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ABSTRACT

In this paper, we compare the forecast accuracy of autoregressive -
integrated - moving average (ARIMA) models based on data observed with high
and 1ow frequency re~pectively. We discuss how for i,istance quarterly
models can be used to predict one quarter ahead even if only annual data
are available and we compare the variance of the prediction error in this
case with the variance if quarterly observatlons were indeed available.
Some i nsight i n the expected gain of information 1s requlred to declde on
whether to collect data with a higher frequency or to use a model based on
observations sampled with a low frequency.
Results on the expected i nformation gain are presented for a number of
ARIMA-models i ncluding models which describe seasonally adjusted series on
gross national product ( GNP) 1n the Netherlands.
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~~ Department of Economics, University of Limburg, P.O. Box 616, 6200 MD
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1. INTRODUCTION

In recent years there has been an increased tendency towards collecting and
analyzing disaggregate data. In the Netherlands for instance, the Central
Bureau of Statistics publishes quarterty National Accounts which were until
a few years ago only available on an annual basis. In the U.S., many series
are nowaday avallabTe on a monthly basis.
In this paper, we show how much additional information 15 Contained 1n the
temporally disaggregate data that can be used to lmprove the torecast per-
formance at the disaggregate level. Throughout the paper, we assume that
the observations are measured without error. Knowledge about the expected
gain of information is required to decide on whether to collect data with a
higher frequency. Moreover, our results can contribute to solving the
choice problem of using infrequently sampled data with negligible measure-
ment errors or data at a disaggregate level which generally include larger
errors as they are often partly constructed or estimated.
We restrlct ourselves to the comparison of the forecast accuracy of
correctly specified univariate ARIMA-models based on data observed with a
low and high frequency respectively. The implication of temporal aggrega-
tion for the model specification and for parameter estimation have been
studied by Brewer (1973) and Weiss (1984) for ARMA and ARMAX-models, and by
Engle and Liu (1972), Geweke (1978), Mundlak (1971), Teriisvlrta (1980), Wei
(1978) and Zellner and Montmarquette (1971) among others for regression models.
Palm and Nijman (1984) considered the identification and estimation of
ARIMA-models for variables that are sampled wlth longer intervals than the
lnterval of realizatlon. The estimation of the unobserved realizations has
been considered in the literature on interpolation and distrlbution of time
series (see c.g. Chnw and Lin (1971), Fernandez (1981), Harvey and Pierse
(1984), Nijman (1985), Nljman and Palm (1986) and Litterman (1983)). The
loss of information due to contemporaneous aggregation has been analyzed by
Kohn (1982), L'utkepohl (1984,a,b), Rose (1977) and Tiao and Guttman (1983).
Most closely related to our work are the attempts by e.g. Ahsamullah and
Wei (1984), Amemiya and Wu (1972) and L'utkepohl (1986) to quantify the
effect of temporal aggregation on the forecast error variance tor the
~aggregated time series. Ahsamullah and Wei (1984) and Amemiya and Wu
(1972) consider flow variables that are generated by known stattonary
ARMA(1,1) and AR(1) models respectively, whereas Lutkepohl (1986) uses
large sample theory and Monte Carlo methods to analyze stock varlables that
are generated by vector ARIMA-processes wlth unknown coefficients.
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In this paper, we are concerned with predicting disaggregate times series
given that the reallzations are sampled wlth a lower frequency. We show
how for instance quarterly models can be used to predict one quarter ahead
even if only annual data are available and we compare the variance of the
prediction error in this case with the prediction error variance when the
process is observed each quarter.
The plan of the paper is as follows. In section 2, we present some analyti-
cal results on the reduction in the variance of the prediction error due to
increasing the frequency of sampling to become identical to that of the
realization of the variables. The classicat Wiener-Kolmogorov filtering
theory is used to derive these results. For cases which are not analyti-
cally tractable, numerical results have been obtained using the Kalman
filter. Whereas in section 2, the sample is assumed to be sufficiently
large to neglect specification and estimation errors of the ARIMA-models
consídered, the impact of parameter estimation on the forecast accuracy is
treated in section 3. In section 4, we analyze quarterly data on the seaso-
nally adjusted gross national product (GNP) series in the Netherlands which
has been recently constructed at the Netherlands Central Bank (see De
Nederlandsche Bank, 1986). Using results of the previous sectlons, we show
by how much the prediction error variance of quarterly GNP is reduced
through the availability of past quarterly observations on this series an~
we examine whether a further disaggregation to monthly data is desirable.
Finally, section 5 contains concluding remarks.

2. ARIMA-MODELS WITH KNOWN PARAMETERS

As an example, assume that the time series Yt, t z 1,2...T is generated by
the univariate AR(1)-model

Yt- p Yt-1 t et, Et ~ IN(O.a2). (I)
If Yt is a stock variable observed every m-th period (m ~ 1), the sample
will consist of the values of Yt for t ~ Tm -{m, 2m,...[Tlm]m], where [Tlm]
is the largest integer smaller than or equal to Tlm. If Yt is a flow

- m-1
variable, Yt - E Yt-i, t ~ Tm, will be observed. Occasionally, we assume

i-0

that observations on an infinite past are avallable 1n which case we use
the notation Tm(- -) to denote the set Tm(- ~)s{- -,...,m,2m...[Tlm]m].
If Yt is a stock variable, the minimum mean square error (MMSE) predictor
of YT~k (k ~ 0) is simply



E(YTtk ~ Yt~ t' Tm) z pktr YT-r~ (2)

where r is the number of perlods between T and the last low frequency
observation, r~ T-[Tlm]m. The variance of the predictlon error is

var {YTtk - E[YTtk ~ Yt~ t ` TmJJ ~ oE (1 - P2(ktr))(1 - P2)-1.

