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(ABSTRACT)

Multivariate 1linear regression is iéportant in many
fields; in the analysis of simulation results, such a
regression (meta)model may apply if common pseudorandom
numbers are used. To test the validity of the specified
regression model, Rao (1959) generalized the F statis-
tic for lack of fit, whereas Kleijnen (1983) proposed
cross-validation wusing Student's t statistic combined
with Bonferroni's inequality. This paper reports on an
extensive Monte Carlo experiment designed to compare
these two methods. Whereas cross-validation is conser-
vative, Rao's test realizes its nominal « error and has
high power. Once the regression model is validated,
confidence intervals for the individual regression
parameters are computed. The Monte Carlo experiment
compares several confidence interval procedures. For
simplicity's sake one may stick to Rao's procedure,
since it has good coverage probability and acceptable
halflength.

(COMMON  SEEDS; METAMODELING; SPECIFICATION ERROR;
HOTELLING'S STATISTIC; EXPERIMENTAL DESIGN)



1. Introduction

Regression models are often applied by management scientists, in
order to analyze simulation data and real-world data. It is by now well
accepted that the data of a simulation experiment may indeed be analyzed
through a regression model that serves as a metamodel; many references can
be found in Kleijnen (1987, p. 241). If the simulation uses common random
numbers, then its responses become statistically dependent, and multi-
variate regression analysis should be applied. This paper compares several
statistical techniques for such an analysis; it intends Kleijnen (1988).

The paper is organized as follows. In § 2 we present the multi-
variate linear regression model and its application in simulation, either
with or without common pseudorandom numbers. In § 3 we discuss two tests
for validating the regression model: Rao (1959) generalized the F test for
lack of fit, whereas Kleijnen (1983) proposed cross-validation using the t
statistic and Bonferroni's inequality. This section includes confidence
intervals for individual regression parameters. In § 4 we examine the
statistical design of the Monte Carlo experiment: four factors determine
96 cases. In § 5 we present the results of the Monte Carlo experiment: o
and B errors of the validation tests, and coverage probabilities and mean

halfwidths of confidence intervals. § 6 gives conclusions.

2. Multivariate Regression Models and Simulation

Consider the well-known linear regression model

E(y) = X B, (2:1)

. ' = i = i =
with y (yl,...,yi,...,yn) y X (xij) where i Y;nmosn and 1, .00,Q,
and B = (Bl.....ﬁj,....BQ)'. This model is multivariate if the errors e =
(el,....ei....,en)' are mutually dependent. More specifically, we assume

additive errors:

y=XBg+e, (2.2)



where e is multivariate normally (MN) distributed:

e € MN(n,.Q ), (2.3)
where gy equals ge because of (2.2), and gy is assumed to be non-singular.
We do not assume that gy has a specific pattern such as the Schruben and
Margolin correlation structure; see Nozari et al. (1987, p. 138). When we
apply this model to simulation data, we call (2.1) the metamodel as the
regression equation models the simulation computer program. We need (2.3)
with a non-diagonal gy if we use common seeds in the pseudorandom number
generator; see Kleijnen (1988).

We consider experimental design situations only, that is, we as-

sume that the independent regression variables X in (2.1) follow from an

experimental design D = (dih) with h = 1,...,k, which implies that there
are k factors, k 2 1. For example, we may have X1 = i, X5 = dil’ xi3 =
log d . Xy = dildi3 (i =1,...,n); also see § 4. In well designed ex-

periments we can replicate specific factor combinations, that is, we have
mi 2 2 observations on row i of 5; this row is denoted by §i = (xil""'
xij""‘ xiQ)' For example, we run combination i of the simulation para-
meters m, times (a terminating simulation is repeated with m independent
pseudorandom number streams; in non-terminating or steady-state simula-
tions we may obtain m, renewal cycles or subruns; see Kleijnen, 1987, pp.
8-10, 63-83). If all combinations of simulation parameters use the same
seed, then obviously m, reduces to a constant m. Outside a simulation

context, Rao (1959) assumes m independent observations on the n-variate

vector y. His assumption agrees with Table 1, which assumes m independent
seeds. (Table 1 is reproduced from Kleijnen, 1988, p. 66.) This yields the

following unbiased estimators of Gii' = cov(yi.yi,) = cov(yir.yi,r):

m - -
L (y, -y.)(yi.r-yi.)

. sey  LE1
Oi40 = — (£,4% = 1yusssn)(m 2 2), H2:4)
ir

m
with the averages ¥; = I y. /m; obviously we have Gii = 6?. In matrix
)

notation with gy = (0.;4)s Y = (yir) and y = (yi) we get



TABLE 1

Regression Data

Combination i Responses ¥ip Average |Estimated
(effects: (seed 1)...(seed r)...(seed m) |response| (co)variances
Bye By By) v .

& A A
XgqeeeXygeeXygl ¥y s Wggy owes P yq 010150y,
et e B vl To4 Yar Yom ¥ 8g"'gzn
g oo ¥ygee®yal Yoy Yir Yim vy gi"gin
X1 ¥nge o ool ¥y R A A §n Gﬁ

g:;y = (YY -yy'm/(n-1). (2.5)

Kleijnen (1988, p. 67) proposes two different point estimators for

the Q regression parameters B, namely the Ordinary Least Squares or OLS

estimator

B (xig)lxe

<

, (2.6)

assuming n 2 Q, and the Estimated Generalized Least Squares or EGLS esti-

mator

o >
n
>

X)7Tx'Q 7y, (2.7)

