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Abstract:

Multi-item inventory systems with joint replenishment
costs are considered under constant deterministic demand.
Two different types of strategies are distinguished:
direct grouping strategies and indirect grouping
strategies. Different heuristics are reviewed and
compared for different strategies. The performance of the
strategies is measured as the percentage cost savings of
using a joint replenishment strategy instead of an
independent strategy. This performance is compared by
means of simulation. Regression analysis is used to
summarize the output of several simulation experiments.
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1. Introduction

Joint replenishment strategies are used in a multi-item
inventory systems. A characteristic of multi-item systems
is the existence of some kind of interaction among the
items. Joint replenishment strategies are based on
interaction of the set-up or order costs. These costs can
be subdivided into major and minor costs. Interaction is
caused by the fact that the major set-up cost is
independent of the number of items in the replenishment.
In addition to the major set-up cost, there is a minor
set-up cost, charged to each particular item included in
the replenishment. Cost savings can be obtained by
coordinating the replenishments of several items. The
major set-up cost is then shared if two or more items are
jointly replenished. In many practical situations it
makes sense to coordinate replenishments of individual
items. If several items are purchased from the same
supplier; fixed order costs can be shared if two or more
items are jointly replenished. Joint replenishments may
also be attractive if a group of items use the same mode
of transport or production facility.

In the case of constant demand, the strategies can be
classified into two <classes, which will be <called
"indirect grouping strategies" and "direct grouping
strategies". A group is defined as the set of those items
that have the same replenishment cycle. The replenishment
cycle is the time between two subsequent replenishments
of a particular item. Items of the same group are jointly
replenished.

Using the indirect grouping strategy, a family
replenishment is made at constant intervals. The
replenishment cycle of each item (or group) is an integer
multiple of this basic cycle interval. The problem is to
determine the basic cycle interval and the replenishment
frequency of all items simultaneously. A group is then
(indirectly) formed by those items that have the same
replenishment frequency. In the last two decades several
authors have encountered this sort of joint replenishment
problem. For extended reviews of joint replenishment
inventory strategies we refer to Aksoy and Erenguc (1988)
and Goyal and Satir (1989). Another approach, which is
not mentioned in the surveys of Aksoy and Erenguc and
Goyal and Satir, is the formulation of a direct grouping
strategy. Here, the replenishment cycles of the groups
are generally not an integer multiple of the shortest
(basic) cycle. In this case the problem is to form
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(directly) a predetermined number of groups in such a way
that the total relevant costs of the items in the family
are as low as possible.

To the best of our knowledge, a comparison between
indirect grouping and direct grouping strategies has
never been made. The purpose of our study was twofold:
first, to find out whether the direct grouping strategy
outperforms the indirect grouping strategy in some
situations; secondly to determine the effect of some
variables on the performance of joint replenishment
strategies; this performance was measured as the
percentage cost savings of using a joint replenishment
strategy instead of an independent strategy.

Section 2 gives a short review of the literature on the
joint replenishment problem, together with a decision
which algorithms are to be used for comparing direct
grouping and indirect grouping strategies. The
experimental design and simulation results are described
in section 3. Finally, section 4 gives the conclusions.

2. Literature review

The joint replenishment problem was investigated under a
set of assumptions that are the same as for the classical
economic order quantity (EOQ) model, except for the joint
set-up cost. Due to these assumptions the relevant cost
factors are the set-up costs and the carrying inventory
cost. We will review the 1literature on both grouping
strategies; see also figure 1 later on.

2.1. Indirect grouping

The decision variables in the indirect grouping model are
the basic cycle time (T) and the frequency (number of
basic cycles) of ordering for each item (k;). The
objective is to find a combination (T,k,) such that the
total relevant cost (TRC) of the family is as low as
possible:

1 N a, T
TRC= — ( A+ X ) + -
T i=1 k, 2 i

U -1

kD;h, , (1)
1

s.t. Ky € {1;2;:3,6%:,
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N number of items in the family.

A major set-up cost.

a,;: minor set-up cost.

D,: demand per period for item i.

h;: inventory carrying cost per unit of item i per

period.

T : basic cycle time, the time between two
successive family replenishments.

k,;: the number of  basic cycles between two

successive replenishments of item i.

