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CYCLIC POLLING SYSTEMS:
LIMITED SERVICE VERSUS BERNOULLI SCHEDULES

J.P.C. Blanc
Tilburg University, Faculty of Economics

P.O. Box 90153~ 5000 LE Tilburg, The Netherlands

Abstract

The power-series algorithm, an iterative numerical technique for
the evaluation of the joint queue length distributions for a broad
class of multi-queue systems, is applied to cyclic polling systems
with a single server. The performances of two service disciplines
are compared: limited service and Bernoulli schedules. To a cer-
tain extent the properties of the two service disc.iplines are
quite similar, but some striking differences have also been found.
The numerical results suggest some general properties of the mean
waiting times at the various stations, which may be helpful in
deriving better approximations for these quantities.

Keywords: cyclic polling, limited service, Bernoulli schedules,
waiting time, power-series algorithm, heavy traffic.
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1. Introduction
The power-series algorithm is a powerful means for evaluating perfor-

mance measures of systems consisting of a moderate number of queues. This
algorithm is based on power-series expansions of the state probabilities
as functions of the load of a system in light traffic. The coefficients of
these expansions are computed according to a recursive scheme. The e-algo-
rithm, cf. Wynn [20], is used to improve the convergence of the series in
heavy traffic. We refer to Blanc [2,3] for a discussion of the power-
series algorithm. The purpose of this paper is to apply this algorithm to
multi-queue models for computer-communication systems, in which a token is
passed for access to a single communication channel. In particular, we
will compare performance measures of cyclic polling systems with limited
service disciplines with those of systems with Bernoulli schedules. On the
one hand, limited service seems to be the more preferable discipline since
it is a deterministic rule which leads to a bounded number of services
during a cycle of the server along the queues. It may be expected that
Bernoulli schedules will lead to stronger fluctuations in waiting times.
On the other hand, models with Bernoulli schedules seem to be easier to
analyse and to optimize, because the parameters of this rule are real-
valued, and because this rule requires no memory. Because the power-series
algorithm is based on representations of queueing models as Markov-pro-
cesses, it is indeed easier, in the sense of computing time and storage
requirement, to obtain results for systems with Bernoulli schedules than
for systems with limited service by means of this algorithm.

There exist only a few analytical results for models with the above
mentioned service disciplines. The most general result is the conservation
law for systems without switching times, cf. Kleinrock [11], and the pseu-
do-conservation law for systems with Bernoulli schedules and with switch-
ing times, cf. Tedianto [18]. Cooper [8] derived a set of linear equa-
tions, of which the solution determines the mean waiting times in systems
with exhaustive service (a limiting case of both disciplines considered in
this paper). Models with two queues and 1-limited service have been solved
with the technique which uses Riemann-Hilbert boundary value problems,
cf., e.g., Boxms and Groenendijk [6]. Several authors have proposed ap-
proximate approaches. Approximations for models with 1-limited service can
be found in, e.g., Kuhn [12], Arndt and Sulanke [1], Boxma and Meister
[4,5] and Srinivasan [15]. Fuhrmann and Wang [9] derive approximations for
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the mean waiting times in models with (K-)limited service. Servi [13] dis-
cusses an iterative scheme for approximating the mean waiting times for
models with Bernoulli schedules. Servi and Yao [14] derive upper and lower
botinds for M~G~1 vacatíon models with (K-)límited service and with
Bernoulli schedules. Finally, we refer to Takagi [16,1~] and Boxma [~] for
surveys on polling systems.

The discussion in the present study will be restricted to models with
zero switching times, Poisson arrival processes, exponential service
times, and infinite buffers. The paper contains several numerical examples
and discusses some light and heavy traffic properties of the mean waiting
times. The organisation of the paper is as follows. The multi-queue models
with cyclic polling will be described in section 2. Section 3 contains the
balance equations for the state probabilities for models with limited ser-
vice (those for models with Bernoulli schedules can be found in Blanc
[3]). Waiting times will be discussed in section 4. Light traffic asymp-
totes of the mean waiting times have been derived from the recursive
scheme of the power-series algorithm; heavy treffic asymptotes have been
found with the aid of numerical experiments. Examples of cyclic polling
systems for which data are listed in tables will be described in section
5. The fínal section 6 contains some conclusions based on numerical re-
sults. More detailed information on the examples can be found in the
appendix.

2. The multi-queue model
The system consists of s queues and a single server. Jobs arrive at

queue j according to a Poisson process with rate ~j, j- 1,...,s. Each
queue may contain an unbounded number of jobs. Service times of jobs at
queue j are assumed to be negative exponentially distributed with mean
l~u~, j-1,...,s. The arrival and service processes are assumed to be inde-
pendent. The server inspects the queues in a cyclic order (1,2,...,s,1,2,
...). At each queue jobs are served in order of arrival. The number of
jobs which are served during a visit of the server to a certain queue
depends on the service discipline at that queue. Performance measures for
two service disciplines will be compared in this paper. The first disci-
pline is called limited service. This rule can be described by a vector of
positive integers K-(K1,...,Ks). When the server visits queue j, at most
Kj jobs are served at this queue. The server proceeds to the neri. queue
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when either K, jobs have been served or queue j has become empty,Jj-1,...,s. The second discipline uses Bernoulli schedules. This rule con-
sists of a vector of probabilities q-(ql,,,,,qs), When the server ar-
rives at a queue, at least one job is served, unless this queue is empty
(in this case the server immediately proceeds to the next queue). After
the completion of s service at queue j the server starts serving another
job at this queue with probability qj if queue j has not yet been emptied;
otherwise the server proceeds to the next queue ( j-1,...,s). The times
which are needed for switching from one queue to another will be neglected
in the present study. It should be noted that the power-series algorithm
can be used to study a much broader class of polling systems, e.g. with
Coxian switching times, with Coxian service times, with finite buffers and
with polling according to a table or with random polling, see also Blanc
[3l.

It holds for both service disciplines that the distribution of the
total amount of work in the system is equal to that of an M~G~1 system
with arrival rate n and with ~1 and ~2 as first two moments of the service
time distribution:

n :- ~ aj. R1 :- ~ ~ N , R2 :- 2 ~ ~ (~)2- (2.1)
j-1 J-1 j J-1 J

Therefore, the traffic intensities p of the polling systems are defined as

s ~. s ~
p -' n ~1 - n ~ ~ ~ - F ~ ,

j-1 j j-1 j
(2.2)

and a necessary and sufficient condition for ergodicity of the systems is
p( 1. It will be assumed throughout that the systems are in steady state.
Finally, we introduce the following load-independent quantities:

aj :- aj~P. Ylj -- aj~uj, j- 1,...,s. (2.3)

Note that definitions (2.1), (2.2) and (2.3) imply the following relations

s s
~ nj - 1. ~ aj - P - S, ~2 - 2 H1 ~ N . (2.4)

J-1 j-1 1 j-1 J
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3. Balance eauations for limited service models
The power-series algorithm has been described in Blanc [3] for sys-

tems with Bernoulli schedules. Below we will only present the balance e-
quations for the state probabilities of systems with limited service. The
recursive scheme of the power-series algorithm can be derived from these
equations in the same way as in Blanc C3]. Let Nj denote the number of
jobs in queue j(waiting or being served), j-1,...,s. In order to trans-
form the queue length process of limited service systems into a Markov
process we introduce a polling table and a supplementary variable H, in-
dicating the actual position in the table. The polling table is described
as follows. Let L:- ~S-1 K be the length of the table. The mapping ~C(h)J- jfrom table entry to queue number is defined by

j-1 j
~(h) - j. if ~ Ki C h C ~ Ki. for j - 1,....s, h- 1,...,L,i-1 i-1

(3.1)

and it is continued as a periodic function by the convention

.C(h t k L) - ,~(h) , h E{1,...,L}, k E Z. (3,2)

The value of the variable H is increased by one whenever a service has
been completed or when queue ~Z(H) is empty, unless the whole system has
become empty; in the latter case the value of H is set and kept equal to 1
until a new arrival occurs. The value of ,C(H) determines the queue to
which the server ís attending. Let n-(nl,...,ns) be a vector with non-
negative integer entries. The state probabilities are defined as follows:

p(n,h) :- Pr{Nj-nj, j-1,...,s; H-h}, n E Iis, h- 1,...,L. (3.3)

Let I{E} stand for the indicator function of the event E, and let e. be a
Jvector with zero entries except an entry of one at the jth position

(J-1.....s). The balance equations for the state probabilities (3.3) in
models with a limited service discipline are readily verified to be, for
h- 1,...,L, n E ns,
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s s
[PJ~1 aj t u~(h)] P(n.h) - P~ aj p(n-ej,h) I{nj~0; nj)1 if j-.~(h)}

j-1

L
} ~ u.~(h-i) p(nte.~(h-i)~h-i) I{nR(v)-0, v-h-itl,...,h-1}
i-1

' a~(h)P P(0,1) I{n-éR(h)~~(i)~.~(h),i-1,...,h-1}, n~(h)~0; (3.4)

s L
P J~1 aj P(0,1) - hFl u~(h) p(eR(h),h). (3.5)

Note that a state (n,h) with n~(h)-1 can be entered through an arrival at
queue h only if n- e~(h) and if h is the first entry on the polling table
with the value ~(h), h-1,...,L. Further, it should be noted that the bal-
ance equations (3.4) and (3.5) are valid for models with arbitrary polling
tables, i.e. for arbitrary surjective mappings ~:{1,...,L} -~ {1,...,s}.
The examples in this paper, however, are restricted to models with limited
service, cf. (3.1). The reader is referred to Blanc C3] for details con-
cerning the derivation of a recursive scheme from the balance equations,
the computation of moments of the joint queue length distribution, and the
application of the e-algorithm.

