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Supercomputers provide a ne~ tool for management scientists. The
applícation of this tool requires thinkíng in parallel or vector
mode. Thís mode is examined in the eontext of Monte Carlo stmula-
tion experíments míth multivariate regression models. The parallel

mode needs to exploit a spectfíc dimenston of the Monte Carlo
experíment (namely the replicates of that experíment). Then Ordi-
nary Least Squares on a CYBER 205 takes only 1.47, of the time
needed on a VAX 8700. Esttmated Generalized Least Squares, ho~-
ever, is sloz~er on the CYBER 205 because ít requíres matrix inver-
sion.

(ADDITIONAL KEYWORDS: DISTRIBUTION SAMPLING; MULTIVARIATE DISTRI-
BUTION; COMMON SEEDS; METAMODEL)

1. Introduction

This paper focuses on the use of supercomputers in Monte Carlo
experiments with multivariate regression analysis. Regression models can
be used to determine a metamodel of a simulation model; see Kleijnen
(198~, 1988). So this paper may be of interest to management scientists
for several reasons:



(i) Regression analysis is often used by management scientists to analyse
simulation data and real-world data.
(ii) The study shows how supercomputers can be applied in Monte Carlo
experiments, which are related to stochastic simulat.ion: both use pseudo-
random numbers, but simulation is dynamic (a case in point is queuing
simulation) whereas Monte Carlo experiments are not; see Teichrow (1965).
So Monte Carlo experiments are simpler. Our study may cha]lenge other
researchers t.o apply supercomputers to Monte Carlo and simulation models.

A new development in management science is the advent of supercom-

puters or vector computers such as the CYBER 205. Their pipelined archi-
tecture distinguishes these computers for traditional scalar computers
(for example, the IBM 370 and the VAX series) and from truly parallel
computers (such as the HYPERCUBE). The challenge now is to think in the
"parallel" mode; that is, the problem is to formulate mathematical models
such that the vector mode of the supercomputer can be applied. Parallel
thinking can be examplified by the innerproduct of two matrices vi v2 -
Livl~vZ~. This computation requires n scalar operations v v y these n1~ 2~,
multiplications can be done in parallel; that is, to compute the product
v v the computer does not need v v The pipeline architec-1~ 2~ 1(~-1) 2(~-1).
ture means that a supercomputer works as an assembly line: efficiency
improves drastically if a large number of identical operations can be
executed independently of each other; see Levine (1982).

Our paper is organized as follows. In ~ 2 we summarize the well-
known multivariate linear regression model and its application in simula-
tion experiments with common pseudorandom numbers. This regression model
is to be studíed, using Monte Carlo experimentation. In g 3 we show how
the Monte Carlo program can be "vectorized" so that it can be run in pa-
rallel; we discover a"third dimension" of Monte Carlo experiroents. g 4
gives conclusions. References and appendices complete the paper.
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2. Multivariate Regression Models and Simulation

Consider the well-known linear regression model

E(Y) - X A (2.1)

with y-(Y1..--.Yi....,Yn)'. f3 -(~1,...,s......f3 )' and X x.~ Q 4-( lj) where
i- 1,...,n and j- 1,...Q, This model is multivariate if the errors e-
(el,...,ei,...,en)' are mutually dependent (the errors are also called
disturbance or noise). We assume additive errors:

We further assume that e is multivariate normally (MN) distributed:

c~ E MN(u ,4 )~, ,.e ~e

(2.2)

(2.3)

where ue - 0(a column of n zero's) and S2e equals 4y because of (2.2); S2y
is assumed to be non-singular. When this model is applied to simulation
data, (2.1) is called the metamodel (the regression equation is a model of
the simulation computer program; see Kleijnen, 198~); in (2.3) Q is non-~y
diagonal if common seeds are used for the pseudorandom number generator of
the simulation model; see Kleijnen (1988).

