Tilburg University

Maximum likelihood equilibria of random games

Borm, P.E.M.; Cao, R.; Garcia-Jurado, I.

Publication date:
1993

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Borm, P. E. M., Cao, R., \& Garcia-Jurado, I. (1993). Maximum likelihood equilibria of random games. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 601). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

RYO
Garne

K.U.B. BIBLIOTHEEK TILBURG

MAXIMUM LIKELIHOOD EQUILIBRIA OF RANDOM GAMES

Peter E.M. Borm, Ricardo Cao and Ignacio García-Jurado

FEW 601

Communicated by Prof.dr. B.B. van der Genugten

MAXIMUM LIKELIHOOD EQUILIBRIA OF RANDOM GAMES*

January 1993

Peter E.M. Borm, Ricardo Cao and Ignacio Garcia-Jurado

received:

Abstract

In this paper we introduce the concept of random game in order to incorporate the possible random structure of a game in an explicit way. Two definitions of maximum likelihood Nash equilibrium (MLNE) are given depending on the fact that the random structure is discrete or continuous. Existence theorems of MLNE are proved in both setups.

1 Introduction

In many practical situations, a group of agents have to take strategical decisions in an environment of risk. The traditional approach of game theory to this problem is to embody such a risk (and the attitude of the players towards it) in the utility functions of the players and, then, to solve the problem as a deterministic one. Although this can be a fruitful approach in a number of occasions, sometimes it will be more appropriate to address the situation in a way which pays more attention to its random structure and to explicitily incorporate such a structure in the proposed solution.

[^0]Consider, for instance, the following game: two persons, who cannot communicate, have to say an integer smaller or equal than one million and then, without knowing the other's number, have to choose between even or odd. If they have not said the same number, they are paid 1,000 dollars each if both have chosen even, nothing if both have chosen odd and 500 dollars each otherwise. If they have resulted to say the same number, they are paid nothing if both have chosen even, M dollars each (a big amount of money) if both have chosen odd and $\mathrm{M} / 2$ dollars each otherwise. If we know nothing about the players (but that they are rational) we could analyze the game, in accordance to the classical approach, in the following way (see, for instance, [2] page 5): we define the payoff functions for the players as the expected payoff they obtain; hence, if M is large enough, the only equilibrium of the resulting game is (odd,odd). However, we think that, in the setting described above. the only rational suggestion for the players is to play even because, doing that, they are playing a Nash equilibrium with a very high probability or, in other words, if any of the players intends to choose odd, he has an incentive to deviate with a very high probability (in this example 0.999999).

In this paper we study some solutions for these random games based on a statistically-oriented thinking. They consist of combinations of strategies which are the most likely ones to be equilibria looking at the random structure of the situation. We do not think that this is always the only admissible approach to this kind of conflicts. However, we believe that it provides a new and enlightening point of view of the random conflict situations.

It is interesting to remark that a very simple class of random games, approached from this statistical thinking, has been used in [1] to introduce a new solution concept for noncooperative games. This shows again the interest of the statistical point of view when analyzing random games.

2 Random Games and Maximum Likelihood Equilibria

In this section we present and study a solution concept for random games. We begin introducing our model.

Definition 1 A random game is a three-tuple

$$
<(\Omega, \mathcal{A}, P), X, H\rangle
$$

where:

1. (Ω, \mathcal{A}, P) is a probability space,
2. X is the set of combination of strategies of the n players. It has the form

$$
X=\prod_{i=1}^{n} X_{i}
$$

where each X_{i}, the set of strategies of player i, is a separable topological space (i.e. each X_{i} is a topological space containing a countable subset S_{i} which verifies that $\bar{S}_{i}=X_{i}$, where \bar{S}_{i} denotes the smallest closed set containing S_{i}), and
3. H is the payoff function given by:

$$
\begin{aligned}
H: & X \times \Omega \longrightarrow \mathbf{R}^{n} \\
& (x \cdot \omega) \longrightarrow H(x, \omega):=\left(H_{1}(x, \omega), H_{2}(x, \omega), \ldots, H_{n}(x, \omega)\right)
\end{aligned}
$$

where, for every $i \in\{1 \ldots, n\}, x \in X$ and $\omega \in \Omega, H_{i}(x, \omega)$ is the payoff for the i-th player if x is played and the state of nature is ω. We suppose that H is measurable as a function of ω (for all x) and continuous as a function of x (for all ω).

Observe that the model described above is quite general. The condition of separability for the X_{i} is only a technical one. The properties of measurability and continuity of H are not very restrictive but necessary if we want the model to be reasonably handy.