By taking the first derivative of TRC with respect to T
and k; (k; is then treated as a continuous variable) we
can derive the optimal basic cycle time, T(k,), and the
optimal frequency of ordering +K{(T). However, T can not
be determined without knowing k,, and vice versa. Several
authors have encountered this problem: Brown (1967),
Goyal(1973a,1973b,1974a,1974b, 1979,1988), Silver (10),
Kapsi and Rosenblatt (1983,1985), etc. Only one of them
(Goyal (1974a)) presented an (enumerative) algorithm that
gives the global optimum. Although Goyal's approach
results in an optimal solution, it may be computationally
prohibitive. Therefore, heuristic algorithms were
developed. The heuristics may be classified into two
classes: iterative algorithms and single iteration
algorithms.It is not our intention to give a detailed
review of the literature. We refer to the extensive
surveys of Aksoy and Erenguc (1988) and Goyal and Satir
(1989).

In a simulation study Kapsi and Rosenblatt (1985)
compared iterative algorithms due to Brown (1967) and
Goyal (1974b), and single iteration algorithms due to
Silver (1976), Goyal and Belton (1979) and Kapsi and
Rosenblatt (1983). They also suggested a combined
approach. This approach uses the single iteration
heuristic of Silver (1976) with the modification of Goyal
and Belton (1979) as starting point in the iterative
algorithm of Goyal (1974b). The heuristic with the
smallest average deviation from the optimal solution) was
the combined approach, followed by that of Goyal, Brown,
Kapsi and Rosenblatt, Goyal and Belton and finally that
of Silver. Kapsi and Rosenblatt found that the iterative
algorithms, as expected, are more time consuming, but the
difference in computation time appeared not to be
significant. This was affirmed by our own findings.
Consequently, we wused the combined heuristic for
comparing the direct grouping strategy with the indirect
grouping strategy. The algorithm is listed in part one of
appendix A.



2.2 Direct grouping strategies

The main difference between indirect grouping and direct
grouping strategies is that the replenishment cycles of
the groups formed by indirect grouping are a multiple
integer of some basic cycle time, whereas this is
generally not the case for groups formed by direct
grouping. Note that the number of groups is an output
variable in indirect grouping, whereas the number of
groups is predetermined in direct grouping. Hence, the
direct grouping problem is to divide N items into M
groups such that the set-up and inventory carrying costs
are minimized. The groups must form disjunct sets of the
items in the family.

The minimalisation problem is:

M A,
TRC(S;,..,Sy) = = (—+ % T*H,), (2)
j=1 T,

where M : number of groups to be formed.
S : set of all items in the family.
S;: set of items in group j.
T, : replenishment cycle time of group j, the time
between two successive replenishments of all
items in group j.
A,;: total set-up cost per replenishment of group j.

Aj=(A+Xa ), H = Ihp,.
ies, ies;

The problem of dividing N items into M groups is hard,
because there may be numerous combinations. Fortunately,
Chakravarty (1981) and Bastian (1986) proved a theorem
that they <call the ‘"consecutiveness property". The
property states that the optimal groups will be
consecutive with the ratio Dh,/a,. So, when the items
are arranged in increasing order with respect to the
ratio D/h,/a,, the optimal groups can be created from this
sequential list.

For example: consider a set of items (1,2,3,4), which is
arranged in increasing order of the ratio D,hy/a, (so,
item 1 is the item with the smallest ratio). In this
case, the groups S,=(1,2} and S,={(3,4) are consecutive,
but S;=(1,3) and S,={2,4) are not.
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Using this ranking scheme, several authors proposed
procedures for direct grouping: Page and Paul (1976),
Chakravarty (1981,1985), and Bastian (1986) . We note that
in the orginal papers of Page and Paul and Chakravarty
the major set-up cost is not incorporated explicitly. The
algorithms of Page and Paul and Chakravarty (1981) can be
adjusted easily for the major set-up cost. However, we
could not adjust the heuristic of Chakravarty (1976).

Chakravarty (1981) uses dynamic programming to create
groups. This algorithm identifies the global optimum of
the minimalisation problem in (2). However, computer time
increases exponentially with the size of the problem.