~ ~ (3)k,r'
which could be compared with the variance corresponding to m ~ 1. A measure
of the loss of forecast accuracy due to temporal aggregation 1s the reduc-
tion in percentage points of the variance due to observing the variable at
shorter time intervals

Ym ~ 100 (vm - vl )(vm )-1, (4)k,r k,r k,o k,r

If Yt i s a stock variable generated by model ( 1), expression (4) specializes
to

Yk~r- 100 (p2k - p2(kfr))(1 - p2(ktr))-1~ (5)

which implies that the potential gain of information is purely caused by the
possibility that Yt might have been observed after period [Tlm]m. In table 1,
upperbounds Ym on the information gain are given as a function of p, k and m.

k,m-1

The information gain is substantial only in a situatlon of short term fore-
casting when the autoregressive parameter is large in absolute value.

Table 1: Upperbounds (in percentage points) for the reduction of the prediction
error variance Y ro , when a stock varlable is generated by an AR(1)-

k,r
model.

P - t . p - t .4

m s 2 m- 3 m~ 4 m~ 2 m~ 3 m s 4

k z 1 39 51 57 14 16 16
2 20 29 34 2 3 3
3 12 17 21 0 0 0

12 0 0 0 0 0 0



If Yt 1s a flow varíable, it is less straightforward to derlve MMSE predictors.

Using an ARMA(1,1)model whtch generates Yt, t ~ Tm, if (1) 1s va11d, Amemiya and
Wu (1972) give some results tor k ~ m and r~ 0. Their results lndicate that the
variance of the predíction error based on low frequency data exceeds the
corresponding figure for the complete sample by less than lOX if m 5 4 and
p s.6. To the best of our knowledge, the case of one pertod ahead forecasts
has not been treated in the 1lterature. Filtering theory can be applied to
derive one perlod ahead MMSE predictors even 1f Yt 1s observed for t ~ Tm only.
For reason of simpticity, we consider the case where m ~ 2 and r ~ 0 first.
Writing

~ -
Yt

~~t

1

1 - p2L2
1 p

1 tpl2 ltp

the covariance generating functlon of (Yt, 4t) (t ~ T2) is given by

0 2
g(Z) z E

(1 - P z)(1 - p z-1)

ltp2

~
Et I

Et-1 ;~

ltptp2tpz-1

(6)

ltptp2tpz2(ltptp2) tp(ztz-ly~

Denoting the (1,j)-th element of g by gi~, results from filtering theory (see
e.g. Sargent (1979) or Priestley (1981)) imply that

~

E[Y ~ Y, t. T ~) L 912(L2) 1
T t mí- ~ qT ` h(L2)Pt, (8)

d(L-2) t d(L2)

where d(z) i s defined by d(z) d(z-1) ~ g22(z) and []t indicates that only non-
negative powers of L between the brackets have to be taken into account.

As 2(ltptp2) t p(z-ltz) s u(1-I~z)(1-I~z-1) wlth U a ltptp2t(ltp) Itp2 and l~ z-plU

(ltptp2) t pz-1
h(z) a

(1 - p~z) ( 1 -~z-1)

1 - p2z

(1 - l~z)N

t



Some straightforward algebra yields that if m s 2 and r e 0, we get

EIYT ~ Yt~ t ` Tm (- ')] ` n E~i YT-im
1~0

with

(10)

~L-P(1tPtP2~ (1~P) 1tP2)-1 (11)

and

~s (1tPtP2}P3) (1tPfP2~(ltp) ltp2)-1 (12)

Evidently ( 10) implies that

E[YTtk ~ Yt~ t ` Tm(- -)] : pktr n E~1 YT-r-im~ í13)
i~0

where we drop the assumption that Tlm is integer-valued. Truncating the sum in
(13) at i~[Tlm], these resutts can be used for example to compute semi-annual
forecasts from annual observations on flow variables if Yt is generated by (1).
Equation (13) is also valid for m~ 2. Explicit expressions for J~ and g if m~ 1
are hardly informative. The values of l~ and q for m- 2,3,4 and p ~(-1,1) are
given in figure 1. For the derivation of these results see appendix A. Note that
when p tends to -1 the weight 1~ tends to 1 1f m is even, but to 0 if m is odd.

Figure 1: Values of lambda and eta for m~ 2,3,4 as a function of rho.

m a --m.. --
-..~--------.~.,,~----ti 3--------- ..: ..

"~;: ...
~k„ ---------~`....-Y,:-.

atu~ ai uo
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from ( 7) and ( 10), the covariance generating function of the prediction error of
YT for m- 2 and r- 0 i s

1
g~(z) ~ ~1, -0(1-~z)-1~ 9(z) ~ ~

-q(1-l~z-i)-1
(14)

The variance of the prediction error whlch we denote by v is the constant term
in g~`(z) which after some maniputation can be expressed as

1 f p2- 1

v ~
p2( lt p)

02E ' (15)

For the variance of the prediction error, we get

vm z[1 - p2(kfr)~~1 - p2~-1 } p2(kfr) v~
k,r

(16)

from which Y~ can be determined. The magnitudes vm and 1Im are defined as
k,r k,r k,r

vm and Ym except for the fact that the observations are on fow variables.
k,r k,r

Equation (16) is also valid for m Z 2 although no simple expression for v has
been obtained. It can be shown that v tends to infinity if m is even when p
tends to -1.