For every $\omega \in \Omega$, we denote by H_{ω} the function which assigns $H(x, \omega)$ to every $x \in X$. Obviously, $\left\langle X, H_{\nu}\right\rangle$ is a normal form game for every ω. Bearing this in mind, we give the following definition.

Definition 2 For every $x \in X$, the Nash equilibrium indicator of x is the function $N_{x}: \Omega \longrightarrow\{0.1\}$ given by:

$$
N_{x}(\omega)= \begin{cases}1 & \text { if and only if } x \text { is a Nash equilibrium of }\left\langle X, H_{\omega}\right\rangle \\ 0 & \text { otherwise }\end{cases}
$$

This Nash equilibrium indicator function describes the possibilities of a particular combination of strategies x to be a Nash equilibrium. In fact, it would be desirable that $\lambda_{x} \equiv 1$. If such an x exists, it could be our proposal for the random game. Nevertheless, that will rarely be the case, so we should propose a concept which can be used as a solution in general. This is what we do next but first let us prove that, in a random game as in Definition 1, the set $\left\{\omega \in \Omega / N_{x}(\omega)=1\right\}$ is in \mathcal{A} (for all $x \in X$). Namely, fix $x \in X$ and denote $\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)$ by $\left(x_{-i}, x_{i}^{\prime}\right)$, for any $x_{i}^{\prime} \in X_{i}$. Now, taking into account the continuity of every H_{ω}, we can write:

$$
\begin{aligned}
\{\omega & \left.\in \Omega / N_{x}(\omega)=1\right\}= \\
& =\left\{\omega \in \Omega / \forall i \in\{1, \ldots, n\}, \forall x_{i}^{\prime} \in X_{i}, H_{i}(x, \omega) \geq H_{i}\left(\left(x_{-i}, x_{i}^{\prime}\right), \omega\right)\right\}= \\
& =\left\{\omega \in \Omega / \forall i \in\{1, \ldots, n\}, \forall x_{i}^{\prime} \in S_{i}, H_{i}(x, \omega) \geq H_{i}\left(\left(x_{-i}, x_{i}^{\prime}\right), \omega\right)\right\}= \\
& =\bigcap_{i=1}^{n} \bigcap_{x_{i}^{\prime} \in S_{i}}\left\{\omega \in \Omega / H_{i}(x, \omega) \geq H_{i}\left(\left(x_{-i}, x_{i}^{\prime}\right), \omega\right)\right\} .
\end{aligned}
$$

which clearly belongs to \mathcal{A} because H is measurable as a function of ω and every S_{i} is a countable set.

Now we can define our equilibrium concept.
Definition 3 A combination of strategies $x \in X$ is said to be a maximum likelihood Nash equilibrium (ML.VE) if and only if

$$
N(x) \geq N(y) \forall y \in X
$$

where the function $N: X \longrightarrow[0,1]$ is given by:

$$
V(x):=P\left\{\omega \in \Omega / N_{x}(\omega)=1\right\} .
$$

Clearly, the only MLNE in the example proposed in the introduction of this paper is. as desired, (even,even). However, we can ask ourselves when a certain random game has at least one MLNE. This is what we deal with next. First we prove the following lemma.
Lemma 1 Let $<(\Omega, \mathcal{A}, P), X, H>$ be a random game as in Definition 1 and $\left\{x_{n}\right\}_{n \geq 1}$ a sequence in X such that $\lim _{n \rightarrow \infty} x_{n}=x_{0} \in X$. Then, if the sequence $\left\{N\left(x_{n}\right)\right\}$ converges,

$$
N\left(x_{0}\right) \geq \lim _{n \rightarrow \infty} N\left(x_{n}\right)
$$

Proof. For all $n \in\{0.1,2, \ldots\}$ define $A_{n}:=\left\{\omega \in \Omega / N_{x_{n}}(\omega)=0\right\}$, and take $\omega_{0} \in A_{0}$. Clearly, x_{0} is not an equilibrium of the game $G_{\omega_{0}}=\left\langle X, H_{\omega_{0}}\right\rangle$. Besides, the continuity of $H_{\omega_{0}}$ implies that the set of Nash equilibria of $G_{\nu_{0}}$ is closed in X and, hence, there exists a neighbourhood $E_{\omega_{0}}$ of x_{0} such that

$$
N_{x}\left(\omega_{0}\right)=0 \quad \forall x \in E_{\nu_{0}} .
$$

On the other hand, the convergence of $\left\{x_{n}\right\}$ to x_{0} implies that

$$
\exists k \in \mathbf{N} \forall n \geq k ; x_{n} \in E_{\omega_{0}}
$$

Now, the last two conditions lead to

$$
\exists k \in \mathbf{N} \forall n \geq k ; N_{x_{n}}\left(\omega_{0}\right)=0
$$

