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Summary.

Estimation of shortage and excess of supply on the h~using

market leads to the evaluation of the absolute moments of a

normally distributed variable. A formula for these moments

is given in section 2; since for the first two central moments

the function H(x) -~(x) - x~(-x) appears to be of considerable

interest, its nroperties are investigated in section 3. The

function K(x) - H(x) H(-x), that appears in the formula for

the second central moment, is the subject of section 4. The

consequences of the derívedproperties for the estimation of
housing shortage and excess are discussed. After multiplication

by a constant, K(x) can be interpreted as a density which is

nearly standard normal. A formula for the moments corresponding
with this density is presented.
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l. INTRODUCTI~N.

In view ofthe stil existing housing shortage in The Netherlands,
an optimal use of the housing stock is necessary. This can be
achíeved by trying to allocate households to dwellings in
such a way that each houshold occupies a house that suíts it
best. Of course, this ís possible only if the number of house-
holds wanting a dwelling of a certaín type (related to rent
and number of rooms, for example) is known, as well as the
aumber cf availabl2 dwellir.gs of that typc. Comparing demar.3
and supply will reveal in what categories of dwellíngs a
shortage or an excess of supply exísts, which is of course
of considerable importance for building programs. Denoting
supply and demand by S and D respectively, we have for the
excess E of supply:

E - max(S-D,0)

and for the shortage F:

F - max(D-S,0)

A related concept is the potential shift P, defined as the
number of households able to find suitable dwellings on [he
existing housing market. This important quantity indicates
to what extent the housing needs could be solved if no new
building activities were started.
The following relations are immediately clear:

P - min(S,D) - }(StD) - ~IS-DI

E - S-P; F - D-P (~,~)

To estimate these quantities a survey is needed in which the
actual as well as the favoured housing situation is asked for.
Denoting the sample totals of the above quantities by the
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corresponding minuscules, the most obvious estimator in a simple

random sample with sampling fraction f is p~f,where

p - min(s,d) - }(std) - ~~s-dl

Since s~f and d~f are unbíased estimators of S and D respecti-

vely, [he bías B of the estimator p~f equals

B - E{P~f} - P - ~IE{sfd}I - ~ E~sfd~

as follows from formulae (1.1) and (1.2).

Now,if the sample is large enough (and the sampling fraction

small enough), (s-d)~f will be nearly normally distributed

and the problem is reduced to fínding the first absolute

moment of a normally distributed variable u. Similarly,

calculating the variance of p~f involves evaluation of the

variance of lul. See for details [1].

It is therefOre necessary to investigate the absolute moments

of a normally distributed variable, which is the subject of

the present paper. The major part is denotes to the study of

the function H(x) defined by

H(x) - ~(x) - x~(-x)

which almost completely determines the first two central

moments of lul. In equation (1.4) ~(x) and ~(x) denote

respectively the density and the distribution function of a

standard normal variable x ti N(0,1).

Of course, the results presented here may be of interest

whenever a variate following a normal distribution occurs,the

sign of which is irrelevant. Moreover, the function H(x) arises

in other contexts as well.

It can be shown for example, that the number of times a

vehicle with given speed is overtaken per kílometer, can be

expressed under certain conditions by the function H(x) [2].
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2. THE ABSOLUTE MOMENTS OF A NORMALLY DISTRIBUTED VARIABLE.

In this section an expression ís derived for the absolute mo-

ments of a normally distributed random variable u ti N(u,Q).

The density of u is given by

f(u) - Q~exP ~-~(u-u)2~QZ~

By means of the transformation

x - (u-U)~Q (2.2)

a standard normal variable x ti N(0,1) may be obtaíned with

the density

Q(x) - ~ exp(-}xZ) (2.3)

Some wellknown properties of ~ which will be used in the sequel

are

lim ~(x) - 0 ;~(0) - ~; lim ~(x) - 0
x~,-~ x~oo

4(x) ' ~ ; ~(-x) - ~(x); ~'(x) --x~(x)

The probability distribution of x ís denoted by

~(x) - J xm4(Y)dy - ~ J x~exP(-~iYZ)dY
with the properties

lim ~(x) - 0 ; ~(0) - ~ ; lim ~(x) - 1
xy-~ x~~

(2.4)

(2.5)

(2.6)

~(x) ~ 0; ~(-x)}~(x) - 1 ; ~'(x) - ~(x)
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Integrals of the type j ~ urf(u)du will be needed, which may
be evaluated by use of transformation ( 2.2); defining

b - u~o

we find

J 0 urf (u)du - Q~JD "r exPl -~ (u-u) Z ~Q2] du

-
I-b(oxtu)2~(x)dx

(2.7)

~ r (~1 urf(u)du - E (r)Q~ur-~J - x~~(x)dx (2.8)
0 j-0 ~ b

An expression for the integrals on the right follows from

lemma 2.1, which can easily be proved by taking derivatives.