The values of Yk ~ have been presented 1n table 2 for some 111ustrative values of

p and m. Details on their derivation are given 1n appendix A.
In the worst possible case considered in table 2, the variance of the prediction
error approximately doubles if low frequency data are analyzed, but in many
cases the loss of information is much smaller. Note that the variance of the
prediction error can be smaller if the data are aggregated over three periods
than if they are aggregated over two periods.



Table 2: Upperbounds (in percentage points) for the reductton of the prediction
error vartance Y m when a ftow variable is generated by an AR(1)-mo-

k,r
del.

p:.8 p- .4

m~ 2 m ~ 3 m ~ 4 m- 2 m s 3 m- 4

k a 1 43 54 59 15 16 16
2 22 32 36 2 3 3
3 13 19 22 0 0 0

12 0 0 0 0 0 0

p~-.8 p~.-4

m~ 2 m r 3 m~ 4 m ~ 2 m~ 3 m s 4

k~ 1 61 57 63 15 16 16
2 38 34 40 3 3 3
3 24 21 25 0 0 0

12 0 0 0 0 0 0

It is well known ( see e.g. Palm and Nijman (1984)) that the missing observations
problem in an ARIMA (p,d,q) model for flow variables 15 closely related to that
in an ARIMA (p,dtl,q) model for stock variables.
Consider the situation where Yt is generated by

AYt z p AYt-1 t et , et - NIO(0, oÉ). (17)

m-1
Assume that Yt is a stock variable such thatlEO ~Yt-1 ` Yt - Yt-m is observed
for t ~ Tm.



Writing

kir
YTfk ` YT-r t iEl ~YT-rti~ (18)

we have

EIYTfk ~ Yt~ t' Tm (- ')~ ' YT-r t kEr piq E 1~~ (4nYT-r-jm (19)i~l j.0

with Am ~ 1-Lm. The parameters q and ~ whlch have been defined above depend on p
and m. The variance of the prediction error is nok

kfr ktr
Var {iEl ( DYT-rti - P1 AYT-r) ~2 t(iEl Pi)2 ~. (20)

m
which yields the upperbounds on Yk,r presented in table 3. The information gain
caused by the use of high frequency data 1s usually much larger than that in
table 2. Again the variance of the prediction error of data aggregated over
three periods is occasionally smaller than that of aggregates over two periods.
Note that the variance of the error of predictions based on the lncomplete data
is no longer a non-decreasing function of k. Therefore the upperbound no longer

coincides with Vk,m-1'

For more general ARIMA-models it will usually be cumbersome to derive analytical
expressio~:s for the gain in forecast accuracy using e.g. the Wien~r-Komolgorov
filtering theory. In these cases, the recursive Kalman filter (see e.g. Harvey
(1981) or Anderson and Moore (1979)) can be used to evaluate the conditional
expectations and the associated variances of the prediction errors numerically
in a straightforward way.
The predictive accuracy gain from disaggregate sampling for the ARI(1,1) model
(17) and the IMA(1,1) model

AYt L Et t a EL-1 , et - NID(~,aÉ), (21)

which are often adequate for describing the dynamics of macroeconemic variables,
has been evaluated by Kalman filter methods. Results for the ARI(1,1) model for
stock variables were already presented in table 3.



Results for the ARI(1,1) model for flow variables and for the IMA(1.1) model for
stock and flow variables are presented in tables 4, 5 and 6 respectively. Form
these tables, it becomes evident that if succeeding values ot AYt are negatively
correlated, the information content of disaggregated data will be much smaller
than in the case where the sertal correlation of AYt is positive.

Tabie 3: Upperbounds (in percentage points) for the reduction of the prediction
error variance yk;'r when a stock variable is generated by an ARI(1,1)
model.

p . .8 p ..4
m- 2 m: 3 m s 4 m z Z m s 3 m. 4

k a 1 79 92 96 67 82 88
2 62 81 88 47 64 73
3 50 70 80 34 51 61
12 14 25 33 9 16 22

P - -.8 p s -.4
m~ 2 m- 3 m- 4 m s 2 m- 3 m~ 4

k~ 1 58 54 64 29 50 60
2 62 52 67 32 45 55
3 36 36 45 22 35 45

12 15 15 24 8 15 20



Table 4: Upperbounds (in percentage points) for the reduction of the prediction

error variance 1k~rwhen a tlow varlable 1s generated by an ARI(1.1)
model.

P ~ . p . .
m~ 2 m: 3 m- 4 m ~ 2 m. 3 m~ 4

k a 1 84 94 97 73 86 91
2 69 85 92 53 70 78
3 57 76 85 39 57 67

12 17 30 39 11 20 27

p s -0.8 p s -0.4
m~ 2 m - 3 m~ 4 m z 2 m ~ 3 m: 4

k- 1 26 50 53 31 52 63
2 43 48 59 32 47 58
3 13 32 37 22 38 48

12 7 14 19 1 15 22

Table 5: Upperbounds (in percentage points) for the reduction of the prediction
error variance Yk~r when a stock variable is generated by an IMA(1,1)
model.

