Tilburg University

Quasi-symmetric designs related to the triangular graph

Coster, W.J.; Haemers, W.H.

Publication date:
1993

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Coster, W. J., \& Haemers, W. H. (1993). Quasi-symmetric designs related to the triangular graph. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 596). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM

R45
Matriee.

QUASI-SYMMETRIC DESIGNS RELATED TO THE TRIANGULAR GRAPH

W.J. Coster
W.H. Haemers

FEW 596

Communicated by Prof.dr. M.H.C. Paardekooper

Quasi-symmetric designs related to the triangular graph.

M.J. Coster W.H. Haemers

Abstract

Let T_{m} be the adjacency matrix of the triangular graph. We will give conditions for a linear combination of T_{m}, I and J to be decomposable. This leads to Bruck-Ryser-Chowla like conditions for, what we call, triangular designs. These are quasisymmetric designs whose block graph is the complement of the triangular graph. For these designs our conditions turn out to be stronger than the known non-existence results for quasi-symmetric designs.

1 Triangular designs.

A 2-(v, k, λ) design \mathcal{D} (with b blocks and r blocks through a given point) is called quasisymmetric if the sizes of the intersection of two distinct blocks take only two values x and $y(x<y)$, say. The block graph Γ of \mathcal{D} is the graph defined on the blocks of \mathcal{D}, two vertices being adjacent whenever the blocks meet in y points. Goethals and Seidel [12] showed that Γ is strongly regular having eigenvalues

$$
\begin{equation*}
\left[\frac{k r-k-b x+x}{y-x}\right]^{1},\left[\frac{r-k-\lambda+x}{y-x}\right]^{v-1},\left[\frac{x-k}{y-x}\right]^{b-v} \tag{1}
\end{equation*}
$$

(exponents indicate the corresponding multiplicities). Note that the complement of \mathcal{D} has block intersection sizes $v-2 k+x$ and $v-2 k+y$, and hence has the same block graph as \mathcal{D}. The question which strongly regular graphs are block graphs of quasi-symmetric designs is a difficult one and there is no chance for a general answer. The question is already difficult for a simple family of strongly regular graphs, the so-called triangular graphs and their complements. The triangular graph \mathcal{T}_{m} is the line graph of the complete graph K_{m} $(m \geq 3)$. It can also be defined as the block graph of the pair design on m points (this is the $2-(m, 2,1)$ design whose blocks are just all unordered pairs of points). We denote the complement of \mathcal{T}_{m} by \mathcal{T}_{m}^{c} and write T_{m} and T_{m}^{c} for the corresponding adjacency matrices (so $T_{m}^{c}=J-I-T_{m}$, wherein, as usual, I is the identity and J is the all-one matrix). The eigenvalues of T_{m} are

$$
\begin{equation*}
\left.[2 m-4]^{1},[m-4]^{m-1},[-2]^{(m-1} 2\right)-1 \tag{2}
\end{equation*}
$$

and those of T_{m}^{c} are

$$
\begin{equation*}
\left[\binom{m-2}{2}\right]^{1},[3-m]^{m-1},[1]^{\binom{m-1}{2}-1} \tag{3}
\end{equation*}
$$

(Note that (2) follows from (1) applied to the pair design.) The following result is given implicitely in Cameron and Van Lint [5] (our reference is to the latest edition, though the result we refer to was already treated in the very first edition of 1975).

Proposition 1.1 The block graph of a quasi-symmetric $2-(v, k, \lambda) \operatorname{design} \mathcal{D}$ is \mathcal{T}_{m}, if and only if \mathcal{D} is the pair design or the complement.

Proof. The 'if' part is by definition. To prove 'only if', take without loss of generality $k \geq v / 2$. By (1) and (2) \mathcal{D} has $\binom{m}{2}$ blocks and m points. Hence by (1.52) to (1.54) of [5], \mathcal{D} is the complement of the unique $4-(23,7,1)$ design, or has $k=v-2$. For the first possibility the block graph is not \mathcal{T}_{m} (as follows easily from Formula (1)) and in the second case \mathcal{D} is the complement of the pair design.