A
assuming a non-singular Qy. The estimated covariance matrices of these two

estimators are

X'Q X(X'X) " /m (2.8)

~~~~~~

Ba = (X'X)7
8 = (x'X)



(xsz x /m, (2.9)

where the symbol = means that the equality holds only asymptotically.

Obviously we have

8- =6 2.10

Note: In simulation we know whether we use common seeds or not. If
we use independent streams of pseudorandom numbers, then we know that g
is a diagonal matrix, say, Ey' We might use that apriori knowledge and
apply Estimated Weighted Least Squares or EWLS: in (2.7) and (2.9) we
replace Q by D , which is the estimator of gy obtained by substituting

= O At i 1#1'; see (2.4). When using OLS to obtain the point estimator

[
He

of (2.6), we may estimate its covariance matrix by (2.8) replacing ﬁx by

(D Q>

. <

We decided not to use such apriori knowledge, because errors in G
with i#i' may compensate errors in G. iq = 8?. Moreover Rao's procedure
forbids such an adaptation of EGLS.

3. Validation and Confidence Interval Procedures:
Rao (1959) versus Kleijnen (1983)

To test if the specified regression model is a valid metamodel, we can
apply two statistical techniques, due to Rao (1959) and Kleijnen (1983)

respectively.

3.1. Rao's Lack of Fit Test

Translating Rao's symbols into the notation of the preceding sec-

tion, and assuming that the rank of X is Q leads to the F statistic (which

is closely related to Hotelling's statistic):

A=

—_— = : 1 1= : = ,"‘1
Fn-Q.m-n+Q = (n-Q) (n-1) (y-X B)'Q: (y-X B) =c e g§ €, (3.1)



with constant ¢ = (m-n+Q)/{(n-Q)(m-1)} and estimated residuals e = (i-

X E); for §§ we can apply (2.10); also see Anderson (1984, p. 163) and
Arnold (1981, p. 319).

We interpret this equation as follows. The F statistic of (3.1) is
a generalization of the F test for lack of fit in the classic experimental
design literature, which assumes gy = 622 (this condition is met in some
cases investigated in the Monte Carlo experiment of the next section). The
classic F test compares the estimated residuals (reflecting lack of fit)
to the pure estimated noise 82:

- g = A _A2 - 5 A2
Foaanfe-1) = Toeay CXR GBIy uw ut i, (3.2)
with u = (Q—ﬁ E). ¢y = m/(n-Q) and
n
- Sl ai/n. (3.3)
1

So the well-known Sum of Squared Residuals (SSR) equals u'u, and the Mean
Squared Residuals (MSR) is SSR/(n-Q). Since each gf is based on m-1 de-
grees of freedom and these n estimators are pooled in (3.3), the denomina-
tor of F has degrees of freedom n(m-1); also see Kleijnen (1987, pp. 229-
231). If, however, the variances are not constant (so the classic assump-
tions do not hold), then a residual is weighted down if the corresponding
estimated variance is high: (3.1) yields F = c Z(ei/ 81)2. If the resi-
duals are correlated - as they are indeed in simulation with common seeds

- then the interpretation becomes too difficult. Whatever the covariance

matrix looks 1like, a perfect fit (i = 5 E) implies F=0, so we do not re-
ject the specified model. Also, for mTe both (3.1) and (3.2) approach
Xi-Q' If we knew that the OLS assumptions hold, then we would prefer the F
statistic of (3.2) over (3.1) since the former has more power: n(m-1) > m-
n+Q. A technical condition for the F tests is that n > Q: non-saturated

design, which leaves degrees of freedom.



3.2. Kleijnen's Cross-validation

Kleijnen (1983) proposes an alternative approach, which we may

call predictive validation: estimate E from one set of simulation data;

use this estimate to predict the simulation output for a second set of
input combinations; compare the forecasts to the observed simulation out-
puts. To obtain as many inputs for prediction as possible we use cross-
validation, i.e., we start from the original simulation data of Table 1,
and we delete one factor combination i, i.e., we drop Ei' 91, and row i

and column i of §y' We estimate B from the remaining n-1 combinations X_
¥ @ .

L-i* Zy(-i) s
estimator for B is denoted by E—i when we use OLS; when we use EGLS it is

A

ﬁ_i. A B estimator yields a predictor §i for the deleted factor combina-

i*

; we assume n > Q, since otherwise X_i would be colinear. This

~ A
' A ~ = ' A A ~ = ' ~
tion, namily yi(E—i) x: E—i for OES an? yi(B_i) x: E—i for EGLS. A
predictor ¥y yields a prediction error Yy - ¥y To standardize this error
we divide the prediction error by its standard deviation {vgr(§i - ;i)}%.
Let us assume for a moment that the simulation responses y; are indepen-

dent (no common seeds). Then the §i are independent of the §i (§i depends

~

on i-i through E-i or E-i)' For OLS we then get

) = var(y;) + var(y,)

i

A ( A
By =
var(y,

% BB(-a) X

4 Sf/m, (3.4)

where 8? was given in (2.4) and @E(_i)follows from (2.8):

~ P -1'A ' =t
Qi) = BLX DTXRLE X (XX 07w, (3.5)

For EGLS we replace éﬁ(-i) in (3.4) by the analogue of (2.9):

AA ~a=-1 -1

95(—1) = (XliQy(-i)X—i) /m. (3.6)

These equations are used to compute the standardized prediction error:

t(i) = i & Wgews i) s (3.7)



We can not prove that (3.7) equals Student's statistic tV where v denotes
the appropriate degrees of freedom. Therefore we assume that (3.7) equals
tv with v = m-1, and test this assumption in a Monte Carlo experiment. If
we replace the degrees of freedom v = m-1 by v = = (or tv = z where z
denotes the standard normal variable), then obviously the « errors in-
crease and the B errors decrease. However, these effects decrease as the
number of simulation replications increases (t:_1 lz2%* asm T =); that is,
the power decreases as m increases. This is an unattractive property of