4. Waiting times
This section is concerned with a discussion of the stationary dis-

tributions of the waiting times Wj (excluding service times) of jobs ar-
riving at queue j(j-1,...,s), for both limited service and Bernoulli
schedules. Firstly, some general relations will be reviewed. Then, two
terms of the power-series expansions of the mean waiting times in light
traffic will be derived from the recursive scheme of the power-series al-
gorithm. Finally, several properties concerning the heavy traffic behavi-
our of the mean waiting times, which have been found on the basis of
numerical data, will be discussed.

The power-series algorithm computes the joint queue-length distribu-
tion. The waiting time distributions are related to this distribution
through (Blanc C3]):

N. -a.p(1-z)W.
E{z ~} - 1 t(1-z) E{e ~ ~}. ~z~ ~ 1. j- 1.....s. (4.1)n,P



Let W be the waiting time of an arbitrary job. Then, with (2.2) and (2.3),

s ~. s
E{W} - ~ ~ E{W,} - ~ ~ a E{W.}.

j-1 ~ 1 j-1 j J (4.2)

We recall that the mean waiting times at the various queues of a polling
system satisfy the following conservation law, cf. Kleinrock [11], Boxma
[7].

s -~ s ~.-~~2J~1 ~,j E{Wj} - 1-p j~l uj - 1-p 2~31' (4-3)

Next, we discuss the light traffic behaviour of the mean waiting
times. For this purpose we introduce for j-1,...,s, q-(ql,...,qs), the
quantities:

-(j) :- 2 s~l rljti i~l ~v,
i-1 v-0 jtv

2
S n n

`f(j.q) :- 2 ~ q i- 2 q. ~-;
i-1 i ki J uj

here, indices exceeding s should be read modulo s.

Theorem la. For cycltc poZling systems r~ith Bernoulli schedules q and mith
exponenttaZ service time dtstributtons it holds for j - 1,...,s, that,

E{Wj} - p SS1 t p2 ~nj ~~1 t-(j) t~(j.9)] t o(p3), as p.~ o. (4.4)

Theorem lb. For cyclic polling systems míth Zímited service díscipline R
and u~ith exponenttat service ttme dtstrtbutions the por~er-sertes expan-
sions (4.4) hold mith qj replaced by I{Kj ~ 2}, j- 1,...,s.

Proof. In order to derive these light traffic asymptotes we determine
f-rst the coefficients of the power-series expansions of the state prob-
abiïities and the mean queue len ths u to the rd

g p 3 power of p according to
the recurrence relations of the power-series algorithm (see Blanc [3]).
Thís leads for Bernoulli schedules to: for j-1,...,s, as p~, 0,



8

S r S
E{Nj} -~j p t aj p2 ~S t aj p3 L~j 2~ t-(j) t`f(j.9)] t ~(P4).1 1

Then, the coefficients of the power-series expansions of the mean waiting
times follow with the sid of Little's formula, cf. (4.1), o

The first term of the coefficient of p2 in the power-series expansions of
the mean waiting times is independent of the order in which the queues are
placed and of the service disciplines at the queues. The term -(.) re-
flects the influence of the order in which the server visits the queues,
and the term `Y(.,.) depends on the service disciplines at the queues. Note
that the coefficients of the power-series expansions of the mean waiting
times up to the mth power of p, m-1,2,..., are the same for all K. ~ m,i -
i-1,...,s, in systems with limited service. It is possible, but increas-
ingly tedious, to determine more coefficients of the power-series expan-
sions of the mean waiting times in a similar way. The appendix contains a
discussion of the above mentioned functions and properties for some
special cases.

For the description of heavy traffic properties we introduce the
limits:

~. :- lim ( 1-p) E{W,}, j - 1,...,s, ~ :- lim (1-p) E{W}, (4.5)J p~l J 0 p~,l

- -~ 0xj :- lim E{Wj} ( 1-p) , j- 1,...,s, x~ :- lim E{W} -~
PT1 PT1 (1-P)

The conservation law (4.3) and relation (4.2) imply that

s ~2
j~l nj ~j - 2~1~

s
~~ - ~1 ~ aj ~j,

j-1

(4.6)

s S2 s
~ nj xj -- 2S . x0 - R1 ~ a. x.. (4.7)
j-1 1 j-1 J J
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Theorem 2. If the service disciplfne is exhaustíve at each queue, i.e.
qj - 1, j-1,...,s, then the Zimits deftned in (4.5) are given by:

1-r~j ~2
j - 1,...,s.

~j - ~i-1 ni(1-ni) 251~
(4.8)

Proof. From the results of Cooper [8] it can be deduced that when the ser-
vice discipline is exhaustive at each queue, it holds that c~j ~ bj-1(1),
j-1,...,s, where the quantities bj(k), j-1,...,s, k-1,...,s-1, satisfy the
following set of sx(s-1) linear equations (read bj{s(k) for bj(k) and ~,jts
for nj whenever jCl}:

s-1-k Z~'-h s-2-k
Í1-njtl) sj(k) - h~o 1-~ bj-1-h(1) ' h~C ~j-h bj-1-h(k}irh)

s-1-k

} h~0 n~-h bj-1-h(2rh) I{hCs-2},

It is rather tedious, but straightforward, to verify with the sid of (2.4)
that solutions of this set of equations are of the form

s-1-k

bj(k) ' C ~ nj-i'i-0
- 1,.. ,s, k - 1,.. ,s-1.

This implies that the quotient wj)(1-r~j) has the same value for each j,
j-1,...,s. The constant C can be determined with the aid of the conserva-
tion law (4.3). o

The proof and the assertion of theorem 2 remain valid for general service
time distributions if p2 is read as the second moment of the job-averaged
service time distribution, cf. (2.1), because the set of equations for
bj(k), j-1,...,s, k-1,...,s-1, only depends on the mean service times, and
because the conservation law (4.3) holds for general service time dis-
tributions.

Property 1. The Limtt ~~, j-1,...,s, ts posittve if and only if (in the

cases of Limited service and Bernoullí schedules, respectively)
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aj~Kj - max {ai~Ki}. aj(1-9j) - max {ai(1-qi)}. (4.9)i-1 " 's i-1. ,s

Remark. When the lefthand sides of (4.9) are close to, but not equal to,
the maximum at the righthand sides of these relations for some j,
j-1,...,s, the limit wj is zero, but E{Wj} has a large finite limit as p T
1. That only the arrival rates, and not the service rates, play a role in
property 1, can be explained by the fact that a certain (integer) number
of jobs is served during each cycle of the server along the queues accord-
ing to the limited service discipline as well as to the Bernoulli sche-
dules. If service disciplines would be considered in which the server
spends a certain amount of time at each queue during a cycle and in which
service of a job can be interrupted and resumed in a later cycle, then it
might be expected that a similar property as property 1 holds, but with
the arrival rates replaced by the relative loads at the queues. Note that
the relations (4.9) hold for each queue in systems with exhaustive service
at each queue (Kj -~ or qj - 1, j-1,...,s). o

As a consequence of property 1 the e-algorithm which is being used to ac-
celerate the convergence of the power-series occuring in the algorithm,
should not be modified as described in Blanc [3] for moments of the mar-
ginal queue length distributions at queues where (4.9) does not hold. An-
other implication is that approximations for mean waiting times in polling
systems, which do not possess property 1 will behave poorly under heavy
traffic circumstances. For instance, the approximations for the mean wait-
ing times in Boxma and Meister [4] have the right heavy traffic limits in
case of exhaustive service (formula (17) in [4J) according to theorem 2,
but they do not have the proper heavy traffic behaviour in case of 1-
limited service (formula (ZO) in [4]) according to property 1.

Corollary 1. If there exists a queue j such that for each i, i-1,...,s,
i~j,

ai~Ki ~ aj~Kj, respectívely ai(1-qi) ~ aj(1-qj), (4.10)

then property 1 impltes that wi - 0 for each i, í-1,...,s, itj, and that
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1 ~2wj - ~J 251. ~0 - 2 uj R2. (4.11)

Remark. The above corollary is a consequence of property 1 and of (4.~).
Watson [19] derived a similar result for systems with 1-limited service
and non-negligíble switching times. o

Property 2. If the system consists of t~o queues, if the service dis-
cipline is BernouZli at each queue, and íf al(1-ql) ) a2(1-q2), then:

~
ulu2 Zs t n2Cu2(1-q2)-~lql]1 1~2 - o. x2 - al(1-ql) - 82(i-qZ) u2;

and the quantities ul, c.i0, xl, and x0 foZZoai from (4.~).

(4.12)

Remark. Property 2 has been found on the basis of numerical experiments
with several values of the parameters ai, a2, y.~l, u2, ql and q2. Further,
this property agrees with the following observations. Corollary 1 implies
that c.i2-0. The denominator of x2 vanishes when al(1-ql) - a2(1-q2), which
is in agreement with property 1. In the case q1-0, q2-1, jobs at queue 2
have non-preemptive priority over jobs at queue 1. For this model it is
known (see Jaiswal [10], ~V.3) that for 0 C p C 1,

E{W2} - (1-p) E{W1} - ~ ~~1,

from which it is readily seen that px~operty 2 holds in this case. a

We did not find a general result similar to property 2 for systems with
two queues and limited service, except that u2 vanishes if a1~K1 ~ a2~K2,
by corollary 1. Only in the case that KZ - m we have found that

1 ~2 1x2 - nl 2~1 t 2x1 (K1-1). (4.13)

Note that in this case ( K2 -~ or q2 - 1) the limits x2 in ( 4.12) and
(4.13) agree when K1 - (ltql)~(1-ql).
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5. Numerical examples
This section contains descriptions of cyclic polling systems for

which data have been generated with the aid of the power-series algorithm
together with the E-algorithm (cf. Wynn [20], Blanc C3J).