For \mathcal{T}_{m}^{c} the situation is less simple. Proposition 1.2 gives a parameter condition.
Proposition 1.2 The block graph of a quasisymmetric $2-(v, k, \lambda)$ design \mathcal{D} is \mathcal{T}_{m}^{c}, if and only if the parameters of \mathcal{D} satisfy

$$
\begin{gathered}
v=\binom{m-1}{2}, b=\binom{m}{2}, k=\frac{1}{2} a(m-2), r=\frac{1}{2} a m \\
\lambda=\frac{a(a m-2 a-2)}{2(m-3)}, x=\binom{a}{2}, y=\frac{a(a m-4 a+2)}{2(m-3)}
\end{gathered}
$$

for some integer a.
Proof. Suppose the block graph of \mathcal{D} is \mathcal{T}_{m}^{c}. Put $a=r-k$. Then the formulas readily follow by use of Formulas (1) and (3). Conversely, it follows that the block graph of a design with the above parameters has the eigenvalues of \mathcal{T}_{m}^{c}. For $m \neq 8$ Hoffman [17] and Chang [7] showed that \mathcal{T}_{m}^{c} is determined by its eigenvalues. If $m=8, a$ can only be 2 or 6 and so \mathcal{D} is a $2-(21,6,2)$ design or the complement. Such a design does not exist due to Conner [9].

Designs with the parameters of Proposition 1.2 will be called triangular designs. If $a=2$ they are the residual disigns of biplanes. Note that replacing a by $m-a-1$ leads to the complementary parameter set.

In this paper we will derive Bruck-Ryser-Chowla type conditions for the existence of triangular designs using rational decomposability of related matrices. The paper strengthens an earlier non-existence result for triangular designs by the second author [13]. See also the monograph on quasi-symmetric designs by Shrikhande and Sane [19] (p.147).

2 Decomposability.

A matrix M is decomposable if $M=Q Q^{\top}$ for some rational matrix Q. For M to be decomposable, M clearly must be rational, positive semi-definite and the determinant of M has to be rational square. But there are more restrictions. If M has an easy structure, these additional restrictions can often be expressed in terms of some Diophantic equations. The neccessary condition of Bruck, Ryser and Chowla (see for instance [8, 14]) for the existence of a symmetric $2-(v, k, \lambda)$ design is based on the fact that $(k-\lambda) I_{v}+\lambda J$ (the index of I indicates the size) is decomposable. We will derive decomposability conditions for a matrix of the form $\alpha I+\beta T_{m}+\gamma J$, which will lead to the announced conditions for triangular designs. In order to do so we need to quote some results on rational congruences. We use the approach and notations by Coster [11], which we will briefly explain.

Let \mathcal{S} be the set of positive definite symmetric ratinal matrices, including the empty set element. For $A, B \in \mathcal{S}$, we define

$$
A \dot{+} B=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

Let A and B be two elements of \mathcal{S} of dimensions m and n respectively. We say $A \cong B$ (A is congruent to B) if there exists a rational $k \times k$ matrix Q such that $Q\left(A \dot{+} I_{k-m}\right) Q^{\top}=$ $B \dot{+} I_{k-n}$. The relation \cong is an equivalence relation and the operation $\dot{+}$ acts on the equivalence classes. It can be shown that $(\mathcal{S} / \cong, \dot{+})$ is a group. (See $[6,11]$. The result is based on Witt's cancelation law. The group is called the Grothendieck Group.) We denote the equivalence class of A by \bar{A}, the inverse of \bar{A} by $-\bar{A}$ and the 1×1 matrix equivalence class $\overline{(a)}$ by $\langle a\rangle$. Thus $\bar{I}=\bar{\emptyset}=\langle 1\rangle=0$. Each class \bar{A} can be written as $\bar{A}=\sum\left\langle a_{i}\right\rangle=\left\langle a_{1}\right\rangle \dot{+}\left\langle a_{2}\right\rangle \dot{+} \cdots$, for some positive integers a_{1}, a_{2}, \ldots. We denote $\sum_{i=1}^{k}\langle a\rangle$ ($=\overline{a I_{k}}$) by $k\langle a\rangle$. Note that a matrix $A \in \mathcal{S}$ is decomposible if and only if $\bar{A}=0$.

By we will denote an integral square, and by n^{*} we denote the squarefree part of an integer n. We denote by $\operatorname{ord}_{p}(n)$ the largest integer k such that p^{k} divides n. We denote by \mathcal{N}_{-1} the set of positive integers n with prime factorisation $n=2^{k} \Pi_{i} p_{i}^{k_{i}} \Pi_{j} q_{i}^{2 l_{j}}$ with $p_{i} \equiv 1 \bmod 4$ and k, k_{i} and l_{j} non-negative integers. We denote by \mathcal{N}_{2} the set of positive integers n with prime factorisation $n=2^{k} \prod_{i} p_{i}^{k_{i}} \Pi_{j} q_{i}^{2 l_{j}}$ with $p_{i} \equiv 1,7 \bmod 8$ and k, k_{i} and l_{j} non-negative integers. We denote by \mathcal{N}_{-2} the set of positive integers with primefactorisation $n=2^{k} \Pi_{i} p_{i}^{k_{i}} \Pi_{j} q_{i}^{2 l_{j}}$ where with $p_{i} \equiv 1,3 \bmod 8$ and k, k_{i} and l_{j} non-negative integers. (We choose the indices $-1,2$ and -2 since the Jacobi symbols $\left(\frac{-1}{n}\right),\left(\frac{2}{n}\right)$ and $\left(\frac{-2}{n}\right)$ are equal to 1 for the respective values of n.) The following lemma gives some basic congruences.

