
  

 

 

Tilburg University

Regression analysis

Kleijnen, J.P.C.

Publication date:
1983

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C. (1983). Regression analysis: Assumptions, alternatives, applications. (Research memorandum
/ Tilburg University, Department of Economics; Vol. FEW 135). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/1f65af2d-8958-4929-a726-0543b6213a7e


- T1t~S~~-I~iFTFNBURERU
~,3' - -. : ;,.~~:K.-li -'
L r i-~~-7LVJ
h:. L -.

~IOG~:B~::~ïJOL
TILdUItG

Nr.

~

faculteit der economische wetenschappen

RESEARCH MEMORANDUM

TILBURG. UNIVERSiTY

DEPARTMENT OF ECONOMICS

Postbus 90153 - 5000 LE Tilburg
Netherlands

I IIIIIII Inll UIIII III InllIIII' IIN IIIII Iln ~VII



FEW

REGRESSION ANALYSIS:

,..-`~. !„~.,,~
.. ~ L„o ~ i"~ L~ vi ~..~

i~~5~1'~!~

ASSUMPTIONS, ALTERNATIVES, APPLICATIONS

Jack P.C, Kleijnen

Department of Business and Economics

Katholíeke Hoqeachool Tilburq (Tilburq University)

Post Box 90153 ~

5000 LE Tilburq

Netherlanda

December 1983



REGRESSION ANALYSIS:

ASSUMPTIONS, ALTERNATIVES, APPLICATIONS

Jack P.C. Kleijnen

Department of Business and Economics

Katholíeke HoQeschool TilburQ (TílburR Univeraity)

Post Box 90153

5000 LE Tilburg

Netherlands

December 1983



ARSTRACT:

Are the assumptions of reQression analysis realistic; how can they be

verified; if an assumption is violated, are there alternative reqression

techniques? Recent developments are surveyed, emphasizinQ practical

aspects and usinQ only elementary statístical formulas. The specific

assimtptíons are: (i) a non-sinRular matrix of independent variables (11)

a reQression model linear in its parameters (iii) responses with con-

stant variances (iv) independent responses (v) normally distributed

responses (vi) a valid or correctly specified re~ression model. More

than fifty selected references to the recent literature are included.

CR CATEGORIES AND SUBJECT DESCRTPTORS: G3 (Probability and Stati-

stics~ - statistical software;

T.h fSimulation and ModellinQl - model validatíon and analysis

~F,NERAL TERMS: Rxperimentation, Measurement

ADniTIONAL KEY WnRDS AN~ PHRASES: reQression, ]east squares, transform-

ations, variance heteroQeneity, common random numbers, normality, out-

liers, rohustness, nonparametric reQression, rank reQression, valid-

ation, optimization, applications.
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L INTRODIICTION

ReQression analysis is a statistical technique frequently used in many

practical applications and scientific disciplines. In thia paper we

shall examine six ass~ptions of classical regression analysis, i.e., we

shall try to answer questions such as: Is it reasonable to use this

particular assumption; how can we test whether this assumption holds in

a specific situation; are alternative assumptions accommodated by other

regression techniques? When answering these questions, we shall refer to

recent developments in statistics. Because our survey is meant for

practitioners, we shall use only elementary statistical formulas.

Because regression analysis is applied in so many different fields, it

would be impractical to cover all applications. We shall concentrate on

a special type of application with which we are familiar, namely the use

of a reqression model to summarize the reaction of the output of a

simulation program to changes in the input. (Such a regression model

facilitates sensitivity analysis, validation and optimization of the

simulation model; see [26, 29]. However, we emphasize that most of the

materíal in our survey is also relevant to applications outside the

símulation field.

2. BASIC REGRESSION ANALYSIS

In the present section we shall present the basic ideas and formulas of

reRression analysis. This section may serve as a refresher for the

reader; if the reader is famíliar with reRression analysis he may im-
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mediately proceed to the conclusion of the present sectíon.

There are n observations or (simulation) runs with n~ 1. There

are q independent (regression) variables x, including the dummy variable

x~ equal to one: xi~ - 1 for i- 1,...,n with 1 ~ q ~ n. Moreover, the

independent variable x may be a binary variable, for instance, xi] - 1

if in run i the qualitative fac[or "queuing discipline" equals first-

come-first-served, and xil -(1 if the queuing discípline equals short-

est-jobs-first. Each run yields one observation on the output: the

reRression model's dependent variable (íf there are multiple outputs we

apply the analysis per dependent varíahle, applyinR the Aonferroni

ínequality; see (341 and Section R.2). Least Squares is a mathematical

and not a statistical problem formulation: Given the n observations (y -

yi when x- xí where i- 1,...,n) and given a family of curves with

parameters g(e.Q., the family of línear curves SG t S1 x) we wish to

de[ermíne the parameter values S that minimize the sum of squared devi-
n 2 -

ations (E (yi-yi) where yi - pp f~1 xi). If the curve is linear in
1 ..

the parameters g(see later) then the Least Squares values g can be

foiind ín any textbook on regression analysis ( see j5, llj):

f3 - (X'.X)-1.X'.y (1)

where we follow the ma[rix notation traditional in regression analysis.

The followínQ expression in scalar notation results for the case of a

sinQle independent variable x] (hesides the dummy variahle x~, that is,

q - ~~.

E(xi-x).(yi-Y)
and ~ .x

S1 - E(xí-x)2 ~(1 - y - S1
(2)
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where x and y are the familíar averaqes Exi~n and Lyi~n respectively.

The estimation of g becomes a statistical problem if we assume

tha[ Riven the independent variables x, there is a population of poss-

ible response values y. The simplest statistical model specifies that

the random variable y is normally distributed, with expected value equal

to E(y X) - Xp. The simplest statistical model further specifies a

constant variance: var(yIX) - 02. Moreover, the n responses are assumed

[o he independent, so [hat the covariance matrix of y is given by n- o2I,
Y

where the symbol I denotes the identy matrix. In other words, the errors

(noise, disturbance) e defined by

y - x.s f e (3)

satisfy the Classical Assumptions, i.e., the errors are normally and

independently distributed (NID) with zero mean and cons[ant variance

aZ: e ~ NID(0, a2.I).

If the errors have zero expectation, then we can prove that the

(mathematical) Least Squares alRorithm leade to estimators of the re~ression

parame[ers g that are unbiased (a statístical property): E(S) - S

where S was Qiven by eq. (1); in this equation y is now a random varia-

hle. We further observe tha[ S is a linear estimator, i.e., it is a

linear transformation of the responses y. If we further assume that the

errors are independent with common variance (~ - oZI) then we can prove
e

that the Least Squares estimator ~ is the unhiased linear estimator wi[h

the smalles[ variance: Aest i.inear Unbiased F.stimator (BLUF.) where

"best" means minimum variance. The values of these (minimal) variances



can be derived from the followinQ Reneral formula: íf a random vector

is a linear transformation of yl, i.e., y2 - Ayl, and y~ has covariance

matrix 521, then y2 has a covaríance matrix S22 Riven by

S2~ - A.S21.A' (4)

ApplyinR eq. (4) to eq. ( 1) usinQ n- ozI yields the covariance ma[rix
Y

of s;

?
S2„ - (X' .X)- .a

a
(5)

In textbooks on reQression analysis o2 is estimated throuQh the Mean

Squared Residuals (MSR):

a2 - E (Y1-yi)ZI(n-q)
i-1

where q denotes the number of estimated reQression parameters and yi is

the 1-th component of the predicted observations y- XS. In random

simiilation we have estimators of o2 different from eq. (6); see Section

5. The main-dia~onal elements of ~~ defined hy eqs. (5) and (6) are the

estimated variances of the reRression parameter estimators, and their

square roots si are the estimated standard deviations or "standard

errors". To test whether Si equals zero - or more Renerally equals the

value Sj - we use the t statístic:

tv,i - lsi-Bi)lsi (i - ~,t,...,q-1) (7)
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where the deQrees of freedom of t equal [he deRrees of freedom of a2,

i.e., if we use eq. (6) then v~ n-q. If we accept the hypothesized

value g~,

then we may re-estimate the remaíninR parameters gj, (j' ~ j). The

resultinR values will not differ from the old values, if the independent

variables j and j' are orthoQonal, i.e., if E xij xij~ - 0 where j,j' -
1

O,l,...,q-1

We may also hypothesize that more than one parameter is zero.