In table 1 the standard deviation 6{W} of the waiting times has been
listed for symmetrical systems with limited service (Kj - K, j-1,...,s).
Table 2 contains the standard deviation of the waiting times for symmetri-
cal systems with Bernoulli schedules (qj - q, j-1,...,s). The mean waiting
time follows directly from (4.3) for symmetrical systems, and does not
depend on the service discipline. In both tables, uj - 1 for j-1,...,s.

Tables 3a and 4a show in which way the waiting time distributions de-
pend on the arrival rates and the service rates, respectively. Both tables
are concerned with models with three queues, with traffic intensity p-0.90
and with relative loads in the proportion of nl : n2 : n3 - 1: 2: 3. In
table 3a, the service rates at the three queues are equal (uj-1, j-1,2,3),
and the arrival rates are al - 0.15, ~2 - 0.30, and a3 - 0.45. In table
4a, the arrival rates at the three queues are equal (~j - 0.30, j-1,2,3),
and the service rates are ul - 2, ~2 - 1, u3 - 2~3. Because the mean wait-
ing time E{W} is equal to 9.000 for the models in table 3a, independently
of the service discipline, cf. (4.2), (4.3), this quantity has been
omitted. The value of the righthand side of the conservation law (4.3) is
equal to 10.500 for the models in table 4a. In both tables the data on the
lefthand side concern systems with a limited service discipline (K1,K2,K3)
and those on the righthand side concern systems with Bernoulli schedules

(ql,q2,q3). In these and the following tables, "dcp" stands for service
discipline. The server visits the queues in the usual order (1,2,3,1,..)
in the models in the tables 3a and 4a. Tables 3b and 4b contain data for
the same models as tables 3a and 4a respectively, but the order in which
the server inspects the queues has been reversed (1,3,2,1,..). The routing
of the server does not seem to have a major influence on the performance
measures, compared with the influence of the parameters of the service
disciplines. Still, altering the polling order may lead to differences in
mean waiting times of more than lOx.

Tables 5a and 5b show the influence of a relatively heavily loaded
queue on the mean waiting times at queues which are four times less heavi-
ly loaded. The parameters of the system are in the case of s queues,
s-2,...,6: ul - 1. u. - 2, -2,...,s; a- 2a. - 4J J- 1 J s;3, j-2,....s (hence,
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gZ,sl - St3); and p- 0.75. Table 6 contains data for the same models as
table 5a, but for a traffic intensity of p- 0.95. The examples concern
only service disciplines with Kj - KZ, j-2,...,s, or qj - q2, j-2,,,,,s;
therefore, the service discipline is indicated either by (K1,K2) or by
(91.92). Note that the differences in mean waiting times of the lightly
loaded queues are not negligible, although their arrival and service rates
and their service disciplines are the same. In the cases of 4, 5 and 6
queues the values of E{W3},...,E{Ws-1} lie, in this order, in between
those of E{W2} and E{Ws} for all considered service disciplines.

Although we do not have the disposal of bounds on errors for data
generated by the power-series algorithm together with the e-algorithm, we
estimate on the basis of differences between successive terms that rela-
tive errors are below 1X For almost all quantities listed in the tables,
and even below O.Olx for most quantities. In general, errors increase with
increasing traffic intensity, wíth increasing number of queues, with in-
creasing length of the polling table (L), with increasing differences in
the arrival rates and the service rates, and when equality in (4.9) is
approximated (i.e. when the mean waiting time at one or more queues pos-
sesses a large but finite heavy traffic limit). Also, errors for standard
deviations are usually larger than those for averages.

6. Conclusions
When comparing data for the waiting time distributions in systems

with a limited service discipline with those with Bernoulli schedules we
arrive at the following conclusions. Tables 1 and 2 show that Bernoulli
schedules lead to higher variances of the waiting times than limited serv-
ice disciplines in symmetrical systems. In fact, the standard deviation of
the waiting times seems to be a convex function of K for models with
limited service disciplines and a concave function of q for models with
Bernoulli schedules. It is interesting to note that while the standard
deviation of the waiting times in symmetrical systems with exhaustive
service (q-1) is larger than that in symmetrical systems with 1-limited
service (q-0) when the number of queues is small (s ~ 4), this property
does no longer hold when the number of queues increases. The limited serv-
ice disciplines and the Bernoulli schedules agree in that the mean waiting
times pass globally through similar trajectories (though continuously in
case of Bernoulli schedules and with jumps in case of limited service),
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when we consider them as functions of one parameter, e.g., Kj - K, qj - q
(j-1,...,s) or as function of Kj and qj for some j, j-1,...,s, while the
other queues have exhaustive or 1-limited disciplines. But there seems to
be no general relationship between the parameters of the Bernoulli and of
the limited service schedules, which gíve approximately the same position
on these trajectories. See tables 3, 4,5,6, and compare (4.10), which
suggests a relation between Kj and 1~(1-qj), with the observation below
(4.13). It should be noted that mean waiting times are not in every case
monotonous functions of the parameters of the service discipline; see for
instance table 3a where E{W1} is larger for ql - 0.90 then for both
ql - 0.00 and ql - 1.00 when qj is related to ql by aj(1-qj)-s1(1-ql),
j-2,3. A general property suggested by the examples, and supported by
theorems la and lb, is that E{Wj} is minimal over all disciplines K and q,
for fixed arrival and service rates, when qj-0 (Kj-1) and qi-1 (Ki-m),
i~j, i-1,...,s, and maximal in the reversed case qj-1 and qi-0, i~j,
i-1,...,s (j-1,...,s). Finally, we note that examples show that the order-
ing of the mean waiting times in certain models is not the same for all
values of p(compare, e.g., the ordering for q1-q2-0.90 in the tables 5a
and 6; see also table A.3). This is supported by theorem la (lb) and
property 1.
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Table 1. Standard deviation of the waiting time for symmetrical systemswith limited service disciplines.
s K p-.5 p-.75 p-.9 p-.95 p-.98 s K p-.5 p-.75 p--9 p-.95 p-.98
2 1 1.8350 4.246 11.187 22.67 57.092 2 1.83oi 4.237 11.174 22.66 57.08
2 3 1.8320 4.231 11.159 z2.64 57.p52 4 1.8388 4.230 11.145 22.62 57.032 5 1.8479 4.234 11.133 22.60 57.00
2 6 1.8575 4.243 11.124 22.58 56.97z 7 1.8664 4.254 11.118 z2.56 56.952 8 1.8741 4.269 11.114 22.54 56.922 9 i.8805 4.285 11.113 22.53 56.892 1o i.8857 4.302 11.115 2z.5i 56.85z 12 1.8927 4.337 11.1z6 z2.49 56.782 14 1.8968 4.371 11.146 22.47 56.742 16 1.8990 4.403 11.173 22.46 56.682 18 1.9002 4.432 11.207 22.46 56.622 20 1.9008 4.456 11.245 22.46 56.592 W 1.9oi4 4.569 12.362 25.29 64.03

3 1 1.8805 4.434 11.87 24.2 61.23 z 1.8739 4.410 11.82 24.1 61.1
3 3 1.8788 4.396 11.77 z4.1 61.03 4 1.8888 4.394 11.73 24.0 60.9
3 5 1.8991 4.4oi 11.69 23.9 60.8
3 6 1.9076 4.415 11.ó7 23.9 60.7
3 7 1.9138 4.432 11.64 23.8 60.4
3 8 1.9180 4.452 11.63 23.7 60.3
3~ 1.9254 4.6io 12.41 25.3 64.i
4 1 1.9057 4.549 12.31 25.2 64.4 2 1.8973 4.507 1z.22 z5.i 64.4 3 1.9033 4.483 12.11 24.9 63.4 4 1.9131 4.478 12.00 24.6 63.4 5 1.9214 4.485 11.90 24.3 62.
4 W 1.9345 4.624 12.42 25.3 64.

Table 2. Standard deviation of the waiting time for symmetrical systemswith Bernoulli schedules.

4 s p-.5 p-.75 p-.9 p-.95 p-.98 s p-.5 p-.75 p-.9 p-.95 p3.98
.00 2 1.8350 4.246 11.187 22.67 57.09 5 1.9213 4.624 12.62 25.9 65.9.z5 z 1.8448 4.289 11.340 23.01 57.99 5 1.9z83 4.665 12.80 26.4 67.2.50 2 1.8575 4.347 11.547 23.47 59.2z 5 1.935z 4.706 13.01 26.9 68.8.75 2 1.8748 4.430 11.849 24.i5 61.oi 5 1.9407 4.734 13.22 27.6 70.9.90 2 1.8891 4.502 12.116 24.74 62.59 5 1.9415 4.716 13.19 27.7 72.0.95 2 1.8949 4.533 12.230 25.00 63.26 5 1.9409 4.689 13.02 27.4 71.5.98 2 1.8987 4.554 12.307 25.17 63.70 5 1.94oi 4.659 12.78 26.7 70.0.99 2 1.9000 4.562 12.334 25.23 63.86 5 1.9398 4.646 12.63 26.2 68 4i.o 2 1.9oi4 4.569 12.362 25.29 64.03 5 1.9394 4.630 12.43 25.4

