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On the existence of a positive definite solution of the
matrix equation X t ATX-lA - I

by

Jacob C. Engwerda

Abstract

In this paper the question is raised under which conditions on the real
T -1(square) matrix A, the matrix equation X f A X A- I has a real symmetric

positive definite solution X. Both necessary and sufficient solvability
conditions on A are derived. Moreover, we give an algorithm to calculate
the solution. For a number of special cases we also present an analytic
solution.
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I. Introduction

As already mentioned in the abstract the central issue in this paper is to
find solvability conditions for the existence of a positive definite solu-
tion X of the matrix equation X t ATX-lA - I. This problem can be viewed
as a natural extension of giving solvability conditions for the scalar

2
problem x t X - 1. From calculus we know that the existence of the real

square root J1 - 4á plays here an important role. We will see that this
condition generalizes straightforwardly to the matrix case, if A has the
additional property that it is normal (i.e. ATA - AAT). However, if A has
not this additional property things become more complicated.
We show that the general problem has a solution if and only if a related
recursive algorithm converges to a positive definite solution. Moreover we
use this algorithm to prove that, provided matrix A satisfies a certain
condition, the matrix equation is solvable and to calculate a solution
numerically.
Seperately, we derive a number of necessary conditíons and show by means
of a counterexample that these are in general not sufficient.
The paper is organized as follows. First in section 2 we introduce some
notation and study the general problem together with the recursive algo-

rithm. Then, we derive a number of necessary conditions. Section 4 con-

tains a number of special cases in which a solution exists. Before we
discuss the main results in section 6, we give in section 5 an example of

this equation in the field of optimal control theory.

II. The general problem

Mathematically, the problem analyzed in this paper is to find conditions
under which:

3 X~ 0: X t ATX-lA - I, (1)

where X and I are real square nXn matrices.
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Here X~ 0 means that X is symmetric positive definite, denotes AT the
transpose of A and is I the identity matrix. In the sequal also the nota-
tion Z is used to indicate that a matrix is symmetric semi-positive defi-
nite and is A~ B used as a different notation for A- B ~ 0. Moreover,
Ker A denotes the kernel of A and Im A its image.
Further on we show that this problem has a solution if and only if the
next recursion problem is solvable.

dn E I1 is X ~ AAT inn

I (2)

Xn}1 - I - ATXn1A

To prove this result we start with some intermediate results which are
interesting in itself. The first thing we prove is that in fact it suf-
fices to solve problem (1) for invertible matrices. We show that in case A
is not invertible, problem (1) can be reduced to a similar problem with an
invertible A matrix. How this can be accomplished is the contents of theo-
rem 1. Its proof contains an algorithm which will be used later on again.

Theorem 1
If we can solve problem (1) whenever matrix A is invertible, then we can
solve this problem without this invertibility restriction too.

Proof
We prove this theorem by reducing the problem to a similar problem of
lower dimension.
The reduction is achieved via the next algorithm
(i) If A is invertible then the algorithm is finished.
(ii) Else, there exists an orthogonal transformation T such that
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Consequently problem (1) has a solution if and only if (iff.) the
next problem is solvable

~ Y) 0: Y- O11 Ó21 Y-1~Á11 ól - I~
21 J

which is the case iff.

~ Z ~ 0: Z t AT Z-lA - I - AT A , where G:- I - AT A ~ 0.11 11 21 21 21 21

Now define A:- G-~A11G-~. Then this problem can be rewritten into
the original form (1), unless All - 0. If All ~ 0 we return to (i),
otherwise Z:- I- A21A21 and the algorithm stops. o

So, to solve problem (1) we could restrict us to invertible matrices. But

from the algorithm it is clear that then the solvability conditions for

non-invertible matrices become rather involved. For that reason we will

not make this invertibility assumption w.r.t. A from the outset on. The

next preparatory lemma gives a lowerbound for any solution to problem (1).

Lemma 2
If equation (1) has a solution X, then X) AAT.