For example, we may hypothesize that the input x has no effect, i.e., if

the oríRinal "full" model was a second-deQree polynomíal g0 f gl x f

2~ gZ x~ then our null-hypothesis (HO) hecomes:
gl - gZ 3 p,

We can test such a(composite) hypothesis usinR the ANOVA F statistic.

Rriefly, this procedure runs as follows. The observations on [he depend-
n

ent variable yi yiela tne to~at sum or squares :
- ~

SSTOTAL ~ i (yi-yi)

with deQrees of freedom equal to n-1 (minus one because of the restric-

tion yi - Eyi~n), We can split this fixed to[al into two components,

namely the variation explained by the reRression model and the unex-

plained, residual portion: SStotal - SSexplained } SSerror where the

latter term corresponds to the numerator of eq. ( 6), and the former term

can be easily computed by subtractinR the error term from the total sum

of squares. When we wish to test a hypothesis like the one above, we can

compute two different values for the sum of squared errors, namely one

value for the "full" model - i.e., the model without the restrictíon

specified by HO - and one value for the "reduced" model, i.e., the model

íncludinQ that restriction. (Obviously the restricted model cannot yield

a smaller sum of squared errors.) Intuitively, when the reduced model

results in a drastic increasP in the sum nf squared residuals we reject
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the null-hypothesis. More precisely, let the upper-indices F and R

correspond to the full and restricted model respectively; let p denote

the number of effects hypothesízed [o be zero (in the above H~ we have p

- 2); then compute

1 (R) (F)F - lSSerror - SSerror~,p
p,n-q FSS ~(n-q)erro

(8)

where the denominator is an independent and unbiased estimator of o2.

see eq. (6).

Rummary: The Least Squares estima[or of eq. (1) is BI.UE and can

be easíly tested, if the followinR assump[ions hold: (1) The X matríx is

non-sinRUlar. (2) The reeression model is linear in its parameters S.

(3) The y have a constant variance o2, (4) The y are independent. (5)

The y are normally distributed. (6) The reQression model is valid. We

shall discuss these assumptions in separate sections.

3. N~N-SINGULAR MATRIX X

In the socíal scíences the analyst cannot fix the independent variables

x. He can only observe those variables; their values are fixed by the

environment. ~onsequently X, the nxq (with n~ q) matrix of independent

variahles, may be singular or nearly-sineiilar, i.e., the inverse

(X'.X)-1 may not exíst or this inverse may have very bad numerical

qualities, i.e., minor chanees in one or more elements of X may result

in completely dífferent values for the correspondinR ínverse. Statis[i-

cally, a near-sinRular or ill-conditioned matrix X means hiQhlv ~~rrel-

ated independent variables and, hence, larqe standard errors for [he

parameter estimators S, This problem is also known under the name multi-
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collinearity (one or more columns of X can be expressed as a linear

comhination of the remaining columns). Note that the sum of residuals

mav differ from zero if X is ill-conditioned.

We note in passing, that the lack of experimental control in the

social sciences also implies that replication of specific experimental

conditions - epecified by the row vector X1 -(l,xíl'" ''xij' "''xi 1),q-

- is virtually impossible. Therefore the experimental error variance
oi

is estimated from the residuals y-y assuming a common variance oi - oZ;

see eq. (6).

In the social sciences the ohserved values of the independent

varíables x are often modeled as observations on random variables, i.e.,

the dependent varíable y and the independent variables x have a joint

distribution function. Consequently the independent variables may show

strong correlation and theír observed values may result in a(nearly)

singular X matrix. In the regression analysis of such data the results

are usually presented conditionally on the observed values X, i.e., the

independent variables are treated as deterministíc variables; see [48~.

In the "hard" sciences, e.g., computer science, the experimental

conditions can be better controlled. In the 1930's statistical theory

was developed for experimentation in agriculture. In subsequent decades

the theory of experiments was applied to other areas, e.q., chemical ex-

períments. More recently the technique of simulation has been applied in

both hard and soft sciences. In simulatiun experiments the theory of

experímental design can certainly be applied because all factors are

controllable; also see [39j. In the design of the simulation experiment
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we purposefully fix the values of the independent variables. Consequent-

ly X is not sinRular, ín general (often X will be orthoRonal). However,

by accídent X may turn out to be (nearly) sin8ular, e.Q., after we have

desiened and run the simulation experiment we may decide to use new

independent variables in the analysis; these new varíables were not

controlled and they may create (near) sinRularity. We may either add

some new runs to the old design or we may analyse the old desiRn apply-

in~ specíal analysis techniques. One of these special techniques is

rid~e regression which we shall briefly discuss next.

In ridqe reRression the estimators of the parameters S are no

1~nQer unbíased: however, this bias may be outweighted by a decrease in

variance attained throuRh a proper choice of the ridRe algorithm para-

meter, say r(for more Reneral definitions see the literature below):

Sr - (x~x t r.I)-l.x~.y (a)

Unfortunately the optimal r, which minimizes the Mean Squared Error of

the estimators S r, depends on the unknown true parameters S. There are

several methods for the estímation of the optimal ridRe parameter r.

Confidence intervals for the ridRe reRression estimators were discussed

by Obenchain [38~, who proposed to use the classical confidence ínter-

vals, which are centered around the OLS point estimators of the reQres-

sion parameters. More than two hundred publications on ridRe regression

were presented by Hoerl and Kennard [20j in an annotated biblfagraphy.

We refer to these references for more details on ridge regression and

other techniques.
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Summary: In the social sciences singularity of X may be a pro-

blem. In the hard sciences and in simulation, we can always specify a

"good" matrix X. However, the ad hoc introduction of new independent

variahles may lead to (near) singularity. A"bad" matrix X may then be

handled through ridge regression.

4. LI~TEAR MODF,L

The linearity assumptian does not mean that the reRression model is

necessarily linear in the independent variables. For instance, the

reqression model may be a second degree polynomial in x. Another example

is:

f g1.loQ z f e (9)

so that in the notation of Section 2 we have xil - log zi. The last

equation is equívalent to

s
y~ - BO.z l.e~ (10)

where y- log y~, SO - log SO and e- log e~. In the linear reRression

analysis of eq. (9) we assume that the (addítive) noise e is normally
~

distributed, or equivalently that e in eq. (10) is lognormally distrí-

buted. The lognormal distribution has the following properties; see [lj:

E(e~) - exp{E(e) t var(e)I2} - exp(a2I2)

and

var(e~) - {F,(e~)}2.{exp(var(e)j-1} - exp(a2).{exp(a2)-1} (12)
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We shall return to transformations later on.