.
64.1

.00 3 1.8805 4.434 11.865 24.20 61.17 6 1.9316 4.677 1z.84 26.5 67.4.25 3 1.8904 4.483 12.055 24.63 62.35 6 1.9373 4.712 13.02 26.9 68.7.50 3 1.9oi9 4.542 12.z96 25.zo 63.91 6 1.9425 4.744 13.20 27.4 70.2.75 3 1.9149 4.612 12.604 25.95 66.05 6 1.9457 4.756 13.34 27.9 7z.0.90 3 1.9224 4.646 12.782 26.46 67.70 6 1.9452 4.724 13.24 27.9 72.5.95 3 1.9z43 4.644 1z.773 z6.51 68.12 6 1.9441 4.692 13.03 27.4 71.8.98 3 1.9z51 4.630 12.665 26.28 67.83 6 1.9431 4.662 12.77 26.7 70.1.99 3 1.9252 4.622 12.574 26.02 67.16 6 1.9428 4.649 12.63 26.2 68.4i.o 3 1.9254 4.610 1z.4o8 25.33 64.07 6 1.9423 4.634 12.43 25.4 64.1

.o0 4 1.9057 4.549 12.307 25.21 63.93 7 1.9388 4.713 13.0 26.8 68..25 4 1.9142 4.594 12.5oi 25.68 65.22 7 1.9434 4.742 13.1 27.2 69..50 4 1.9233 4.645 1z.734 26.25 66.86 7 1.9472 4.763 13.3 27.6 71..75 4 1.9319 4.693 12.993 26.95 68.99 7 1.9489 4.765 13.4 27.9 72..90 4 1.9352 4.696 13.059 27.28 70.39 7 1.9474 4.726 13.2 27.8 72..95 4 1.9353 4.677 12.958 27.13 70.43 7 1.9462 4.693 13.0 27.4 71..98 4 1.9350 4.65z 12.757 26.63 69.46 7 1.9452 4.663 12.8 26.6 67..99 4 1.9348 4.639 12.627 26.21 68.25 7 1.9448 4.650 1z.6 26.2 65.1.0 4 1.9345 4.624 12.4z2 25.35 64.09 7 1.9444 4.637 1z.4 25.4 64.
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Table 3a. The waiting time distributions for systems with three queues,unequal arrival rates and equal service rates.
dcp E{W1} F,{W2} E{W } o{W} dcp E{Wi} E{W2} E{W } 6{W}
111 2.445 5.048 13.820 13.746 .25 .25 .25 2.856 5.430 13.428 13.555222 2.790 5.141 13.643 13.646 .50 .50 .50 3.570 6.066 12.766 13.261333 3-216 5.264 13.419 13.534 .75 -75 .75 5-146 7.306 11.414 12.794444 3.671 5.406 13.173 13.406 .90 .90 .90 7.578 8.733 9.652 12.526666 4.583 5.727 12.666 13.253 -95 -95 .95 9.186 9.361 8.697 12.575888 5.439 6.077 12.136 12.926 .99 .99 .99 11.148 9.791 7-756 12.732123 11.828 9.158 7.952 12.005 .oo .50 .67 10.936 9.476 8.037 12.326246 11.892 9.251 7.868 11.938 -50 .75 .83 11.457 9-597 7.783 12.740
369 11-939 9.345 7-790 11.899 .80 .90 .93 11.905 9-713 7-556 13-0594812 11.969 9.424 7.723 11.785 -90 .95 -97 12.022 9.769 7.480 13.116~ 11.776 9.836 7.517 12.727 .96 .98 .99 11.990 9.810 7.463 13.032m22 2.075 5-279 13-789 13.76o i.o .50 .50 2.276 6.z99 13.042 13.462m11 1.373 5.258 14.037 13.915 1.0 .oo .33 1.696 11.173 9.986 12.596m23 2.524 11.043 9-796 12.347 i.o .50 .67 2.793 11.285 9.546 12.811m46 4.097 10.848 9.402 12.092 1.0 .75 .83 4.342 11.284 9.030 12.909m69 5-397 10.695 9.066 11.926 i.o .97 .98 9-565 10.450 7.845 12.737imi 3-547 1.530 15.798 15.z33 .o0 1.0 .67 15.106 2.681 11.177 14.143im3 15-059 2.356 11.410 13-996 .8o i.o .93 14.749 6.ioo 9.oi7 13.875zm6 14.665 3.613 io.7o3 13-562 .9o i.o .97 13-829 7.495 8.394 13.4883m9 14.3oi 4.662 1o.i23 13.220 .97 i.o .99 12.550 8.989 7.824 12.985iiW 7.371 20.504 1.873 17.795 .00 .5o i.o 17.108 14.827 2.413 16.21212~ 17.194 14.970 2.289 16.151 .80 .90 i.o 15.525 i2.o11 4.817 15.11724m 16.382 14.062 3.165 15.556 .90 .95 i.o 14.354 11.111 5.808 14.34148m 15.069 12.717 4.498 14.616 .96 .98 i.o 13.084 10.405 6.702 13.520i~ 32.977 4.859 3-768 22.649 .5o i.o i.o 28.947 5-770 4.505 20.8972~ 29-244 5-739 4.426 21.083 .75 1.o i.o 23.877 6.929 5.421 18.5034~ 23.622 7.061 5.418 18.582 .9o i.o i.o 17.715 8.370 6.515 15.36z8~ 17.229 8.563 6.549 15.506 .95 i.o i.0 14.806 9.072 7.oi7 13.912mim 3.562 21.997 2.356 18.684 i.o .5o i.o 4.647 20.467 2.806 17.875m2m 4.322 20.861 2.652 18.098 i.o .75 i.o 6.208 18.247 3.766 16.672m4m 5.635 18.907 3.517 17.072 1.0 .90 1.0 8.574 14.817 5.264 14.817~8m 7.602 15.990 4.808 15-535 i.o .95 i.o 9.998 12.687 6.209 13.754~i 1.952 1.732 16.195 15.513 i.o i.o .50 2.789 z.533 15.381 15.010~2 2.584 2.237 15.648 15.180 1.0 1.0 .75 4.124 3.787 14.1oi 14.255~4 3-725 3-156 14.654 14.59o i.o i.o .90 6.563 5.981 11.825 13.118~8 5-596 4.680 13.014 13.676 1.0 1.0 .95 8.433 7.543 10.160 12.580

Table 3b. The model as in table 3a, with the polling order reversed.
dcp E{Wi} E{W2} E{W } 6{W} dcp E{Wi} E{W2} E{W } Q{W}
111 2.484 5.017 13.827 13.749 i.o i.o 1.0 11.969 9.677 7-559 12.733444 3.742 5.340 13.192 13.417 .75 -75 -75 5-270 7.198 11.444 12.799123 11.841 9.151 7.952 12.006 .00 .50 .67 10.961 9.450 8.046 12.326
369 12.oi9 9.272 7.814 11.886 .90 .95 -97 12.158 9.636 7.524 13.11812m 17.228 14.957 2.286 16.154 .00 .50 1.0 17.084 14.827 2.421 16.211im3 15.068 2.358 11.405 13.995 .o0 1.0 .67 15.204 2.662 11.158 14.150~23 2.526 11.oi8 9.812 12.346 1.0 .oo .33 1.702 11.148 io.ooi 12.595i~ 33.010 4.931 3.710 22.661 1.0 .00 .00 1.408 5.223 14.048 13.919mim 3-367 21.989 2.218 18.674 .00 1.0 .o0 3.671 1.481 15.789 15.231~i 2.133 1.640 16.196 15.516 .oo .oo i.o 7.265 20.513 1.903 17.795
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Table 4a. The waiting time distributions for systems with three queues,equel arrival rates and unequsl service rates.
dcp E{W1} E{W2} E{W } E{W} dcp E{W1} E{W2} E{W } E{W}
111 9.095 10.147 11.203 io.149 .25 .25 .25 9.683 10.316 10.895 10.298222 9.316 10.225 11.078 10.206 .50 .50 .50 10.521 10.560 10.453 10.511333 9.566 10.320 10.932 10.272 .75 .75 .75 11.860 10.952 9.745 10.852444 9.819 10.421 10.78o io.34o .90 .90 .90 13.15z 11.343 9.054 11.183666 10.304 10.616 ]0.488 10.470 .95 .95 .95 13.666 11.530 8.758 11.318888 10.739 10.803 10.208 1o.581a .99 .99 .99 13.878 11.728 8.555 11.387123 32.432 8.794 4.326 15.184 .oo .50 .67 31.144 8.673 4.837 14.884246 31.837 8.825 4.465 15.055 .50 .75 .83 28.719 9.022 5.412 14.384369 30.905 9.044 4.671 14.869 .80 .90 .93 24.232 9.856 6.354 13.4804812 29.961 9.159 4.907 14.676 .90 .95 .97 20.654 io.55o 7.082 12.762~ 13.755 11.786 8.558 11.366 .96 .98 .99 17.130 11.212 7.815 12.052211 2.525 11.406 12.554 8.828 .50 .oo .o0 3.06o u.304 12.444 8.936811 1.664 11.574 12.729 8.656 .90 .oo .00 1.843 11.539 12.693 8.692~li 1.660 11.575 12.730 8.655 i.o .50 .50 2.835 12.143 11.959 8.979~22 2.581 11.527 12.455 8.854 l.o .90 .90 7.403 12.805 9.996 l0.068m44 4.208 11.522 11.916 9.215 1.0 .95 .95 9.526 12.639 9.398 10.521121 12.262 3.084 14.857 10.067 .00 .50 .00 12.075 3.532 14.620 10.076181 12.862 1.800 15.513 10.058 .00 .90 .00 12.772 2.002 15.408 10.0611m1 12.877 1.768 15.529 10.058 .50 1.0 .50 14.443 2.797 14.321 10.5202~2 12.824 2.519 15.046 10.130 .90 1.0 .90 16.472 6.809 10.970 11.4174m4 12.856 3.864 14.139 10.286 .95 1.0 .95 15.959 8.588 9.955 11.5oi112 16.044 17.466 4.008 12.506 .oo .oo .50 15.744 17.132 4.331 12.402118 17.786 19.254 2.235 13.092 .oo .oo .90 17.609 19.067 2.419 13.03211m 17.900 19.369 2.121 13.130 .50 .50 1.0 18.251 ]8.208 2.778 13.07922m 17.516 18.So9 2.622 12.982 .90 .90 1.0 17.770 14.665 5.300 12.57844m 16.864 17.818 3.500 12.727 .95 .95 1.0 16.741 13.480 6.433 12.21812m 33.779 11.002 2.406 15.729 .00 .50 1.0 33.300 11.068 2.522 15.6301~ 40.320 5.445 3.930 16.565 .50 1.0 1.0 37.775 6.025 4.392 16.0642~ 38.112 5.971 4.315 16.133 .75 1.0 1.0 33.78z 6.943 5.111 15.2784~ 34.240 6.896 4.990 15.375 .90 1.0 l.0 26.636 8.611 6.381 13.8768~ 28.176 8.330 6.033 14.189 .95 l.o l.0 21.403 9.860 7.293 12.852~1m 4.277 25.762 2.400 10.813 1.0 .50 1.0 5.374 24.221 3.061 10.885m2m 5.032 24.639 2.897 10.856 1.0 .75 1.0 7.006 21.911 4.057 10.991W4m 6.352 22.680 3.763 10.932 1.0 .90 1.0 9.658 18.095 5.718 11.157m8m 8.403 19.639 5.103 11.050 1.0 .95 l.0 11.397 15.520 6.854 11.257~1 2.327 2.068 18.845 7.747 1.0 1.0 .50 3.524 3.227 17.674 8.142~2 3.243 2.814 18.043 8.033 1.0 1.0 .75 5.340 4.955 15.917 8.737~4 4.853 4.145 16.619 8.539 1.0 1.0 .90 8.370 7.712 13.069 9.717~8 7.357 6.252 14.380 9.330 1.0 1.0 .95 10.457 9.467 11.203 10.376