this test. Therefore we limit our attention to v = m-1.

Next we drop the assumption that the vy are independent: because

of the common seeds, 91 and §i are correlated. For OLS we add to (3.4):

A A - 2 A
m2 cov(y;.y;) = -p x: W . coviy_j.v;). (3.8)

with the Qx(n-1) matrix

' =1
W = EE R, (3.9)

and

A ~ ~ ~

cgv(y_i,yi) = (0’11,0'21, — 'di-l.i’cid,i' T .cxni) s (3.10)

It is tedious but simple to prove that (3.8) holds; see Appendix 1. Note
that for Sii, = 0 with i#i' (3.8) vanishes indeed. For EGLS we use (3.6)
and, because of (2.7), we replace E-i in (3.8) by:

1 -1,, a-1

= (k. @ S e S e (3.11)

Ly =i Zy(-1) 2-1

which ignores the random character of o)

~y(-1)"
We compute (3.7) using (3.4) and (3.8), for each i value (1 =
1,...,n): permutation or cross-validation approach. (If the user finds

these computations too much, then cross-validation can be restricted to a
subset of data). This yields n standardized prediction errors that are
dependent, even if seeds are not common. Therefore we use the well-known

Bonferroni inequality, that is, we test the maximum of the n individual



errors t(i) at a significance level «/n (whereas the F statistics in egs.
3.1 and 3.2 are tested at «); we reject the regression model if
o/ (2n)

max [t, .| >t ; (3.12)
1<i<n (1) ¥

where the factor 2 is needed because we have a two-sided test (note the
absolute value). Also see Miller (1981).

Note: In deterministic simulation, cross-validation is an attrac-
tive approach. Instead of studentizing the error and applying Bonferroni's

inequality, we "eyeball" relative prediction errors ;i/yi.

3.3. Confidence Intervals for ﬁj

From Rao (1959, p. 53) we derive the following l-o two-sided con-

fidence interval for the individual regression parameter Bj:

~ A %
B, & 3% c?(ﬁj)[l*F m<n-Q)/(m-n+Q)] ' (3.13)

J 1-(n-Q)/(m-1)

where v = (m-1)-(n-Q), G(ﬁj) = {vgr(ﬁj)}i with var(ﬁj) computed from
(2.9), and F = Fn—Q,n(m—l) as given by (3.2). To derive (3.13) we use
asymptotic relationships and we must interpret Rao; so it seems wise  to
test the performance of (3.13), as we shall do in the Monte Carlo experi-

ment of the following sections.

Note: As m approaches infinity (m]=), the confidence interval

A
length goes to zero: tvlz; vgr(ﬁj)(m-l) ~ positive constant; Tr =~ positive
constant which - if the model is correct - goes to zero.

Eq. (3.1) shows that FlO if the regression model fits adequately;
if the model does not fit, it makes no sense to derive confidence inter-

vals for the individual parameters; see Rao (1959, pp. 56-57). Further, we

suggest to use EGLS only if m is "large" so that G(Ej) may indeed be com-
puted from the asymptotic relationship in (2.9); for large m we may re-

place t by z. Kleijnen (1988, p. 68) proposes:

B+2°G(B.). (3.14)
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Obviously this interval is tighter than Rao's interval (3.13). For the OLS
estimator ﬁj Arnold (1981, p. 343) gives the exact interval

By /23R, (3.15)
where S(ﬁ) follows from (2.8). We shall use a Monte Carlo experiment to
examine the confidence intervals (3.13) and (3.14) for EGLS, and (3.15)
for OLS.

Note: We are interested in per comparison error rates for indivi-
dual regression parameters Bj' not in experimentwise error rates for the
set of parameters B. If we were interested in confidence intervals for the
set, we could simply replace o« by «/Q in (3.14) and (3.15); and (3.17)
should be based on Rao's equation (4.10), not (4.4). Also see Miller
(1981).

4. Statistical Design of a Monte Carlo Experiment

We use a Monte Carlo experiment to estimate "the" performance of

the various procedures. We choose the following performance measures.

(i) The o and B errors of the following validation tests: Rao's F test
(based on EGLS), Kleijnen's cross-validation test for OLS, and Kleijnen's
test for EGLS.

(ii) The coverage probabilities of the different confidence intervals per
individual regression parameter Bj' and the mean interval halfwidths.

We could have generated the observations y to which a regression
metamodel is fitted, through the simulation of a queueing model such as
the M/M/1 system. (The first-order regression model fits well if the traf-
fic load is low; bad fit results if that load is "close" to 100%.) Such an
approach, however, is inferior: computer time increases and the statisti-
cal control over the experiment decreases; see Kleijnen (1988, p. 69).

The values of the performance measures vary with the case, which
is defined by the number of simulation replications m, the covariance
matrix gy' the design D and the true model which determine 5, and the
regression parameters E. Most Monte Carlo and simulation experiments use

ad hoc methods to specify the design of those experiments; for example,
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Kleijnen (1983) uses a crude design to estimate the o and B errors of his
validation test. We apply a systematic approach to select the following

experimental factors and their levels.

Factor 1: number of simuulation replications m

It is straightforward to prove that the estimated nxn covariance matrix §
is singular for m < n. We fix the levels of factor 1 at m = n+l, n+10,
n+25, and n+50. We hope that as m increases, asymptotic formulas hold.
Kleijnen, Cremers, and Van Belle (1985) suggest that the asymptotic cova-
riance matrix for EGLS (see 2.9) applies for m 2 25.

Factor 2: variance heterogeneity

We quantify the variance heterogeneity through

d = max(di)/min(di). (4.1)
i i