QzO. as .4
m z 2 m z 3 m- 4 m i 2 m ~ 3 m- 4

k- 1 79 88 91 67 80 86
2 47 62 71 41 58 67
3 33 48 58 30 45 55

12 9 16 22 8 15 21
Q ~ - . Q s - .4

m~ 2 m~ 3 m s 4 m~ 2 m s 3 m s 4

k~ 1 9 15 20 29 44 54
2 8 15 19 23 37 46
3 8 14 19 19 32 40
12 7 11 15 7 14 19
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Tabie 6: Upperbounds (in percentage points) for the reduction of the prediction
error variance Yk~rwhen a flow variable is generated by an IMA(1,1)
model.

a - . a - .
m- 2 m S 3 m- 4 m- 2 m s 3 m z 4

k~ 1 82 90 93 72 84 88
2 53 68 76 47 64 72
3 39 55 64 35 51 61

12 12 19 26 11 43 25

a z -0.8 a s -0.4
m e 2 m s 3 m- 4 m~ 2 m i 3 m z 4

k- 1 4 1 5
2 4 7 11 22 38 48
3 4 7 11 19 32 42

12 3 6 8 7 14 20

3. ARIMA MODELS WITH ESTIMATED PARAMETERS

In the preceding section we have assumed that the parameters of the data
generating process are known. One could argue that the figures glven in section
2 underestimate the efficiency gain in applicattons where the parameters have to
be estimated and can be estimated more accurately if the frequency sampling is
increased. In this section we drop the assumption that the parameters are known
and we present approximations up to order T-1 for the prediction error variances
when the parameters have been estimated. Evidently the results in the previous
section are valid if T is sufficiently large. The identification and estimation
of ARIMA models from temporally aggregated data is discussed in Palm and Nijman
(1984). Their results suggest that the efficiency gain of maximum likelihood
parameter estimation from increasing the frequency of observatlon strongly
depends on the data generating process. In this section, we analyze how para-
meter estimation affects the accuracy gain in prediction expected from more fre-
quent observation. As in section 2, we first consider the AR(1)model (1)
assuming that YL is a stock variable. Straightforward substitution yields that
the low freqeuncy data are generated by an AR(1)model as well,

Yt ' V~ Yt-m t Yt, VL - IN(0~ o~), (22)
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with ~y : pm, oa ~(i-p2m)(1-p2)-I o~ , Vt and Vs lndependent if t, s ~ Tm.
The parameter p is identified 1n (22) if its sign is known a priort. In appendix
A it is shown that if p~ 0, we have

2m
~T (P-P)

aN(0~ 1-p )~
mpm-

where p is the maximum likelihood (ML) estimator of p based on Yt (t ~ Tm).
Substituting the estimate "p 1n (2) one obtains

kfr ktr-1
YTtk - P YT-r ` iE0 P1 ETfk-i t(Pkf r - pktr) YT-r.

(23)

(24)

The mean squared error (MSE) of the second term can be approximated up to order
T-I by E{(Pktr - pktr)Yt-r~2 - T E{~ (P - P)YT-r~2 (25)(ktr) p tr-1

In the literature, the (unrea11st1c) assumption i s often made that parameters
are estimated from samples independent of the values to be predicted. In that
case, we get

1 - p2(ktr) (ktr)2p2(ktr-1) 1-PZm 2oE
E(YTtk - pktr YT-r)2 - oÉ t d (26)

~ T mp~~ 1 - p2

with d- 1. If the independence assumption is not made one can bound the
covariance between rT(p - p) and YT-r using the Cauchy-Schwarz inequality, which
implies that the right hand side of (26) 1s an upperbound for the MSE when d: 3
and a lowerbound when d ~-1, if one sample is used both for estimation and

n
prediction. In table 7 we present upperbounds on the relative efficiency Vm of
predictors based on hlgh frequency data 1n case of estimated parameters. k,r
For given values of m and k, these upperbounds are the maximum over r of the
quotient of the right hand side of (26) evaluated at m,k,r and d s 3 and the
same expression evaluated at m- l,k,r and d s-1.
The reader should compare table 7 with table 1 where the results for the same
model with known parameters are presented (or, equtvalently, for a very large
sample). The information loss caused by temporal aggregatlon increases if the
parameters have to be estimated but the effect is not very substantial in many
cases.
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Table 7. Upperbounds (in percentage points) for the reduction of the prediction
error variance when a stock varlable 1s generated by an AR(1)-model
with estimated parameters (T s 100).

p z t.8 p- t.4

m ~ 2 m- 3 m- 4 m- 2 m ~ 3 m- 4

k~ 1 43 56 62 19 32 69
2 26 36 42 7 21 55
3 19 25 29 2 8 30

12 2 2 3 0 0 0

If a flow variable Yt is generated by the AR(1)model in equation (1), the low

frequency data Yt, t f Tm, are generated by the ARMA(1,1)model

Yt - V~ Yt-m } Vt - I~ Vt-m~ (27)

2
where ~y - pm, VL and Vs are independent for t, s ~ Tm and t~ s, vt - N(0, ov)
and the parameter l~ has been defined in section 2. In appendix A we show that
p can be identified from the observations Yt (t ~ Tm).

Using the asymptotic distribution of unrestricted efflcient estimates of (y, I~,

ov) we moreover show that the maximum likelihood estimator of p in the

restricted model (27) is asymptotically normally distributed

l~ T(P - p) a N(O.q) (28)
2

where q is a function of p and oE ( see appendix A).
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If E[Yt~k ~ Yt t E Tm (- -)] in equation ( 13) 1s expressed as ï ai YT-r-i,m
i-0

the MSE of the prediction error in case of parameters estimated from an indepen-
dent sample can be approximated up to order T-1 by

E(YTtk - ~ ai
iL0

with d - i.