After analyzing the heuristics of Bastian (1986), Page
and Paul (1976) and Chakravarty (1985)), we found that
Bastian's heuristic was the best. This simple heuristic
starts with N consecutive groups (= the number of items
in the family). Each iteration combines two neighbouring
groups such that the increase (decrease) of the objective
function is minimal (maximal). The procedure terminates
when M groups are formed. Bastian proved that this
grouping heuristic is optimal when the major set-up cost
is zero.

We simulated many inventory situations. These test
examples showed that the deviations of Bastian's
solution from Chakravarty's optimal solution are very
small, even with a high major set-up cost. We also
analyzed the computer time needed for both algorithms. As
expected, the difference in computer time appeared to be
important. Therefore we used Bastian's algorithm, which
is outlined in part two of appendix A, for comparing
direct grouping and indirect grouping strategies.

Figure 1 summarizes the research papers that were
mentioned in this review.

3. Experimental design and simulation results

Several inventory situations with constant demand were
simulated to compare the performances of both direct
grouping and indirect grouping strategies. Besides an
analysis of the differences between these two ways of
grouping, the performances of the strategies were
compared with the performance of an independent single-
item strategy. We used regression analysis to summarize
the output of several simulation runs.
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Figure 1. Literature on joint replenishment strategies

Kleijnen (1987) described a hierarchical modeling
approach, which can be summarized in the following steps:

1) Determine the response or criterion variable.

2) Determine the independent variables.

3) Construct a regression metamodel (a cause-effect
relation between the response variable and the
independent variables).

4) Determine the experimental design (the situations that
will be simulated).

5) Estimate the regression parameters and validate the
metamodel. When the model is not valid step 3 is
repeated; otherwise conclusions can be drawn.

Several papers have used simulation to study joint
replenishment models. Goyal and Satir [1989, p.11] 1list
some simulation studies. A response variable that often
is used 1is the average cost savings of joint
replenishment strategy i expressed as a percentage of the
total cost of the independent strategy. This is a
dimensionless variable, which we denote by y,.



TRC (EOQ) - TRC,

Yi = 100 ¢ ' (3)
TRC (EOQ)
where TRC(EOQ) : total cost of the family of items when an
independent EOQ strategy is used.
TRC, : total cost of joint replenishment
strategy i.

Kapsi and Rosenblatt (1985) used the deviation from the
cost of the optimal Jjoint replenishment strategy.
However, this criterion is not adequate for our study
since we compared direct and indirect grouping
strategies, which are based on a different formulation
with different optimal solutions. The response variable
(y)) is not only useful for comparing joint replenishment
strategies with independent strategies but also for
comparing joint replenishment strategies among
themselves.

The relevant cost factors in the joint replenishment
problem are: a) the major set-up cost A, b) the minor
set-up cost a,;, c) the inventory carrying cost of
stocking the periodic demand of item i for one period D;h,
(this factor consists of the demand for item i per period
D;,, and the inventory carrying cost per unit per period
h,, which in turn is a constant percentage h of the unit
cost of item i v,: h;=hv,). Other relevant factors are: d)
the number of items in the family N, e) the number of
groups to be formed M, and f) the joint replenishment
strategy.

Instead of blindly incorporating all these factors in the
simulation experiments, these factors were examined, and,
after an extensive analysis, it appeared that only two
factors must be included in the metamodel. The results
are listed below.

* Instead_of using D/h, and a, per item, we used the
means Dh and a in our analysis (in the remainder of
this study the bar over a and Dh will be deleted).

* Instead of using the major set-up cost (A) and minor
set-up cost (a) separately, we used the set-up cost
ratio (A/a). It <can be shown that a different
combination of the major set-up cost (A) and the minor
set-up cost (a) with an equal set-up ratio (A/a) yields
the same value of the response variable y,. This is
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proven for Bastian's heuristic and the combined
heuristic, based on Goyal (1974b), in part one of
appendix B.

* It can be shown that an increase of the factor Dh does
not affect the response variable y,, all other things
being equal. For that reason, the factor Dh was not
used as a separate factor. The proof is also given in
appendix 2 (part two).