We consider only two levels for factor 2: d=1 (constant variances, so OLS
may apply) and d=10. The magnitude of the variances should be fixed rela-
tive to the magnitude of the regression parameters B (see factor 5). So
without 1loss of generality we fix the average standard deviation at the

value one:
_ n
o = x o /n = 1 ('4'2)

We sample the n-2 intermediate variances uniformly between min(di) and

max(di). Hence we get:

min(di) + max(di)

G = 5 : (4.3)

The last three equations yield a unique solution for min(ci), namely
2/(1+d). We randomly assign the n standard deviations to the responses
that correspond with the n combinations in 5. This procedure yields Table
2; the values for n will be discussed under factor 4.

Factor 3: correlation magnitude

Originally we intended to report on cases with constant and with varying

correlation coefficients, respectively. Our intermediate results, however,
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TABLE 2

Standard Deviations o, with i = 1,...,nwhen d = max(ai)/min(di) = 10.

1.000 1.818 0.182

0.182 1.416 1.818 0.584

1.255 1.818 0.182 0.638 1.107

0.602 0.182 1.104 1.220 0.369 0.528 1.443 1.818 1.734

O U =W

showed that both patterns gave the same results (even if the correlation
coefficients are constant, their estimates vary). Therefore we report only
on the simplest pattern: constant correlation coefficients e. The magni-
tude is fixed at three levels: ¢=0; 0.5; 0.9.

Note: (i) We assume that common random numbers yield positive
correlations.

(ii) A high correlation coefficient may yield a singular estimated cova-
riance matrix §y; in our experiment, however, this never happened.

(iii) Even though the correlation coefficients are constant, the statisti-
cal methods of the preceding section do not assume such a specific pat-
tern.

The factors 2 and 3 determine the covariance matrix gy' For ex-
ample, level 1 of factor 2 yields 6? = 1 and level 1 of factor 3 means
¢=0; so the OLS assumptions hold; nevertheless we can apply EGLS, which in
this case is expected to be less efficient.

Factor 4: matrix of independent variables

Most simulation users apply a regression model that falls into one of the
following three classes (also see Kleijnen, 1988, p. 69):
(a) First order polynomial with main effects Bj where j =1,...,k, and

overall mean ﬁO:

Ha: E(yi) = ﬁo - leil + BZXi2 F g = ﬁkxik' (4.4)
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(b) Two-factor interactions Bjj' where j < j' and j' = 2,...,k; so if

E(yi,Ha) denotes the regression model under Ha of (4.4), then we get:

Hy: B(y;) = Bly;[Hy) + Bygkygxip + coe ¢ B g%y X (4.5)
(c) Second-order polynomial, which includes quadratric effects Bj' and
assumes that all k factors are quantitative (otherwise the model can-

not be interpreted):

H_ : E(y;) = E(inHb) + ’311"51 B gl Bkkxfk. (4.6)

The user may assume that only main effects are important (Ha)’
whereas the true regression model shows two-factor interactions (Hb)’
possibly combined with quadratic effects (HC). Let QO denote the number of
regression parameters in the model assumed by the user, and let Q1 denote
the number of parameters in the true model. Then the user applies a vali-
dation test with Q = QO; in the Monte Carlo experiment we generate obser-
vations Fow through the true model with Q = Ql‘ When we estimate the «
error, we make the true model and the user model coincide. We take the
simplest model, that is, we reduce Q1 to QO (rather than increase QO to
Ql). When estimating the B error, we make the user model a subset of the
true model (QO < Ql); that is, we do not study specification errors such
as "xj should be log xj" (wrong scale) and "factor j is ignored complete-
1y" (Bjxij and Bjj'xijxij‘ are missing). Our assumption is traditional in
the experimental design literature.

We consider four levels for this factor. For k=1 the user's model
follows from (4.4); that is Ha:E(yi) = BO + lei; so QO=2. The true model
cannot follow from (4.5) since no interactions are possible. The true
model is given by (4.6) or HC:E(yi) = ﬂo - lei + Bllxi; so Ql=3' The user
might estimate the two parameters in E(yi|Ha) from only two observations,
but then no validation test is possible (no degrees of freedom; perfect
Eity 0= QO =2-2 = 0 in eq. 3.1; E-i singular in eq. 3.5). Therefore the
user takes n = 3. Then Rao's test applies with n - QO = 1. Cross-valida-

tion also applies, but the OLS and EGLS estimators (E_i and E-i) coincide,

since X_i is a square matrix. So we take
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1 -1 1 - 1 | 1
= |1 O| and X = |1 0 ol = |x_ | of.
~a ~C ~a
1 1 1 i | 1

Obviously X in § 3 equals Ea'
= . = " -
For k = 2 we have Ha'E(yi) BO + leil + B2x12' So a resolution
ITII" design implies n=4; see Kleijnen (1987) and Table 3 (combinations 1
through 4). Rao's F test applies with n - QO = 4-3, and cross-validation

A
applies with é-i = E-i' For the estimation of the B error it is unimpor-
tant how many independent variables are ignored; their total effect mat-
ters (see factor 5). Therefore we add the two-factor interaction (512 Xy
x2) to the first-order model; we do not need to consider a second-order
model.

We also wish to study cases where OLS and EGLS differ. Therefore
we augment the resolution III design (n=4) with the "central" design point
(x1 =x, = 0): n=5. Moreover we extend the design to a "central composite"
design: n=9. So for k=2 the three levels of factor 4 are summarized by
Table 3.

Factor 5: true regression parameters