In general, a model not linear in its parameters can sometimes

be transformed into a model which is linear in its parameters. However,

if we cannot find such a transformation then we have to apply nonlinear

regression analysis. In our experience linear regression analysis is

flexible enough for the summarization of simulation models. Nonlinear

regression is applied to, e.g., data from chemical experiments where

enough theoretical knowledge is available to suggest a specific family

of nonlinear models; see (9, 32j.

5. CONSTANT VARIANCF.S

The Classical Assumptions imply that y and e have the same variance

namely o2 . The assumption of a"homogeneous" variance is unrealistic in

general. If the random variable y has an expected value that depends on

x, then it seems logical to asswne that y has a variance that also

varies with x, i.e., we introduce var(yi) - oi with i- 1,...,n.

Moreover, in random simulation we obtain not only the point estímator yi

but also the standard error of yi, denoted by oi; in (27~ we surveyed

different techniques for the estimation of oi in simulation; it is our

experience that the variance estimates oi differ greatly, say, by a

factor 100 and more. So for logical and empirical reasons the assumption

of a constant variance seems unrealístic, certainly in random simula-

tion.
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Before we proceed we add some notes:

(i) Sometimes we can transform the oriRinal output y such that the
~

transformed output y has an approximately constant variance. We empha-

size that the interpretation of the data should be in terms of the

oríQinal ohservations.

(11) If we assumed a common variance o2 then we could pool the n estí-

mators oi (each with degrees of freedom equal to, say, vi) in order to

ohtain a more accurate estimator, with degrees of freedom equal to

Evi whereas the Mean Squared Residual estimator of eq. (6) has degrees

of freedom equal to n-q.

(111) For a discussion of the assumption of a constant varíance o2 in

the reQression modelling of deterministic símulation, we refer to [28j

and note 1.

(iv) There are a number of tests for comparing n variances; see [15j In

simulation the variance estímators oi differ so much that a formal

statistical test is superfluous.

What are the alternatives íf we conclude that the assianption of

a constant variance oZ does not hold? Intuitívely, if a response has a

hiQh standard error, that response should receive less weight when

fittinQ a curve. Formally, if the variances oi were known then the
~ ~c

transformation yi - yi~oi would result in constant variances: var (yi)

- var(yi)~ai - i; next we could apply (Ordinary) Least Squares (OLS) to

the transformed output y. This approach would result in the Weighted

Least Squares (WLSI estimator

R - (X'.s2y1.X)-L.X'.S2yl.v (13)
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with covariance rnatríx

S - (X'.S1y1.X)-1 (14)

WLS would yield the BLUE ( Best Linear Unbiased Estimator); the WLS

algorithm minimizes Ewi(yi-yi)2
with weights wi - l~ai.

In practice we do not know Sty. Therefore one possibility is to

replace ,Z by an estimator S2 . In simulation the estimator S2 equals a
Y

diagonal matrix with elements on the main diagonal equal to oi; we

discussed the variance estimator o2

case of m replicated runs we have ai

Y y

at length in [27). For example, in

- var(yi) - var(yi)~m.

Other estimators used outside simulation assume that the regression

model is correct (valid) and are based on the residuals ê; see [22].

If we replace S2~ in eq. (13) by its (unbiased) estimator Sly,

then Estimated Weighted I.east Squares ( EWLS) result. Schmidt [40j proved

that - under mild technical assrmiptions - EWLS yield unbiased es[imators

of g with an asymptotic covariance matrix following from eq. (14).

Linfortunately, we cannot derive the small-sample behavior of EWLS analy-

tically ( EWLS yield a non-linear estimator because ín eq. (13) both y

and Sl hecome random). In a Monte Carlo study (29j we found: (i) The
Y

F,WLS estímators of S are unbiased. ( 11) The asymptotic covariance form-

ula - see eq. ( 14) - also holds in small samples, provided at least five

inclependent replicates are used to estimate ai. (iíi) The EWLS estímat-

ors have smaller standard errors [han the Ordinary Least Squares esti-

mators have (províded the actual variances o2 do differ, and their
1s

zestimators á. are based on more than two observations). Unfortunately
i
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another Monte Carlo experiment j37j showed that with fewer than ten

replicates the "coveraRe" is too small, i.e., the confidence interval

mísses the true S value more often than the nominal q fraction speci-

fies. More Monte Carlo experimentation seems necessary.

One alternative to EWLS is: use OLS to obtain the unbiased point

estimators g but base the standard errors upon the correct formula. In

other words, we continue to use eq. (1) but we replace eqs. (5) and (6)

by the unbiased estimator of the covariance matrix ns obtained by apply-

ing eq. (4):

~S - W.~y.W' with W - (X'.X)-1.X' (15)

A final alternative simply i~nores the heteroReneity of varian-

ce. In Qeneral, however, the correct covariance formula - eq. (15) -

differs from the classical formula, eq. (5). How much effect this dif-

ference has on the confidence intervals and tests was investigated by

several authors. They tend to reject reliance on the insensitivity of

the classical reQression analysis (includinq ANOVA) to hetero~eneity of

variance; see (fl, 37j.

If the number of observations (n) equals the number of reRression para-

meters (q) then (Estímated) Weighted Least Squares and Ordinary Least

Squares become identical.

One practical advíce is: apply several statistical techniques to

the same data and see if they result in similar conclusions. If the

conclusions are similar, then we are lucky. Otherwise, we may turn to a

professíonal statisticían for expert advice,
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Summary: In general the assumption of constant variances is

unrealistic. Weighted Least Squares with estimated varíances ai yield

more accurate estimators of g. Some Monte Carlo studíes on the resulting

confidence intervals and tests suggest that a better alternative might

be the Ordinary Least Squares estimators g with the corrected covariance

matrix ~S of eq. (15).

6. INnEPF.NnENCE

!de refer to the econometrics literature for a discussion of dependence

over time (au[ocorrelation); see Í17~. We concentrate on dependence in

simiilatfon. In simulation we can force the responses y(and hence the

errors e) to be independent by sampling the random number seeds inde-

pendently. Nowever, practitioners often use common random number

streams, and then the independence assumption is violated and ~ is no
y

lonRer a diagonal matrix. Common random numbers may increase the effi-

cíency (see below) but they also complicate the regression analysis. If

we use OLS then SZS is given by eq. (IS). We can also use a generaliz-

ation of Weighted Least Squares, namely, eq. (13) with SZy no longer

díagonal: ~eneralized l.east Squares.

The estimation of ~y involves not only oi but also oii, - cov

(yí,ví,) where i,f' - 1,...,n. Thís estimation is simplest if we replic-

ate each run i a number of tímes, say, mi - m times. Hence if,

yi - ~ yir,m
and

oii
02 then
1'r
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m
E (Yir-Yi)-(Yi~r-Yir)

r-1
Uii' - (m-1).m (i ,i' - 1,...,n) (16)

; also see [28j Note that the estimated covariance matrix Sty

may be ne.~rly singular when common random numbers are used.