Table 4b. The model as in table 4a, with the polling order reversed.
dcp E{W1} E{W2} E{W } E{W} dcp E{Wi} E{W2} E{W } E{W}
111 9.130 10.108 11.218 10.152 i.o 1.0 l.0 14.397 11.257 8.696 11.450444 io.oo6 10.218 io.852 io.359 .75 .75 .75 11.997 io.817 9.790 10.868123 32.491 8.792 4.312 15.196 .00 .50 .67 31.196 8.656 4.831 14.894369 31.172 8.891 4.685 14.911 .90 .95 .97 20.984 10.355 7.102 12.8141~ 40.365 5.465 3.902 16.577 1.0 .00 .o0 1.674 11.515 12.765 8.651ml~ 4.102 25.727 2.481 10.770 .00 1.0 .00 12.943 1.748 15.520 10.070~i 2.606 1.913 18.856 7.792 .oo .o0 1.0 17.951 19.329 2.130 13.137
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Table 5a. The influence of one relatively heavily loaded queue, p- 0.75.

s- 2, limited s- 2, Bernoullidcp E{Wi} E{W2} E{W} ~{W} dcp E{Wi} E{W2} E{W} ~{W}
1 1 3.037 1.351 2.475 3.588 .25 .o0 2.909 1.865 2.561 3.5952 1 2.661 2.858 2.726 3.808 .50 .00 2.639 2.942 2.740 3.9093 1 2.313 4.250 2.958 4.678 .67 .o0 2.336 4.157 2.943 4.7354 1 2.113 5.047 3.091 5.368 .75 .o0 2.165 4.841 3.057 5.3428 1 1.836 6.156 3.276 6.449 .90 .00 1.867 6.030 3.z55 6.49616 1 1.727 6.590 3.348 6.942 .95 .00 1.775 6.399 3.316 6.861m 1 1.688 6.750 3.375 7.210 .99 .o0 1.705 6.681 3.364 7.142~ 4 1.852 6.091 3.z65 6.791 1.0 .75 1.868 6.027 3.254 6.695m 8 1.963 5.649 3.192 6.437 i.o .90 1.974 5.605 3.184 6.338m 16 2.052 5.293 3-132 6.089 i.o .99 2.078 5.187 3.1i4 5.9434 2 2.606 3.075 2.763 3.852 .75 .50 2.519 3.423 z.821 4.2318 4 2.495 3-519 2.836 4.oiz .90 .80 2.363 4.048 2.925 4.74212 6 2.403 3.889 2.898 4.223 .95 .90 2.266 4.436 2.989 5.11216 8 2.330 4.180 2.947 4.447 .98 .96 2.178 4.787 3.048 5.48320 10 2.274 4.404 2.984 4.661 .99 .98 2.140 4.942 3.074 5.6592 2 2.996 1.516 2.503 3.576 .25 .z5 2.984 1.565 2.511 3.5904 4 2.895 1.919 2.570 3.577 .50 .50 2.896 1.918 2.570 3.6268 8 2.704 2.683 2.697 3.700 .75 .75 2.720 2.620 2.687 3.83112 12 2.554 3.286 2.798 3.927 .90 .90 2.482 3.572 2.845 4.38516 16 2.440 3.742 2.874 4.190 .95 .95 2.335 4.158 2.943 4.8682.093 5.128 3.105 5.885 .99 .99 2.155 4.881 3.063 5.5991 2 3.144 o.9z2 2.404 3.643 .oo .50 3.119 i.o25 2.421 3.6301 4 3.172 0.810 2.385 3.666 .00 .75 3.150 0.900 2.400 3.651i m 3.176 0.794 2.382 3.670 .oo .90 3.166 0.835 2.389 3.6638 ~ 2.722 2.61o z.685 3.695 .75 1.0 2.874 2.003 2.584 3.67516 m 2.442 3.731 z.87z 4.187 .99 1.0 2.171 4.818 3.053 5.536

s - 3, limi ted s - 3, eernoulli
dcp E{W1} E{W2} E{W } E{W} o{W} dcp E{Wi} E{W2} E{W } E{W} 6{W}
1 1 3.040 1.404 1.434 2.230 3.4oi .25 .00 2.818 1.847 1.880 2.341 3.4302 1 2.419 2.644 2.679 2.540 3.717 .50 .00 2.416 z.649 2.687 z.542 3.7983 1 1.963 3.551 3.597 z.769 4.508 .67 .o0 2.033 3.411 3.456 z.733 4.4924 1 1.728 4.017 4.071 2.886 5.021 .75 .o0 1.835 3.805 3.854 2.83z 4.9248 1 1.431 4.607 4.667 3.034 5.729 .90 .00 1.508 4.456 4.513 2.996 5.67016 1 1.337 4.794 4.856 3.081 6.005 .95 .00 1.410 4.651 4.710 3.045 5.892m i 1.317 4.834 4.896 3.091 6.099 .99 .00 1.335 4.799 4.860 3.082 6.059m 2 1.452 4.526 4.664 3.024 5.884 i.o .50 1.450 4.548 4.653 3.oz5 5.927m 4 1.627 4.119 4.372 2.936 5.563 1.0 .75 1.583 4.253 4.414 2.958 5.7084 2 2.333 2.791 2.879 2.584 3.771 .75 .50 2.256 2.951 3.024 z.622 4.1146 3 2.250 2.9z9 3.071 2.625 3.855 .90 .80 2.081 3.268 3.409 2.710 4.5118 4 2.179 3.047 3.236 2.660 3.957 .95 .90 1.993 3.414 3.616 2.754 4.72710 5 2.121 3.144 3.372 2.690 4.066 .99 .98 1.908 3.532 3.836 2.796 4.9292 2 2.955 1.562 1.618 2.273 3.386 .50 .50 2.795 1.881 1.938 2.352 3.4754 4 2.761 1.927 2.031 2.370 3.406 .75 .75 2.526 2.397 2.498 2.487 3.7286 b 2.584 2.259 2.404 2.458 3.495 .90 .90 2.224 2.962 3.140 2.638 4.2208 8 2.439 z.533 2.713 2.531 3.625 .95 .95 2.075 3.232 3.469 2.713 4.535m 1.888 3.550 3-900 2.806 4.964 .99 .99 1.928 3.485 3.804 2.786 4.8721 2 3.243 0.986 1.041 2.128 3.471 .00 .50 3.191 1.098 1.140 2.155 3.4531 4 3.296 0.874 0.943 2.102 3.504 .oo .75 3.250 0.973 1.026 2.125 3.482i m 3.302 0.861 0.931 2.099 3.510 .oo .90 3.282 0.905 0.967 2.109 3.4994~ 2.841 1.766 1.870 2.330 3.414 .5o i.o 3.066 1.310 1.4z6 2.217 3.4488 m 2.459 2.495 2.667 2.520 3.619 .9o i.0 2.378 2.617 2.870 2.561 3.946
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Table 5b. The influence of one relatively heavily loaded queue, p- 0.

dcp E{Wi}
s- 4,
E{W2}

limited
E{W4} E{W} 6{W} dcp E{W1}

s- 4,
E{W2}

Bernoulli
E{W4} E{W} 6{W}

1 1 3.o2z 1.447 1.495 2.091 3.273 .25 .o0 2.734 1.828 1.882 2.zo6 3.3192 1 2.240 2.485 2.542 2.404 3.627 .50 .00 2.266 2.447 2.510 2.394 3.6773 1
4

1.754 3.123 3.199 2.598 4.286 .67 .o0 1.868 2.973 3-046 2.553 4.22z1
6 1

1.521
1

3.429 3.515 2.691 4.668 .75 .o0 1.672 3.232 3.311 2.631 4.536.325 3.687 3.782 2.770 5.011 .90 .o0 1.353 3.651 3.742 2.759 5.056~ 1 1.170 3.891 3.99o z.83z 5.348 .99 .00 1.187 3.868 3-967 2.825 5.321m 2
4 1.355