YT-r-im)2 f dq ~
- T i,jLO

êa i 8a~

8p êp
E yT-1m yT-jm. (Z9)

If estimation and prediction are based on the same sample (29) yields upper and
lower bounds for the MSE for dz3 and da-1 respectively, while the results 1n
section 2(known parameter values) are obtained if d-0. Upperbounds are pre-
sented in table 8 which should be compared with table 2. The esttmation of para-
meters affects the conclusions from table 2 only if p is highly negative in
which case it 1s very difficult to estimate p as becomes evident from table 1
in Palm and Nijman (1984).
In such cases the additional information contained in high frequency data can
indeed be very substantial.
Finally we consider in this section the case where a stock variabte Yt is
generated by the ARI(1,1)model (17). The analogue of equation (27) is

4n Yt t V~ Mn Yt-m } Vt - a Vt-m~ (30)
where the same notation is used. The asymptotic variance of the ML estimate p is
also given in equation (28). Defining the coefficients bi using (19) by

EIYTfk ~ Yt t` Tm(' ')] ~ YT-r t 1~0 bi Am YT-r-im the analogue of (29) is

E~YTtk - YT-r - ~ bi amYT-r-im]2 t dQ ~ abi a~ E~YT-im DmYT-jm.i`0 T 1,j~0 8p 8p
(31)

This equation has been used to derive table 11. Again the conclusions strongly
differ from those obtained for known parameter values only if p is negative.



)h

Table 8: Upperbounds (in percentage points) for the reduction of the prediction
error variance when a flow variable i s generated by an AR(1)model with
estimated parameters (Ts100).

P ~ . p ~ .4

m~ 2 m- 3 m- 4 m~ 2 m- 3 m s 4
k~ 1 44 55 1 17 17

2 25 33 40 3 3 3
3 16 21 24 1 1 1

12 0 0 0 0 0 0

P ~ - . p ~ - .4
m~ 2 m- 3 m~ 4 m ~ 2 m z 3 m a 4

k- 1 9 1 8 7 5
2 98 40 97 44 11 25
3 97 28 95 19 3 9

12 0

Í

0 0 0 0 3

Table 9: Upperbounds (in percentage points) for the reduction of the prediction
error variance when a stock variable is generated by an ARI(1.)model
w`.th estimated parameters (T-100).

m~ 2 m- 3 m S 4 m~ 2 m~ 3 m z 4

k- 1 80 92 96 68 83 88
2 64 81 89 48 65 74
3 52 71 81 36 52 62

12 17 25 33 9 16 22

m- 2 m- 3 m s 4 m z 2 m s 3 m s 4

k~ 1 98 59 98 67 53 63
2 98 58 97 54 47 59
3 97 41 96 35 38 49

12 15 15 24 8 15 20
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4. PREDICTION ACCURACY GAIN FROM DISAGGREGATING THE GNP SERIES FOR THE NETHER-

LANDS.

In this section, we illustrate how in practice one can determine whether it is
worthwhile to increase the frequency of collecting observations on a variable.
We consider that quarterly GNP series for the Netherlands that has recently been
provided by the Dutch Central Bank ( see De Nederlandsche Bank ( 1986)). Usíng the
results of the previous sections, we show how much the avallability of quarterly
observations reduces the prediction errror variance of quarterly GNP and whether
further disaggregation into monthly data is deslrable.
First, we consider seasonaliy adjusted GNP i n millions of guilders in prices of
1980. For the period 1957,I-1984,IY, a Box-Jenkins analysis leads us to select
two quarterly models that are both fairly we11 in agreement with the information
in the data. If a month is chosen as the time unit, the two models are

n
A3 Yt : 543 - 0.33 A3 Yt-3 f Yt(113) (.09)

and

A3 Yt ~ 40P t Vt - 0.35 Yt-3(70j (.09)

(32)

(33)

respectively. The parameters have been estimated by maximum likelihood (ML).
Standard errors given between parentheses. From tables 4 and 6, it is now
obvious that the increase in forecast accuracy due to the availability of quar-
terly data can be more than 50X. The details are given in table 10. Note that
here the increase in efficiency is strictly increasing with r, the number of
periods since the last observation. Also, even one is interested tn annual fore-
casts on1y, quarterly data can be substantially more informative than annual
observations.



Table 10 : The reduction (i n percentage points) of the prediction error variance
of quarterly seasonally adjusted GNP in the Netherlands due to the
use of quarterly instead of annual observations ( r is the number of
periods since the last observation).