Proof

Rewriting (1) yields that

X - I - ATX-lA. (i)

Since X is by assumption positive definite we immediately obtain from this
equation that X s I. Consequently, X-1 Z I and thus ATA 5 ATX-lA - I- X s
I. From this inequality we conclude that

ATA 5 I. (ii)
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From ( i) we have, moreover, that X-1 equals (I - ATX-lA)-1. Applying
Schur's lemma ( see e.g. Kailath (1980) pp. 656) yields that

X-1 - I - AT(AAT - X)-lA.

As X-1 ) I, we obtaín the inequality

AT(X - AAT)-lA 2 0.

So, xT(X - AAT)-1 x) 0 whenever x fC Ker A. Since X- AAT is a symmetric

matrix, xT(X - AAT) x will be positive too for any x~ Ker A. So what is

left to be shown is that xT(X - AAT)x ) 0 for any x E Ker A. This immedia-

tely results from (ii). For, let x E Ker A. Then, xT X x- xT(I - ATX-lA)x

- xTI x 2 xTAATx. AS X- AAT is invertible, it is clear that X- AAT is
positive definite.

Corollary j
If problem (1) has a solution X, then I- AAT - ATA ) 0.

Proof
Since X t ATX-lA - I, we obtain by substitution of (iii) from lemma 2 that

2
X t ATA - AT (AAT - X)-lA2 - I.

2
SO X- AAT - I- AAT - ATA - AT (X - AAT)-1A2.
Application of lemma 2 yields that

2
I- AAT - ATA -(X - AAT) t AT (X - ÁAT)-lA2 ) 0.

A similar result as lemma 1 holds w.r.t. problem (2).

a

Lemma 4
If problem (2) has a solution, then there exists a positive constant a
such that X)~I dn E n.n
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Proof

The proof is similar to the one of theorem 1.

(i) In case matrix A is invertible the above statement is trivial.

(ii) In case A is not invertible we decompose A again into A-.
(A ~lTT 11 JIT and note that the algorithm of theorem 1 implies thatA21 0

the next algorithm has a solution X' ~ 0.

Xn}1 - I- A21A21 - Al1Xn-lAll where Xn - T T.

Rewriting this equation yields

3Y)Oin

YO - I

Yntl - I- A" Yn1A", where A" :- (I - A21A21)-~ All(I - A21A21)-~

If All is non-zero then we return to (i). In case All - 0 then it is clear
that Xn - I- A21A21 ~ 0 v n, and thus Xn ) aI bn for some a too. Finally
notice that this algorithm stops after at most n-1 iterations, and that

T TZ (etc.)T2 0
the nested solution X- T1 ~ I T1 can always be estimated by
aI for some a, which completes the proof. a

Using these two lemmas we can prove that problem (1) has a solution when-
ever problem (2) has one, and vice versa.

Theorem 5
Problem (1) has a solution iff. problem (2) is solvable.

r (Xn ~l
l0 IJ

Proof
"a" First we prove that Xn is a monotonically non-increasing sequence.
This is proved by induction.
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Note that the initialization step is trivially satisfied, for,

X~ - Xl - I-( I- ATA)- ATA 2 0.

Now, let Xn 5 Xn-1. Then, since Xn ) 0, we have that Xnl Z Xnll. So

Xn - Xn~l - AT(Xnll - Xnl)A 2 0, which completes the induction step.
Therefore Xn is a monotonically non-increasing sequence which is, accor-
ding to lemma 4, bounded from below by some positive definite matrix.
Consequently Xn converges to a positive definite limit which satisfies
equation (1).