* A difference between direct grouping and indirect
grouping is that the number of groups is an input
variable in the first and an output variable in the
latter type of strategy. Therefore, Bastian's algorithm
was changed a little, so that the number of groups need
not be predetermined (see the note in part two of
appendix A). In this way the number of groups is not a
relevant factor anymore.

* After performing several pilot experiments it appeared
that the set-up cost ratio and the number of items are
the only factors with a significant impact on the
response variable y,. We also incorporated other
factors such as (A+a)/Dh, the variance of Dh, and the
variance of the minor set-up cost (a), but these
factors were not significant. The response difference
between the direct grouping and the indirect grouping
strategy seemed to be very small.

Summarizing, two variables were important: the set-up
cost ratio (A/a) and the number of items (N). In the
remainder of this study we concentrate on these two
factors. A graphical analysis of the simulation data of
the pilot experiments showed that an increase of the set-
up cost ratio or the number of items yields decreasing
returns to scale. Therefore a regression metamodel with
decreasing returns to scale for the variables A/a and N
were specified.

Possible metamodels, with one or more of these
characterics are a) a quadratic model, b) a square root
model,c) a logarithmic model, and d) a reciprocal model.
All these models are 1linear in the parameters. So we
could apply linear regression analysis for estimating the
parameter vector B8.

An experimental design determines which factor level
combinations are simulated. The choice of the
experimental design is affected by the metamodel. Since
in our case there are only two factors, a full factorial
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design could be used. The factor A/a was varied over six
levels, and the factor N was varied over four levels. The
levels are given in table 1.

factor levels
A/a 1, 2 4; 8; 12, 16
N 10, 20, 30, 60

Table 1. Factors with corresponding levels

So, there were 24 different combinations. Every
combination was wused for both joint replenishment
strategies. The 24*2 responses (percentage cost savings
of both strategies) were generated by simulation.

Given a certain combination, the simulation program
generated particular inventory situations: the number of
items (N), the major set-up cost (A) and the individual
values of a, and D/h,. Individual values of a, and D,v, were
randomly generated from a wuniform distribution with
parameters [1,5] and [1000,9000] respectively. D/h, was
obtained by multiplying D,v, by the given carrying charge
h (0.20); the major set-up cost was selected such that
A/a was equal to the given value (thus, A=3-A/a). So, wve
used sampling to generate a situation; once a situation
was created, the inventory problem was deterministic.
Both direct grouping and indirect grouping were always
applied to the same inventory situation. So, the reponses
(y)) of different joint replenishment strategies were
based on the same random numbers. Each factor combination
was replicated 500 times (a, and D,v, differed, whereas N,
A and h were fixed). The performances of the strategies
for the given factor combination were then measured by
the average cost savings (in %) of the 500 replications.

The simulation output of the 24 factor combinations was
summarized by regression analysis. The linear metamodels
were estimated with estimated generalised least squares,
since common random numbers have been used (remember that
both strategies were applied to the same input).

After testing the assumptions for least squares, the four
metamodels, mentioned earlier, were estimated. We
validated the models with Rao's lack of fit test [isj,
Kleijnen's cross validation test [19] and interpolation.
It seemed that a logarithmic model fits and predicts the
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simulation data well within the range over which the
variables were varied.

The results are given in table 2 (standard error in
parentheses) . y, denotes the cost savings (in %), obtained
by Bastian's direct grouping algorithm, whereasy,,

denotes the cost savings (in %) of the combined indirect
grouping algorithm, which is mainly based on Goyal
(1974b) .

Qd = 6,6588 + 15,9710 1n (A/a) + 5,6209 1ln(N)
9 (1.4E-05) (2.3E-04)

§i = 6,3064 + 15,7797 1n (A/a) + 5,9964 1ln(N)
9 (1.6E-05) (2.2E-04)

Table 2: Metamodel

No interaction between the variables was included,
because this variable was not significant. We used Rao's
F-test [18] for 1linear hypotheses to see if the
parameters of the independent variables are equal for
both strategies s All coefficients deviated
significantly, because the standard errors were virtually
zero.