Lemma 2.1 Let a, b and c be positive rational numbers, then
(1) $\left\langle a b^{2}\right\rangle=\langle a\rangle$,
(2) $\langle a\rangle \dot{+}\langle b\rangle=\langle a+b\rangle \dot{+}\langle a b(a+b)\rangle$,
(3) $2\left\langle\left(a^{2}+b^{2}\right) c\right\rangle=2\langle c\rangle$,
(4) $4\langle a\rangle=0$,
(5) $\overline{a I_{c}+\frac{b-a}{c} J}=c\langle a\rangle \dot{-}\langle a c\rangle \dot{+}\langle b c\rangle$.

Proof. Property (1) is obvious and implies that a, b and c may assumed to be integers. To prove (2), define

$$
Q=\left(\begin{array}{cc}
1 & 1 \\
-b & a
\end{array}\right)
$$

then $Q((a) \dot{+}(b)) Q^{\top}=(a+b) \dot{+}(a b(a+b))$. Congruence (3) follows from (1) and (2): $2\langle c\rangle=\left\langle a^{2} c\right\rangle+\left\langle b^{2} c\right\rangle=2\left\langle\left(a^{2}+b^{2}\right) c\right\rangle$. To prove (4) we use Lagrange's theorem (see [16]) and write $a=b^{2}+c^{2}+d^{2}+e^{2}$ for integers b, c, d and e. We assume $b+c>0$ and $d+e>0$ (otherwise (4) follows directly from (1) or (3)). Then we find by use of (2) and (3): $0=2\left\langle b^{2}+c^{2}\right\rangle+2\left\langle d^{2}+e^{2}\right\rangle=2\left\langle b^{2}+c^{2}+d^{2}+e^{2}\right\rangle+2\left\langle\left(b^{2}+c^{2}\right)\left(d^{2}+e^{2}\right)\left(b^{2}+c^{2}+d^{2}+e^{2}\right)\right\rangle=4\langle a\rangle$. To prove (5) define

$$
Q=\left(\begin{array}{cc}
I_{c-1} & \underline{1} \\
\underline{1}^{\top} & 1
\end{array}\right)
$$

(1 is the all-one vector). Then

$$
Q\left(a I_{c}+\frac{b-a}{c} J\right) Q^{\top}=\left(a I_{c-1}+a J\right) \dot{+}(b c) .
$$

For $a=b$ this yields $\overline{a I_{c-1}+a J}=c\langle a\rangle-\langle a c\rangle$. Hence $\overline{a I_{c}+\frac{b-a}{c} J}=c\langle a\rangle \dot{-}\langle a c\rangle \dot{+}\langle b c\rangle$.

Next we quote some lemmas that relate congruences to properties of the involved integers. Most results can be found in [10] or [11]. For Lemma 2.6 we refer to [18] pp. 160-161.

Lemma 2.2 Let a, b and c be positive integers which are squarefree and relatively prime in pairs. Then the following three statements are equivalent:
(1) $\langle a c\rangle \dot{+}\langle b c\rangle=\langle a b\rangle$,
(2) $a X^{2}+b Y^{2}=c Z^{2}$ has a non trivial integral solution in X, Y and Z,
(3) For all primes p dividing a the Legendre symbol $\left(\frac{b c}{p}\right)=1$, for all primes q dividing $b,\left(\frac{a c}{q}\right)=1$ and for all primes r dividing $c,\left(\frac{-a b}{r}\right)=1$.

Lemma 2.3 Let a, b and c be positive integers which are squarefree and relatively prime in pairs. Then the following three statements are equivalent:
(1) $\langle a b\rangle \dot{+}\langle a c\rangle+\langle b c\rangle=0$.
(2) $a X^{2}+b Y^{2}+c Z^{2}=a b c W^{2}$ has an integral solution in X, Y, Z and W with $X Y Z \neq 0$,
(3) For all primes p dividing $a,\left(\frac{-b c}{p}\right)=1$, For all primes q dividing $b,\left(\frac{-a c}{q}\right)=1$, For all primes r dividing $c,\left(\frac{-a b}{r}\right)=1$.