In summary:

$$
\forall \omega_{0} \in A_{0} \exists k\left(\omega_{0}\right) \in \mathbf{N} \forall n \geq k\left(\omega_{0}\right) ; \omega_{0} \in A_{n} .
$$

This means that

$$
A_{0} \subset \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_{n}=\liminf _{n \rightarrow \infty} A_{n}
$$

which implies that

$$
1-N\left(x_{0}\right)=P\left(A_{0}\right) \leq P\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\liminf _{n \rightarrow \infty} P\left(A_{n}\right)=1-\lim _{n \rightarrow \infty} N\left(x_{n}\right) .
$$

From this fact the result can be immediately derived.
Now we are able to prove the following theorem.
Theorem 1 Every random game $<(\Omega, \mathcal{A}, P), X, H>$ satisfying that X is compact has at least one MLNE.

Proof. Since the image of N is bounded, it has a supremum M. Hence, we can construct a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} N\left(x_{n}\right)=M$. The compactness of X ensures the existence of a subsequence $\left\{x_{n_{k}}\right\}$ and a point $x_{0} \in X$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x_{0}$. Then, applying Lemma 1 we conclude:

$$
N\left(x_{0}\right) \geq \lim _{k \rightarrow \infty} V\left(x_{n_{k}}\right)=M \geq N(x) \text { for every } x \in X
$$

In other terms, x_{0} is an MLNE.

Summarizing, we have introduced the MLNE and proved its existence for a rather general class of random games. In this process, we have defined a function N which measures the possibilities of every combination of strategies x to be a Nash equilibrium. Such a function allows, for instance, to give not only an MLNE but also its level of likelihood.

However there are situations where the function N is identically equal to zero. In that case, every $x \in X$ is trivially an MLNE. In the following theorem we present two conditions sufficient to assure that this is not the case.

Theorem 2 If $<(\Omega, \mathcal{A}, P), X, H>$ is a random game and one of the following two conditions is verified

1. X is countable and the event $A:=\left\{\omega \in \Omega /<X, H_{\omega}>\right.$ has at least one. Vash equilibrium $\}$ satisfies that $P(A)>0$,
2. Ω is finite and, for an $\omega \in \Omega$ with $P(\{\omega\})>0,<X, H_{\omega}>$ has at least one .Vash equilibrium.
then the function N. defined as in Definition 3, is not identically equal to zero.

Proof. If Condition 1 is fulfilled then

$$
\begin{gathered}
0<P(A)=\int_{A} d P \leq \int_{A} \sum_{x \in X} N_{x}(\omega) d P(\omega)=\sum_{x \in X} \int_{A} N_{x}(\omega) d P(\omega)= \\
=\sum_{x \in X} P\left\{\omega \in A / N_{x}(\omega)=1\right\} \leq \sum_{x \in X} N(x)
\end{gathered}
$$

and hence we can conclude that there exists $x \in X$ such that $N(x)>0$. If Condition 2 is fulfilled then, if x is an equilibrium of $\left\langle X, H_{\omega}\right\rangle$ and $P(\{\omega\})>0$, we can obviously assure that $N(x)>0$.

So, in Theorem 2 above, we have proved that, in many practical situations. the concept of MLNE is not a trivial one (in fact, we will often deal with random games of the type "one game is going to be played out of a finite list of games (with Nash equilibria) each of them having a positive and known probability of being played" which clearly falls in Condition 2. However, it is convenient to modify the Definition 3 if, in the corresponding random game, N is identically equal to zero. A nontrivial case when this can happen is
when some of the random variables H_{x} (we denote by H_{x} the function which assigns $H(x, \omega)$ to every $\omega \in \Omega)$ are absolutely continuous. Observe that, although in these situations $N(x)=0$ for all $x \in X$, some x can be such that their corresponding events $\left\{\omega \in \Omega / N_{r}(\omega)=1\right\}$ bear more density of probability than others' corresponding events do and, hence, still makes sense to select a maximum likelihood Nash equilibrium. In the next section we present the redefinition of the MLNE when $N \equiv 0$.