1
3-591 3-799 z.758 5.112 1.0 .50 1.328 3.650 3.810 2.769 5.212m

4
.573 3.235 3.580 2.671 4.795 1.0 .75 1.479 3.418 3.642 2.708 5.0272 2.138 2.582 2.721 2.445 3.676 .75 .50 2.097 2.648 2.761 2.461 3-9446 3 2.048 2.664 2.877 2.481 3.740 .95 .90 1.862 2.888 3.153 2.555 4 3462 2 2.894 1.598 1.687 2.142 3.257 .50 .50 2.703 1.852 1.941 2.219

.
3.3683 3 2-754 1.767 1.894 2.198 3.z65 .75 .75 2.388 2.243 2.393 z.345 3.6174 4 2.621 1.930 2.090 2.252 3.299 .90 .90 2.079 2.612 2.853 2.469 3.998~ 1.793 2.926 3.31z 2.583 4.412 .95 .95 1.944 2.765 3.063 z.5z3 4.1961 2 3.308 1.049 1.133 1.97ï 3.344 .oo .50 3.229 1.163 1.229 2.009 3.324i~ 3.389 0.933 1.036 1.945 3-389 .00 .75 3-314 1.043 1.124 1.975 3.356z~

4
3.119 1.289 1.4oi 2.052 3.306 .50 1.0 3.056 1.347 1.511 2.077 3-322m 2.713 1.810 1.964 2.215 3.300 .75 1.0 2.674 1.824 2.059 2.231 3.4116 m 2.434 2.158 2.361 2.326 3.411 .90 1.0 2.241 2.365 2.676 2.404 3.761

s- 5. limited s- 5, Bernoullidcp E{Wi} E{W2} E{W } E{W} ~{W} dcp E{Wi} E{W2} E{W } E{W} ~{W}
1 1 z.991 1.481 1.540 2.003 3.18 .25 .00 2.657 1.8~1 1.877 2.114 3.242 1 2.io3 2.361 2.433 2.299 3.55 .50 .o0 2.159 z.3o2 2.380 2.280 3.573 1 1.622 2.833 2.935 2.461 4.09 .67 .00 1.768 2.688 2.778 2.411 4 004 1 1.400 3.057 3-160 2.532 4.37 .75 .00 1.579 2.873 2.971 2.474

.
4.245 1 1.288 3.160 3.250 2.574 4.50 .90 .00 1.277 3-168 3.280 2.574 4.63m 1 1.104 3-336 3-457 2.63z 4.85 .95 .00 1.188 3.255 3-371 2.604 4.74m 2 1.3z5 3.065 3.296 2.559 4.6o i.o .50 1.277 3.133 3.317 2.574 4.734 2 1.994 2.423 2.599 2.335 3-56 .75 -50 1.993 2.442 2.576 2.336 3-792 2 2.814 1.629 1.736 2.062 3.17 .50 .50 2.621 1.828 1.934 2.126 3.29m 1-737 2.594 2.962 2.421 4.06 .75 .75 2.285 2.134 2.305 2.238 3.511 z 3.347 1.106 1.206 1.884 3.z5 .oo .50 3.243 1.220 1.299 1.919 3-231 m 3.445 1.002 1.119 1.852 3.29 .00 .75 3-349 1.106 1.2oi 1.884 3.z62 m

4
3.085 1.357 1.486 1.97z 3.20 .50 1.0 3.031 1.386 1.568 1.990 3.23m 2.582 1.838 2.018 z.139 3.22 .75 1.0 2.591 1.796 2.045 2.136 3.31

s- 6, limited s- 6, Bernoullidcp E{Wi} E{W2} E{W6} E{W} ~{W} dcp E{W1} E{W2} E{W6} E{W} 6{W}
1 1 2.955 1-507 1.573 1.942 3.10 .25 .o0 2.589 1.796 1.871 2.046 3.182 1 1.996 2.263 2.345 z.215 3-47 .50 .oo z.o8o 2.194 2.281 2.191 3.474 1 1.327 2.751 2.919 2.398 4.11 .75 .o0 1.525 2.628 z.735 2-350 4.01m 1 1.074 2.975 3.108 2.478 4.49 .95 .00 1.153 2.915 3.043 2.456 4.41m 2 1.323 2.732 2.971 2.410 4.25 1.0 .50 1.256 2.802 2.996 2.427 4.382 2 2.746 1.651 1.764 2.001 3.07 .50 .50 2.549 1.808 1.924 2.058 3.22m m
4

1.700 2.387 2.729 z.3oo 3.80 .75 .75 2.205 z.o54 2.232 z.156 3.422 1.888 2.301 2.489 2.246 3.47 .75 .50 1.921 2.294 2.438 2.237 3.651 2 3.365 1.158 1.265 1.824 3.17 .oo .50 3.z4o 1.268 1.354 1.860 3.151 m 3.479 1.063 1.187 1.792 3.21 .oo .75 3.365 1.162 1.264 1.8z4 3.182 m 3.033 1.413 1.550 1.919 3-12 .50 l.0 2.996 1.422 1.608 1.930 3.154 m 2.452 2.515 2.844 2.085 3.15 .75 1.0 2.518 1.777 2.023 2.066 3.23
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Table 6. The influence of one relatively heavily loaded queue, p- 0.95.

s- 2, limited s- 2, Bernoullidcp E{W1} E{W2} E{W} a{W} dcp E{W1} E{W2} E{W} 6{W}
1 1 20.78 2.38 14.65 20.2 .25 .00 20.32 4.22 14.95 19.82 1 16.89 17.96 17.24 20.1 .50 .00 16.56 19.24 17.46 20.93 1 8.24 5z.56 23.01 46.3 .67 .o0 8.42 51.83 22.89 46 04 1 6.25 60.49 24.33 5z.z -75 .o0 6.45 59.69 24.20

.
51.98 1 4.48 67.59 z5.51 57.0 .90 .o0 4.40 67.89 25-57 57-416 1 3.90 69.91 25.90 58.9 .95 .o0 3.95 69.71 25.87 58.5m 1 3.56 71.25 26.13 59.5 .99 .o0 3.63 70.96 26.08 59-3m 4 4.10 69.09 z5-76 58.5 1.0 .75 4.50 67.50 25.50 57.6m 8 4.74 66.52 25.34 57.6 1.0 .90 5.84 62.15 24.61 54.7m 12 5.32 63.62 24.94 56.5 1.0 .99 10.05 45.32 21.80 42 14 2 16.81 18.26 17.z9 20.1 .75 .50 15.60 23.11 i8.io

.
z3.28 4 16.62 19.02 17.42 20.2 .90 .80 14.21 28.67 19.03 27.212 6 16.41 19.85 17.56 20.3 .95 .90 13.24 3z.53 19,67 30,316 8 16.21 20.65 17.69 20.4 .98 .96 iz.29 36.34 20.31 33.620 10 16.01 21.48 17.82 20.4 .99 .98 11.84 38.15 20.61 35.3z 2 20.73 2.59 14.68 20.2 .z5 .25 20.65 2.90 14.73 2o.i4 4 20.58 3.19 14.78 20.0 .50 .50 20.40 3.92 14.90 19.98 8 20.22 4.61 15.02 19.7 .75 .75 19-7z 6.63 15.36 19.512 12 19.85 6.10 15.27 19.4 .90 .90 18.17 12.83 16.39 19.616 16 19.48 7.58 15.51 19.2 .95 .95 16.52 19.42 17.49 21.6~ 11.26 40.46 20.99 37-5 .99 .99 iz.99 33.55 19.84 31.11 2 21.04 1.33 14.47 20.5 .oo .25 20.91 1.87 14.56 20.41 4 21.10 1.10 14.43 20.6 .00 .50 21.00 1.52 14.50 20.51 m 21.11 i.o6 14.43 20.6 .oo .90 21.09 1.13 14.44 zo.68 m 20.33 4.19 14.95 19.8 .75 1.0 20.48 3.58 14.85 20.016 W 19.52 7.42 15.49 19.2 .99 1.0 14.03 z9.39 19.15 27.7

s- 3, limited s- 3, Bernoullidcp E{W1} E{W2} E{W } E{W} o{W} dcp E{W1} E{W2} E{W } E{W} ~{W}
1 1 22.39 2.70 2.75 12.56 20.1 .25 .00 21.41 4.64 4.70 13.04 19.42 1 15.33 16.83 16.86 16.09 20.0 .50 .o0 15.05 17.37 17.42 16.22 20.63 i 6.oi 35.45 35-51 20.74 36.5 .67 .o0 6.43 34.62 34.68 20.54 36.04 1 4.30 38.86 38.92 21.60 39.3 .75 .00 4.70 38.07 38.13 21.42 38.88 1 2.90 41.67 41.73 22.30 41.2 .90 .00 3.01 41.45 41.52 2z.25 41.212 1 2.61 42.24 42.31 z2.44 41.7 .95 .o0 2.65 42.17 42.z4 22.43 41.7m 1 2.34 42.78 42.84 22.58 42.0 .99 .o0 2.40 42.66 42.73 2z.55 42.0m 2 2.72 41.96 42.15 22.39 41.6 l.o .50 2.85 41.74 41.86 22.32 42.2m 4 3.41 40.44 40.88 22.04 40.9 1.0 .75 3.68 40.07 40.23 21.91 42.14 2 15.~9 17.07 17.16 16.15 20.0 .75 .50 13.76 19.93 20.03 16.87 22.96 3 15.04 17.35 17.50 16.23 20.0 .90 .80 i2.2o 22.99 z3.21 17.65 26.28 4 14.88 17.65 17.83 16.31 20.0 .95 .90 11.36 24.60 24.97 18.07 28.110 5 14.70 18.02 18.20 16.40 19-9 -99 .98 10.64 25.83 26.59 18.43 29-62 2 22.26 2.94 3.03 12.62 20.0 .50 .50 21.58 4.29 4.39 12.96 19.54 4 21.90 3.63 3-77 12.80 19.7 .75 -75 20.22 6.96 7.16 13.64 18.96 6 21.49 4.42 4.59 13.01 19.4 .90 .90 17.48 12.33 12.76 15.01 19.28 8 21.08 5.24 5.44 13.21 19-3 -95 .95 15.10 16.96 17.62 16.20 21.3m 10.80 25.43 26.36 18.35 28.1 .99 .99 11.72 23.53 24.60 17.89 26.91 2 22.97 1.52 1.62 12.27 20.5 .00 .50 22.86 1.7~1 1.82 12.32 20.41 4 23.10 1.25 1.37 12.20 20.6 .00 .75 23.00 1.44 1.54 12.25 20.61 ~ 23.12 i.2o 1.34 12.19 20.7 .oo .90 23.07 1.29 1.41 1z.21 20.64 m 22.z9 2.85 2.99 12.60 20.0 .50 1.0 22.64 2.10 2.48 12.43 20.38 ~ 21.28 4.85 5.03 13.11 19.3 .90 1.0 19.75 7.54 8.48 13.88 18.9