WN can prove that common random numbers decrease the variances

of the estimators of S. (j - 1,...q-1) and increase the variance of
J

the SU estimator; see [42~ and note 2. If we were interested in the

estimated effects gj (j ~ 0) only, and not in the estimated response y,

then we would certainly use common random numbers. Actually we are also

interested in the response i tself. One reason i s that before we test the

individual effect estimators gj (j ~ 0) we want to know whether the

regression model as a whole is valid. To test the validity of the re-

gression model we compare the predictor y to the actual response y(see

Section 8). And the predictor y depends on g0, So common random numbers

may yield better estimators of gj but a bad estimator of y itself; see

(28, 41j. If we use common random numbers then we should perform at

least two experiments so that overestimated responses can compensate

underestimated responses.

If we use common random numbers then we can analyze the results

through Ordinary Least Squares (OLS) or Estímated Generalized Least

Squares (EGLS). If S2 were known then GLS would yield the Best Linear
Y

Unbiased Estimator (BLUE). Under specific conditions - see below - EGLS

and OLS yíeld identical estimators. We have already aeen that common

random numbers give better estimators of Si (j ~ 0) even when analyzed

by OLS; and SG and hence E(y) are systematically overestimated or under-

estímated whatever technique we use to analyze a single experiment.
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GLS and OLS Qi ve identical estimators if

- the desiQn matrix is saturated: n- q; see the precedinq section;

- the covariance matrix has a very specific structure; see (42, p. 512).

Since this structure involves a quite complex mathematical relationship,

we sugRest that the practitioner do not check this relationship a priori

but that he compare the values of the EGLS and OLS estimates aposteriori

to see if [he estimates are identical. Moreover, since ín practice we

use estimated values for S2 , the chance of realizing this specific
y

mathematical relationship seems neRliqible.

Summary: If we want the símplest analysis, then we should make

the responses y independent and use the results of the preceding sect-

ion. If we are prepared to estimate the covariances amonR the n respons-

es (see eq. 16) then we should use common random numbers and perform at

least two independent experiments (to reduce the chance of a systematic

over- or underestimation in the estímator of y itself). We may then

analyze the results throuEh Ordinary or Estimated Generalized Least

Squares.

7. NORMALITY

In case of nonnormality we may be interested in distribution-free and

robust procedures. DetectinQ nonnormality includes the detection of

outliers. The responses y may indeed be nonnormal. For instance, if ín

eq. (11) y~ were normal then the transformed response y- loQ y~ in eq.

(9) would be nonnormal (usually we assume that y- loR y~ in the linear

model of eq. (9) is normal and consequently y~ is "loRnormal"). In
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Qeneral, ;ae may apply transformations to obtain normally distributed

responses (see later). TransforYnations may not be necessary if the

simulation response is an average (e.g, average queuing time) so that a

limit theorem (for either independent or autocorrelated variables)

explains normality. So in practice nonnormality may be no serious pro-

blem. Rut let us see what the consequences of (serious) nonnormality can

be.

If the n responses are nonnormal then Least Squares - Ordinary

or Generalized - still yield unbiased estimators, and the standard

errors are still specified by eqs. (14) and (15), but it may be wronR to

use the t and F tests of eqs. (7) and (8). When we test a single re-

Qression parameter, we use the t statistic. The t statistic is quite

robust. When we test several parameters simultaneously, we apply an

(AN~VA) F statistic. This F statístic is also quite robust, especially

if we replicate each experimental point an equal number of times (we

observe that the F statistic for comparing two variances is not robust).

We refer to the li[erature for more details; [8, 43).

Let us return to the relatíonship between the mathematical Least

Squares algorithm and the statistical BLUE property; see Section 2. The

mathematical problem is to determine the "best" fit between the obserw

ations and the (regression) function 9. To solve this mathematical

problem we quantify what we mean hv "best". The criterion that results

ín a simple mathematical solution, is the Least Squares criterion: We

can minimize the quadratíc expression E(yi-yi)2 by solving a set of

linear equations (so called normal equations). If we add the classical

statistical assumptions for the errors then we can prove that the Least

Squares estimator is BI.UE, and that the t statistic gives confidence
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ator).

Now we consider other mathematical criteria for fitting a curve.

Mathematicians have introduced one class of críteria, namely the class
n

of Lp norms: minimize E ~yi-yilp where p need not be an integer. Some
1-1

interesting members of this class are: (1) p- 2: squared deviations,

(íi) P - 1: absolute deviations, (iii) p-~: maximum absolute devi-

ation, maxlyi-yiI(~ebychev norm). A practitioner's criterion may be:

minimize the sum of relative absolute errors (I y-y I~ y). Of no practi-

cal relevance seems the L norm because this norm consíders only them

maximum deviation. The Ll norm has one pleasant property when compared

to the LZ norm: extreme deviations (outliers) have less effect on the

fitted line. Unfortunately, other critería than Least Squares lead to

estimators of p with statistical properties that are not well-known at

present. For the OLS, WLS and GLS estimators we know the asymptotic

properties and we have many small-sample experimental results. Note

that the other criteria require other algorithms, e.g., the sum of

absolute errors can be minimized throuRh Linear Programming; see j50j.

There are more criteria. For instance, statistical reasoning

leads to more complex criteria, e.g., criteria including discontinuities

(see robust regressíon later on).

When we discussed ridge regression (eq. 8), we noticed that we

might calculate a point estimate using one criterion and a confidence

interval (centered around a different point estimate) based on, say, OLS

formulas. Of course when the former point estimate lies outside the

latter confidence ínterval, this approach is not attractive.
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Above we saw how the mathematical criteríon of Least Squares (LZ

norm) fits together with the statistical assumption of normalíty. We

shall proceed as follows: (1) How can we detect and reduce nonnormality?

(ii) Are there distribution-free regression procedures? (iii) Are there

robust procedures? (iv) Miscellaneous.

Sub (i): Detection of nonnormality

Because the responses yi have non-constant means (determined by the

índependent variables xi~) wa examine the errors ei - yi - E(yi). We

assume initially that the remaining classical assumptíons are satisfied,

i.e., the errors have zero means, constant variances o2, and they are

independent. Then we estimate the vector of errors e by the vector

e - Y-Y - Y-X.s - y-x.(x'.x)-l.x'.y - {I-x.(x'.x)-l.x'}.y ~ (I-x).y (17)

where the "hat matrix" H is defined by the last equality. Can we use

standard techniques such as normality plots and the XZ goodness-of-fit

statistic? Indeed (older) software often produces plots of the estimated

errors e. However, recent publications have emphasized that even if the

true errors e are independent with common variance o2, then the estimat-

ed errors e are dependent with non-constant variances: Because the hat

matrix H is symmetric and idempotent (H2 - H) eq. (17) yields:

~" - {I-X.(X'.X)-1.X'}.a2e
(18)

To remove the effect of non-constant variances we may "Studentize" the

estimated errors: tí - êi~~vár(ei) where the numerator and denomínator
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among transformed errors does not permit a simple test; see j141.

If the true errors show heterogeneity of varíance (and possibly

dependence) so that we may apply Weíghted (or Generalized) Least Squares

then we replace eq. ( lfll by Sié - 52y{ I-X(X'Ryl X)-1X'S2y1 }- Sty{ I-HZ} .