3 An Alternative Maximum Likelihood Equilibrium Concept

Let us consider a random game $<(\Omega, \mathcal{A}, P), X, H>$ such that its corresponding N defined as in Definition 3 is identically equal to zero. Now, let us make the following suppositions:

S1 Each X_{i} is a metric space (with distance d_{i}) which verifies that, if we denote the open and closed balls with center x_{i} and radius δ by $B\left(x_{i}, \delta\right)$ and $B\left[x_{i}, \delta\right]$ respectively, $\overline{B\left(x_{i}, \delta\right)}=B\left[x_{i}, \delta\right]$. for all $x_{i} \in X_{i}$ and $\delta>0$. We denote by $C(x, \delta)$ and $C[x, \delta]$ the sets $\prod_{i=1}^{n} B\left(x_{i}, \delta\right)$ and $\prod_{i=1}^{n} B\left[x_{i}, \delta\right]$ respectively.

S2 There is a measure $\mu: X \longrightarrow[0, \infty]$ satisfying:

1. $\mu(C[x, \delta])>0$ for every $x \in X$ and every $\delta>0$, and
2. For every $\varepsilon>0$, there exist $\rho>0$ and $r>0$ such that, for every $\delta \in(0, \rho]$ and every $x, y \in X$ verifying that

$$
\max _{1 \leq i \leq n} d_{i}\left(x_{i}, y_{i}\right) \leq r,
$$

it results that

$$
\left|\frac{\mu(C[x, \delta])}{\mu(C[y, \delta])}-1\right| \leq \varepsilon
$$

The existence of a measure defined on X is a necessary supposition to define a kind of probability density function containing the information about the Nash equilibria. Apart from that, S1 and S2 are only technical conditions
and not very restrictive; for instance, if the sets X_{i} are euclidean spaces and μ is the Lebesgue measure, S1 and S2 are fulfilled.

Now we can redefine the MLNE for this particular case.
Definition 4 Let us consider a random game $<(\Omega, \mathcal{A}, P), X, H>$ satisfying S1 and S2 and such that its corresponding N defined as in Definition 3 is identically equal to zero. Then, $x \in X$ is an MLNE of R if

$$
f(x) \geq f(y) \quad \forall y \in X
$$

where

$$
f(x):=\underset{\delta \rightarrow 0^{+}}{\limsup } \frac{P\left(C[x, \delta]^{*}\right)}{\mu(C[x, \delta])}
$$

(being $Y^{*}:=\left\{\omega \in \Omega / \exists y \in Y, N_{y}(\omega)=1\right\}$ for any $Y \subset X$).
Now we are able to prove an existence theorem for this new version of the MLNE. For not to enlarge the paper unnecessarily we only provide a sketch of the proof.
Theorem 3 Every random game R in the conditions of Definition 4 and verifying that X is compact has at least one MLNE as introduced in that definition.

Proof (sketched). First, using S1, prove that, for every $x \in X$ and every $\bar{\delta}>0, C(x, \delta)^{*}$ and $C[x, \delta]^{*}$ are in \mathcal{A}. With this and S2 prove that, if $\left\{x_{n}\right\}_{n \geq 1}$ a sequence in X such that $\lim _{n \rightarrow \infty} x_{n}=x_{0} \in X$ and verifying that the sequence $\left\{f\left(x_{n}\right)\right\}$ converges, then

$$
f\left(x_{0}\right) \geq \lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

Now, using the compactness of X , we can immediately conclude the proof.
Observe that the revised definition is only suitable for random games with $N \equiv 0$. Namely, if there exists $x \in X$ such that $N(x)>0$, then

$$
\begin{gathered}
f(x)=\limsup _{\delta \rightarrow 0^{+}} \frac{P\left(C[x, \delta]^{*}\right)}{\mu(C[x, \delta])} \geq \limsup _{\delta \rightarrow 0^{+}} \frac{P\left(\{x\}^{*}\right)}{\mu(C[x, \delta])}= \\
=\frac{N(x)}{\mu(\{x\})}=\infty \text { if } \mu(\{x\})=0 .
\end{gathered}
$$

This means that, if μ is a non-atomic measure, for every $x \in X$ with $N(x)>$ $0, f(x)=\infty$. Hence, in this case, f is not a good criterium to select the MLNE.

4 References

[1] Borm P.E.M.. Cao R., García-Jurado I. and Méndez-Naya L.: Weakly strict equilibria in normal form games. Discussion Paper. University of Santiago de Compostela (1993).
[2] Owen G.: Game Theory: 2nd Edition. Academic Press.