When we estimate the o errors of the validation tests, the user model is
identical to the true model and the magnitudes of the regression para-
meters do not matter. Therefore we take Bj =0 with j =1,...,Q. When we
estimate the power of the validation tests, the magnitudes of the ignored
regression parameters are important. We select a single ignored parameter
such that the estimated power exceeds zero but is smaller than one so that
the power differences among the various tests become clear. For k=1 we
take Bll = 0.5; for k=2 we select 312 = 0.5 (remember that ¢ = 1; as m
increases, the power increases). So "factor" 5 is kept constant and is no
real factor.

Note: For cases simpler than we study, the exact power can be
derived; see Nether, Wasserman, and Kutner (1985, p. 547), Odeh and Fox
(1975, p. 31).

Factor 6: the nominal « values

We fix the o value in the validation tests at 0.20: Bonferroni's inequali-

ty is conservative so relatively high values are used for o (see Miller,
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TABLE 3

Matrix of Independent Variables for k=2

Combination X, Xy X, Xy X,
1 1 1 i 1l
2 1 1 -1 -1
3 il -1 1 =1
4 i -1 -1 +1
5 1 0 0 0
6 1 2 0 0
T 1 -2 0 0
8 1 2 0
9 1 -2 0

1981). We fix the a« value in the confidence intervals at 0.10. So "factor"
6 is constant.

Altogether the first four factors specify 96 cases (96 = 4 x 2 x
3 x 4). we replicate each case 100 times in the Monte Carlo experiment (we
should distinguish between the m "simulation" replications and the 100
"Monte Carlo" replications). The validation tests give binomially distri-
buted observations o and ﬁ. Hence their standard errors do not exceed
0.05. We compute confidence intervals for Bj' only if the regression model
is accepted by the validation test. Consequently coverages and halfwidths
may be estimated from fewer than 100 Monte Carlo replications, namely from
100(1-3) and 100§ replications respectively.

The pseudorandom number generator is the standard NAG subroutine,

which is a multiplicative generator with multiplier 1313 and modulus 259.
The four levels of factor 4 (which specify n) give independent results to
eliminate the risk of a "funny" seed; within each level the same seed is

used (but the total number of pseudorandom numbers varies with m).
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5. Monte Carlo Results

5.1. Model Validation

Table 4 gives the estimated o error and B errors (or power 1-8),
for all 96 cases. We organize the data in four (sub)experiments, which
correspond with the four levels of 5. Remember that in the experiments 1
and 2 cross-validation yields identical results for the OLS and EGLS esti-
mates (n-1 = QO). The experiments 3 and 4 yield different OLS and EGLS
estimates in cross-validation, but these differences do not affect the o
and B errors significantly. For example, the last number in Table 4 is
0.25, which is l-ﬁ for d = 10, ¢ = 0.9, m = 59 and EGLS cross-validation;
when switching to OLS the estimated power becomes 0.30. Actually we con-
jectured that EGLS would give better power, if the OLS assumptions (gy =
dzl) do not hold and if the covariance matrix is estimated from many simu-
lation replications (m); the explanation may be that the intercept estima-
tor is less accurate in EGLS (see § 5.2).

Rao's validation test has estimated o errors that do not signifi-
cantly deviate from the nominal 0.20 value. So our interpretation of Rao
and the asymptotic formulas are correct indeed. Cross-validation uses
Bonferroni's inequality, which is indeed conservative: a < 0.20. A conser-
vative test implies low power: Rao's validation test always has higher
power.

Positive ¢ values do not affect o in cross-validation; so the
extra term given in (3.8) through (3.11) is adequate. Positive correlation
does improve the power of the validation tests. So it makes sense to use
common seeds in simulation! Obviously a high response variance creates so

much noise that the power is low, even if ¢ is high.



17

TABLE 4

o and B Errors of Three Validation Tests

Experiment 1: k = 1; n = 3
Method & error power (1—3)
0 0.5 0.9 0 0.5 0.9
m=4
RAO 0:17 0.22 0.26 0.23 0.24 0.41 1
0.24 0.22 (61796 7 0.20 0.23 0.23 10
KLEIJNEN | 0.09 0.06 0.08 0.08 0.11 0.16 1
0.08 0.07 0.07 0.07 0.10 0.08 10
m=13
RAO 0.20 0.21 0.20 0.22 0.25 0.52 1
0.14 0.13 0.16 0.17 0.20 0.20 10
KLEIJNEN | 0.06 0.06 0.06 0.05 0.12 0.22 1
0.08 0.05 0.05 0.05 0.06 0.07 10
m=28
RAO 0.:15 0.18 0.17 0.22 0.29 0.50 1
0.15 0. 17 0.15 0.20 0.24 0.20 10
KLEIJNEN | 0.06 0.08 0.08 0.08 ©0.11 0.22 il
0.05 0.04 0.06 0.07 0.06 0.10 10
m=53
RAO 0.16 0,18 0.17 0.24 0.32 0.51 1
0.17 0.22 0.16 0.23 0.24 0.20 10
KLEIJNEN 0.05 0.07 0.07 0:16 0.12 0.32 1
0.05 0.01 0.04 0.07 0.08 0.08 10
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TABLE 4 (continued)

Experiment 2: k = 2; n = 4
Method & error power (1—§)
0 0.5 0.9 0 0.5 0.9
m=5
RAO 015 0.21 0.20 0.29 0.43 0.87 1
0.18 0.18 0.22 0.24 0.22 0.30 10
KLEIJNEN 0.06 0.06 0.07 0.05 0.12 0.51 1
0.06 0.04 0.09 0.05 0.08 0.10 10
m=14
RAO 0.19 0.19 0.18 0.38 0.50 0.93 1
0.18 0.18 0.20 0.28 0.34 0.38 10
KLEIJNEN 0.08 0.09 0.06 0.11 0.21 0.81 1
0.05 0.03 0.03 0.09 ©0.11 ©.11 10
m=29
RAO 0.17 0.20 0,22 0.35 0.57 0.98 :
0.18 0.19 0.19 0.34 0.36 0.36 10
KLEIJNEN 0.05 0.06 0.05 0.11 0.20 0.83 )
0.07 0.09 0.05 0.08 0.10 0.13 10
m=54
RAO 0.17 021 0.20 0.45 0:57 0.98 1
0.12 0.10 0.12 0.32 031 0.28 10
KLEIJNEN 0.03 0.02 0.02 0.11 0.33 0.85 1
0.03 0.02 0.03 0.08 0.05 0.09 10
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TABLE 4 (continued)