It is good practice to compute the estimated residuals and to

plot them. Several plots are tradltional in the older literature and the

older software, e.g., [he empirical distribution of e; plots of ei ver-

sus yi ( heteroQeneity of variance may show up i f e increases wíth y

wherP y i s determined hy x); plots of y versus xj, see the bibliography

in (49j. These plots may signal problems such as a wrong regression

model specification, heterogeneity of vari.ance, nonnormal distributions

with heavy tails ( kurtosis) resultíng i n many ou[liers ( the [opic of the

present discussion). Statistical tests for outliers are dífficult when

the number of outliers is unknown ( the most extreme outlier may look

reasonable when there í s another outlier whi.ch "masks" the former out-

lier) and when the estimated errors show dependence and heterogeneity of

variance ( see eq. 18). There is a sizable statistical literature on

outlíers. However, its relevance for practitioners í s limited because

the literature assumes constant variances, etc. Note that in reRression

analysis outliers are important only in so far as they result in drastic

chanQes in the parameter estimates g and the predicted responses y~ see

7n simulation it ís much easier to check whether an extreme

observation y is due to pure chance: in random simulation the computer
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program can agaín be executed with a different random stream. In real-

life experiments it is often difficult to realize true replication

(i.e., to observe the response for the same input condition); diffícult-

ies are time trends, learning effects, changing environments, etc. In

real-life experíments an outlier may also be caused by a measurement

error. In simulation an outlier is caused by a programming error ("bug")

or an "extreme" random number stream. We recommend to replicate a suspi-

cious observation more than once; if the suspicious observation is more

extreme than all its replicates, we throw away the outlier and add the

replicates to the regression material,

Outliers may occur not only in the responses but also in the

independent variables x. Outliers in x are a problem indeed in the

social sciences (see Section 3). In well-designed experiments, however,

no outliers occur unless we make a mistake. We can signal outliers in x

by computing the hat matrix H of eq. (17), provided we use Ordinary

Least Squares. Outlying values of x are indicated by "large" values of

the diagonal elements hii of H, say, hii ~ 2 q~n. In well-designed

experiments all diagonal elements hii are equal, Unfortunately, in

Generalized (and Weíghted) Least Squares the hat matrix is more complic-

ated; see (5, 19].

Most robust regression estimators (see later) are insensitive to

changes in the dependent variable y, but they are not robust relative to

the independent variables x.

Summary: We should study the estimated residuals because they

may signal problems such as nonnormality. Exact tests are difficult. In
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simulation we can identify outliers by replícating suspicious observat-

ions using different random number streams.

We can reduce the effect of extreme observations by using the

median instead of the mean (for symmetric distributions both location

measures coincide). If we have a number of replicates mi, then we may

compute the sample median per combination i provided mi ~ 3. When we use

these medians then our reRression model predicts the population median,

not the population mean. For instance, y may represent the median wai[-

ing tíme. Academic studies often concentrate on the mean. Practical

studies may measure the mean because of statistical tradition; actually

the median may be more relevant. Of course we may report both quantiti.es

(mean and median) to the user.

Suppose we are interested in the population mean, not the me-

dian. To reduce [he effects of outliers we may still compute the (samp-

le) average but only after we have removed extreme observa[ions, i.e.

per combination we automatically eliminate a certain percentage of the

extremely small and extremely large observations. Strictly speaking, we

cannot analyze the remaininR observatíons using the familiar formulas;

special formulas were presented by Tiku j45j.

~ne more way to reduce the effects of nonnormality is provided

by transformations like the logari[hmic transformation of eq. (9). A

more Reneral transformation is the "power" transformation which should

result in a regression model with errors [hat satisfy the Classical

Assumptions (including normali[y and constant variances): ~y - (y~-1)la
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~
if a~(l, and y- log y if a- 0, where a is estimated from the

regression data using maximum likelihood estimation; see [3].

Sub (ii): Distribution-free regressíon analysis

The recent statistical literature gives several nonparametric tech-

niques. For ínstance, a procedure may consider the ranks of [he residu-

als. These procedures yield asymptotically valid confidence intervals

for the regression parameters S. Ilnfortunately, these me[hods are more

complex, conceptually and computatíonally. Further they assume a symme-

tric distribution for the errors and common variance (more strictly,

they assume ídentically distrihuted errors); see [12].

Conover and Iman's rank regression may interest practitioners

because i[ combines the well-known regression analysis procedures with

the simple rank transformation; see [10]. In rank regression we replace

the original observations (yi, xij) by their ranks, i.e., we explain [he

rank of yi as a functíon of the ranks of xi~. For instance:

R(Yi) - SO t S 1.R(xil) } S2.R(x12) } S12.R(xil).R(xi2) f ei (19)

where S1 - 0 and S12 - 0 if factor 1 has no effect, etc. The response y

(not its rank) is estimated by linear in[erpola[ion; see [10]. Iman and

Conover applied their procedure in the analysis of several simulation

models. The method works well if y is a monotonic function in x~; it

does not work for hill-shaped response functions where different x

values (different ranks) yield the same y values (same rank). We empha-

size that a rank-transform model like eq. (19) can tell whether the

response is affected ny a factor x, but it does not help much in ex-
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plaininR how [he response i s affected. For example, if y denotes con-

sumption and x denotes income then a model in y and x results in the

marRinal income effect ~1, whereas a model in the ranks R(y) and R(x)

has no such interpretation. In practice we may analyze the data usinR

both a classical parame[ric technique and the rank [ransformation; íf

tFe [we anal}~~~f~~ Qíve different conclusions then we should look for

outliers and the like.

Sub (iii): Robust re~ressíon analysis

Robust procedures take a middle position between parametric and nonpara-

metric procedures: A parametric procedure assumes one specific type of

distribution, e.R., the normal distríbution with parameters u and a2

(-m ~ u~ m, 02 ~ p), A nonparametric procedure makes extremely weak

assumptions, e.Q., the class of all symmetric dístributions. A robust

procedure assumes a smaller class of distributions, e.Q., the class of

"contaminated" normal distributions: y- pyl f (1-p)y2 with

yl ~ N(ul,ai) and y~ ~ N(uZ,a2) where 0 ~ 1-p C~ p ~ 1. In other words,

a small percentaQe (1-p) of the observations comes from a normal distri-

hution with much different parameters ( e.~., u- u - 01 2
but ai ~~ a2) resulting in outliers.

Robust procedures automatically Rive ]ess weiQht to outlyinR

responses (whereas classical reRression analysis tríes to detect and

remove such outlíers, as we saw). We feel that the practitioner will

find robus[ procedures too complicated. Therefore we do not díscuss

these procedures further, but refer to the líterature; ~h, 21, 23j.
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Sub (iv): Miscellaneous

We have excluded Rayesian and decisíon-theoretic methods (prior proba-

bilities, loss functions, minimizing expected or maximum loss). Dempster

et al, j13J examined no less than fifty-seven different regression

estimators in an extensive simulation experiment (160 data sets). In-

stead of selecting an appropriate regression algorithm, we may select a

matrix of independent varíables X such that the sensitivity of the

regression estimates to outliers is minimized.

Summary: We discussed several mathematical criteria for curve

fitting, e.g., Least Absolute Deviations (L1 norm), However, Least

Squares (L2 norm) combined with the statistical assumption of normality,

yield the familiar t and (ANOVA) F statistics. Nonnormality may have

little effect on these statistics. Detecting serious nonnormality is

based on the estimated residuals e but exact tests are difficult. In

simulation we can detect outlíers by replicating runs with new random

number seeds. Effects of outliers can be reduced by regressing on sample

medians instead of sample means, by transforming the response (power

transformation), by distribution-free procedures and by robust procedu-

res.

