p =
rejecting Iy even decreases for increasing ¢! ‘The conclusion must be that the Kleijnen
test should not be used whenever the binormality assumption is not (exactly) met. To
show the deviations of normality considered here, Figure 3 presents two standardized

gamma distributions I'(1, a), as well as the standard normal.
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Figure 3. Standardized distributions I'(1,2) and I'(1, 10) and standard normal dis-

tribution.

Our simulations were done by means of MATLAB. The procedure gamrnd has been
used to generate random samples from the specified gamma distributions. The first
two parameters of gamrnd may be matrices or scalars. We found thal the version with
matrices did not perform satisfactorily: sometimes, the variance in the simulated samples
exceeded the true variance by 50%. lence, we suspect this procedure of containing a

bug, and advise the use of the version with scalars.

5 Discussion and conclusions
Simulation experiments can be subdivided in two categories, namely
trace-driven, and
- independent

simulations. Experiments in the first category may have different objectives; these objec-

tives lead to three different questions concerning the outcome X of the real life process
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and the outcome Y of the simulated process. In statistical terms, these three questions

are:
A) is there a close agreement between individual values of X and Y?
B) is the joint distribution of (X,Y) symmetric?
C) are the (marginal) distributions of X and Y identical?

For independent simulation, only the last question is relevant.

For the real life mimicking experiment, of case A), the correlation between X and
Y oshould be high. We argued that the recently proposed Kleijnen test (KLISLINEN et
al, 1997) is therefore not suitable for this case. Instead, we introduced the validation
measure M in (2.2) for real life mimicking simulation; this measure takes into account,
all three differences py — pyy0, — 0, and 1 — p.

For the two other questions, x?-statistics were proposed; for case B), this corresponds
to a well-known test for symmetry.

lor case C), the Kleijnen test statistic is a serious candidate: it should be applied
whenever the distribution of (X,Y) is binormal. However, when binormality does not
oceur, the size of the Kleijnen test may greatly exceed the prescribed level of significance.
This even holds for not too large deviations from binormality. Furthermore, the power
of the Kleijnen test may even be lower than the size. The robustness of the Stuart test

guarantees its satisfactory behaviour, regardless of binormality.
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Appendix

Y

Simulated powers 3, and /;,g; normal case, o, = |.

P Bs
p 0.0100 0.0250 0.0500 0.1000 B, 0.0100 0.0250 0.0500 0.1000
-0.4 0.0105 0.0240 0.0455 0.0920 0.0 0.0035 0.0200 0.0410 0.0925
0.0220 0.0515 0.0985 0.1680 0.1 0.0100 0.0335 0.0645 0.1285
0.1170 0.2015 0.2970 0.4185 0.2 0.0335 0.0805 0.1430 0.2510
0.3540 0.4915 0.6040 0.7220 0.3 0.1230 0.2165 0.3210 0.4635
0.6700 0.7835 0.8495 0.9070 0.4 0.3280 0.4665 0.5885 0.7040
0.8900 0.9430 0.9670 0.9845 0.5 0.5885 0.7175 0.8120 0.8840
0.9790 0.9900 0.9965 0.9995 0.6 0.8250 0.8965 0.9440 0.9730
0 0.0145 0.0315 0.0560 0.1085 0.0 0.0085 0.0265 0.0600 0.1080
0.0465 0.0870 0.1340 0.2205 0.1 0.0240 0.0455 0.0850 0.1595
0.1985 0.2985 0.4020 0.5285 0.2 0.0730 0.1355 0.2055 0.3145
0.5285 0.6640 0.7550 0.8490 0.3 0.2275 0.3320 0.4510 0.5745
0.8530 0.9165 0.9505 0.9765 0.4 0.5070 0.6435 0.7505 0.8465
0.9780 0.9910 0.9965 0.9980 0.5 0.8070 0.8935 0.9400 0.9700
0.9980 0.9995 0.9995 1.0000 0.6 0.9605 0.9795 0.9925 0.9965
0.2 0.0090 0.0210 0.0435 0.0970 0.0 0.0070 0.0145 0.0395 0.0925
0.0510 0.0920 0.1595 0.2475 0.1 0.0160 0.0345 0.0810 0.1590
0.2630 0.3945 0.5065 0.6340 0.2 0.0875 0.1615 0.2515 0.3780
0.6845 0.7865 0.8620 0.9215 0.3 0.3150 0.4640 0.5815 0.7060
0.9450 0.9730 0.9845 0.9935 04 0.6645 0.7925 0.8660 0.9285
0.9955 0.9985 0.9990 1.0000 0.5 0.9180 0.9520 0.9775 0.9905
1.0000 1.0000 1.0000 1.0000 0.6 0.9895 0.9955 0.9990 1.0000
0.4 0.0125 0.0335 0.0605 0.1095 0.0 0.0075 0.0225 0.0480 0.1005
0.0740 0.1240 0.1940 0.2870 0.1 0.0225 0.0590 0.1040 0.1800
0.3725 0.5115 0.6250 0.7385 0.2 0.1235 0.2120 0.3185 0.4510
0.8285 0.9020 0.9420 0.9685 0.3 0.4520 0.5885 0.6985 0.8140
0.9840 0.9955 0.9965 0.9985 0.4 0.8280 0.9050 0.9470 0.9750
0.9985 0.9995 1.0000 1.0000 0.5 0.9790 0.9935 0.9955 0.9985
1.0000 1.0000 1.0000 1.0000 0.6 0.9995 1.0000 1.0000 1.0000
0.6 0.0135 0.0275 0.0510 0.1015 0.0 0.0070 0.0255 0.0530 0.1080
0.1080 0.1880 0.2710 0.3855 0.1 0.0365 0.0840 0.1390 0.2305
0.6030 0.7265 0.8060 0.8810 0.2 0.2430 0.3700 0.4845 0.6355
0.9625 9.9830 0.9925 0.9960 0.3 0.7115 0.8110 0.8860 0.9425
1.0000 1.0000 1.0000 1.0000 04 0.9665 0.9880 0.9940 0.9980
1.0000 1.0000 1.0000 1.0000 0.5 0.9985 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 0.6 1.0000 1.0000 1.0000 1.0000
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Simulated powers /),\ and /3,-; normal case; ju, = 0.