Model r
1

Number of

2
quarters

3
to be predicte

4
ahead k

8 12

ARI(1,1) 0 21 19 13 11 7 5
" 1 44 39 30 25 15 11
" 2 58 50 41 36 23 17
" 3 66 59 49 44 29 22

IMA(1,1) 0 17 13 10 8 5 4
" 1 39 31 25 22 14 10
" 2 51 43 36 32 21 16
" 3

I
60 51 44 39 27 21

The quarterly data can also be used to forecast monthly GNP and to estimate the
reduction i n the variance of monthly prediction errors if monthly data were
indeed collected. The first step 1s to estimate a monthly model from the quar-
terly data. The monthly IMA(1,1) model

Yt - C t Et t a Et-1

tmplies that G3 yt -( it L f L2)2 6Yt is generated by

5
A3 Yt s 9 c t iE0 91 Et-i

(34)

(35)

withBO- 1, 61-2ta, 82-3t2a, 63-2t3a, 94~ lt2aand65~a. The
model 1n (35) 1s a quarterly IMA(1,1) model

A3 Yt z 9 c t Vt t I~ Vt-3, (36)
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where l~ is defined by the equality of the first autocorrelation of (35) and (36)

5 5 2
l~l(1t1~2) s Ei-3 6i9i-3~Ei~0ei- (37)

Substituting the ML estimate l~ ~-0.35 for l~ in (37) one gets the ML
estimate

d ~-0.72. No other plausible time series model appears to be able to explain
the empírical findings 1n (33) which are almost equivalent to (32).
Monthly forecasts can now be generated from quarterly data using (34). In appen-
dix B, it is shown that

E[ Yttk T Yt, t ~ T3(- -) ]~ [ k t r t 1- 3)~ 7( lf~) ] c f

1 (1 f ~) E (-~)i yT-r-3i.3 i~0 (38)

The variance of the prediction error of ( 36) can be compared with that of the
optimal predictor from monthly data

E[ YTtk ~ Yt ~ t ` T1 (- ') ] s[k- a I ( la-a) ] C f

t(1 t a) i~0 (-a)i YT-i. (39)

The empirical results are presented in table 11 where 1t is assumed that a and c
are known a priori. Evidently, this table suggests that monthly data on GNP in
the Netherlands would hardly contain more information then the existing quar-
terly series.

Table 11 : The reduction ( in percentage points) of the prediction error variance
of quarterly seasonally adjusted GNP 1n the Netherlands due to the
use of monthly instead of quarterly series.

Model r Number of months to be predicted ahead (k)

1 2 3 6 9 12
0.8 0.8 0.7 0.6 0.5 0.4
8.0 7.4 6.9 5.8 5.0 4.5
14.2 13.3 12.5 10.1 8.8 8.2
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Now we examine whether as a result of the assumption of known parameters the
true predictive accuracy galn from tncreasing the frequency of data collection
1s substantialiy underestimated in table 11. The comparison between tables 3
and 9 suggests that the impact of this assumption might not be negligible, but
these tables refer to ARI(1,1) processes for stock variables and not to an
IMA(1,1) process for a flow vartable as in (34). The relattve efftciency of
the ML estimator of a in (34) from monthly data compared with that fram quar-
terly data can be found in Pa1m and Nijman (1984) for various values of a. When
the true vatue of a is -.6, the relative efficiency 1s only 2.7, whlch suggests
that the results in table 11 where a--.72 should not be too sensltive to the
assumption of known parameters. Numerical results on upperbounds for the reduc-
tion of the prediction error varlance are given in table 12. For the derivation
we refer to appendix B. From table 12, 1t becomes clear that the impact of
parameter estimation is not sufficiently large to alter the matn conclusions.
Nevertheless, the change in the predictive accuracy for longer forecast horizons
1s probably larger than suggested by table 11.

Table 12. Upperbounds (in percentage points) for the reduction of the predic-
tion error variance of quarterly seasonally adjusted GNP in the
Netherlands due to the use of monthly series instead of quarterly
information corrected for the effect of parameter estimation.

Model r Number of periods ahead (k) to be predicted.

1 2 3 6 9 12
0 5.6 6.6 7.8 11.5 15.4 19.2
1 13.4 14.1 14.8 17.4 20.4 23.5

~ 2 20.3 20.6 20.9 22.8 25.1 27.6I ~



Until now, we have consldered seasonally adjusted data. The quarterly model for
seasonally adjusted GNP implies the annual model

A12 Yt - 6496 t vt f 0.13 vt-12~

which is also compatible with the quarterly model

(40)

(1 - 0.90L3)A12 Yt - 472 t (1 - 0.34L3) (1 - 0.66L12)vt, (41)

that describes the seasonally unadjusted data constructed by De Nederlandsche
Bank (1982) very well.

One might be tempted to think that (41) can be used to obtain quarterly unad-
justed forecasts from annual data. However, evidently the seasonat pattern can-
not be reconstructed from annual data only. In appendix C, we show that the
quarterly forecasts from annual data generated by (41) coinclde wtth those
obtained from (33), that is for both models one obtains forecasts of the
adjusted series. For policy purposes, these will usually be the most
interesting. If forecasts of the seasonals are required, some information on
the seasonal pattern will have to be provided.

5: . ONCLUDING REMARKS

In this paper, we analyzed the predictive accuracy 9ain of k-step ahead fore-
casts from univariate ARIMA models which results from increasing the frequency
of sampling. For simple time series models wtth known parameters, analytical
expressions for the information gain were obtained. For more general ARIMA
models, this gain was evaluated numerically using the Kalman filter equations.
Next, we obtained approximations for the predictive accuracy gain due to more
frequent sampling for modets with estimated parameters. These results were used
to evaluate the additional information content of recently collected quarterly
GNP data for the Netherlands and to consider whether it is worthwhile to
construct monthly data.
The main conclusions are as follows :
For variables generated by a first order autoregressive model with known parame-
ters, the information gain is substantial only 1n shortrun forecasttng when sub-
sequent realizattons are strongly correlated.