Lemma 2.1 The primitive function of x~~(x) is given by

-~(x) E 2m-i m:x2i
i:i-0

for j - 2mt1

m i-m (2m):i.' 2i-1 -m (2m):
-~(x) E 2 ( 2i):m:x i 2 m, ~(x) for j- 2m

i-1

with m - 0,1,2,...

Denoting

- Q~I (Qx}U)2 exp(-~x2)d(ax}u)
JO

~

~

Fj(-b) - J ~ x~~(x)dx
b
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it follows that

F.(-b) -i

m m-i m: 2i~(b) E 2 i;b for j-2m}I
í-0

m i m(2m) i. 2i 1 m
(2i) m-~(b) E 2'- ~'~b '- t2- (2m)~~(b) for j-2m

(2.9)

For the rth moment m of u is follows thatr

[ r~2) r: z m r-2m
mr - m~~ (r-2m):m:(a ~2) u (2.10)

where [aJ denotes the largest integer smaller than or equal

to a.Expressions for the absolute moments Sr of u are now

easily derived. For the even moments we have of course

S2k - m2k

and for the odd moments (2.8) gives:

s2k-1 - I~ lul2k-If(u)du - 2i~u2k-lf(u)du- m2k-1J ~ 10

2k-I 2k-j-1- 2 E (2k-1)O~U F.(-b) - mj-0 j ] 2k-1

(2.11)

(2.12)

where F.(-b) and m2k-1 are .given by (2.9) and (2.10) respecti-
J

vely. For the first two absolute moments we find in this way

Sl - U-2u~(-b)t2a~(b)

Q2 - uztQz

If the function H(b) ís defined as

(2.13)

(2.14)
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H(b) - ~(b)-b~(-b) (2.15)

we get for the expectation and variance of lu~:

Elul - R1 - u}2oH(b) (2.16)

Var~u~ - ~2-R~ - 6Z-(2a)2H(b){H(b)tb}

It is easily seen from the definition that H(b) has the property

H(-b) - H(b)fb, so that Varlu~ can be written as

Varlu~ - aZ-(2a)ZH(b)H(-b) (2.17)

The expectations of~ul and u differ by a term in which the

function H(b) plays a dominant part and the same holds for

the variance of lu~ and u with respect to the function H(b)H(-b).

The properties of H(b) and H(b)H(-b) are investigated in the

next sections.

3. PROPERTIES OF THE FUNCTION H(x) -~(x)-x~(-x).

Some ímportant properties of H(x) are:

lim H(x) - 0; H(0) -~: lim H(x) - 0
xi-~ x~m

H(x) ~ 0; H(-x)-H(x) - x; H'(x) --~(-x) J

Most of these relations follow immediately from the properties

of ~(x) and ~(x) mentioned in formulae (2.4) and (2.6). The

limiting value of H(x) when x nears infinity is somewhat more

difficult to find; it is however a special case of lemma 3.1.

Lemma 3.1 For all real numbers c relation (3.2) holds:
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clim x H(x) - 0
xy~

Proof.

Of course, the relation

lim xc ~(x) - 0
x-~~

(3.2)

holds for all real numbers c. Further we have according to

de 1'Hospital'srule

lím ~(-x) - lim {~(-x)}'~ - lim -4(x) - 1
x~,~ 4(x)Ix x~~ 4(x)Ix x-~~ -~h(x)-~(x)Ixz

Combination of these resultes gives:

lim xc 4(-x) - lim xc-~~(x). lim ~(-x) - 0
x-~~ xy~ x-~~

from which the lemma follows. ~

Q~(x)Ix

A consequence of the lemma is that the ratio ~(-x)Ib(x)-called

Mills' ratío-is approximately llx for large x. It is always

smaller, however, since H(x) is positive everywhere. In the

following sectíon also a lower bound for Mills' ratio is

needed, which is provided by lemma 3.2.