We consider experimental design situations only: we assume that
the independent regression variables X in (2.1) follow from an experimen-
tal design for k factors: D-(dih) with h- 1,...,k. For example for i-
1,...,n we may have xil - 1(dummy), xi2 - dil (factor 1), x. - lo d.13 g ~2
(factor 2 on log scale). xi4 - dildi3 (interaction between factor 1 and
3). Counterexamples are provided by econometrícs where X can be observed
only, not controlled; see Kleijnen (1987, p. 159). Moreover, in well de-
signed experiments it is possible to replicate specific factor combina-
tions; that is, row i of X or xi -(xi1,...,xij,...,xiQ) can be observed
m. 2 2 times. For example, in simulation the combination i of the simula-i
tion parameters dh is run mi times (a terminating simulation is repeated
with mi independent pseudorandom number streams; in non-terminating or
steady-state simulations mi subruns are obtained; see Kleijnen, 198~, PP.
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8-10, 63-83). If all combinations of simulation parameters use the same
seed for the pseudorandom number generator, then obviously mi becomes a
constant m. Outside a simulation context, Rao (1959) assumes m independent
observations on the n-variate vector y. His assumption agrees with the
simulation context of Table 1, which assumes independent seeds. These
observations yield the following unbiased estimators of óii, -

cov(yi'yi')
- cov(Yir'yi'r)'

6 -

m
~ (yir-yi)(yi'r-yi')r-1

ii' m-1 (i,i' - 1,...,n)(m z 2) (2.4)

m
with the averages yi - F yir~m; by definition we have óii - oi. In ma-

r-1
trix notation (2.4) becomes

S2y - Y Y'~(m-1) - y y'm

witli S2 - (6..,). Y - (Y. ) and Y - (Y.).~y ii ir 1

TAB1.E 1

Regression Data

(2-5)

Combination i Responses yir Average Estimated
(effects: (seed 1)...(seed r)... (seed m) response (co)variances
p1...~~. ..pQ) y 6 ,l 11

x11...x1,j ...x1Q yll ... ylr ... ylm
-
yl

„Z„ ,.
~1a12 ...6 ln

x21...x2~ ...x2Q y21 ... y2r ... y2m Y2
~

62...6 2n

xi1...xi~ ...xiQ yil ... yir ... yim
-
yi

.. ..
6i...a in

xn1...xn~ ...xnQ ynl ... ynr ... ynm
-
yn

2
on
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Kleijnen (1988, p.6j) proposes two diFferent point estimators for
the regression parameters (3. The first estimator uses Ordinary Least
Squares or OLS:

g - (x'X)-lx'y , (2.6)

which assumes n~ Q. The second estimator uses Estimated Generalized Least
Squares or EGLS:

g - (X~~-lx)-1X,~-ly . (2.7)

which assumes that 4 is non-singular; also see ( 2.3). The estimated cova-~y
riance matrices of these two estimators are

s~~ - (X'X)-lX'~yx(x~x)-l~m

and

S2~ - (X'Qy1X)-l~m

where the symbol ~ means that the equality holds only asymptotically.
Obviously we have

(2.8)

(2-9)

Qy - ~y~m (2.10)

Monte Carlo experimentation enables us to study the statistical
behavior of different regression procedures. For example, we may estimate
the ~ and g errors of a test devised to detect a misspecified regression
model; see Kleijnen (1988, p. 71). In this paper, however, we focus on the
cumputer generation of the observations Y-(ylr) and the estimators ~3 and

(3; see (2.2) through (2.~). The computation of other statistics is then
straightforward. The Monte Carlo experiment is reblicated L times, say L-
100 (taking L- 100 means that estimated ~ and p errors have standard
errors smaller than 0.05, since á and p are binomially distributed).
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j. Parallel Design of the Monte Carlo Program

In ~ 1 we emphasized that supercomputers work efficiently only if many
parallel operations can be identified. An individual element y. in Tableir
1, defined by (2.2), can be computed in vector mode, but this mode is
inefficient since typical values for n and Q are as small as 4 and 3.
Alternatively, we may consider the parallel computation of either n rows
(factor combinations) or m columns (independent observations or seeds).
L.et us first consider these two dimensions and then a third dimension.