Figures 2 and 3 show that the predicted responses Y, and
Yy a8 a function of the cost set-up ratio and the number
of items respectively. Over the observed range of table 1
the indirect grouping strategy performed always better
than the direct grouping strategy, although the effect is
slightly better. So the coefficients differed
significantly but not importantly. The estimators of 8
show that the better performance of the indirect grouping
strategy is due to the effect of the number of items in
the family (see table 2).

It is not possible to extrapolate the logarithmic model
to the left of the observed range, since for levels of
A/a lower than one, the variable In(A/a) will be
negative. Extrapolation to the right of the observed
range may result in responses y, greater than hundred,
which is impossible (note that Y:<100 because of (3)).
So, the metamodel is only adequate for situations within
the observed range.
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Various conditions were simulated with a set-up cost
ratio higher than sixteen. Table 3 shows that the
responses grow very slowly with an increasing set-up cost
ratio when the ratio is higher than twenty-five. If the
ratio was higher than seventy-five, the direct grouping
and indirect grouping strategy became identical, because
only one group is created.

Factor combination Cost savings (%)

Cost set-up number of Direct Indirect
ratio (A/a) items (N) grouping
(Bastian) (Goyal)

25.00 20 69.34 69.44
50.00 20 72.73 72.74
75.00 20 73.94 73.94
100.00 20 74.59 74.59
500.00 20 76.25 76.25
1000.00 20 76.49 76.49

Table 3. Simulations with A/a>16 (N=20)

We already mentioned that indirect grouping strategies
performed slightly better than direct grouping strategies
within the observed range of table 1. Table 4 shows that
for very small values of the set-up cost ratio, direct
grouping strategies performed better than indirect
grouping strategies. With a set-up cost ratio of 0.01,
the indirect grouping strategy performs even badder than
the independent strategy, because the replenishment
cycles of the groups have to be a integer multiple of the
basic cycle. In this case the extra carrying cost is
higher than the saved major set-up cost. However, in
these situation a joint replenishment strategy does not
make much sense.

Factor combination Cost savings (%)

Cost set-up number of Direct Indirect
ratio (A/a) items (N) grouping
(Bastian) (Goyal)

0.01 20 0.28 -0.56
0.05 20 1.78 1.33
0.10 20 3.66 3.50
0.25 20 8.87 9.24
0.50 20 15.76 16.56
0.75 20 21.24 22.26

Table 4. Simulations with A/a<l (N=20)



14

4. Conclusions

Joint replenishment strategies reduce the set-up costs of
a family of related items. In this paper two types
inventory strategies were investigated, namely indirect
and direct grouping strategies, assuming constant demand.

We presented a short review of the literature on both
strategies. In indirect grouping, individual items are
replenished at fixed time intervals. The replenishment
cycle of an individual item is a integer multiple (k,) of
a basic cycle time (T). We mentioned some algorithms for
determining (T,k;). Obtaining the optimal solution
requires much computational effort. Therefore, several
heuristics were proposed. These can be classfied into
heuristics that require several iterations and heuristics
that require only a single iteration. A comparitive
simulation was done by Kapsi and Rosenblatt (1985). They
recommended a combined approach, based on Goyal (1974b),
provided an iterative algorithm is allowed; when only a
single iteration is allowed the approach of Kapsi and
Rosenblatt was recommended. Kapsi and Rosenblatt found
that the iterative procedures, as expected, are more time
demanding, but the difference in computation time is not
significant. In direct grouping the items are partitioned
into a predetermined number of groups with a common order
interval for each group. The replenishment cycle of the
groups is not a integer multiple of some basic cycle.
Since the number of groups is predetermined, the problem
is to divide N items into M groups such that the total
costs are minimized. Dynamic programming yields the
optimal solution, but becomes too expensive for large
problems. Bastian's heuristic (1986) seems to be a good
alternative. Several test examples were examined. It
appeared that the deviations of Bastian's solution from
Chakravarty's optimal solution are very small, whereas
the difference in computer time seems important.
Therefore, Bastian's algorithm is recommended whren a
direct grouping strategy is used.