Lemma 3.2 For all positive x inequality ( 3.3) holds:

~(x) ~ (xt~2ln)~(-x)

Proof.

Define

J(x) - ~(x)-(xt~2l~t)9(-x)

The first two derivatives are then

J'(x) - f2ln ~(x)-~(-x)

(3.3)
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J"(x) - (1-x~~r)4(x)

Consider first the values of x with 0 ~ x ~~2. For these
values the second derivative of J(x) is positive and hence the
first derivative is an increasing function. Sínce J'(0) is
negative and J'(~) posítive, J(x) has local maxima in the
endpoints 0 and J~r~2.

On the other hand, for x~~n~2 the second derivative is
negative and the first decreasing; since J'(x) tends to zero
for large x, the first derivative ís positive. So, J(x) is
increasing for all x~~n~2 and has a local maximum for x-~ ~.
Since J(0) - J(~) - 0, J(x) is negative for all positive x. ~

Relation ( 3.3) r~ay be written alternatively as

H(x) ~~ ~n ~(-x) for x~ 0 (3.4)

For ~Tills'ratio we fínd for positive x the double inequality:

1 ~ ~ (-x) ~ 1
xt 2 ~r Q(x) x

Other inequalíties for this ratio are

1 - ~ ~ ~(-x) ~ I
x x Q(x) x

(see for example Feller [ 3] ) and

1 ~ ~(-x) ~ 1
xtl~x Q(x) x

(3.5)

due to Gordon [4]. The first part of this last relation is
stronger than Feller's, but for x ~ r~r~2 weaker than (3.5).
If equation (2.16) is written as

Elu~-Eu - 2QH(b)
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relations (3.1) imply that lul is always larger than u in

expectation. For constant variance aZ the difference between

E~u~ and Eu - u decreases as U increases in absolute value.

This result is quite plausible, since the difference between

the two expectations is caused by theoccurrence of positive

and negative values of u. If b- UIQ moves farther away from

the origin in either direction, positive or negative values

dominate. So, the bías of the estimator p~f is largest when

demand and supply are about equal, but tends to zero when

IS-DI is large. .

4. PROPERTIES OF THE FUNCTION k(x) - H(x)H(-x).

The function k(x) is defined by

k(x) - H(x)H(-x) - ~Z(x)tb~(x){~(x)-~(-x)}-bZ~(x)~(-x)
(4. 1 )

Some important properties are

1 ' lim k(x) - 0lim k(x) - 0: k(0) - 2,~ .
xi-pp x~oo

k(x) ~ 0: k(x) - k(-x) : xk'(x) ~ 0

(4.2)

All these relations but one follow ímmediately from the

similar properties of iï(x) given ín (3.1). The last assertion

concerning the sign of the first derivatíve, is the subject of

lemma 4.1.

Lemma 4.1 k(x) is increasing for x ~ 0 and decreasíng for x~ 0.

Proof.

In view of the synmetry of k(x) the two assertions of the lemma

are equivalent. So ít is sufficient to prove that k'(x) is

negative for x~ 0. Now,
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k'(x) - H'(x)H(-x)-H(x)H'(-x)

- -~(-x){H(x)tx}tH(x)~(x)

- H(x)~(-x){á-I(-x)-xH-~(x)-2}

and the expression between {} tends to 0 for x-~ 0. So, if

for x~ 0 this expression can be shown to be decreasing, or

its derivative to be negative, the proof is given. Indeed,

{~-1(-x)-x H-~(x)-2}' - -~(x) - ~(x)

~Z(-x) H2(x)

- ~(x) {HZ(x)-~2(-x)} ~ 0
4(-x)HZ(x)

because of inequality (3.4). ~

If equation (2.17) is written as

Varlul - Var u - -(26)Z H(b)H(-b)

relations (4.2) imply that lu~ has always a smaller variance

than u. For constant 62 the difference between them decreases

if u increases in absolute value, which is again very plausible.
Figure 1 shows the functions ~(x),~(x),H(x) and k(x). It
appears that k(x) differs from ~(x) by a factor that is
reasonably constant. The following values can be obtained, for
example, from tables of the normal density and distribution:

x 0 tl t2 t3
k(x)~~(x) 0.3989 0.3823 0.3158 0.2573

So, the function g(x) defined as

g(x) - k(x)~J~ k(y)dy (4.3)
~
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can be interpreted as a density whích resembles the density of

a standard normal varíate. This density could be used, for example

to detect numerically the influence of small deviations from

normality. The moments of a variable x with density f(x) can

be found wíth lemma 4.2.