22

Appendix
The examples described in section 5 will be further elaborated in

this appendix. The heavy traffic behaviour of the moments of the waiting
time distributions for the model of table 6 is shown in table A.1 as func-
tion of ql for q2-0.00. Note the strong sensitivity, especially of E{W2},
with respect to the parameter ql in the neighborhood of q1-0.50. For
q1-o.5o the queues are balanced in the sense that the length of both
queues tends to infínity in heavy traffic. Table A.2 contains estimations
of heavy traffic limits for the same model, but for Bernoulli schedules
with al(1-ql) - a2(1-q2), the case which has not been covered by the con-
jecture of property 2. Although limited service and Bernoulli schedules
agree in the sense of property 1, the actual values of the limits ~.,

Jj-0,1,..,s, behave quite differently for the two service disciplines. For
limited service with K1 - 2K2 we find the following estimates (these
limits seem to vary hardly with K2, as far as they can be determined with
sufficient accuracy):

Table A.1. Model of tables 5,6, Bernoulli schedules.

dcp
s - 2, p - 0.98

E{W1} E{W2} E{W} o{W}
5-2. P-o.99

E{W1} E{W2} E{W} ~{W}

.oo .oo

.25 .oo

.45 .00

.49 .oo

.50 .oo

.51 .00

.55 .oo

.67 .oo

.75 .00

.90 .00
l.o .oo

54.48 2.59 37.18 52.0
53.91 4.87 37.56 51.3
50.61 18.05 39.76 48.5
45.59 38.14 43.11 48.8
42.65 49.91 45.07 52.5
38.82 65.21 47.62 61.3
25.51 118.43 56.49 104.0
11.73 173-59 65.68 143.6
8.25 187.49 68.00 151.7
5.20 199.69 70.03 158.1
4.08 204.17 70.78 160.3

110.71 2.67 74.69 105.0
110.10 5.11 75.10 104.3
105.98 21.58 77.83 100.1
96.11 60.85 84.43 95.786.11 l01.06 91.09 105.3
70.35 164.14 101.55 147.1
34.99 305.20 125.16 259.2
13.38 391.98 139.58 311.0
9.05 409-28 142.46 319.8
5.52 423.41 144.82 326.0
4.28 428.37 145.64 328.1

Table A.2. Model of tables 5,6: estimations of heavy traffic limits.

dcp
s - 2, Bernoulli

~1 ~2 ~0 ~0
s - 3, Bernoulli

~1 ~2 w3 ~0 ~0
.50 .oo
.75 .50
.90 .80
.95 .90
.98 .96
.99 .98
1.0 1.0

0.869 1.023 0.921 1.06
0.815 1.239 0.957 1.18
0.736 1.558 1.010 1.40
0.679 1.783 1.047 1.570.623 2.008 1.085 1.75
0.596 2.115 1.102 1.83
0.563 2.250 1.125 1.95

0.788 0.925 0.924 0.856 1.05
0.715 1.070 1.070 0.893 1.18
0.624 1.253 1.z52 0.938 1.36
0.571 1.359 1.357 0.965 1.48
0.528 1.444 1.442 0.986 1.58
0.518 1.463 1.465 0.991 1.61
0.556 1.389 1.389 0.972 1.43
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s-2: ~,1 - 0.889, W2 - 0.946, WO - 0.908, ~0 z 1.02;
s-3: W1 - 0.806, W2 - 0.889. ~3 - 0.889. ~o ~ 0.847. ;o - 1.02.

The limits in table A.2 have been determined by means of extrapolation
from values of the performance measures for values of p close to 1. It is
not clear whether differences between ~2 and ca3 (case s-3) exist or stem
from inaccuracies of the computations. In the case of exhaustive service
these limits are equal by theorem 2. Above we have used, in addition to
(4.5), the following notation:

~~ :- lim ( 1-p) 6{W}.
pTl

Next, we will consider the result of theorem la in more detail.
Firstly, it is readily verified with the aid of (2.4) that, for all vec-
tors q,

s
~ Tij ~(j.q) - 0;

j-1

hence, by the conservation law, cf. (4.3), it must hold that

s2 s 2 s 2F nj t~ nj -(j) - 2s .2g1 j-1 j-1 1

For the job weighted mean waiting time, cf. (4.2), it is found that

(A.2)

(A.3)

~2 2r1 s s s ÍE{W} - p 2~ ~ P L2 g2 ~ aj,~j . gl ~ aj -(j) ' 2 ~ qj~,j(y{ - gl)J
1 j-1 j-1 j-1 j

t ~(P3), as P.~ 0. (A.4)

This expansion indicates that E{W} is minimal in light traffic when qj - 1
if l~~j C gl, and qj - 0 if l~uj ) sl, for j-1,...,s (cf. the end of sec-
tion 6). If all service rates are equal (i. e. uj - u, j-1,...,s), then the
quantities appearing in the power-series expansion (4.4) become, for
j-1, . ,s,



z4

2 s-1 i-1 2 s i-1
-(j) - H ~ nj~i ~ nj~U - x ~ ni ~ nv.

i-1 v-0 i-2 v-1
(independent of j),

`f(j.q) - N L~ ql nl - qj njJ~ ~ aj ~(j.9) - 0.
í-1 j-1

(A.5)

If, moreover, the arrival rates are equal (i.e. n. - l~s, j-1,...,s), thenJ

-(J) - ssl u. `f(j.q) - su
Ls ~ qi - qjJ ~

j- 1,...,s;
1-1

note that `Y(j,q) vanishes when also q- q for all j, j -1,...,s.j
For models with aj - a2, uj - u2, j-2,...,s, (cf. tables 5 and 6) we have

~~ - ul t ( s-1) u2;1 1 z -(1) - z(s-1)nz [~1 t s2z Nz] ;1 z

-(j) - 2T11(stl-j) ~2 t 2n2(j-z) ul t n2(s-1)(s-z) u2.
2 1 2

2 2r nl nz s n .
`f(j.q) - 2 191 H t u ~ 9i - qj Yl.], j- 1,...,s.

l 1 2 i-2 ~

j-z. . .s;

Note that - (j) is increasing with j, j-2,...,s, if and only if 1~N1)1~u2.
For the specific models considered in the tables 5 and 6 these quantities
become:

~st 2 - st
~1 - 2(sil)' 2p1 - 2(s.3)'

4 1nl - s~3, nj - s~3,

-(1) - (s-1)(st14) -(j) - (s-1)(s-2) 4 st'-
z(s~3)z z(st3)z } (st3)z

.

~(1.9) - 1 2~~ qi - 8(s-1)q1 J - s-1
2(q2-8q1);

(st3) i-z (st3)

j-2, . ,s;

j-2. . .s;

~(j.q) - 1 213291 t ~ qi - (st3)9.~ - 4 (89 -9 ). j-2,....s.
(s,3) LLL i-2 J (s~3)2 1 2

For general models with two queues these quantities become:
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-(J) - 2~t1nZ~Hj. J - 1.2;

`f(l.q) - 2n2 192 NZ - 91 u1 J . `~(2.q) - 2n1 [ql ul - q2 u2 J .

From these relations it readily follows that E{W1} ~ E{W2} for small
values of p if (1-2q1) ~1~~1 ~(1-2q2) ~2~~2- On the other hand, property
1 implies that E{W1} ) E{W2} for values of p close to 1 if al(1-ql) ~
a2(1-q2). For the model of tables 5 and 6, with 2 queues, the above
implies that there is a different ordering of E{W1} and E{W2} in light and
heavy traffic if ~t2q2 ~ 16 ql ~ 8t8q2. This feature is illustrated in
table A.3 where the mean waiting times are shown for several values of the
load p for service disciplines with q1-q2-q (respectively K1-K2-K). Note
in this table also the close resemblence of the mean waiting times in the
cases K-16 and q-1.0 (K-m) for p( 0.5 (cf. the observation below theorem
1), and the important differences for larger values of p. This rather
abrupt change in the behaviour of the performance measures causes slow
convergence of the power-series for larger values of p for such models. At
this point it is also important to note the discontinuity in the heavy
traffic limits of the mean waiting times, for instance when ql a q2 : q
and q approaches 1: for q( 1 these limits are determined by corollary 1,
while for q- 1 they are given by theorem 2(see also table A.3).
The quantities appearing in theorem 1 become for the model of table 3:

ssl - 1, nl - 6. 1 1n2 - 3. n3 - 2.