8. SPECIFICATION AND VALIDATION

8.1. Introduction

We shall discuss how we get to a specification of the regression model;

how we can statistically test the validity of the specified model; and

íf the model was misspecified how we can improve the original model.
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The specification of the regression model depends on (i) general

principles of science,and (ii) specific statistical princíples. For

instance, common sense tells that in a computer system the response of

interest y may be waitíng time of jobs and idle time of the CPiI, and the

independent variables x may be arrival rate, service rate, and computer

configuration. Deductive reasoning leads to queuing theory which sug-

gests that the ratio a of the arrival rate and service rate is a funda-

mental independent variable. Analytical solutions of simplified queuing

models yield additional insight. Measurements performed on the existing

system and on the simulated system may result in specific insight,

possihlv after statistical manipulation. Statistical theory suggests

that the response variable may be the 9~Y quantile rather than the

average waiting time.

We emphasize that statistical theory does not specify which

variables are of interest, let alone the form of the rel.ationships among

variables. Which variables may be important, is clearly indicated in the

"hard" scíences like computer science, and is fuzzily indicated in the

"soft" sciences like management information systems theory. In the hard

sciences we know which independent variables to study and we may even

postula[e specifíc forms (non-linear in the regression parameters). In

econometrics, however, we wish to forecast dernand for a particular

product and we do not know which products are really competitive (so

that their prices should be included in the regression model); obviously

the shape of the relationship is even more obscure: maybe we should make

a logarithmic transformatíon of y and x such that the regression para-

meters g can be interpreted as elasticity coefficients (a classical

concept in economics). Logaríthmic scales emphasize relative magnitudes.

Other popular scale transformations are: yZ, ~y and -l~y; see [46j
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8.2. Statistical technique

Our approach applies to the validation of any model, be it a chemical or

an econometric model, a queuing símulation, a regression model, etc.

(Other statistical approaches - such as the lack of fit F test - have

less appeal to practítioners and are limited by more statistical as-

sumptions.) Our approach comprises the following steps: (i) Devise the

model's general form. (ii) "~alibrate" the model, i.e., determine the

values of its parameters. (iii) Use the model to forecast a new situ-

ation, i.e., a situation not used in the preceding two steps. (iv)

Compare the model's forecast to the actual response. In the case of

regression models the procedure runs as follows. (i) We postulate a

regression model, plus a statistical submodel; see the Classical As-

sumptions. (ii) From the sample of n observations we estimate the re-

gression parameters g, using (say) Least Squares. (111) We defíne a new

situation x~l -(l,x~l,l'xrrF-1,2'"~'xcrtl,q-1) ~ xi (i - 1,...,n), and

forecast the reponse: y~l - x~lp. (iv) We observe or simulate that new

situation xm 1 and obtain the response y~l. Obviously the forecast

yml and the actual response y~l will not be exactly equal. Large

deviations are acceptahle if the statistical submodel (see i) specified

large variability ai. Therefore we compute the Studentized deviation:

zn-F1 - {yrril-ynfl{~{var(y~l)
f var(y~l)}~ (20)

In eq. (20) var (y~l) follows from the analysis of the (simulation) run

rrFl; see [27j. In deterministic simulation we have: var(yml) - 0. If we

do not simulate then we have to obtain replicated observations for

situation rrFl. The term var(y ) follows from eq, (4): var(y~l) -ntl
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- xn}I ~g x~l where ~~ was given i n eq. (5). Note that y~,1 and y~l

are independent: y~l depends on S and S depends on yl,...,yn but not

on y~,l. Our Monte Carlo experiment suggest that we may test the signi-

ficance of the Studentized forecast error by comparinQ zm 1 of eq. (2C)

to the standard normal variable z; see (26j.

The more realistic assumption of non-constant variances means

that we use F.stimated Weighted Least Squares with its (approximate)

covariance matrix - see eq. (14) - or Ordinary Least Squares with the

corrected covariance matrix of eq. (15).

The above discussion assumes a síngle validation run, namely run

ntl. There ís a trick, however, to obtain many runs for the validation

of the regression model, provided there are more runs than there are

regression parameters: If n~ q then one run can be deleted (say, run 1)

and the regression parameters can still be estimated from the remaining

n-1 runs. The deleted run (run 1) can next be forecasted and the Stu-

dentized forecast error can be computed using eq. (2~). The trick conti-

nues as follows: Now a different run is deleted (say, run 2 is deleted

and run 1 is again added to the data available for estimation of the

reRression parameters). And so on. Thís permutation or cross-validation

approach yields n valida[ion runs resulting in n dependent forecast

errors; also see (3, 5, 19~.

The postulated regression model should hold at all n observation

points. Consequently we reject the regression model, whenever any of the

n values of the Studentized forecast errors is sígníficant. Now a sta-

tistical complication arises: If we have, say, one hundred observations
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(n - 100) and we test the forecast error of eq. (20) with a significance

level of 5~ then we expect five false alarms (remember the definitíon of

the type I or a error). In symbols: Our null-hypothesis is tha[ the

reQression metamodel is valid, or HO : E(yi) - E(yi) with 1~ 1,...,n.

We reject this null-hypothesis if any zi value defined by eq. (20) is

siQnificant, or max ~ zi~ ~ za where a- aC~2 and aC is [he "per comp-

arison" error rate, i.e., aC is the error rate used in an individual

test, and the Bonferroni approach - see [33) - means that aC - aE~n

where aE denotes the "experimentwise" error rate, i.e., the error rate

that holds over the whole experiment (under the composite null-hypothe-

sis, the experiment comprises n observations). Obviously the factor 2

in a- aCI2 corresponds to a two-sided test: both overestimation and

underestimation are unacceptable. For instance, íf n- 8 and

a- - 20Í then a- 1.25~.

What is the effect of nonnormality on the validation test? A

recent Monte Carlo experiment showed that in these types of tests tails

heavier than "Gaussian" lead to a chance hiqher than the nominal a value

of finding extreme values; see [34~. This result agrees with the general

idea that a test based on a maximum of certain statistics is not robust;

see [33j. In simulation we can correct a false alarm by replicatinq the

suspicious input combination a number of times using new random number

seeds. For additional comments see [28j.
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8.3. Rela[ed issues

(i) (hir validatíon procedure concentrates, not on the individual esti-

mated parameters S, but on the resulting (single) forecast y. Concen-

trating on S would result in the following norm. When we delete run i

then we reestimate the regression parameters B from the remaining (n-1)

runs; ]et this astimator be denoted by the vector S(i) (with i~

1,...,n). Ideally the n vectors S(i) would remain constant (and equal to

the true parameter vector S). Drastic changes in S(1) indicate outliers

in the dependent variable y or in the independent varíables x~. We may

characterize changes in the vector g(1) by a single number ci:

q ~ ~ci - E(Sii) - gj)-Iq with i- 1,...,n; also see [11].
i-1

(ii) Our test considers the absolute magnitude of the deviation y-y

whereas in practice we tend to concentrate on relative deviations yly.