Ricardo Cao, Departamento de Matemáticas, Úniversidad de La Coruña, Campus da Zapateira s/n,
15071 La Coruña, SPAIN

IN 1992 REEDS VERSCHENEN

```
532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen Refereed by Prof.Dr. H. Verbon
```

533 J.C. Engwerda, L.G. van Willigenburg LQ-control of sampled continuous-time systems Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{*} X^{-1} A=Q$. Refereed by Prof.dr. J.M. Schumacher

535 Jacob C. Engwerda
The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs Effectivity functions and associated claim game correspondences Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink Validation of simulation models: mine-hunting case-study Refereed by Prof.dr.ir. C.A.T. Takkenberg
538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks Refereed by Prof.dr. S.H. Tijs

539 A. van Schaik Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert
540 J.J.G. Lemmen and S.C.W. Eijffinger The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma
Internationale Joint Ventures Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen
Verification and validation of simulation models Refereed by Prof.dr.ir. C.A.T. Takkenberg
543 Gert Nieuwenhuis
Uniform Approximations of the Stationary and Palm Distributions
of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
Multi-Product Cycling with Packaging in the Process Industry
Refereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying
LQ-problem
Refereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen Refereed by Prof.dr. P.W. Moerland

548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten
551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart
Towards an axiomatization of orderings
Refereed by Prof.dr. P.H.M. Ruys
553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen
556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher
557 Ton Geerts
Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher
558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaibi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma
560 Ton Geerts
Free end-point linear-quadratic control subject to implicit conti-nuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Prof.dr. B.B. van der Genugten
562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper
565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys
566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence Communicated by Dr. Th.E. Nijman

567 Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts
The value of information in a fixed order quantity inventory system
Communicated by Prof.dr. A.J.J. Talman
569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments

573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructuur
574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma
576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs
577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys
578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts

579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts
Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems
Communicated by Prof.dr. F.A. van der Duyn Schouten
580 H.G. Barkema
The Impact of Top Management Compensation Structure on Strategy Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen
Aan de lijn of aan het lijntje: wordt slank produceren de mode?
Communicated by Prof.dr. S.W. Douma
582 Willem Haemers
Distance Regularity and the Spectrum of Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove
Strategic Marketing, Production, and Distribution Planning of an
Integrated Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
584 J. Ashayeri, F.H.P. Driessen
Integration of Demand Management and Production Planning in a
Batch Process Manufacturing System: Case Study
Communicated by Prof.dr. F.A. van der Duyn Schouten
585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt
Blending Modelling in a Process Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst
Application of Mixed Integer Programming to
A Large Scale Logistics Problem
Communicated by Prof.dr. F.A. van der Duyn Schouten
587 P. Jean-Jacques Herings
On the Structure of Constrained Equilibria
Communicated by Prof.dr. A.J.J. Talman

IN 1993 REEDS VERSCHENEN

```
588 Rob de Groof and Martin van Tuijl
The Twin-Debt Problem in an Interdependent World
Communicated by Prof.dr. Th. van de Klundert
589 Harry H. Tigelaar
A useful fourth moment matrix of a random vector
Communicated by Prof.dr. B.B. van der Genugten
```

590 Niels G. Noorderhaven
Trust and transactions; transaction cost analysis with a differential behavioral assumption
Communicated by Prof.dr. S.W. Douma

```
591 Henk Roest and Kitty Koelemeijer
Framing perceived service quality and related constructs
A multilevel approach
Communicated by Prof.dr. Th.M.M. Verhallen
```

592 Jacob C. Engwerda
The Square Indefinite LQ-Problem: Existence of a Unique Solution
Communicated by Prof.dr. J. Schumacher
593 Jacob C. Engwerda
Output Deadbeat Control of Discrete-Time Multivariable Systems
Communicated by Prof.dr. J. Schumacher
594 Chris Veld and Adri Verboven
An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices
Communicated by Prof.dr. P.W. Moerland
595 A.A. Jeunink en M.R. Kabir
De relatie tussen aandeelhoudersstructuur en beschermingsconstructies Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers
Quasi-symmetric designs related to the triangular graph
Communicated by Prof.dr. M.H.C. Paardekooper
597 Noud Gruijters
De liberalisering van het internationale kapitaalverkeer in histo-risch-institutioneel perspectief
Communicated by Dr. H.G. van Gemert
598 John Görtzen en Remco Zwetheul
Weekend-effect en dag-van-de-week-effect op de Amsterdamse effectenbeurs?
Communicated by Prof.dr. P.W. Moerland
599 Philip Hans Franses and H. Peter Boswijk
Temporal aggregration in a periodically integrated autoregressive process
Communicated by Prof.dr. Th.E. Nijman

600 René Peeters
On the p-ranks of Latin Square Graphs
Communicated by Prof.dr. M.H.C. Paardekooper

Bibliotheek K. U. Brabant

17000011605277

[^0]: -AMS-classification 90D10

