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Summary.

Estimation of shortage and excess of supply on the housing
market leads to the evaluation of the absolute moments of a
normally distributed variable. A formula for these moments

is given in section 2; since for the first two central moments
the function H(x) = ¢(x) - x®(-x) appears to be of considerable
interest, its properties are investigated in section 3. The
function K(x) = H(x) H(-x), that appears in the formula for

the second central moment, is the subject of section 4. The
consequences of the derivedproperties for the estimation of
housing shortage and excess are discussed. After multiplication
by a constant, K(x) can be interpreted as a density which is
nearly standard normal. A formula for the moments corresponding

with this density is presented.



| INTRODUCTION.

In view of the stil existing housing shortage in The Netherlands,
an optimal use of the housing stock is necessary. This can be
achieved by trying to allocate households to dwellings in

such a way that each houshold occupies a house that suits it
best. Of course, this is possible only if the number of house-
holds wanting a dwelling of a certain type (related to rent
and number of rooms, for example) is known, as well as the
number of available dwellings of that type. Comparing demand
and supply will reveal in what categories of dwellings a
shortage or an excess of supply exists, which is of course

of considerable importance for building programs. Denoting
supply and demand by S and D respectively, we have for the

excess E of supply:

E = max(S-D,0)

and for the shortage F:

F = max(D-S,0)

A related concept is the potential shift P, defined as the
number of households able to find suitable dwellings on the
existing housing market. This important quantity indicates
to what extent the housing needs could be solved if no new
building activities were started.

The following relations are immediately clear:

ja~)
([

min(s,D) = $(s+D) - }|s-D]
E. = §—=P; F = D=P (B
To estimate these quantities a survey is needed in which the

actual as well as the favoured housing situation is asked for.

Denoting the sample totals of the above quantities by the



corresponding minuscules, the most obvious estimator in a simple

random sample with sampling fraction f is p/f,where
p = min(s,d) = }(s+d) - }|s-d| (1.2)

Since s/f and d/f are unbiased estimators of S and D respecti-

vely, the bias B of the estimator p/f equals

B = E{p/f} - P = ;IE{S;d}I = ] EIS;dl (1.3)

as follows from formulae (1.1) and (1.2).

Now,if the sample is large enough (and the sampling fraction
small enough), (s-d)/f will be nearly normally distributed
and the problem is reduced to finding the first absolute
moment of a normally distributed variable u. Similarly,

calculating the variance of p/f involves evaluation of the

variance of lu . See for details [ 1].

It is therefore necessary to investigate the absolute moments
of a normally distributed variable, which is the subject of
the present paper. The major part is denotes to the study of

the function H(x) defined by

H(x) = ¢(x) - x®(-x) (1.4)
which almost completely determines the first two central
moments of |u|. In equation (1.4) ¢(x) and ®(x) denote
respectively the density and the distribution function of a
standard normal variable x "~ N(0,1).
0f course, the results presented here may be of interest
whenever a variate following a normal distribution occurs,the
sign of which is irrelevant. Moreover, the function H(x) arises
in other contexts as well.

It can be shown for example, that the num%er of times a
vehicle with given speed is overtaken per kilometer, can be

expressed under certain conditions by the function H(x) [ 2].



2 THE ABSOLUTE MOMENTS OF A NORMALLY DISTRIBUTED VARIABLE.

In this section an expression is derived for the absolute mo-
ments of a normally distributed random variable u ~ N(u,0).
The density of u is given by
| B e BB
E(u) = gogre=p [ =4 (a—i)* /0] (2.1)
By means of the transformation

x = (u-p)/o €24:2)

a standard normal variable x v N(0,1) may be obtained with

the density
6(x) = 73— exp(-4x?) (2.3)

Some wellknown properties of ¢ which will be used in the sequel

are

lim ¢(x) = 03 ¢(0) = 7%;; lim ¢(x) = 0

X>= ¥
(2 :4)
o(x) > 0 ; d(-x) = ¢(x)5 ¢'(x) =-x0(x)
The probability distribution of x is denoted by
x ) x
d(x) = I d(y)dy = o I exp(-iy?)dy (2.5)
with the properties
lim ®(x) = 0; ®(0) = 4 ; 1lim ®(x) = 1
X*>-® x>
(2486)