Unfortunately we do not know a simple statistic for thís relative fore-

cast error, although the variance of the ratio of two random variables

can be approximated. Note that Least Squares minimizes squared residu-

als y-y, not relative residuals yly,

(iii) Textbooks and standard software present Che traditional R2 criter-

ion:

R2 - E(Yi-Y)2IE(Y1-Y)2 - 1- E(Y1-Y1)ZIE(Yi Y)2

1
which shows that the regression model gives an adequate explanation when

RZ approaches the value one. However, RZ always improves whenever we add
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more explanatory variables; if q- n then yi ~ y and R2 - 1. There is no

statistical cri[erion for testing whether R2 is large enough, given n

and q.

(iv) The statistical literature includes other techniques for the se-

lection of an appropriate regression model. We shall be short on these

techniques because they ignore the knowledge the analyst must have about

the system under investigation; also see Section 8.1. In stepwise re-

gression we begin with the independent variable that shows the highest

correlation with the dependent variable. Next we introduce the remaining

independent variable that has the highest correlation with the dependent

variable, etc. So in each step we introduce one new variable. In back-

wards elimination we start with the "largest" model and eliminate non-

signifícant individual parameters. As an alternative to these sequential

procedures statisticians have proposed to compute all subsets of re-

gression models, i.e., consider the single model with all q independent

variables (including the dummy variable x~); next the q-1 different

models obtaíned by deleting variable 1, variable 2,...,variable q-1

respectively. And so on. All together there are 2q-1-1 possible subsets.

See [19, 44j.

(v) ~nly if the regression model is valid the errors e have zero expect-

ation and the estimators of the regression parameters g are unbiased.

Consequently confidence intervals for the individual parameters S should

not be derived before the regresslon model as a whole has been tested.

We also have to decide whether we want to test each regression parameter

indivídually or whether we test some parameters jointly. As an illus-
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tration we consider a regression model representinR the effects of k

parameters: y- BO f E31x1 t--- f Bkxk t e. We consider each parameter

individually, i.e., the interpretatíon of Che experiment does not hinge

on the joint results of [he individual t tests of eq. (7). Now we consi-

der a different example where we study only two parameters but a more

cumplicated mcdel seems necessary: y- BO t Blxl } S2x2 t~12x x2 t

gllxl } S22x2 } e. Suppose we find that all estimated regression parame-

ters are significant (using eq. 7 with, say, a- 0.05) except for S1.

Nevertheless S1 ís an unbiased estimator (if certain assumptions hold

then gl is even the minímum variance estimator: BLUE). We would not

replace S1 by zero, unless we have strong reasons to postulate such a

zero value. A different question is: can we replace the second-order

polynomial by a first-order polynomial in x? We can estimate the first-

order model and validate this simpler model, using eq. (20). If we have

to reject this simpler model in favor of the second-order model then we

do not know whether this rejection is caused by a large value of

s12'~11 or S22' A more detailed analysis runs as follows. Estimate the

more complicated model and test the composite hypothesis

p; ST~ - 0, g~~ - 0, S22 - 0. We can test this hypothesis by testing

the individual reRression parameters 812, S11
and g22 combined with the

Ronferroni approach, i.e., we use a- aF~3 in the índividual t tests of

eq. (7). Instead of this conserva[ive (but robust) approach we might

appl~; the exact ANOVA F statistic of eq. (8).

Summary: We first díscussed general principles used to specify a

regression model (including the gamut from black-box tu white-box scien-

ces). Next we presented a statistical test which compares the reqression
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forecast y to the actual response y, accountinR for inherent variabili-

ty. Cross-validation yields many validation points. We discussed related

issues, e.g., the RZ criterion, stepwise regression, testing individual

regression parameters S.

9. REVISING FALSE RECRESSION MODELS

Next we shall inves[iRate the alternatives if we reject the (initial)

regression model, i.e, can we revise the model such that it becomes

valid?

(i) Transformations: Before we postulate any regression model, we should

think hard about the fundamental variables in the regression model. For

instance, queuinR theory proves - albeit for simplified analytical

models - that the fundamen[al variable is not the arrival rate or the

service rate, but their ratio a, i.e., the traffic load. Consequently ít

is probably better to use a model with that ratio a. In general the

correct specification of the regression model may be inspired by the

known solution for a simplified model, e.g., the steady-state solution

of a Poisson queuing model. And in a harbor simulation examination of

several plots revealed that the response curve became linear when the

mean interarrival time was replaced by its reciprocal, the interarrival

rate. We repeat that another reason for transformations is that we wish

to satisfy statistical assumptions like constant variances and normali-

ty.



If we have no clues as to the form of the model, then we have to

rely on "raw" experimentation: In the preliminary phase of the experi-

mcnt we :~ar~- ~:~ variable, say xl, and keep all other variables con-

stant. Next we repeat this procedure for a different variable, say x2.

Then we change the first two factors, xl and x~, simultaneously in order

to check the presence of interactions (see below). We may study the

absolute ou[put y or the marginal output ay~axj.

(ii) Hígher order models: Ma[hematically speaking we can formulate the

regression model as a Taylor series approximation to the true model.

Consequently if we reject the first-order approximatíon then we may

proceed to a second-order approximation, i.e., we add k"pure quadratic"

effects gjj ( where j- 1,...,k) and k(k-1)~2 "two-factor interactions"

gjj, (j ~ j' where j ' - 2,...,k). The interpretation of these additional

parameters S is as follows.

A regression model with interactions implíes that the response

curves are not parallel, i.e., the marginal output of an independent

variable ís not constant but depends on the values of the other vari-

ables. A positive interaction (g12 ~ 0) means that the two inputs xl

and x2 are "complementary", i.e., an increase of xl has an extra effect

on [he output when accompanied by an increase of x2. A negative inter-

action means that the marQinal ou[put of xl is much smaller when more of

x2 is available which can be substituted for xl. Several authors have

emphasized the need to consider interactions when analyzing simulatton

models or utility modelsl; see [47) resp. [16, 24j.
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We might introduce interactions among more than two variables.

Although including such high-order interactions is traditional in ANOVA

we do not recommend it. The main reason is that we can define such

interactions mathematically but it is hard to interpret these interact-

ions. Moreover the addition of independent variables (like xlx2x3) in-

creases the variance of the predicted response (except for "pathelogi-

cal" cases); of course such additíonal variables may decrease the bias

of the reQression predictions. Finally the addition of variables may

require more runs: A necessary (but not sufficient) condition on X is

that n~ q(see Section 3) and q increases with the addition of high-

order interactions.

Pure quadratic effects mean that the response model shows curva-

ture. If the first-order model is not valid and if the independent

variables are quantitative then pure quadratic effects may provide a

good model. The larger the area is over which we let the independent

variables range, the more desirable it is to proceed from a first-order

to a second-order approximation. Also see the following discussion.

(iií) Smaller domain: The Taylor series argument suggests that an ap-

proximation may become valid if we reduce the domain of the function. Of

course alternative (iii) limi[s the generality of the regreseion model.

This limitation is no problem if the objective is not to obtain a gene-

ral understanding but to search for the optimum values of the (quan-

titative) parameters x; see the next section.
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Summary: We may improve the validity of the regression model

throuqh: (1) transformations, (ii) addition of ínteractions and quadra-

tic effects, (iii) restriction to a smaller domain.