`~(1.q) - 9 q2 t 2 q3 - 8 ql,

1 2 1`f(3.4) - 18 ql 4 9 q2 - 2 q3;

`~(2,q) - 18 ql i 2 q3 - 9 q2,

-(j) - 11
~8' .i - 1.2.3.

The values of -(j) are independent of j and of the polling order for
models with equal service rates, cf. (A.5). However, higher order terms of
the power-series expansions of the mean waiting times do depend on the
polling order; see the differences in the tables 3a and 3b.
The quantities appearing in theorem 1 become for the model of table 4:
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~2 - Z i
2p1 - 6. nl - 6.

i i~,2-3. n3-2;

3
-(1) - 3b. -(2) - 36, -(3) - 36, F a~ -(~) - 8:

.i-1
`~(1,q) - 9 q~ t 4 q3 - 36 Q1,

`~(3.q) - 36 ql t 9 q2 - 4 q3,

`~(2,q) - 36 ql t 4 q3 - 9 Q2,

3
F aj `~(~.q) - 4 q3 - 36 ql.j-1

When the polling order is reversed in this model then we have:

-(1) - 36. -(2) - 36. -(3) - 36. J F1 aj -(~) - 18.

Tables A.4 and A.5 contain estimations for heavy traffic limits of waiting
time characteristics for the models of table 3 and table 4 respectively.
These tables should be read as follows. An entry without brackets stands
for an estimation for w., j-1,2,3; an entry between brackets indicatesJ
that wj - 0, cf. property 1, and stands for an estimation for xj, j-1,2,3,
cf. (4.6). For the model of table 3 we have w0 - 1.00, independent of the
service discipline.



27

Table A.3. Model of tables 5,6; 2 queues, q1-q2-q respectively K1-K2-K.

q-.oo P-o.1 P-o.5 P-o.7 P-o.8 P-o.9 P-o.92 p-o.94 P-o.96 P-o.98
E{wl} .1014 0.9606 2.3313 4.1119 9.6107 12.39 17.05 27.95 54.48
E{w2} .0944 0.6576 1.1747 1.5525 2.0574 2.18 2.31 2.45 2.59
q-.50 P-0.1 P-0.5 P-0.7 P-0.8 P-0.9 P-0.92 p-0.94 P-0.96 P-o.98
E{wl} .1001 0.9192 2.2201 3.9309 9.3125 12.06 16.68 25.98 54.03
E{w2} .0998 0.8232 1.6197 2.2764 3.2499 3.50 3.77 4.07 4.39
q-.75 P-o.1 P-o.5 P-o.7 P-o.8 P-o.9 P-o.92 P-o.94 P-o.96 p-o.98
E{wl} .0993 0.8796 2.0902 3.6906 8.8413 11.52 16.05 25.25 53.17
E{w2} .1030 0.9818 2.1391 3.2375 5.1348 5.68 6.29 7.00 7.81
q-.9o P-o.1 P-o.S P-o.7 P-o.8 P-o.9 P-o.92 P-o.94 P-o.96 P-o.98
E{wl} .0987 0.8388 1.9256 3.3377 7.9577 10.42 14.68 23.50 50.90
E{w2} .1052 1.1448 2.7974 4.6490 8.6693 10.05 11.79 14.01 16.91
q-.95 p-o.1 p-o.5 p-o.7 p-o.8 p-o.9 p-o.92 p-o.94 p-o.96 p-o.98
E{wl} .0985 0.8190 1.8298 3.1053 7.2217 9.43 13.30 21.50 47.84
E{w2} .1059 1.2240 3.1810 5.5789 11.6131 14.01 17.29 22.00 29.14
q-.99 P-0.1 P-o.5 P-o.7 P-o.8 P-o.9 P-o.92 P-o.94 P-o.96 P-o.98
E{wl} .0984 0.7989 1.7168 2.8031 6.0571 7.73 10.61 16.69 37.15
E{w2} .1066 1.3042 3.6328 6.7875 16.2721 20.83 28.07 41.25 71.89
q-1.o P-0.1 P-o.S P-o.7 P-o.8 P-o.9 P-o.92 P-o.94 P-o.96 p-o.98
E{wl} .0983 0.7931 1.6795 2.6957 5.5924 7.02 9.38 14.08 28.16
E{w2} .1067 1.3276 3.7820 7.2174 18.1303 23.69 32.99 51.67 107.85
x-16 P-o.1 P-o.5 P-o.7 P-o.8 P-o.9 P-o.92 P-o.94 P-o.96 P-o.98
E{wl} .0983 0.8001 1.8558 3.3712 8.5187 11.22 15.79 25.04 53.04
E{w2} .1067 1.2996 3.0766 4.5150 6.4253 6.87 7.34 7.83 8.35
K-8 p-0.1 P-0.5 P-0.7 P'0.8 p-0.9 P-0.92 P-0.94 P-o.96 P-o.98
e{wl} .0983 0.8329 2.0468 3.7268 9.1128 11.87 16.5o z5.82 53.88
E{w2} .1067 1.1684 2.3127 3.0928 4.0488 4.26 4.49 4.73 4.97
K-2 P-o.1 P-o.5 P-o.7 P-o.8 P-o.9 P-o.92 P-o.94 P-o.96 P-o.98
E{wl} .0993 0.9354 2.2931 4.0672 9.5596 12.34 16.99 26.33 54.42
E{w2} .1030 0.7584 1.3274 1.7311 2.2614 2.39 2.52 2.66 2.82
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Table A.4. The model as in table 3: estimations of heavy traffic limits.
dcP ~1(xi) ~2(X2) ~ (X ) ~~ dcp ~i(xi) ~2(x2) ~ (X ) ~~
111 (3.20) (9.27) 2.00 1.74 i.o i.o 1.0 1.36 1.09 0.82 1.33444 (4.92) (10.04) 2.00 1.78 .75 .75 .75 (9.17) (19.57) 2.00 1.73123 1.35 i.oi o.88 i.26 .oo .50 .67 i.26 i.o6 0.88 1.30369 1.34 1.oi o.88 1.25 .96 .98 .99 1.51 i.o8 0.78 1.47mi1 (1.60) (9.57) 2.00 1.74 i.o .oo .33 (2.09) 1.29 1.i4 1.34m23 (3.19) 1.28 1.15 i.32 i.o .75 .83 (7.60) 1.38 i.o8 1.43im1 (5.03) (i.82) 2.00 1.73 .oo i.o .67 1.92 (3.73) 1.36 1.60lm3 1.82 (2.99) 1.39 1-55 .8o i.o .93 2.41 (15.66) 1.17 1.81iim (13.96) 3.00 (2.33) 2.24 .oo .50 1.0 2.22 1.89 (3.32) 1.8812~ 2.18 1.91 (2.99) 1.86 .80 .9o i.o 2.54 1.70 (11.93) 2.05i~ 6.00 (8.48) (6.32) 3.32 .50 1.0 i.o 6.00 (10.96) (8.31) 3.342~ 6.00 (10.47) (7.81) 3.32 .75 i.o i.o 6.00 (i5.89) (i2.25) 3.37m1m (5.08) 3.00 (2.81) 2.24 1.0 .5o i.o (7.16) 3.00 (3.94) 2.24
~2m (6.33) 3.00 (3.55) 2.24 i.o .75 1.0 (11.31) 3.00 (6.21) 2.24~i (2.42) (2.12) 2.00 1.73 i.0 1.0 .50 (3.67) (3.33) 2.00 1.73~2 (3.26) (2.79) 2.00 1.73 l.0 1.0 .75 (6.15) (5.75) 2.00 1.73

Table A.5. The model as in table 4: estimations of heavy traffic limits.

dcP ~1(xl) W2(x2) ~ (x ) ~~ dcp ~1(xl) ~2(x2) w (x ) ~0
111 i.o1 1.13 1.25 1.13 i.o 1.o i.o 1.59 1.27 0.95 1.27
444 1.01 1.12 1.25 1.13 .75 .75 .75 1.36 1.21 1.07 1.21123 7.00 (24.09) (6.91) 2.33 .oo .50 .67 7.00 (23.98) (8.22) 2.33mii (2.00) 1.32 i.45 0.92 i.o .50 .50 (3.87) i.41 1.39 0.93W22 (3.24) 1.32 1.45 0.92 1.0 .90 .90 (17.74) 1.61 1.25 0.96im1 1.52 (2.12) 1.83 i.i2 .5o i.o .50 1.78 (3.73) 1.74 i.i72m2 1.52 (3.12) 1.83 1.12 .9o i.o .90 2.55 (15.87) 1.46 1.35llm 2.22 2.39 (2.66) 1.54 .50 .50 1.0 2.35 2.32 (3.82) 1.56
22m 2.22 2.39 (3.41) 1.54 .90 .9o i.o 2.81 2.06 (12.52) 1.631~ 7.00 (9.23) (6.48) 2.33 .5o i.o 1.0 7.00 (10.47) (7.48) 2.332~ 7.00 (10.22) (7.23) 2.33 .75 1.0 1.0 7.00 (12.96) (9.47) 2.33mim (6.08) 3.50 (3.14) 1.17 i.o .50 1.0 (8.16) 3.50 (4.28) 1.17
m2~ (7.33) 3.50 (3.89) 1.17 1.0 .75 i.0 (12.31) 3.50 (6.55) 1.17
~i (2.91) (2.55) 2.33 0.78 1.0 1.0 .50 (4.77) (4.36) 2.33 0.78~2 (4.16) (3.55) 2.33 0.78 1.o i.o .75 (8.49) (7.99) 2.33 0.78
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