BK B.\'
p 0.0100 0.0250 0.0500 0.1000 o, 0.0100 0.0250 0.0500 0.1000
-0.4 0.9940 0.9980 1.0000 1.0000 0:7 0.7960 0.8855 0.9375 0.9630
0.7215 0.8190 0.8755 0.9315 0.8 0.2175 0.3475 0.4790 0.6290
0.1100 0.1990 0.2930 0.4110 0.9 0.0245 0.0560 0.1020 0.1855
0.0080 0.0245 0.0485 0.0935 1.0 0.0085 0.0245 0.0505 0.0955
0.0870 0.1535 0.2300 0.3440 1.1 0.0205 0.0490 0.0915 0.1710
0.4715 0.5905 0.6905 0.7985 1.2 0.0890 0.1670 0.2580 0.3835
0.8695 0.9320 0.9635 0.9845 1.3 0.2745 0.3910 0.5075 0.6425
0.9935 0.9985 0.9990 1.0000 1.4 0.5205 0.6500 0.7520 0.8465
0 0.9845 0.9940 0.9960 0.9980 0.7 0.6815 0.7980 0.8710 0.9385
0.6195 0.7375 0.8170 0.8890 0.8 0.1660 0.2790 0.3925 0.5325
0.0880 0.1535 0.2395 0.3510 0.9 0.0260 0.0535 0.0955 0.1760
0.0085 0.0260 0.0460 0.0970 1.0 0.0065 0.0195 0.0440 0.0985
0.0720 0.1325 0.2000 0.2990 i | 0.0175 0.0360 0.0850 0.1575
0.3665 0.5060 0.6330 0.7560 12 0.0740 0.1370 0.2190 0.3430
0.8055 0.8810 0.9285 0.9590 1.3 0.2190 0.3370 0.4585 0.5980
0.9685 0.9850 0.9950 0.9980 1.4 0.4655 0.5960 0.7010 0.8080
0.2 0.9810 0.9925 0.9945 0.9980 0.7 0.7175 0.8180 0.8830 0.9305
0.6220 0.7440 0.8245 0.8840 0.8 0.1795 0.2845 0.3890 0.5485
0.1000 0.1785 0.2615 0.3735 0.9 0.0275 0.0620 0.1010 0.1685
0.0090 0.0275 0.0530 0.0960 1.0 0.0070 0.0225 0.0465 0.0905
0.0760 0.1325 0.2155 0.3165 | 0.0165 0.0355 0.0745 0.1535
0.4085 0.5265 0.6350 0.7460 1.2 0.0700 0.1400 0.2230 0.3405
0.8015 0.8760 0.9355 0.9640 1:3 0.2225 0.3505 0.4695 0.6060
0.9725 0.9895 0.9940 0.9975 1.4 0.4615 0.6105 0.7215 0.8340
0.4 0.9930 0.9955 0.9990 0.9995 0.7 0.7620 0.8665 0.9275 0.9630
0.7050 0.8015 0.8695 0.9250 0.8 0.1970 0.3235 0.4410 0.5785
0.1155 0.1925 0.2805 0.3960 0.9 0.0215 0.0460 0.1020 0.1805
0.0080 0.0245 0.0480 0.0980 1.0 0.0075 0.0185 0.0410 0.0895
0.0910 0.1535 0.2310 0.3435 1.1 0.0245 0.0480 0.0890 0.1590
0.4565 0.5990 0.7125 0.8150 12 0.0970 0.1670 0.2545 0.3925
0.8730 0.9290 0.9590 0.9770 1.3 0.2730 0.3945 0.5080 0.6490
0.9865 0.9970 0.9980 0.9990 1.4 0.5205 0.6575 0.7560 0.8510
0.0 1.0000 1.0000 1.0000 1.0000 0.7 0.8885 0.9420 0.9730 0.9850
0.8380 0.9055 0.9450 0.9740 0.8 0.2900 0.4245 0.5475 0.6770
0.1660 0.2485 0.3390 0.4730 0.9 0.0320 0.0750 0.1275 0.2280
0.0080 0.0225 0.0460 0.0980 10 0.0085 0.0230 0.0480 0.1015
0.1390 0.2220 0.3035 0.4295 1.1 0.0245 0.0600 0.1085 0.1880
0.6380 0.7480 0.8405 0.8960 1.2 0.1205 0.2100 0.3110 0.4445
0.9545 0.9770 0.9855 0.9945 1.3 0.3665 0.5150 0.6280 0.7295
0.9995 1.0000 1.0000 1.0000 1.4 0.6515 0.7650 0.8410 0.9105




Simulated powers /3, and fg; non-normal case.