"~" We prove this part by induction.
According to corollary 3 we have that whenever problem (1) has a solution
then I- ATA - AAT is positive definite. 5ince X1 - AAT - I- ATA - AAT,
this completes the first part of the proof. Now assume that Xi - AAT )
0 di 5 n.
Then it is easily seen by induction that Xi - X- AT(X-1 - Xill)A Z 0 di 5
n. So in particular X- AAT s Xn - AAT. Application of this inequality
yields that

Xn}1 - AAT - I- AAT - ATXn1A

- I - AT(Xn - AAT)-lA - AAT

- (I t AT(Xn - AAT)-lA)-1 - AAT

2 (I ; AT(X - AAT)-lA)-1 - AAT

- I - ATX-lA - AAT

- X - AAT

) 0, which completes the proof. o



III. Necessary conditions

In this section we discuss a number of conditions on A that must be satis-
fied in order to solve the matrix equation. Moreover we show by means of a
counterexample that these conditions are ín general not sufficient to
solve the problem.
We start this section again with a preliminary lemma. In this lemma, as

well as in the rest of the paper, we use the notation r(A) to denote the

spectral radius of matrix A(i.e. max~ai~, where ~i are the eigenvalues of
a.i

matrix A).

Lemma 6
Let P and Q be two arbitrary compatible matrices. Then, r(PTQ - QTP) 5

r(PTP t QTQ).

ProoF
By elementary calculus we have that

r(PTQ - QTP) - rl(PT QT)I-O

Since r(AB) - r(BA) for any two compatible matrices, we have that

r I( PT
QT ) r-0

r l l-O QJ l Q,(
PT QT ), .

Now, r(A) s ~A02, where ~.~2 denotes the operator norm (i.e. the largest
singular value of matrix A).
So

r((-0
I~J l PQ J( PT QT ) J 5 I l-O

OJ I Q J ( PT QT ) I 2 5

~ I-~ ~, 02~ ( Q, (pT QT) ~Z.

As I é J(PT QT) is a normal matrix, and ~A~2 - r(A) for any matrix A of
thisltype, we can rewrite the above expression as follows:
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r(PTQ - QTP) S II-O OJ I2~I Q J (PT QT)I2

- 1 r~~ Q J (PT QT)~

- r((PT QT) ( Q JJ

- r(PTP t QTQ), which completes the proof. o

Theorem 7
Assume that problem (1) is solvable.
Then matrix A satisfies the following inequalities.
(i) r(A) 5 }
(ii) r(A t AT) S 1
(iii) r(A - AT) S 1.

Proof
i) Let x be an eigenvector corresponding to an eigenvalue X of A. Then

rewriting the equality

XTX X t XT AT X-1 A X- XT x yields XT X X t I i` I2 XT X-1 X- XT X.

From which we deduce that

I~IZ - XT(I - X) X

XT X-1 X

Since X is a symmetric positive definite matrix we can make a singular

value decomposition of X into UT ï U, where U is an orthogonal matrix and
E- diag (6i) (see e.g. Kailath 1980 pp. 66~).

Now, introduce the variable y- Ux. Then we have from (~) that

I~I2 - yT(1 - E)Y
YT ~-lY

T

So, it suffices to prove that y(T --i)y s 4, or equivalently, that
Y E Y

yT(I - ï- 4 F-1)y s 0.
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T 1 -1 n 2 2 1 n 2 2 1 2 1
As y(I - E- 4 F )Y - ï yi (1- 6i - 2 F - yi(6i - 2) 2.

i-1 I 4~i - i-1 6i
which is clearly smaller than zlero this proves the first claim.
ii) To prove the other two claims we introduce the following notation

P :- X~ - X-~A
Q :- X~ t X-~A.

With this notation equation (1) can be rewritten as either PTP - I- A-

AT Or QTQ - I t A t AT.
Since both PTP and QTQ are semi-positive definite this proves claim ii).

iii) Using the above notation we have, moreover, that

A - AT - 2 (PTQ - QTP).

Application of lemma 6 yields then that

r(A - AT) - 2 r(PTQ - QTP) 5 2 r(PTP t QTQ)

- 2 r(I - A- AT ~ I t A t AT)

- 2 r(2I)

- 1.