The errors within a column are statistically dependent: they are
n-variate normal. We first discuss programming for n- 2. We then sample
Lhe independent univariate standard normal variates zl and z2, and compute
the linear transformation el - alzl and e2 - o2(P zlt(1-P2)~z2)' For gene-
ral n the sampling subroutine for multivariate normal e with covariance
matrix 4 is...y

e - C z, (3.1)

where z- ( zl,...,zi,...,zn)' with independent zi E N(0,1), and with C a
lowertriangular matrix defined by y

C C' - Q ,~ ~ .~y (3-2)

which is computed by Choleski's technique; see Naylor et a1. (1966. pp.
97-99) and standard software libraries such as IMSL and NAG. But (3.1)
defines a recursive relation, and such relations are not efficiently hand-
led by supercomputers. So we do not compute this dimension in parallel.

The columns in Table 1 are statistically independent, by defini-
tion (see the text above (2.4)). Hence a supercomputer can calculate these
m observations in parallel. But it is well-known that supercomputers be-
come efficient only if the number of parallel operations is "large", say,
m~ 50. In the Monte Carlo experiment we wish to study m equal to 2, 10,
25 and 50. So in most cases, parallel computation would be slower than
scalar computation; also see Levine (1982) and SARA (1984).

But there is a third dimension in this problem! The Monte Carlo
experiment is repeated 100 times (see g 2). We speak of "MC replicates" ~
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with R- 1,...,L and L- 100 (which must be distinguished from the repli-
cates r- 1,...,m). These replicates are statistically independent and can
be computed in parallel, as we shall see. The more replicates we wish to
obtain (higher L), the more efficient the vector computer becomes. We may
visualize our problem as follows. There is a three-dimensional box to be
filled in parallel with errors eirR with i- 1,...,n; r-].,...,ro; ~C -
1,...,L. Thís box is filled in steps 1 through 3 below. In step 4 statis-
tics such as 52 are computed.~.y

Step 1: SanrpZe pseudorandom numbers x in parallel

Kleijnen (1989) evaluates several procedures for the parallel generation
of pseudorandom number x E U(0,1). Kleijnen and Annink (1989) recommend
the following standard scalar generator. Take a multiplicative congruen-
tial generator, since the statistical properties of such a generator are
well-known. To initialize the parallel version of this generator, first
generate - in vector mode - a vector of J successive pseudorandom integers
x-(x0,x1,x2,...,xJ-2,xJ-1) with seed x0 and x. -(a x. ) mod m for j-J J-1 J1,2,..., J-1. Once and for all compute a scalar multiplier: (a ) mod m.
Multiplication of the vector x with this scalar multiplier gives a new
vector:

(xJ,xJfl,.~ " x2J-2,2J-1)
are generated in exactly the same
in scalar mode. At the end of the

. In this way the pseudorandom numbers
order as they would have been produced
Monte Carlo experiment the vector of the

last J numbers should be stored, so that the experiment may be continued
later on.

In ~ 1 we mentioned that supercomputers become more efficient as
the number of parallel operations increases. For the CYBER 205, however,
there is a technical upper limit, since this computer uses 16 bits for
addressing; see SARA (1984, p. 26). Therefore we take J- 216 - 1-
65, 535.

J(a ) mod m. This problem is solved, using controlled integer overflow and
the CYBER 205's two's complement representation of negative integers.
Appendix 1 gives the compter program.

There is a computational problem: overflow occurs when computing
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Step 2: Sample independent standard normal varíates z in paraZlel
There are several techniques for generating z E N(0,1); see Devroye
(1986). We take a procedure that fits a vector computer:

zl - (-2 ,~n xl)~ cos 2nx2

,
z2 - (-2 .~n xl)~ sin 2nx2,

(3.3.a)

(3.3.b)

where the mutually independent pair xl and x2 yields the mutually indepen-
dent pair z1 and z2. To compute the functions Rn, cos and sin for a vec-
tor of numbers, we use FORTRAN 200's vector functions VLN, VCOS, and
VSIN. So, given a vector of L independent pseudorandom numbers x, we use
the first half to compute L~2 independent, parallel realizations of ,Ln xl,
and the second half to compute cos (2nx2) and sín (2rtx2): Figure 1 gives a
pseudo-FORTRAN program where n is computed through the arccosine; see SARA
(1984, p. 13). To convert this pseudo-FORTRAN into a FORTRAN 200 program,
we can replace DO loops by the special syntax of FORTRAN 200; the super-
computer can also automatically translate the FORTRAN program of Figure 1
(provided we add CONT[NUE st.atements); see CDC (198G), SARA (1984, p. 1~).