6’( 65
p o | 0.0100 0.0250 0.0500 0.1000 P q 0.0100  0.0250 0.0500 0.1000
0 0.0905  0.1325  0.1760  0.2420 2 2100105 0.0250 0.0445 0.0870
0.0660 0.1095 0.1535 0.2220 4101110 0.1935 0.3055 0.4560
0.0485 0.0820 0.1195 0.2025 6| 0.2680 0.4180 0.5505 0.6860
0.0480 0.0775  0.1220  0.1905 8103665 05125 0.6425 0.7715
0.0560 0.0800 0.1265 0.2010 10 | 0.4415 0.5880 0.7120 0.8130
0.2 0.0815 0.1145 0.1635 0.2300 21 0.0075 0.0180 0.0375 0.0890
0.0560 0.0915 0.1365 0.2035 4101015 0.2035 0.3190 0.4600
0.0525 0.0840 0.1210 0.1815 6 | 0.2705 0.4045 0.5250 0.6695
0.0565 0.0920 0.1290 0.2005 8 10.3470 0.4995 0.6275 0.7650
0.0505 0.0805 0.1195 0.1720 10 | 0.4265 0.5860 0.7160 0.8225
0.4 0.0600  0.0960 0.1335  0.2065 2| 0.0085 0.0185 0.0420 0.0920
0.0480 0.0845 0.1250  0.1845 4101145 0.2115 0.3150 0.4645
0.0465 0.0790 0.1130 0.1870 6| 0.2305 03790 0.5160 0.6710
0.0480 0.0720 0.1070 0.1785 8 103580 0.5020 0.6325 0.7745
0.0465 0.0750 0.1085 0.1700 10 | 0.4000 0.5505 0.6705 0.8005
0 0.0410  0.0790 0.1160 0.1840 5 5100070 0.0170 0.0425 0.0980
0.0340  0.0635 0.0950 0.1545 10 | 0.0120 0.0340 0.0650 0.1370
0.0225 0.0485 0.0750 0.1400 151 0.0240 0.0525 0.0900 0.1630
0.0270  0.0515 0.0865 0.1510 20 | 0.0205 0.0460 0.0990 0.1720
0.0215 0.0485 0.0820 0.1485 251 0.0355 0.0695 0.1230 0.1975
0.2 0.0400  0.0675 0.1070 0.1675 51 0.0090 0.0245 0.0465 0.0990
0.0310 0.0500 0.0790 0.1445 10 | 0.0150 0.0410 0.0690 0.1305
0.0275 0.0485 0.0835 0.1380 15 |1 0.0210 0.0505 0.1005 0.1750
0.0220  0.0460 0.0735 0.1335 20 | 0.0230  0.0545 0.1010 0.1735
0.0185  0.0455 0.0850 0.1410 251 0.0280 0.0680 0.1135 0.1990
0.4 0.0210  0.0480 0.0785 0.1370 510.0070 0.0195 0.0395 0.0860
0.0260  0.0455 0.0810 0.1465 10 | 0.0155 0.0370 0.0775 0.1415
0.0245 0.0465 0.0800 0.1295 15 | 0.0205 0.0525 0.0940 0.1645
0.0185 0.0385 0.0725 0.1320 20 | 0.0210  0.0450 0.0895 0.1735
0.0235 0.0395 0.0720 0.1320 25 1 0.0355 0.0640 0.1130 0.2125
0 0.0220 0.0475 0.0835 0.1390 10 10 | 0.0110  0.0250  0.0470  0.0940
0.0155 0.0365 0.0665 0.1250 20 1 0.0115  0.0285 0.0535 0.1120
0.0200 0.0435 0.0645 0.1230 30 | 0.0110  0.0260 0.0555 0.1175
0.2 0.0195 0.0400 0.0720 0.1315 10 | 0.0090 0.0250 0.0510 0.1000
0.0270 0.0475 0.0730 0.1250 20 | 0.0085 0.0280 0.0625 0.1230
0.0155 0.0365 0.0665 0.1255 30 1 0.0125 0.0255 0.0635 0.1140
0.4 0.0180 0.0440 0.0775 0.1370 10 | 0.0055 0.0185 0.0460 0.0950
0.0205 0.0395 0.0690 0.1285 20 | 0.0120 0.0265 0.0585 0.1060
0.0165 0.0365 0.0615 0.1200 30 1 0.0150 0.0350 0.0635 0.1210
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