The proof of this part is completed by noting that

r((A-AT)(A-AT)T) - r(-(A-AT)2) - r((A-AT)2) - (r(A-AT))2, o

Other necessary conditions can be formulated too, like e.g. r(AAT t ATA) ~
2

1(see corollary 3) or r(A2 ~ AT ) 5 1~2. These additional conditions do,
however, not give much extra information about matrix A. Moreover, they
are together with the conditions posed in theorem 6 not yet sufficient too
to conclude solvability of the matrix equation as will be shown in example
8. For that reason we will not go into any further details on this subject
here.



10

Example 8

Let A - 0.5 -0.45
0.45 0

Then all necessary conditions mentioned before are satisfied. However,
from the simulation results performed with algorithm (2) (see appendix 1)
it is clear that X is not positive definite. so according to theorem 5,
problem ( 1) does not have a solution. o

We conclude this section with two examples on the 2x2 matrix case in which
the above mentioned conditions are sufficient. They might be useful in
future research to obtain a general analytic expression for a solution of
the equation. That the stated solutions índeed satisfy the equation can be
verified by elementary calculation.

Example 9

Let A -

X- I1 0 I satisfies equation (1).
l0 x22J

Moreover, X can be rewritten as follows

IO a12 J . Then, with x22 -
l 22

X- 2 (I - G t (I t G) - 4 A A ),1 2 T

where G - (A - AT)(A - AT)T.

Example 10

1- a12 t(1 - a12)2 - 4a22
2 '

Let A- . Then, with x - 1 t a2 - a2 t (1-a ta2 )- 4a211 12 21 21 12 12
x 0

and x - 1 t a2 - a2 t(1-a2 t a2 )2 - 4a2 X- 1 11 1 satis-22 21 12 12 21 21 2 0 x22J
fies equation (1).
Moreover X can be rewritten like (N) in example 9 with G replaced by
G - AAT - ATA.

0 a12
a21 0

Note that the two analytic solutions stated here do not coincide. Now, one
might hope that this is due to the fact that in example 9 matrix A is
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generically invertible, whereas in example 8 this is not the case. But
unfortunately this is not the case. The analytic solution presented in
example 9 does not solve the equation for every invertible matrix A. Take
e. A 0'2 0'~I then x: 0'95 -0'l17 and sim le calcula-g' - (0.05 0.25, ~ - (-0.117 0.701 ~ p
tions show that this is a counterexample for this conjecture. However,
there is a class of matrices for which this formula does make sense. This
are the normal matrices. In the next section we will see that if matrix A
is normal, condition i) of theorem 7 is already sufficient to conclude
solvability of equation (1), and that a solution is given by (M) where G
is as in example 10.

IV Some special cases

Using the developed theory of the previous section, we derive in the pre-
sent section a sufficient condition for existence of a solution. The claim
is that whenever the operator norm of A is smaller than ~, then there
exists a solution. In particular if matrix A is normal this implies that
the equation has a solution iff. the spectral radius of A is smaller than
}. We first prove this lastmentioned result. This, since in that case a
geometric approach is possible which facilitates a constructive proof.

Theorem 11
Let A be normal.
Then problem (1) has a solution iff. r(A) s}.

Proof
That the spectral condition is necessary was already proved in theorem 7.
To prove the sufficiency of the condition we recall from elementary matrix
theory (see e.g. Horn et al. pp. 105) the result that matrix A is normal
iff. there is a real orthogonal matrix U such that

UTA U - diag(Di)

where each D. is either a real iXl matrix or is a real 2X2 matrix of thei
form
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Xi ~iD. -1 -ui Xi

An immediate consequence of this result is that problem (1) is solvable
iff. ~ Z~ 0: Z t DT Z-1D - I, where D:- diag(Di) and r(Di) s}. By con-
struction we show now that this problem always has a diagonal solution
Z :- diag(zi).
To that end we first consider the case that D. is a lXl matrix. Then weiD
have to solve the equation zi t Z - 1. Since Di 5} it is easily seen

i
that this quadratic equation always has a positive solution.
In case D is a 2X2 matrix we note that the assumption r(Di) s} in parti-

cular implies that 1- 4(ai . ui) is semi-positive.