FIGURE 1

F'arallel computation of L variates z E N(0,1).

L2 - L~2; PI - ACOS(-1.0); C- 2" PI
DO 20 LL - 1, L2

20 HELP1(LL) - SQRT(-2 M LOG(X(LL)))
DO 30 LL - 1, L2
HELP2(LL) - COS(X(LL 4 L2) M C)
HELP3(LL) - SIN(X(LL i L2) ~ C)
Z(LL) - HELP1(LL) ' HELP2(LL)

30 Z(L2 t LL) - HELP1(LL) x HELP3(LL)
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Note that Petersen (1988) generates z in parallel, using not (3.3)
but Teichroew's procedure described in Naylor et a1. ( 1966, p. 94).

Above we saw that we wish to fill a three-dimensional "box" with

eiri' So we store the vectors z(with L elements) of Figure 1 into a
three-dimensional array Z(i,r,R). N

Step 3: Sample n-variate e

The error vector e-(el,...,ei,...,en)' is multivariate normal with mean
zero and covariance matrix S2y; see (2.3). To generate e we linearly trans-
form the n-variate vector of independent standard normal variates z-
(zl,...,zn)'; see (3.1). This transformation uses the lower triangular
matrix C oF (3.2). This yields

i
ei - i ci~zi (i-1,...,n).

j-1
13.3)

To obtain M observations and L Monte Carlo replicates of e, we might apply
the naive FORTRAN program of Figure 2, where M denotes the maximum value
of m in the experiment ( here M- 50) and E(I,R,LL) is zero initially. Note
that C or C(I.J) does not vary over seeds ( R) and Monte Carlo replicates
(LL); it does vary over the Monte Carlo experiments defined by S2 .~y

FIGURE 2

Naive FORTRAN program for e.

10

DO 10 LL - 1,L

DO 10 R - 1,M

DO 10 I - 1,N
DO 10 J - 1,I

E(I,R,LL) - E(I,R,LL) t C(I,J) ' Z(J,R,LL)

To vectorize this naive program we should make the inner DO loop
long; therefore we move the LL loop; moreover we should store the columns
of the array columnwise; see SARA (1984, pp. 15, 20-21, 33). These two
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guidelines yield Figure~ j. (Note that the inner loop forms a so-called
"linked triad"; hence it can be vectorized; see SARA, 1984, pp. 1H-19.)

FIGURE 3

Vectorized FORTRAN program for e.

20

DO 20 I - I,N
DO 20 J - 1,I

DO 20 R - 1,M
DO 20 LL - 1,L

E(LL,R,I) - E(LL,R,I) ~ C(I,J) ' Z(LL,R,J)

We point out that m and n vary with the Monte Carlo experiments.
5o an experiment may use only part of the pseudorandom numbers stored in
the "box" E(LL.,R,I). Implement.ing Figure 3 not only saves computer time,
but it also runs experiments with common seeds.

Note that we generate M~L (instead of L) elements in parallel, if
we replace two loops - namely the loops for R and LL - in Figure 3 by a
single loop - namely LR - 1,..., MNL - which yields the two-dimensional
array E(LR,I). Then, however we have to rearrange this array into the
three-dimensional array E(LL,R,I) because the latter array is needed for
the computation of statistics such as 4, as we see now.~y

Step 4: Conrpute statístícs 4, p and p~y .~ ~
Once we have the three-dimensional array E, we can easily compute esti-
mates such as S2y defined in (2.5). This equation can also be computed as

S2y - e e'~(m-1) - e é'm, (3.4)
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FIGURE 4

Vectorizable FORTRAN program for e.

10

20

DENOM - 1.O~m
DO 10 I - 1,N

DO 10 R - 1,M
DO 10 LL - 1,L

EBAR(LL,I) - EBAR(LL,I) t E(LL,R,I)
DO 20 I - 1,N

DO 20 LL - 1,L
EBAR(LL,I) - EBAR(LL,I) ` DNOM

m
where e-(el,...,ei,...,en)' with ei - F eir~m. Figure 4 shows the vec-

~ r-1
torizable FORTRAN program for the computation of e. This program can be
compiled and vectorized automatically. AlternativelyYwe can use special
FORTRAN 200 instructions such as Q8SSUM that computes sums like ïe. . Their
computation of 4y in (3.4) can be programmed analogous to Figure 4. Alter-
natively we can program innerproducts (e'e and e e') through the special
function Q8SDOT; see SARA (1984, pp. 22,30).