10. OPTIMIZATION OF SYSTEMS

Optimization may use Response Surface Methodology ( RSM), or several

other approaches. We shall concentra[e on RSM because this approach fits

in nicely with our reQression modelinQ approach and RSM seems not infer-

ior - to say the least - to other approaches; see (28, 31, 32, 35j:

Step l: We start in a subdomain of the full experimental area. In such a

small area a first-order model may very well be valid.

Step 2: We use the fitted ( calibrated) first-order model to find the

direction of improvement. If we fix y to a specific value, say y(1),

then many combinations of x can yield that response: equi- or iso-re-

sponse lines. Suppose for illustration purposes that gl ~ g2 ~ 0. If we

wish [o maximize the response then we should add more of xl and x2, and

it is efficient to increase xl more than x2, We can prove that the

"path of steepest ascent" is perpendicular to the fitted first-order

model, This path is realized if we chanqe the variables such that

exilox~, - sils~,.
Step 3: AlonQ the path of steepest ascent we aRain experíment, As soon

as a run does not yield a hi~her response, we explore the new area by

fittinQ a(local) first-order model. The new estimates of the parame-

ters g of the first-order approximation in that new area, will yield a

new directton for the steepest ascent path.
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Step 4: We repeat step 3 a number of times until we apparently reach the

optimum region: a first-order approximation (hyperplane) cannot repre-

sent a"hill". So if we reject the first-order model then we proceed to

the next step.

Step 5: We estimate a second-order model ín the optimum area. Because

such a model has more parameters S than has a first-order model, we must

add some extra runs. We can use special designs to specify those extra

runs.

Step 6: Taking derivatives a~ax of the second-order regressíon model,
~and solving a~ax - o we estimate the optimal values of x, say x, It is

possible that x~ does not correspond to a unique maximum but to a sad-

dle-point or a ridge. The shape of the optimum response surface is

revealed by a mathematical technique called canonical analysis.

Step 7: We may check whether x~ is indeed optimal, by experimenting with

some other i nput combinations, both close to x~ and far away from x~`

(the latter option checks whether we have become stuck on a local

"hill").

RSM is a heuristic approach, i.e., it does not guarantee a truly

optimal solution. For example, we have to use intuition to decide on the

size of the "local" experimental area, and on the síze of the steps we

take along the path of steepest ascent. And we may end with a local

maximum instead of a global maximum. And when we follow the steepest

ascent path, then we might stop prematurely: a lower response may be due

to random error; see j36). Other problems arise if the maximalization is

restricted by side conditions, as in mathematical programming, or if

there are multiple responses. RSM and alternatíve approaches all employ
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compl~tely automated search procedures. However, ~nodern in[eractive

computer systems combining computer speed wi[h human pattern recoeni[íon

may perform better.

Summary: We can optímíze a(real or simulated) system applyine

RSM, althoiigh ít does not guarantee an overall optimum.

I1. MI`~~'FLT.AP'F""`~

(i) ReRression analysis explains how the output reacts to the input:

sensitivíty analysis. Sometimes, liowever, we are fírst of all interested

in rhe absolute value of the output for the various inputs. For instan-

ce, we simulated a computerized inventory control system for varíous

inputs (e.R., different cost parameters) and tested whether the realized

service was significantly lower than tF~e desired service percentage.

~nly after simulated service turned out to be [oo low in certain situ-

ations, we raised the question "which factors cause this disservice?"

and we applied regression analysis; see (3~j.

(ii) We have iQnored the numerical aspects of regression computations.

For example, computing the inverse in g-(X'X)-1X'y can be avoided

usinQ numerical algorithms due to Choleski, Gram-Smidt, Householder,

Civens, etc. Software packages use such algorithms, which results in

smaller numerical ínaccuracies and improved computational speed and

memory size; see (7j. Recent statistical publications on cross-validat-

1nn, also discuss numerical aspects; j1Rj.
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12. APPLICATIONS IN SIMULATION

The regression model summarizes in an explicit form the relationship

between input and output of the simulation program, This metamodel can

guide the user in the validation of the simulation model, in optimi-

zation, and so on. Applícations of regression modeling in simulation

have started to appear, These applications concern steel plants, medical

services, harbors, computers, job shops, ecological systems, inventory

control, statistical procedures, etc. The simulations were performed by

industrial and academic analysts. Most símulation models were random; a

few were deterministic. We give more applications in [28).

13. CONCLiJSIONS

We can perform regression analysis using Ordinary Least Squares

(OLS) or Estimated Weighted Least Squares (EWLS), accountíng for possib-

ly strong heterogeneity of variance. We can test the validity of the

resulting regression model. We can base optimization on Response Surface

Methodology.

Obviously regression analysis should not be used mechanically.

For instance, the specification of regression models requíres more than

a bag of statistical tricks. The form of the model and the values specí-

fied ín null-hypotheses have [o come from nonstatistical sources such as

computer and management science. Subjective elements remain in the

selection of the n values and in the evaluation of the statistical

technique's sensitivity to assumptions like normality.
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We can apply reRression analysis to reduce the ad hoc character

of simulation. The resultín~ metamodel helps us to interpret the simul-

ation results, includinQ validation, optimization, e[c.
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NOTES

1. In de[erministic simula[ion we have a completely fixed response y,

given the values for the simula[ion parameters or the independent vari-

ables x, i.e., we have var (ylx) L 0. Because the regressíon model is

only an approximation, errors e will remain. Since infinitely many

combínations of simulation parameters are possible, we have infinitely

many errors ei (i - 1,2,...,m1. The popula[ion of these errors has a

variance denoted by o2, We might assume that the errors do not show a

systematically different behavior in certain areas of [he space of the

simulatíon parameters. We sample the símulation parame[er values random-

ly or more or less systemati.cally. So, in the regression model of the

deterministic simulation the independent variables x become random

varíables. Consequently, the g being a func[ion of x(see eq. 1) become

random, and so does y so that e- y-y is random too. In order to detect

a systematic behavior in e(including heterogeneity of variance) we can

make plots of the estimated errors or "residuals" e. For instance, we

may plot ei versus xi (i - 1,...,n) or ei versus yi; also see Section

7. In the statistical literature we find situations where x is determi-

nistic and y is random (called "regression" situation) and si[uations

where both x and y are random ("correlation" sítuation). We introduced a

third situation, namely x is random and y is determinis[ic~ this area

deserves more research.

2. For illus[ration purposes we consider the estímators ~O and S1 given

in eq. (2). The estimate of S1 does not change if we transform xi and yi

such that x- 0 and y- 0. We assume constant variances o2 - a2. Inde-i
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penden[ runs yield: var(B1) - a Eai with ai - xilE(xl). Dependenr runs

" ~ Z ~ where cov(y ,y.~) is
yield: var(B1) - Q Eai f E E aiai cov(yi,yi,) i 1

i ~ i'
positive if common random numbers "work" We assume that the correlations

or covariances are constant. Aecause x- 0 the sum of cross-products

E E ai ai~ is negative (expand (Exi)2). So common random numbers de-

crease the variance of [he QLS estímator of the slope S1. For the inter-

cept eq. (2) yields var(SD) - var(y) f(x)2 var(SI) - 2x cov(y,sl)

~a~~~re ~ ~mmon r ~~lom numbers increase var(y); this increase may or may

not be compensa[ed by the remaininR terms; if x- ~ then there is no

compensation.
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