Now take Z- diag(1 t 1-4(Xi t ui)). Straightforward calculation shows
then that Z indeed satisfies the equation Z t DTZ-1D - I and that, more-
over, Z is positive definite. This completes the proof. o

Remark 12
By some matrix manipulation it can be shown that always X1 - 2(I f(I -
4ATA)~) and X2 - 2(I -(I - 4ATA)~) satisfy the equation. Expressions
which clearly generalize the scalar case.
A question which now immediately arises in this context is whether the set
of all solutions satisfying equation (1) has a smallest (X') c.q. largest
(X") element in the sense that any other solution X satisfies the inequal-
ítyX' SXSX".
In the particular case of theorem 11 a natural guess of X' and X" would
then be X2 and X1 respectively. This remains, however, a topic for future
research.

In the next theorem we show that in general the condition that the largest
singular value of matrix A is smaller than } is sufficient to conclude
that problem (1) has a solution. The proof is given by showing that prob-
lem (2) has a solution under this assumption. The disadvantage of this
approach is that the connection with analytic solution is lost.
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Theorem 13
Let GZ denote the largest singular value of A.
Then problem (1) has a solution if 62 s}.

Proof
Consider the "equivalent" problem (2).
We show by induction that under the above mentioned assumption
Xn ) AAT t 4 I.
The first step is rather trivial.
For, since a2 s 2, AAT 5 4 I. Consequently, Xp - I) 2 I Z AAT t 4 I.
Now assume that Xn z AAT t 4 I.
Then, Xn~l - I- AT(Xn - AAT t AAT)-lA

- (I t AT(Xn - AAT)-lA)-1

Z (I t 4ATA)-1
z 2 I
Z AAT t 4 I.

So, Xn ) AAT dn E?1. Therefore, according to theorem 3 problem (1) has a
solution. o

V. An example from control theory

In this section we give an example in the field of control theory, where
the solvability of equation (1) plays an important role.
Consider the next optimal control problem

min lim JN w.r.t. x(k41) - A'x(k) } B u(k); x(.) E Rn; u(.)ERm,
u[0, . ] N-~

x(0) - x.

with the additional constraint that lim x(N) - 0; (3)
N~

where
N-1

JN - ï{xT(k)Qx(k) t uT(k)Ru(k)} and both Q and R are symmetric.
k-0

It is well known that it is difficult to find explicit solvability condi-
tions for this so-called indefinite Lineair Quadratic ( LQ) control problem
(see e.g. Jonckheere et al (~9~8) and Molinari (1973)). We will show that
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in case matrix B is invertible the solvability of an appropriate equation
of the type (1) plays a crucial role. But first we state sufficient gene-
ral solvability conditions for problem (3).

Theorem 14
Problem (3) has a solution if there exists a real solution K' of the next
Algebraic Riccati Equation

(ARE) K- A'T{K - KB(R t BTKB)-1BTK}A' t Q

which additionally satisfies the requirements
i) R t BTK'B ~ 0
ii) r(A' . BF) ~ 1, where F--(R t BTK'B)-1 BTK'A'.

Proof
It is well known that by introducing the variable v(k) - u(k) - Fx(k) the

cost functional can be rewritten as

min lim J- min lim(J t xT(N)K'x(N) - xT(N)K'x(N))
u[0,.] N~ N u[0,.] N~ N

N-1
- min lim{ i vT(k)(R t BTK'B)v(k) t xT(0)K'x(0) -

u[0,.] N~ k-0

xT(N)K'x(N)} (~)

where x(ktl) -(A' t BF)x(k) t Bv(k).

Now take v(.) - 0. Then, due to our assumption on r(A'tBF), x(N) converges
to zero. Consequently, the minimum value of problem (3) is always equal or
smaller than xTK'x.
Moreover since the control sequence must be such that x(N) converges to
zero and RtBT K'B ) 0, we have from (") that always min lim JN 2 xTK'x. So
v(k) - 0 solves the problem, which completes the proof. o
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Thus the problem left to be solved is to give conditions under which there
exists a real symmetric matrix K' to ( ARE) which additionally satisfies
13.i) and 13.íi).