In the literature, simulation is wused to compare
different algorithms. However, the algorithms that were
compared in these studies were all based on the indirect
grouping strategy. The direct grouping strategies are not
mentioned at all. To the best of our knowledge, a
comparison between direct grouping and indirect grouping
strategies has never been made.
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In section three we presented a simulation study to
analyse the differences of both indirect grouping and
direct grouping strategies with respect to some factors
that were expected to be important. The performance of
the strategies was measured as the percentage cost
savings of using a joint replenishment strategy relative
to an independent strategy.

Instead of blindly incorporating all factors of the joint
replenishment problem in the experiments, these factors
were examined. We concluded that only two factors had be
included in the metamodel, namely: (i) the ratio of the
major set-up cost (A) to the mean minor set-up cost (a),
and (ii) the number of items in the family (N).

A full factorial design was used with six levels of (A/a)
(ranging between the values 1 and 16) and four levels of
N (ranging between the values 10 and 60). 500
deterministic inventory situations were generated for
each factor combination (A/a,N). The response for that
factor combination was measured by the cost savings (in
%) of joint replenishment strategy averaged over the 500
replications. For the direct grouping strategy we used
the algorithm of Bastian; for the indirect grouping
strategy we used the combined approach, mainly based on
Goyal.

Regression analysis was used to model the input-output
behaviour of the simulation experiments. A logarithmic
model fitted and predicted the experimental data well
within the range over which the variables were varied. We
did also some extra simulation experiments outside the
observed range.

The simulation yielded the following conclusions:

a) Over the observed range of the experiments the
indirect grouping strategy always outperform the
direct grouping strategy did. However, the differences
between the responses were very small. The better
performance of the indirect grouping strategy is due
to the effect of the number of items in the family.

b) The cost savings increase only slightly when the ratio
becomes greater than fifty. If the ratio is higher
than seventy-five the direct grouping and indirect
grouping strategy are identical, because only one
group is created.
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Simulation showed that for very small values of the
set-up cost ratio, direct grouping strategies
outperform indirect grouping strategies. However, in
this situation a joint replenishment strategy does not
make much sense.

A joint replenishment strateqgy yields high percentage
cost savings, when the cost set-up ratio exceeds a
half.

So when it makes sense to replenish items jointly, we
recommend an indirect grouping strategy, since

1)

2)

the indirect grouping strategies outperform the direct
grouping strategies slightly;

the indirect grouping algorithms need 1less computer
time than the direct grouping algorithms do.
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Appendices
A.l. The combined heuristic for indirect grouping.

Step 1: Determination of the starting point with Silver's
single iteration algorithm (1976) (with the
modification of Goyal and Belton (1979)):

1*: Determine the item with the maximum value of
Dh,/(A+a;) and define this item as item «r
(reference-item).

1°: Determine the integer value k=L from

(ay,/Dshy)
L(L-1) < < L(L+1). (A.1)
(A+a,) / (D,

Step 2: Use the integer values, obtained in step 1%, as

starting point in the iterative heuristic of Goyal

(1974b) .
20 Determine the replenishment frequencies k=L from
B, a,
L(L-1) £ — * < L(L+1), (A.2)
Ai Dlhl
where :
N
A, = (A+ I ay/k, ) - a/k,, (A.3)
I=1
and,
N
B, = T k;D;h; - k,Dh,. (A.4)
J=1

Repeat this iteration until all the integer values
of k; remain unchanged in two successive
iterations.

2°:  Determine the basic cycle (T) from

2 (A + Z ay/k, )
i

T3(k,) = (A.5)
f k,D;h,
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A.2. Bastian's algorithm for direct grouping.

Step 1: Rank the items in ascending order of D/h,/a;.

Step 2: Create N groups with S,=(j}, A,:=a,+A, H;:=Djh,.
Determine u,, the marginal cost of combining group
j and j+1, for j=1 to N-1:

;(L,=[2)*(A,+A,+I-A)*(H,+H,.1)]* = [2*A*H,]* - [2#A,,*H,,]*
A.6
AI (number of created groups) is N.
Step 3: Repeat the following procedure until the number of
created groups (AI) is equal to M:
Determine k = min u,.