2 (x) = Q3 P(-x)+d(x) = 1;9"(x) = ¢(x)



Ioo
0
be evaluated by use of transformation (2.2); defining

Integrals of the type urf(u)du will be needed, which may

b = u/o (2:7)

we find

J u'f(u)du = g%;;f u’ expl -4 (u-u)2/0?]du
0 0

g%g;f (ox+u)? exp(-4x?)d(ox+u)
0

J (ox+u)2¢(x)dx
-b

]
™M

J uTf(u)du (F)oju"jj xj¢(x)dx (2.8)
0 J -b

j=0

An expression for the integrals on the right follows from

lemma 2.1, which can easily be proved by taking derivatives.

Lemma 2.1 The primitive function of xJ¢(x) is given by

‘

2 m-i m!_ 2i

-o(x) L 2 T%x for j = 2m+1l
i=0 .
T i-m (2m)li! 2i-1_.-m (2m)!

-p(x) IZ 2 (_Zi)—;m+x +2 —m,—'d?(x) for j = 2m

1=

with m = 0515255

Denoting

F.(-b) = J xj¢(x)dx
- -b



it follows that

L i L2
6(b) I 2 %'Tb for j=2m+1
i=0 .
Fj(-b) =
m ) = ] B 2 ]
—o(p) £ 20T LB 2T, Le (b)) for je2m
i=1 ‘m! :
(2:9)
th "
FoE the P moment m_ of u is follows that
[ ®/2] '
- it 2 m r—2m
m = mzo T;:E;TTET(O £2) " (2.10)

where [a] denotes the largest integer smaller than or equal
to a.Expressions for the absolute moments Br of u are now

easily derived. For the even moments we have of course

BZk = m, €2.17)
and for the odd moments (2.8) gives:
8 e [ 1P e quran = 2 02 ecuyau-
g gt J—w u u)du = JO i wdu- m,,
2k-1 o .
-4 L (Zk=Tygdy?* IV § o3 = » (2. 12)
5 s ] 2k=1
j=o J
where Fj(-b) and My are given by (2.9) and (2.10) respecti-

vely. For the first two absolute moments we find in this way

B] u=2ud(-b)+20¢(b) (2:13)

R n2+0? (2.1%)

If the function H(b) is defined as



H(b) = ¢(b)-bd(-b) (2+15)
we get for the expectation and variance of |u|:

Elul = B, = u+20H(b) (2.16)

-8% = 02-(20)2H(b) {H(b)+b}

Var|u| = B 1

2
It is easily seen from the definition that H(b) has the property

H(-b) = H(b)+b, so that Var|u| can be written as
Var|u| = 02-(20)%H(b)H(-b) £20: 1T)

The expectations of|u| and u differ by a term in which the
function H(b) plays a dominant part and the same holds for

the variance of |u| and u with respect to the function H(b)H(-b).
The properties of H(b) and H(b)H(-b) are investigated in the

next sections.

3. PROPERTIES OF THE FUNCTION H(x) = ¢(x)-x%(-x).

Some important properties of H(x) are:

1 4
1lim H(x) = 03 H(O0) = T 5 1im H(x) = O
X+ =0 2m X0

(3.1)

H(x) > O H(-x)-H(x) = x ; H'(x) = -d(-x)

H
Most of these relations follow immediately from the properties
of ¢(x) and ®(x) mentioned in formulae (2.4) and (2.6). The
limiting value of H(x) when x nears infinity is somewhat more

difficult to find; it is however a speciai case of lemma 3.1,

Lemma 3.1 For all real numbers c relation (3.2) holds:



lim x% H(x) = 0 (3.2)

X>©
BEroof :
Of course, the relation
. €
lim x  ¢(x) = 0
X 00

holds for all real numbers c. Further we have according to

de 1'Hospital'srule

C8(=x)  _ .. {e(=x)}' .. -6 (x)
L so/x - Lt Teo /X1 T AT

x> x>0 b (x)-¢(x)/x?