A problem arises when computing the ínverse ~yl, which is needed

to compute the EGLS estimator ~ in (2.~). The trick in the preceding steps
was to make the inner loop long; that is, we made the LL loop the inner
loop. The instruction in that loop is executed in parallel, provided that
instruction contaíns no function or subroutine references except for basic
functions such as sine. So the computer cannot calculate L inverses in
parallel, since calculating an inverse requires a subroutine call; see
SARA (1984, p. 23).

So 4y1 must be computed in scalar mode. Once this inverse is
available, some matrix multiplications follow ( such as 4 X), but these
matrices are small; hence parallellization is not efficient. To quantify
these ideas, we compute the OLS and the EGLS point estimators of (2.6) and
(2.7). Into ( 2.6) we substitute
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W - (X, x)-1 x,

and into (2.7)

V - (x, ~-1 x)-1 x, ~-1

(3.5)

(3.6)

W needs to be computed only once, but V needs to be computed L- 100 times
(since Qy changes every time). For the computations we select n- 4, Q-
3, and m- 10. 1'o improve the accuracy of our timing data we repeat the
computation 100 times. Appendix 2 gives the computer program. This yields
Table 2.

TABLE 2

Total CPU times ( in microseconds)
(n-4, Q-3, m-10, L-10o)

Computer Estimator of S
OLS EGLS y

vAx 8700 920 25,580
CYBER 205

scalar mode 734 33,206
vector mode 13 27,613

Table 2 shows that computation of inverses (using the NAG routine
FolAAF) is inefficient on the CYBER 205; this supercomputer is even slower
than the VAX 8700! If no subroutine calls interfere with parallelization,
then the CYBER 205 is very fast: the OLS estimator ~ requires only 1.4x of
the time needed on the VAX 8700. (Appendix 3 gives some more programming
tricks For improving the efficiency of supercomputers.)
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4. Conclusions

Supercomputers provide a new challenge for management scientists,
since their application requires a new way of thinking, namely "thinking
in parallel mode". This paper examined supercomputing in Monte Carlo expe-
riments with multivariate regression models. Because the matrix of inde-
pendent variables X is relatively small, supercomputers are inefficient if
applied straightforwardly. Monte Carlo experiments, however, are replica-
ted many times, say 100 times. Exploiting this dimension of the problem
makes supercomptiters efficient in some applications, for example, in Ordi-
nary Least Squares. If, however, matrix inversion is needed - as is the
case in Estimated Generalized Least Squares - then supercomputers seem
slower than scalar computers such as the VAX 8~00.
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Appendi:x: F'ORTRAN 200 program for the pseudorandom number generator

PROGRAM VARIANT4
IMPLICIT REAL ( U-Z), INTEGER (A-T)

f'AFiAMR'I'FR ( N1-ri,N4-65~iii,K-1)

PAfiAME'I'ER (Aj-j~~~20~~'~06109)

INTEGER MVAST

BIT BVAST
DESCRIPTOR MVAST, BVAST
DIMENSION T(N4), S1(N1)
DIMENSION X1(N1)
DATA MINT ~ X'0000800000000000' ~
CALL RANSET (K)
Do 5 I-1,N4
U-RANF()
CALL RANGET(T(I))

5 CONTINUE C ! N-5
C ! SCALAR

S1(1;N1)-T(1;N1)
ZPUI-SECOND()
DO 10 I-1,N1
S1(I)-A1"S1(I)
IF (S1(I).I.T.O) S1(I)-S1(I)-MINT
X1(I)-S1(I)~MINT

10 CONTINUE
ZPU2-SECOND()
U1-ZPU2-ZPU1

C ! VECTOR
ASSIGN MVAST,.DYN.N1
ASSIGN BVAST,.DYN.N1
S1(1;N1)-T(1;N1)
ZPUI-SECOND()
sl(1;N1)-A1"S1(1;N1)
BVAST-S1(1;N1).LT.O
MVAST-S1(1;N1)-MINT
S1(1;N1)-QBVCTRL(MVATS.BVAST;S1(1;N1))
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X1(1;N1)-S1(1;N1)~MINT