J
Combine groups k and k+1:S,:=({ Si+Syi) A=A +A,,-A,
Hk.: =Hk+Hk#1’
Rank the groups (j=1,..,AI-1).
Determine u, en u,, (the other 4; have already been

calculated).
AI:=AI-1.
Step 4: Determine the replenishment cycles for each group
J:
T, = (2*A,/H,)* (A.7)

Note: In our experiments we adjusted this algorithm a
little. Instead of repeating step 3 until the number
of groups AI is equal to M, we repeated the
procedure in step 3 until k>0 for all groups. In
this case the objective function can not decrease
when combining any two neighbouring groups. In our
experiments, however, we restricted the number of
groups formed to less than ten.

B.1. A proof for:"a different combination of major set-
up cost (A) and minor set-up cost (a) with an equal
set-up ratio A/a yields the same value of the
response variable y,".

Assume the following situation:

combination major set-up cost [minor set-up cost

1 A afi)} (i=1,..N)
2 t-A t-afi])(i=1,..,N)




19

We want to prove that y,,=y,,, where Y:; denotes the cost
savings for strategy i and combination j. Y:; is defined
in section 3 as: y,, = 100%* (TRC,oq, “TRCy,) /TRC,qq,
The total cost of the independent strategy is

Z,[ (A+a,)D;h, 1% "

So, TRC,q,, = Z; [t(A+a,)D;h; ] - /t'TRc.oq,l' Hence, y,~y.
when TRC,,~=/t-TRC,,.

Praut for BEsviznes direct i lgorit]

Step la: The ranking scheme of combination 2 is the same
as that of combination 1, since the ratio Dhy/a, is
multiplied by a constant factor for all i.

Step 1b: Hence, the groups of the combinations 1 and 2
are the same in the first iteration. The only difference
is that (Aﬁz=t-(hﬂ1, where (A,), is the value A, of group
j for input combination 2. It is simple to derive that
() =/t: (py); for all groups j.

Step 2: The group with the minimal value of 4; is the
same for both combinations; so the groups of combinations
1 and 2 remain the same after the first iteration.

The total cost (TRG,) is &, 2:A,-H, 1*. Using
(A;),=t- (A;),, it is obvious that TRC,=/t-TRC,, (b denotes
Bastian's algorithm), Q.E.D.

heuristic)

It will be shown that TRC,=/tTRC,; (g denotes Goyal's
combined algorithm) in the same way we did for Bastian's
algorithm:

Step la: The reference item of combination 2 is the same
as that of combination 1, since the ratio Dh,/(A+a,) is
multiplied by a constant factor t for all items i.
Step 1b: In the first computation of the replenishment
frequencies, (ky); and (k,), are the same as for
combination 2 the factor t appears both in the numerator
and the denumerator.
Step 2: It follows that (B,),=(B,); and (A,),=t-(A,),; so
(ki) =(k;); in all iterations.

a,
The total cost isTRC, =[ (A + £ — ) iz k,tD;h, 1* ;

k,
so TRC,~/tTRC,;, Q.E.D.
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B.2. Proof for: "an increase of factor Dh for all items
with a factor t does not affect the response
variable y,"/

Assume the following situation:

combination factor Dh

1 D{ilh[i] (i=1,..,N)
2 t-D[iJh[i] (i=1,..,N)

The proof runs along similar lines as for result b. The
total cost of the independent strategy is: =, [ (A+a,)Dh,
1* § 80 TRC,,, &/t TRC,. 1

Since y,, is defined as 100 (TRC,oq,~TRCy,) /TRC,.q,; We have
again to prove that TRC,~=/t:TRC,,.

fe) Bastian's direc ou algo

Analogue to result b it can be shown that:

step la): the ranking scheme of combination 2 is the same
as that of combination 1; step 1b): in the first
iteration the groups S, of combination 1 and 2 are the
same with (H)),=t- (Hy); and (A,),=(A,),; (B3) =/t- (4;); for all
groups j ; step 2): the groups of combinations 1 and 2
remain the same after the first iteration, so
TRbeJt & TRCbln

Goyal's i ire

step la): the reference-item of combination 2 is the same
as that of combination 1; step 1b): (k;),=(k,) the first
computation of the replenishment frequencies, step 2):
(A)2=(A,), and (By) =t - (By),; so (k) =(ky), in all
iterations; so TRC,=/t:TRC,,.
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