Experiment 3: k = 2; n =
Method o error power (l—ﬁ)
0 0:5 0.9 0 0.5 0.9 d
m=6
RAO 0.15 0.19 0.22 0.30 0.43 0.81 1
0.18 0.17 0.18 0.34 0.35 0.38 10
KLEIJNEN-OLS 0.07 0.07 0.10 0.21 0.29 0.69 1
0.09 0.06 0.07 0.16 0.16 0.20 10
-EGLS 0.08 0.13 0.11 0.20 0,32 0.74 1
0.10 0.07 0,12 0.20 0.21 0.26 10
m=15
RAO 0.17 0.20 0.22 0.31 0.42 0.92 1
0.18 0.20 0.19 0.35 0.35 0.35 10
KLEIJNEN-OLS 0.11 0.13 0.16 0.17 0.30 0.85 il
0.07 0.11 010 0.21 0:.21 0.21 10
-EGLS 0.12 0.15 0:17 0.19 0.33 0.81 il
0.08 0.10 0.09 0.21 0.22 022 10
m=30
RAO 0.22 0.20 0.:47 0.34 0.47 0.91 1
0.19 0.17 0.16 0.33 0.34 0.37 10
KLEIJNEN-OLS 0.15 0.13 0.07 0.22 0.35 0.87 1
0:.13 0.12 0.11 0.16 0.20 0.17 10
-EGLS 0.15 0.43 0.07 0.22 0:35 0.87 1
0:12 0.10 0,10 0.18 0.18 @.17 10
m=55
RAO 0.21 0.20 0.20 0.38 0.56 0.94 1
0.22 0.21 0.24 0.29 0.30 0.36 10
KLEIJNEN-OLS 0.11 .14 10.10 0.21 0.36 0.88 i
0..13 0.13 0.13 0.23 0.20 0.20 10
-EGLS | 0.12 0.14 0.09 0.24 0.37 0.90 1
0.09 0.09 0.10 0.22 0.17 0.17 10
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TABLE 4 (continued)

Experiment 4: k = 2; n = 9
Method o error power (1—5)
0 0.5 0.9 0 0.5 0.9 d
m=10
RAO 0.15 0:17 0.23 0.20 0.27 0.50 1
0.25 0.26 0.24 0.27 0.34 0.43 10
KLEIJNEN-OLS 0.15 0.20 0.19 0.16 0.22 0.51 1
0.13 0,22 0.19 0,17 0.26 0.32 10
-EGLS 0.35 0.38 0.31 0.38 0.40 0.65 1
0.42 0.43 0.30 0.55 0.56 0.49 10
m=19
RAO 0.20 0.21 0.18 0.18 023 0.71 1
0.14 0.17 0.15 0.30 0.24 0.48 10
KLEIJNEN-OLS 0.16 0.12 0.13 0.18 0.19 0.57 1
0.13 0.12 0.11 0.19 0.20 0.29 10
-EGLS 0.21 0.16 0.17 0.21 0.30 0.51 1
0.19 0.21 0.15 0.36 0.31 0.32 10
m=34
RAO 0.20 0.23 027 0.28 0.37 0. 77 1
0.23 0.21 0.19 0.40 0.42 0.64 10
KLEIJNEN-OLS 0.16 0.20 0.20 0.26 0.34 0.72 1]
0.18 0.15 0.09 0.24 0.25 0.33 10
-EGLS 0.20 0.24 0.16 0.31 0.39 0.66 1
0.26 0.26 0.17 0.43 0.39 0.32 10
m=59
RAO 0.14 0.12 0.13 0.29 0.33 0.78 1
0.16 012 0.11 0.30 0.28 0.67 10
KLEIJNEN-OLS 0.13 0.15 0.16 0.20 0.27 0.68 1
0.16 0.16 [ B 0.20 0.19 0.30 10
-EGLS 0.12 0:15 0.14 0.19 0.28 0.70 1
0.20 0.13 0.05 0.30 0.27 0.25 10
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5.2. Individual Regression Parameters

Table 5 gives the results for individual parameters, if and only
if the validation test does not reject the user's model. So the coverage
probabilities and mean halfwidth lengths are estimated from only 100(1-&)
and 100 ﬁ Monte Carlo replications. In § 5.1 we saw how o and ﬁ vary with
the wvalidation tests and with p. For example, Rao's validation test has
high power, especially as ¢ increases; hence 100 ﬁ becomes small, and our
standard errors for halfwidth lengths increase.

Our EGLS confidence intervals of (3.14) hold only asymptotically:
for small m the coverage probability is too low. The OLS intervals of
(3.15) are exact: even for small m the coverage does not deviate signifi-
cantly from the nominal 0.90 value. Rao's EGLS confidence intervals of
(3.13) have the correct coverage; in some cases they are wider than our
OLS intervals. For simplicity's sake, however, we may always base the

confidence intervals for the individual regression parameters ﬁj on the

~

same EGLS point estimates Ej that are used in the model validation test.
As ¢ increases, the mean halfwidth length decreases (more accurate
estimators of the parameters), except for the intercept; this phenomenon
is explained in Kleijnen (1987, ppp. 172-173).
To save space we display only the confidence interval results for
level 4 of X (k = 2, n = 9); the other three levels give similar patterns
(the data for all levels can be requested from the author; they have been

made available to the referees).

6. Conclusions

If we use common pseudorandom numbers in a simulation experiment,
then we may analyze the simulation data through a regression model <X =
Xp + e) with some non-diagonal covariance matrix gy' We can estimate the
regression parameters B through Ordinary (OLS) and Estimated Generalized
Least Squares (EGLS).

To validate the specified regression metamodel, we can apply Rao's
F test for lack of fit and Kleijen's cross-validation test. However, Rao's

test is better since it has higher power while it preserves its nominal
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TABLE 5

0
in Experiment 4 (k=2, n=9)
No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e d
m=10
RAO
Coverage 0.91 0.90 0.90 ﬁo 0.89 0.88 0.88 1
Int. length 1.13 2.61 3.21 1.14 2.56 3.63
(stand.err.) (0.48) (1.25) (1.57) (0.52) (1.23) (1.58)
Coverage 0.93 0.96 0.61 0.74 0.77 0.58 10
Int. length 0.73 0.84 0.61 0.77 0.92 0.65
(stand.err.) (0.31) (0.37) (0.30) (0.36) (0.43) (0.33)
N T W R e e PSS gl s S e ) (|
Coverage 0.92 0.89 0.91 Bl 0.88 0.89 0.90 ]l
Int. length 0.96 0.67 0.31 0.94 0.65 0:.33
(stand.err.) (0.48) (0.33) (0O 15) (0.45) (0.33) (0.16)
Coverage 0.93 0.89 0.88 0.92 0.52 0.32 10
Int. length 0.68 0.50 0.29 0.74 0.52 0.32
(stand.err.) (0.31) (0.23) (0.14) (0.34) (0.25) (0.16)
Coverage 0.89 0.89 0.92 Bz 0.93 0.90 0.92 1
Int. length 0.93 0.69 0.31 0.91 0.7l 0.38
(stand.err.) (0.38) (0.33) (0.1h) (0.38) (0.33) (0.18)
Coverage 0.89 0.89 0.91 0.85 0.95 0.93 10
Int. length 0.80 0.63 0.35 0.83 0.66 0.39
(stand.err.) (0.35) (0.31) (0.16) (0.39) (0.28) (0.18)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e_~d
m=10
KLEIJNEN-OLS
Coverage 0.89 0.81 0.81 BO 0.90 0.81 0.78 1
Int. length 0.59 1:33 1.70 0.59 1.31 1.69
(stand.err.) (0.16) (0.34) (0.45) (0.15) (0.33) (0.45)
Coverage 0.91 0.90 0.91 0.89 0.89 0.91 10
Int. length 0470 1.34 1.73 0.70 1.35 1.72
(stand.err.) (0.18) (0.32) (0.42) (0.19) (0.33) (0.41) {
Coverage 0.89 0.93 0.91 By 0.90 0.94 0.90 1