We con~ecture that this result can be extended to more general stationary pro-
cesses. Note however that the informatlon gatn can be substantially larger if
the parameters in the model have to be estimated as suggested by table 8.
For variables generated by non-stationary models, the efficiency gain of more
frequent sampltng can be lmportant in shortrun torecasting but will often be
negligible when the forecast horizon becomes large. The results for the GNP
series in the Netherlands suggest that the constructton of quarterly GNP data
has reduced the variance of prediction errors considerably but that further
disaggregation into monthly data would hardly yteld extra tnformation.
Although we 11m1t ourselves to univariate time sertes models, the results are
likely to contatn relevant indications tor multivarlate models as the variances
of the prediction errors for univariate and multivariate models have often simi-
lar properties. Finally, as many macroeconomic variables can be adequately
described by IMA(1,1) processes, the results 1n this paper can often be applied
to decide whether lncreasing the frequency of observatton will be worthwhile.
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APPENDIX A: SOME ANALYTICAL RESULTS ON AR(1)-MODELS.

In this appendix we present analytical results on the prediction of flow
variables generated by a first order autoregressive process using lower fre-
quency data. As stressed in section 2 these results are aiso relevant for the
case where a stock variable 1s generated by an ARI(1,1)-model. First we
derive the covartance generating tunctlon g(z) of ( Yt,Yt) tt t ~ Tm by
generalizing the result in (7) tor m. 2. Define ai ( i ~ 0,...,2m-2) by

2m-2 i m-1 i ttj
~ a L- E p L . Then it can be checked that
iL0 i i,j-0

1 bD bltb2z-1
9(z) ~

(1-pmz)(1-pmz-1) bltb2z b3tbq(ztz-1)

m-1 2i m-1 i

withbD~E P , bl-E pd
iz0 i~0 1

m-2 i 2m-2 2

b2tE Pa , bgsE a
i-0 ttm 1~0 1

m-2
and bq a E a a . Factorize the numerator of th; lower right element as

i -0 1 ~rn i
b3 t bq(z t z-1) - U(1 - I~z)(1 - l~z-1),

2 - 2 -1
where N s y~b t b 4b and l~ ~-b U. For the case where m: 2, expllcit

3 3 4 4
expressions for N and l~ are gtven in section 2.The polynomial h(z) in (8) equals

b1}bZz-1 1-pmz-1
h(z) z

(1-pmz)(1-Pmz-1) 1-)~z-1

~ n(1-l~z)-1.

1-pmz

(1-l~z)N

where q -(bl t b2pm)(1-Pm~)-1N-1, From ( 14) the covariance generating function
ot the prediction error of Yt 1s obtained as
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g'(z) ~[dI t d2(z f z-1)] I(i-),z)(I-l~z-1)(I-pmz)(1-Pmz'1) ,

with dI a bp(ltl~2) - 2g(bI-b2J~) t q2b3 and d2 - ~2bq - bp)~ - qblJ~ - qb2.

The inverse of the denominator of g~(z) can be wrttten as

E cizi with
i---

ci s [(I-J~2)Pm(itl) - (I-p2m)] ~ (Pm-J~)(1-l~pm)(I-~2)(I-P~)

which yields that the constant term of g~`(z) or the variance ot the prediction
error is

v L C(ltpml~)dI t 2d2(]~tpm)] I( I-J~pm)(I-7~2)(1-p2m)

Next we consider the asymptotic variances of maximum likellhood estimators based
on low frequency data only. In the case where a stock variable is generated by
an AR(I)-model, the ML estimator of p is simply p ~ y~l~m with y~ being the ML
estimator of ~y in (23) and the sign is chosen according to the a priori tden-
tifying information. Therefore if p~ 0 the asymptotic variance of p equals
Avar (íny)I(m2p~-2) or

a
1~T (P - P) - N(p.

1-p2m

mp2m-2

If a flow variable is generated by a first order autoregressive model, the
2 2

~ n n n I~ n n
asymptotic variance af AI' z ( p,o ) is obtained from that of 92' -(y~,]~,a )

using the facts that

- a
~ (e - e ) - N(o,o)

E V

and



1 a2L ae2' 1 a2L
m-iQ a - E- ~

T aelael' ael
where

ae2'

ael

and

ao~~aoÉ

1-p~ 1-Pml~

- E
1 a2L

T a82 a82' 1-pm1~ 1-]12

0

0

-4
0 0 lío v

ae2
,

ael'

Some straightforward algebra yields that the asymptotlc variance of
1rT(p - p) in (28) is given by

m2 p2m-2 2m pm-1 a]~~ap (aJ~lap)2
q s m { - t )-1,

- E -
T aeZae2'

mpm-1 - a~~ap ao~lap

0 0

1-p2m 1-PmA 1-7~2



APPENDIX B: MONTHLY FORECASTING OF GNP FROM QUARTERLY DATA.

We derive the optimal monthly prediction of GNP in the Netherlands based on
quarteriy data assuming that (34) holds, and we discuss the derivation of the
numerical results on the reductlon of the prediction error varlance that could
be obtained if monthly data were collected.
For simplicity we assume that r ~ 0. In order to dertve (38) recall that

~ i
E[Y ~ Y, t i T (-~)] ~ 9c t Y t I~E (- 1~) [(i Y - 9C]

Tt3 t 3 T i:0 T-3i

i
z 9(1 --)c t(ltr) E (-1~) Y (B.1)

ltl~ 1~0 T-3i

and define the coefficients b and ai (1 - 0,1,...) by

E[Y ~ Y, t ~ T (--)] ~ b t E a Y
Ttl t 3 1-0 i T-3i

As

(B.2)

E[Y ~ Y, t ~ T(--)] ~(k-1)c t E[Y ~ Y, t i T(-~)], (B.3)
Ttk t 3 Ttl t 3

a second expression for the expectation in (B.1) can be obtained by adding up
the expectations in (6.3) for k: 1,2 and 3 respectively which yields

E[Y ~ Y, t~T (--)]:3ct3bt3E aY (6.4)
Tt3 t 3 1~0 i T-3i.