Lemma 4.2
2n

The primitive function of x k(x) is

~ ~ x2n}3~(x)~(-x)tQ(x){2~(x)-]}(x2nt2- E 2n-i n~x2i)t
2nt3 i-0

t~2(x)x(x2n} E ci[ 2n~ x2i)}d[ 2n~ ~(xJ2)IJn~ (4.4)

i-0

for all non-negative integers. The ci[2n)follow the recursion

formula

c[ 2nJ - -2 ~ c[ 2n]
n-1 i-1 - (it~)ci-2n-i (4.5)

and d[ 2n~ ís given by

- ( 2 for n - 0
d[ 2nj {I

2nn:-}c[ 2n~ for n~ 0
0

(4.6)

Proof.

The proof can be given by differentiating formula (4.4). (This

formula was formed with the help of (4.1).) '
2ntl

The primitive function of x k(x) may be obtained in a

similar way; it reads

2nt4
[x2n}4~(x)~(-x)}~(x){2~(x)-1}xpn}~(x2) t

f ~2(x)9ntl(x2] (4.7)
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where pn}~(x2) and qn}~(x2) are polynomials in x2 of degree

nfl, the coefficients of which can be found by differentiating.

The most important difference with formula (4.4) is the absence

of the term in which ~(x~2) occurs; this corresponds with

lemma 2.1.
Especially interesting are the integrals of xlk(x) over the

whole real axis, to which only the term containing ~(xr2)

contributes. So, it follows from formulae (4.4) and (4.7) for

all non-negative integers n:

(~

I-~xlk(x)dx -

r 0 for i-2nt1

d[ 2n]

(2nt3) ~r
for i-2n

(4.8)

The result for odd i follows of course immediately from the

symmetry of k(x).

In particular, it follows that

- ~k(x)dx 2

and substituting this in equation (4.3) we find that

S(x) - Zr~ k(x) (4.9)

is a density.
To calculate the even moments correspondíng with S(x) it is

necessary [o evaluate có2n} Recursion formula (4.5) gives

for all j ~ n:

j J 2n-kn: k-1
n-1c[o2n]-c[ 2n] n (it~i)- E k: ]I (i}])-2 n:

J i-j k-2 í-1

w'ith the wellknown relation
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knl (it]) - (2k):
i-1 22k-lk;

we find in particular for j- n:

c[ 2n] - c[ 2n] (2n): - 2ntln:n~l (2kj2-3k-2n-]n:
o n-1 22n-]n:

k-2 k

or, bringing terms under the sommation sign:

c[ 2n] - -2ntln:
0

n~2n ) 2-3n} ~ ( 2k ) 2-3k~

L` n k - 1

Expression (4.6) can now be wrítten as

d[ 2n] I n

L U-
whích holds under the usual conventions even for n-0.

(4.10)

(4.11)

The even moments of a variate x with density g(x) are given by

~ x2ng(x)dx - 3n:2n-1 r(2n)2-3n} ~ (2k)2-3k~
J-~ 2nt3 I (4.12)

n k-0 k

for non-negative n. This gives for the first three even moments:

uo - l; u2 - 9~10; U4 - 69I28 '

Note that for large n the factor between [] tends to r2
since

m ~
E (2k)2-3k - E (-~)k(-~) - (1-~)-~ - ,~2.

kz0 k k-0 k

Finally, an easier method for calcuting có2n] and d[2n] is
by use of the recursion formulae

- 2nn: (2n)2-3n} ~ (2k)2-3k~
n -~ k

c~2(ntl)] - 2(ntl)c[ 2n] } (2n):
(4.13)

0 0 22n-ln:



- 16 -

d[ 2(nfl)] - 2(n}1)d~ 2n] - (2n):
0 22nn;

(4.14)

which can be derived immediately from ( 4.10) and (4.11).

M.v.d.B.
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