Int. length 0.51 037 0,17 0.52 0. 37 017
(stand.err.) (0.12) (0.09) (0.04) (0.12) (0.09) (0.05)
Coverage 0.93 0.92 0.91 0.94 0.93 0.93 10
Int. length 0.53 0.43 0.35 0.54 0.44 0.35
(stand.err.) (0.13) (0:11) (6.09) (0.13) (0.12) (0.09)
Coverage 0.85 0.88 0.86 B, 0.85 0.87 0.88 1
Int. length 0.52 0.37 0L 17 0.50 0.36 0. 17
(stand.err.) (0.13) (0.09) (0.04) (0.13) (0.09) (0.04)
Coverage 0.91 0.91 0.91 0.92 0.95 0.93 10
Int. length 0.80 0.58 0.27 0.79 0.58 0.27
(stand.err.) (0.20) (0.14) (0.07) (0.20) (0.14) (0.07)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 |e -4
m=10 =

KLEIJNEN-EGLS

Coverage 0.42 0.32 0.41 B 0.45 0.45 0.49 1
Int. length 0.32 0.70 0.85 0,31 0.68 0.85
(stand.err.) (0.13) (0.31) (0.36) (0.14) (0.30) (0.34)
Coverage 0.55 0.44 0.47 0.22 0.18 0.06 10
Int. length 0.20 0.22 0.15 0.19 0.22 0.15
(stand.err.) (0.08) (0.09) (0.06) (0.09) (0.10) (0.06)
Coverage 0.48 0.37 0.42 B, 0.50 0.38 0.46 ¢
Int. length 0.24 0.17 0.08 0.24 0.17 0.09
(stand.err.) (0.10) (0.08) (0.04) (0.11) (0.07) (0.04)
Coverage 0.47 0.44 0.34 0.33 0.41 0.25 10
Int. length 0.18 0:13 0.08 0.18 0,13 0.07
(stand.err.) (0.08) (0.06) (0.03) (0.08) (0.06) (0.03)
Coverage 0.34 0.4y 0.42 BZ 0.35 0.38 0.40 1
Int. length 0.24 0.19 0.08 0.23 0.19 0.19
(stand.err.) (0.09) (0.08) (0.04) (0.09) (0.08) (0.04)
Coverage 0.38 0.35 0.37 0.38 0,52 0.35 10
Int. length 0.21 0.16 0.09 0.20 0.17 010
(stand.err.) (0.09) (0.07) (0.04) (0.09) (0.08) (0.04)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e d
m=19

RAO
Coverage 0.88 0.90 0.89 BO 0.93 0.92 0.93 i
Int. length 0.65 1:51 1.99 0.66 1.53 2.05
(stand.err.) (0.16) (0.37) (0.45) (0.17) (0.35) (0.56)
Coverage 0.95 0.94 0.94 0.60 0.29 0.10 10
Int. length 0.40 0.44 0.29 0.40 0.46 0.31
(stand.err.) (0.10) (0.11) {0.07) (0.10) (0.10) (0.08)
Coverage 0.89 0.94 0.94 By 0.88 0.90 0.86 i
Int. length 0.58 0.41 0.18 0.58  0.41  0.19
(stand.err.) (0.14) (0.10) (O 05) (0.15) (0.11) (0.06)
Coverage 0.92 0.89 0.92 0.90 0.83 0,71 10
Int. length 0.44 0.32 0.16 0.44 0.31 0.17
(stand.err.) (0.11) (0.08) (0.04) (0.12) (0.09) (0.05)
Coverage 0.93 0.91 0.93 BZ 0.94 0.96 0.83 1
Int. length 0.58 0.41 0.19 0.59 0.42 0.20
(stand.err.) (0.14) (0.10) (0.05) (0.14) (0.10) (0.06)
Coverage 0.93 0.89 0.89 0.94 0.89 0.96 10
Int. length 0.52 0.39 0.21 0.51 0.39 0.22
(stand.err.) (0.14) (0.10) (0.06) (0.13) (0.09) (0.05)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 |e.a
m=19 -

KLEIJNEN-OLS

Coverage 0.87 0.88 0.90 Bo 0.87 0.89 0.88 1
Int. length 0.57 1.26 1.64 0.56 1.26 1.67
(stand.err.) (0.12) (0.24) ¥Yo0.31) (0.12) (0.24) (0.36)
Coverage 0.93 0.92 0.94 0.94 0.95 0.96 10
Int. length 0.65 1.29 1.66 0.66 1.29 1.65
(stand.err.) (0.14) (0.25) (0.30) (0.15) (0.25) (0.30)
Coverage 0.93 0.93 0.93 Bl 0.93 0.93 0.95 1
Int. length 0.49 0.34 0.16 0.48 0.34 0.16
(stand.err.) (0.10) (0.07) (0.03) (0.10) (0.07) (0.04)
Coverage 0.93 0.90 0.93 0.94 0.91 0.93 10
Int. length 0.50 0.41 0.33 0.50 0.40 0.33
(stand.err.) (0.10) (0.09) (0.06) (0.10) (0.09) (0.06)
Coverage 0.93 0.92 0.93 Bz 0.93 0.91 0.91 1
Int. length 0.50 0.35 0.16 0.50 0.35 0.16
(stand.err.) (0.10) (0.07) (0.03) (0.10) (0.07) (0.03)
Coverage 0.94 0.93 0.93 0.94 0.94 0.93 10
Int. length 077 0.54 0.25 0.77 0.55 0.25
(stand.err.) (0.14) (0.10) (0.05) (0.15) (0.10) (0.05)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e~ d
m=19

KLEIJNEN-EGLS

Coverage 0.78 (6 M7 i 0. 77 ﬁo 0.76 0.73 0.65 1
Int. length 0.43 0.98 1.30 0.43 0.97 1.29
(stand.err.) (0.10) (0.22) (0.27) (0.10) (0.22) (0.30)
Coverage 0.83 0.82 0.76 0.25 0.29 0.19 10
Int. length 0.26 0.29 0.19 0.25 0.29 0.19
(stand.err.) (0.06) (0.06) (0.04) (0.06) (0.06) (0.04)
Coverage 0.73 0.73 0.69 B, 0.72 077 0.65 1
Int. length 0.37 0.26 0:12 0.37 0.26 0.12
(stand.err.) (0.09) (0.07) (0.03) (0.09) (0.06) (0.03)
Coverage 0.73 0.70 0.69 0.75 0.65 0.44 10
Int. length 0.28 0.20 0. 11 0.27 0.20 0.11
(stand.err.) (0.07) (0.05) (O 03) (0.07) (0.05) (0.03)
Coverage 0.75 077 0.80 BZ 0.75 0.73 0.67 1
Int. length 0.38 0 27 a, 12 0.38 0.27 0.12
(stand.err.) (0.08) (0.06) (0.03) (0.09) (0.06) (0.03)
Coverage 0.74 0.73 0.72 0.69 0. 71 0.74 10
Int. length 0.34 0.25 0.14 0.33 0.25 0.14
(stand.err.) (0.08) (0.06) (0.03) (0.08) (0.06) (0.03)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e-~—4d
m=34

RAO

Coverage 0.88 0.83 0.85 By 0.92 0.86 0.91 1
Int. length 0.60 137 1.76 0.60 1.3 1.76
(stand.err.) (0.12) (0.26) (0.32) (0.12) (0.27) (0.45)
Coverage 0.92 0.92 0.95 0.42 0.16 0.00 10
Int. length 0.35 0.38 0.23 0.34 0.38 0.24
(stand.err.) (0.06) (0.07) (0.04) (0.06) (0.07) (0.05)
Coverage 0.93 0.94 0.93 B, 0.93 0.94 0.96 1
Int. length 0.52 0.37 ©.17 0.52 0.37 0.17
(stand.err.) (0.10) (0.07) (0.03) (0.10) (0.08) (0.05)
Coverage 0.92 0.94 0.94 0.92 0.91 0.75 10
Int. length 0.40 0.29 0.14 0.40 0.29 0.14
(stand.err.) (0.07) (0.06) (0.03) (0.08) (0.06) (0.03)
Coverage 0.88 0.84 0.84 B, 0.90 0.89 0.87 1
Int. length 0.52 0.37 0.17 0.52 0.37 (9 5% Iy
(stand.err.) (0.09) (0.07) (0.03) (0.09) (0.07) (0.04)
Coverage 0.88 0.90 0.89 0.90 0.93 0.89 10
Int. length 0.45 0:33 0.17 0.45 0.34 0.18
(stand.err.) (0.09) (0.06) (0.03) (0.09) (0.06) (0.04)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 |e.a
m=34 -

KLEIJNEN-OLS

Coverage 0.94 0.89 0.86 By 0.93 0.85 0.79 1
Int. length 0.55 1.24 1.62 0.54 124 1.56
(stand.err.) (0.94) (0.21) (0.25) (0.10) (0.22) (0.35)
Coverage 0.95 0.91 0.90 0.96 0.92 0.94 10
Int. length 0.64 1.27 1.63 0.64 1.26 1.63
(stand.err.) (0.11) «(0.21) (0.25) (0.12) (0.22) {0.27)
Coverage 0.92 0.93 0.93 Bl 0.92 0.94 1 .00 i i