Theorem 15
Let M:- RB-1 A'B and N:- BT A'TB-TRB-lA'B . R. BTQB.
There exists a real symmetric matrix K' to (ARE) satisfying 13.i) iff.
1) N ) 0.
2) Problem (1) has a solution with A:- N-~MN-~.

Proof

Consider (ARE). Some elementary matrix manipulation shows that (ARE) has a

real symmetric solution satisfying 13.i) iff. the following equation has

this property

R t BTKB --BTA'T KB(RtBT KB)-1 BTKA'B t BTA'T KA'B . R t BT QB.

This equation can be rewritten as

RtBTKB --BTA'TB-TR(RtBTKB)-1RB-lA,B t BTA'TB-TRB-lA'B t R t BTQB.

So, iiitroducing Y:- R t BTKB, we see that there is a solution iff. there
exists a real positive definite solution Y to

Y - -MT Y-1M t N.

The stated conditions 1) and 2) now immediately result from this equation.
a

Combining the main results of this section and the previous one we have
the following corollary.

Corollary 16
With the notation of theorem 15 the indefinite LQ problem (3) has a solu-
tion if the following conditions are satisfied
1) N ~ 0
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2) ~N-i ~-~~Z 5 ~
3) r(X-1M) ~ 1. o

Note that in the definite LQ problems condition 3) is always satisfied.

VI. Concluding remarks

In this paper we introduced a nonlinear equation which directly extends
the well known scalar quadratic equation. It turned out that it is rather
difficult to find necessary and sufficient conditions for the existence of
a real symmetric positive definite solution. For that reason we formulated
a recursive algorithm from which always numerically a solution can be
calculated whenever the equation is solvable.
Of course, Lhe equation has in general more than one solution. Therefore

the question arises whether all solutions can be ordered in some way, and

in particular, whether there exists a smallest and largest element.

Drawing the parallel with the properties of the solutions satisfying the

Algebraic Riccati Equation (see e.g. Willems (1971) and Trentelman

(1987)), we believe that this minimal and maximal element exist, and that

our recursive algorithm converges to the maximal one. But this remains a

topic for future research.

Here, we concentrated on finding solvability conditions which can be
easily verified, and the derivation of an analytic solution. We showed
that whenever the operator norm of matrix A is smaller than } the equation
is always solvable. In case matrix A is normal this condition is both
necessary and sufficient, and we gave an analytic solution. To find an
explicit solution in other cases was rather difficult. Only in the 2X2
case for some particular situations general formulas were derived, which
unfortunately do not solve the equation in general.
Since we were not able to solve the general problem we also derived a

number of simple non-trivial necessary conditions that are expressed in

terms of spectral radii.

In this context it is interesting to note that Lerer studied in a recent

paper (~989) quadratic matrix equations too. He treats these problems from

a factorization point of view. Maybe that this different approach will
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give rise to additional explicit solvability conditions. But this is again
a matter of future research.
We concluded the paper with an example from optimal control theory. It
concerns the indefinite linear quadratic optimization problem. We showed
that in case the input matrix B is invertible the optimal control problem
can in essence be reduced to the question whether a special quadratic
matrix equation of the type we studied is solvable. Using the developed
theory we gave sufficient solvability conditions.
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Appendix 1

~ .~
The first 4 values for XT in X„~- I- A}t,A; X,- I,
with

A - 0.500 -0.450
C0.450 0.000

are:

X,- ~1.000 0.0001
0.000 1.OOOl

X~ - 0.548 0.225
(0.225 0.798

Xi- 0.459 0.347
(0.347 0.582

X~- 0.439 0.414
(0.414 0.196

X - r0.433 0.465 1
y `0.465 1.463J
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