ZPU2-SECONDO
Z1-ZPU2-ZPU1

FREE
PRINT ". 'BEGIN: GEVEKTORISEERD SCALAR
PRINT ~, 'N- 5 '.Z1,' ',U1
END

.4ppendix 2: FORTRAN 200 program for the OLS and EGLS estimators

OLS ESTIMATOR FOR BETA

CALL MXM(XT,X,XTX)

CALL INVERSE(XTX,XTXI)
CALL MXM(XTXI,XT,W)
DO 5 I-1,N
DO 5 J-1,M

YGEM(1,I;LL)-YGEM(1,I;LL)tY(1,J,I;LL)
5 CONTINUE

DO 10 I-1,R
DO 10 J-1,N

BETA(1,I;LL)-6ETA(1,I;LL)tW(I,J)MYGEM(1,J;LL)
10 CONTINUE

EGIS ESTIMATOR FOR BFTA

DO 5 I-1,N

DO 5 J-1,M

YGEM(1,I;LL)-YGEM(1,I;LL)tY(1,J,I;LL)
5 CONTINUE

DO 10 I-1,N

DO 10 J-1,N
DO 10 K-1,M

S(1,I,J;LL)-S(1,I,J;LL)~((Y(1,K,I,;LL)-
YGEM(1,I;LL))'(Y(1,K,J;LL)-YGEM(1,J;LL)))

10 CONTINUE
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DO 15 I-1,
DO 15 J-1,N
S(1,J,I;LL)-S(1,I,J;LL)

15 CONTINUE
DO 18 K-1,LL

DO 20 I-1,N
DO 20 J-1,N

DU4(J,1)-5(K,J,I)
20 CONTINUE

CALL INVERSE(DU4,MY4,N)

DO 25 I-1,N
DO 25 J-1,N
SI(K,J,I)-MY4(J,I)

25 CONTINUE
18 CONTINUE

Do 3o I-1,R

DO 30 J-1,N
DO 30 K-1,N

XTSI(1,I,J;LL)-XTSI(1,I,J;LL)tXT(I,K~SI(1,K,J;LL)
30 CONTINUE

Do 35 I-1,R
DO 35 J-1,R
DO 35 K-1,N

XTSIX(1,I,J;LL)-XTSIX(1,I,J;LL)tXTSI(1,I,K;LL)wX(K,J)
35 CONTINUE

DO 40 K-1,LL

Do 45 I-1,R

Do 45 J-1,R
DU3(J,I)-XTSIX(K,J,I)

1}5 CONTINUG

CALL INVERSE(DU3,MY3,R)

DO 50 I-1,R
DO 50 J-1,R
XTSIXI(K,J,I)-MY3(J,I)

50 CONTINUE
40 CONTINUE



DO 55 I-1,R
DO 55 J-1,N

DO 55 K-1,R

V(1,I,J;LL)-V(1,I,J;LL)tXTSIXI(1,I,K;LL)~XTSI(1,K,J;LL)

55 CONTINUE
DO 60 I-1,R

DO 60 K-1,N

BETA(1,I;LL)-BETA(1,I;LL)tV(1,I,K;LL)~YGEM(1,K;LL)
60 CONTINUE

Appendis 3: Programming trfck.s

There are several "tricks" for improving the efficiency of super-
computers. These tricks should be applied in any computer program, not
only Monte Carlo experiments:
1. Scalar divides take relatively much time (54 cycles versus 5 cycles for

multiplication; 1 cycle takes 20 nanoseconds); the computation of deno-
minators like l~m (see Figure 4) and 1~(m-1) (see eq. 3.4) should
therefore be separated by several lines of code; SARA (1984, pp. 5,~).

2. Double precision is slow and excludes vector mode; SARA (1984, p. 6).
3. There are special vectorized instructions so-called V-functions and Q8-

functions. We saw some examples above; also see SARA (1984, pp. 2~,30).
4. The compiler can optimize the standard FORTRAN program; next special

programs (like SPY and CIA) can measure which parts of the program take
most time during execution and are candidates for customized
optimizat.ion.
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