Int. length 0.48 0.34 0.15 0.48 0.34 0.15
(stand.err.) (0.08) (0.06) (0.03) (0.08) (0.06) (0.03)
Coverage 0.96 0.93 0.88 0.95 0.95 0.93 10
Int. length 0.49 0.41 0.33 0.48 0.40 0.33
(stand.err.) (0.08) (0.06) (0.05) (0.08) (0.07) (0.06)
Coverage 0.85 0.88 0.86 B, 0.85 0.88 0.86 1
Int. length 0.48 0.34 0.15 0.48 0.34 0.16
(stand.err.) (0.07) (0.05) (0.02) (0.08) (0.06) (0.04)
Coverage 0.88 0.87 0.89 0.89 0.87 0.90 10
Int. length 0.74 0.52 0.24 0.74 0.52 0.24
(stand.err.) (0.11) (0.08) (0.04) (0.12) (0.08) (0.04)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e~ d
m=34 -
KLEIJNEN-EGLS
Coverage 0.81 0.80 0.86 BO 0.80 0.79 O 71 1
Int. length 0.49 1.10 1.42 0.48 1.09 1.38
(stand.err.) (0.09) (0.20) (0.23) (0.10) (0.21) (0.30)
Coverage 0.82 0.85 0.84 0.30 0.10 0.00 10
Int. length 0.28 0.31 0.19 0.28 0.31 0.19
(stand.err.) (0.05) (0.05) (0.03) (0.05) (0.05) (0.03)
Coverage 0.88 0.89 0.81 By 0.87 0.84 0.85 1
Int. length 0.42 0.30 0.14 0.42 0.29 0.13
(stand.err.) (0.08) (0.05) (0.02) (0.08) (0.06) (0.03)
Coverage 0.89 0.91 0.88 0.84 0.87 0.60 10
Int. length 0.32 0.23 ©.11 0.32 023 0.11
(stand.err.) (0.06) (0.04) (0.02) (0.06) (0.05) (0.02)
_________________________________________________________________________ ]
Coverage 0.79 0.75 O. 74 BZ 0.80 0.74 0.68 1
Int. length 0.42 0.30 0.13 0.42 0.30 0.14
(stand.err.) (0.07) (0.05) (0.02) (0.08) (0.05) (0.05)
Coverage 0.84 0.81 0.84 0.81 0.80 0.72 10
Int. length 0.36 0..27 0.14 0.36 0.27 0.14
(stand.err.) (0.07) (0.05) (0.02) (0.07) (0.05) (0.03)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 e~ d
m=59

RAO

Coverage 0.88 0.83 0.85 By 0.92 0.86 0.91 il
Int. length 0.57 1.31 1.68 0. 57 1.29 1.68
(stand.err.) (0.08) (0.20) (0.26) (0.09) (0.21) (0.41)
Coverage 0.90 0.88 0.84 0.44 0.18 0.00 10
Int. length 0.32 0.35 0.19 0.32 0.35 0.20
(stand.err.) (0.05) (0.05) (0.03) (0.05) (0.05) (0.04)
Coverage 0.90 0.90 0.90 Bl 0.90 0.88 0.86 1
Int. length 0.50 0.36 0.16 0.50 0.36 017
(stand.err.) (0.08) (0.05) (0.02) (0.08) (0.06) (0.04)
Coverage 0.90 0.92 0.91 0.89 0.79 0.64 10
Int. length 0:37 0.27 0.13 0.38 0.27 0.13
(stand.err.) (0.06) (0.04) (0.02) (0.06) (0.04) (0.03)
Coverage 0.91 0.90 0.91 B2 0.94 0.94 1.00 1
Int. length 0.51 0.36 0.16 0.51 0.36 0.16
(stand.err.) (0.07) (0.05) (0.02) (0.08) (0.06) (0.04)
Coverage 0.90 0.90 0.92 0.84 0.89 0.88 10
Int. length 0.42 0% 31 0.15 0.42 0:31 0.16
(stand.err.) (0.07) (0.05) (0.02) (0.07) (0.05) (0.03)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 p d
m=59

KLEIJNEN-OLS
Coverage 0.92 0.91 0.90 By 0.94 0.93 0.91 1
Int. length 0.55 1.24 1.60 0.54 1,23 1.59
(stand.err.) (0.08) (0.18) (0.24) (0.08) (0.19) (0.33)
Coverage 0.93 0.94 0.93 0.93 0.95 0.96 10
Int. length 0.64 1.26 1.61 0.64 1.26 1.61
(stand.err.) (0.09) (0.18) (0.23) (0.10) (0.19) (0.26)
Coverage 0.91 0.91 0.90 ﬁl 0.91 0.88 0.81 1
Int. length 0.48 0.34 0.15 0.48 0.34 0.15
(stand.err.) (0.07) (0.05) (0.02) (0.07) (0.05) (0.03)
Coverage 0.94 0.93 0.92 0.94 0.91 0.93 10
Int. length 0.b9  0.41  0.32 0.49 o0.b0 0.32
(stand.err.) (0.07) (0.06) (0.05) (0.07) (0.06) (0.05)
Coverage 0.90 0.92 0.93 Bz 0.90 0.92 0.94 1
Int. length 0.48 0.34 0.15 0.48 0.34 0.15
(stand.err.) (0.07) (0.05) (0.02) (0.07) (0.05) (0.03)
Coverage 0.94 0.93 0.91 0.94 0.93 0.89 10
Int. length 0.73 0.52 0.24 0.73 0.52 0.24
(stand.err.) (0.10) (0.07) (0.03) (0.10) (0.07) (0.03)
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TABLE 5 (continued)

No Specification Error Misspecified Model
0 0.5 0.9 0 0.5 0.9 |e 3
m=59

KLEIJNEN-EGLS
Coverage 0.86 0.85 0.83 BO 0.90 0.89 0.90 i
Int. length 0.51 1.16 1.49 0.51 1.15 1.51
(stand.err.) (0.07) (0.17) (0.22) (0.07) (0.18) (0.32)
Coverage 0.85 0.84 0.83 0.34 0.12 0.00 10
Int. length 0.29 0.31 017 0.28 031 0.17
(stand.err.) (0.04) (0.05) (0.02) (0.04) (0.05) (0.03)
Coverage 0.86 0.88 0.88 By 0.86 0.86 0.83 1
Int. length 0.45 032 0.14 0.45 0.32 0.14
(stand.err.) (0.07) (0.05) (0.02) (0.07) (0.05) (0.03)
Coverage 0.84 0.87 0.84 0.83 07T 0.51 10
Int. length 0.34 0.24 0.11 0.34 0.24 0.12
(stand.err.) (0.05) (0.04) (0.02) (0.05) (0.04) (0.02)
Coverage 0.86 0.89 0.87 B2 0.86 0.89 0.93 1
Int. length 0.45 0.32 0.14 0.45 0.32 0.15
(stand.err.) (0.06) (0.05) (0.02) (0.07) (0.05) (0.03)
Coverage 0.89 0.91 0.88 0.80 0.84 0.77 10
Int. length 0.38 0.28 0.14 0. 37 0.28 0.14
(stand.err.) (0.06) (0.04) (0.02) (0.06) (0.04) (0.02)
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type I error. If common seeds produce high correlations, then the power of
the validation tests increase.

Once the regression model is validated, we can compute confidence
intervals for the individual regression parameters Bj. We might base these
intervals on OLS and EGLS respectively; for EGLS we considered one proce-
dure due to Rao and one that is valid only asymptotically (large number of
simulation replications m). Rao's confidence intervals for EGLS have ap-
proximately the same coverage probabilities and mean halfwidths as our OLS
intervals have. Since the EGLS point estimates are anyhow needed for the
validation test, we may stick to Rao's confidence intervals. Common seeds
decrease the halfwidths, except for the intercept BO.

These conclusions are based on an extensive Monte Carlo experi-
ment: we varied the number of simulation replications m, the wvariance
heterogeneity max di/min ai' the correlation magnitude ¢, and the matrix

of independent variables X. Altogether these factors defined 96 cases.
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Appendix 1: Derivation of csv(§i.§i).
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