Comparing ( B.1) and (B.4) we obtain ai - ll3(ltk)(-I~)1 and b-(2 - 31~1(ltl~)c
which yields (38).

The prediction error of E[YTtk ~ Yt, t E T3~- ~~~ is

k-1
E t(lta) E E t QE t Y - ll3 Y - ll3 l~ E (-7~) e Y ,(6.5)
Ttk izl Tt1 T T T 1s0 3 T-3i

which can be rewritten as

k-1
E t(1tQ) E E t E ~ E
Ttk i-1 Tti 1a0 1 T-1

with



Lj

w 2 m 3 1 (B.6)
~ d Ll -(? t a) ~(3 t 3a) L t 3aL2 - 3(1fLtL2) (1taL)El-~(-aL )

i-0 i 3
Therefore, the vartance of the predictton error it a and c are known ts

3 2 2 2 - 2
v z o [1 t(k-1)(lfa) ] f o ~ d.
k,0 e E 1~0 1 (6.7)

Because the variance of the prediction error would be the tirst term of (6.7) if
monthly data were used, equation (B.7) can be eastly used to determine the addi-
tional information content of the monthly data 1n table 11.
Extending the results 1n section 3 to the case where the predlctor depends on a
consistently estimated (nxl) vector of parameter 8, the variance of thts predic-
tor Y (8) can be approximated up to order T-1 by

Tfk
n n

2 1 n aYTtk(e) aYTtk(e) . .
n n

E[Y - Y (e)] t - E E 1~(e -e )1rT(6 -9 ). (6.7)
Ttk Tfk T i,j~l 88i 8A~ 1 1 j j

- d
When r7(8-9) - N(O,V), the Cauchy-Schwarz inequallty can be used to obtain an
upperbound for (6.7) .

n I`

~ ~ 2 1 n aYTtk(8) aYTtk(e)
E[Y - Y (9)] t- E E Vi~

Ttk Ttk T i,j-1 891 8A]
n

f 2~ n [E( aYTtk(8))2 E(BYTtk(e))2
~i1V.)]]~ (6.8)

T i,jsl 88i 89]

2 2
In the present case 6' s(c,l~) and V ~ diag(3o 181,3(1-l~ )). Moreover

v



Jri

a 1 - i
n

-Y (6) z- E (-~) v so that
êl~ Tfk 3 1~0 t-i

2
8 2 ov

E[- Y (9)] ~ . Substitutlon 1n (B.8) finally yields that
8A Tfk 9(1-1~2)

2 2 2
O 0 3~ ~

v3u ~ v3 f(kfl - 3)~ ~ 2 v t ~t 2 ~ ktl ---~ v
k,0 k,0 lf)~ 9T T ltl~ 9T

(B.9)

is an upperbound for the variance of the prediction error of monthly forecasts
based on quarterly data which is accurate to order T-1. Along the same lines a
lowerbound for the prediction error varlance for monthly data can be obtained as

2 2
1 a 2 oE

v - (k --) --
k,0 lta T

OE

2
a QE

-- ~k --~ -,
T lfa T

1
but evidently v is a larger lowerbound. The figures which are given in

k,0
table 12 are computed as

3u 1 3u
100. (v -v ) Iv

k,r k,0 k,r

(B.10)

(B.11)

3u 3u
with v : v

k,r ktr,0.
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APPENDIX C: QUARTERLY FORECASTS OF GNP FROM ANNUAL DATA USING THE MODEL FOR
SEASONALLY UNADJUSTED DATA.

In this appendix we show that if only annual data are available, models (33) and
(41) yield identical quarterly forecasts. For simpliclty we restrict ourselves
to the case where k ~ 0. Generallzations are straightforward. Ignoring the
constant term, equation (41) can be written as

(1-PL)(1-~L4)Yt L ( 1faL)(1t8L4)et (C-1)

with 8--p4. Equation (C.1) implies that

4
(1-~L4)Yt - E aiEt-i (C.2)

iL0
and

10
(1-~L4) Yt-r ~ E bi et-i ~1z0

r z 0,1,2,3, (C.3)

4 10
where E a Li - íl t pL t p2L2 t p3L3)(1taL) and E biLi -

i-0 i is0
4

Lr(1 t L t L2 f L3) E aiLi. Using a slight generallzatlon of equation (8)
iz0

this implies

E[Y ~ Y (t i T(--))] s E h Y ,
T t m i-0 i t-r-4i

where

h(z) ~
AO f Alz-1 t q2z-2

(1-~z) (lt~z-1)

1-~z

} N(lf~z)

(C.4)

(C.5)

l~ is the annual MA(1) parameter and the weights Ap, A1, A2 and N depend on the
coefficients ai and ci. Rewriting (C.5), one obtains
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~ 1-~yz
(C.6)

1 ~ N(ltl~z)
~4)'y lt)1Z- 1-~Z

~ A3(ltJ~z)-1

which ts also obtained 1f (33) is assumed to be the data generating process
(com~are appendix B).
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