Combination of these resultes gives:

lim x€ d(-x) = lim xc-l¢(x). lim Slexb . o 0
L5 ¢J(X)/X
from which the lemma follows. A

A consequence of the lemma is that the ratio ¢(-x)/¢(x)-called

Mills' ratio-is approximately 1/x for large x. It is always
smaller, however, since H(x) is positive everywhere. In the
following section also a lower bound for Mills' ratio is

needed, which is provided by lemma 3.2.

Lemma 3.2 For all positive x inequality (3.3) holds:

d(x) < (x+/2/m)d(-x) (3.3)
Proof.
Define

J(x) = ¢ (x)-(x+V/2/T1)%(-x)

The first two derivatives are then

J'(x) = V2/m ¢(x)-%(-x%)




J"(x) = (1-xV27m)¢ (x)

Consider first the values of x with 0 < x ¢ YT/2. For these
values the second derivative of J(x) is positive and hence the
first derivative is an increasing function. Since J'(0) is
negative and J'(V/T/2) positive, J(x) has local maxima in the
endpbints 0 and vVm/2.

On the other hand, for x > V7m/2 the second derivative is
negative and the first decreasing; since J'(x) tends to zero
for large x, the first derivative is positive. So, J(x) is
increasing for all x > v7/2 and has a local maximum for x - o,

Since J(0) = J(») = 0, J(x) is negative for all positive x. A
Relation (3.3) may be written alternatively as

H(x) < V2/m ®(-x) for x > 0 (3.:%)
For Mills'ratio we find for positive x the double inequality:

1 y d(-x) 5 1

x+/2/m ¢ (x) x (3.5)

Other inequalities for this ratio are

_ 1 d(-x) 1
= & ol 2

¢ (x) x

% |-

(see for example Feller [3]) and

1 d(-x) 1
x+1/x . ¢ (x) B x

due to Gordon [ 4] . The first part of this last relation is
stronger than Feller's, but for x < /T/2 weaker than (3.5«

If equation (2.16) is written as

E|u|-Eu = 20H(b)



relations (3.1) imply that |u| is always larger than u in
expectation. For constant variance 02 the difference between
E|u| and Eu = p decreases as U increases in absolute value.
This result is quite plausible, since the difference between
the two expectations is caused by the occurrence of positive
and negative values of u. If b = u/0 moves farther away from
the origin in either direction, positive or negative values
dominate. So, the bias of the estimator p/f is largest when
demand and supply are about equal, but tends to zero when

|s-p| is large.

4. PROPERTIES OF THE FUNCTION k(x) = H(x)H(-x).

The function k(x) is defined by

k(x) = H(x)H(-x) = ¢2(x)+bd(x){®(x)-0(-x)}-b?d(x)(-x)

(4.0)
Some important properties are
lim k(x) = 03 k(0) = 3=3 lim k(x) = 0
X>—00 Ul x>
(4.2)

k(x) > 0 k (x) k(-x) 3 xk}(x) <0

All these relations but one follow immediately from the
similar properties of H(x) given in (3.1). The last assertion
concerning the sign of the first derivative, is the subject of

lemma 4.1.
Lemma 4.1 k(x) is increasing for x < 0 and decreasing for x > 0.

Proof.

In view of the symmetry of k(x) the two assertions of the lemma
are equivalent. So it is sufficient to prove that k'(x) is

negative for x > 0. Now,



H'(x)H (=% )=H{x)H" (=x)

kYi(x)

-0 (-x) {H(x)+x}+H(x)®(x)

H(x)8(-x) {0~V (-x)-x8" ' (x)-2}

[}

and the expression between { } tends to 0 for x > 0. So, if
for x > 0 this expression can be shown to be decreasing, or

its derivative to be negative, the proof is given. Indeed,

d(x)  _ _o(x)
®2 (-x) H? (x)

18 Vg~ B -zl

= -——Qifl———{ﬂz(x)-¢2(-x)} <0
d(-x)H? (%)

because of inequality (3.4). A

If equation (2.17) is written as
Varlu] - Var u = —(20)2 H(b)H(-Db)

relations (4.2) imply that |u| has always a smaller variance
than u. For constant 02 the difference between them decreases

if U increases in absolute value, which i; again very plausible.
Figure | shows the functions ¢(x),%(x),H(x) and k(x). It

appears that k(x) differs from ¢(x) by a factor that is
reasonably constant. The following values can be obtained, for

example, from tables of the normal density and distribution:

X 0 #] *2 +3
k(x)/¢(x) 0.3989 0.3823 0.3158 0.2573

So, the function g(x) defined as

g(x) = k(x)/[ k(y)dy (4.3)
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can be interpreted as a density which resembles the density of

a standard normal variate. This density could be used, for example
to detect numerically the influence of small deviations from
normality. The moments of a variable x with density f(x) can

be found with lemma 4.2.

Lemma 4.2
2n

The primitive function of x k(x) is
1 2n+3 2042 o .n-i mn! 2i
5 [—x D435 (%) (-x)+0(x) {20 () -1} (x“ " = T 277 Hx )+
fi% 3 P 4
i=0
2n. % [2n] _2i,,.[2n]
+ o2 (x)x(x T+ L oy x~ ) +d @(x/Z)//;l (4.4)
i=0 -
for all non-negative integers. The cilzn]follow the recursion
formula
120l . 28] . o _,n-i n!
ey ™ 2% iy = (1+i)ci 2 T (4.5)
and dlzn]is given by
2 for n = 0
U . (4.6)
2nn!-£cL2n] for m > 0
Proof.

The proof can be given by differentiating formula (4.4). (This

formula was formed with the help of (4.1).) A

+
The primitive function of x2n . k(x) may be obtained in a

similar way; it reads

ZI]H_A|}x2n+4¢(x)¢(-x)+¢(x){Z(P(x)-]}xpn+](x2) N

- ¢2(x)qn;l(x2ﬂ (4.7)



where pn+](x2) and qn+l(x2) are polynomials in x2 of degree
n+l, the coefficients of which can be found by differentiating.
The most important difference with formula (4.4) is the absence
of the term in which ®(xv2) occurs; this corresponds with

lemma 2.1. )

Especially interesting are the integrals of xlk(x) over the
whole real axis, to which only the term containing ®(xv2)
contributes. So, it follows from formulae (4.4) and (4.7) for

all non-negative integers n:

0 for i=2n+1

[  hilu)dn = (4.8)
] d[ 2n]

i3as3) I for i=2n

The result for odd i follows of course immediately from the
symmetry of k(x).

In particular, it follows that

N 2
J_wk(X)dx = ST
and substituting this in equation (4.3) we find that
3
g(x) = 3/7 k(x) (4.9)

is a density.

To calculate the even moments corresponding with g(x) it is

necessary to evaluate cLG}, Recursion formula (4.5) gives
for all 3 € e
j i n=k 5 kK=l N
C[Zn]___C[.Zn] H (iudy~ B 2 'n. I (i+i)_2n ]n!
o ] o= k. :
1=] k=2 i=1

With the wellknown relation



k-1 .
e - gat
i=1 2 k!
we find in particular for j = n:
' ) - =
Jf2nl _ [2n]_Q@n)! _ pn*l o0 gg =3k onel
o n= ] 2n—ln, k=2 k

or, bringing terms under the sommation sign:

n —
° n k=1 X

Expression (4.6) can now be written as

- n ~
al 2nl 2"n! [on)2-3n+ E (*%¥y3 3€J (4.11)
" k=0 k

which holds under the usual conventions even for n=0.

The even moments of a variate x with density g(x) are given by

I xzng(x)dx _ 3n!2" [(2“)2 3n,
- 00

n
“2n+3 E

(2‘;)2'3‘1 (4.12)

k=0

for non-negative n. This gives for the first three even moments:

My = 13 My = 9/10 ; M, = 69/28 °

Note that for large n the factor between [ ] tends to V2

since
-3k e k- -
I #9272 1 epieh - a-pTh - v,
k=0 k=0 k
Finally, an easier method for calcuting CEZn] and d[2n] is
by use of the recursion formulae '
L2(n+1)] [2n] (2n)!
cq 2(n+l)c * —7;:T—T (4.13)

2 ne



[ 2n] _ 2n) ! (4.14)

gl Fa+1)] 2(n+1)d =2
n!

o 2

which can be derived immediately from (4.10) and (4.11).

M.v;:;d:B;:
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