Lemma 2.4 Let a, b and c be integers which are squarefree and relatively prime in pairs. And suppose that $\langle a b\rangle \dot{+}\langle a c\rangle=\langle b c\rangle$. Then either:
(1) $a b c$ is odd and $a \equiv b \bmod 4$ or $a \equiv c \bmod 4$,
(2) a is even and $b+c \equiv 0 \bmod 8$ or $b+c \equiv 0 \bmod 8$,
(3) $b c$ is even, say b is even and $b+c \equiv a \bmod 8$ or $a \equiv c \bmod 8$.

Lemma 2.5 Let a, b and c be integers which are squarefree and relatively prime in pairs. And suppose that $\langle a b\rangle \dot{+}\langle a c\rangle \dot{+}\langle b c\rangle=0$. Then either:
(1) $a b c$ is odd and $a \equiv b \equiv c \bmod 4$,
(2) $a b c$ is even and $a+b+c \equiv 4 \bmod 8$,
(3) $a b c$ is even, say a is even and $b+c \equiv 4 \bmod 8$.

Lemma 2.6 For $i=-2,-1,2$ we have

$$
X^{2}-i Y^{2}=n Z^{2} \text { has an integral solution for } X, Y \text { and } Z \Leftrightarrow n \in \mathcal{N}_{i} .
$$

3 The results.

In this section we state the main theorems. The proofs are postponed to the next section. The first result gives a decomposability condition for a matrix of the form

$$
\mathrm{T}_{m}=\alpha I+\beta T_{m}+\gamma J
$$

Using the eigenvalues of T_{m}, we find that the eigenvalues of T_{m} are

$$
\begin{aligned}
& r_{0}=\alpha+2 \beta(m-2)+\frac{1}{2} \gamma m(m-1) \\
& r_{1}=\alpha+\beta(m-4) \\
& r_{2}=\alpha-2 \beta
\end{aligned}
$$

with multiplicities $1, m-1$ and $\binom{m-1}{2}-1$, respectively. We regard \mathbb{T}_{m} as a function of r_{0}, r_{1} and r_{2}, rather than α, β and γ and write $\mathbb{T}_{m}=\mathbb{T}_{m}\left(r_{0}, r_{1}, r_{2}\right)$. The main tool is a diagonal form for $\mathbb{T}_{m}\left(r_{0}, r_{1}, r_{2}\right)$.

Theorem 3.1

$$
\begin{gather*}
\overline{\mathbb{T}_{m}\left(r_{0}, r_{1}, r_{2}\right)}=\left\langle r_{0}\binom{m}{2}\right\rangle \dot{+} m\left\langle r_{1}(m-2)\right\rangle \dot{-}\left\langle r_{1} m(m-2)\right\rangle \dot{+} \\
\left(\binom{m}{2}-1\right)\left\langle r_{2}\right\rangle \dot{+}\left\langle 2 r_{2}\right\rangle-m\left\langle r_{2}(m-2)\right\rangle \dot{+}\left\langle 2 r_{2}(m-2)\right\rangle \dot{-}\left\langle 2 r_{2}(m-1)\right\rangle . \tag{4}
\end{gather*}
$$

Next we give the necessary condition for the existence of triangular designs.

Theorem 3.2 Consider a triangular design with parameters m and a. Let $\tau=\frac{a(m-a-1)}{2(m-3)}$. Then
(1) τ is integral,
(2) $(m-2)^{\binom{m}{2}} \mathcal{T}^{\binom{m+1}{2}}$ is an integral square,
(3) $\left\langle\binom{ m-1}{2}\right\rangle \dot{+}\left(\binom{m}{2}-1\right)\langle\tau(m-2)\rangle \dot{+}\langle 2 \tau(m-1)\rangle-m\langle\tau\rangle=0$.

Condition (2) was the main result of [13]. Condition (3) is the main new result of the present paper. The conditions of Theorem 3.2 are made more explicit in the following corollary.

Corollary 3.3 Given a triangular design as in Theorem 3.2.
(i) If $m \equiv 0 \bmod 8$, then $\tau X^{2}+(m-2) Y^{2}=2(m-1) Z^{2}$ has a non trivial integral solution in X, Y and Z and if $m \equiv 8 \bmod 16$ then τ^{*} must be even,
(ii) if $m \equiv 1 \bmod 8$, then $\tau=\square$ and $m-2 \in \mathcal{N}_{2}$,
(iii) if $m \equiv 2 \bmod 4$, then $\tau(m-2)=\square$ and $m-1 \in \mathcal{N}_{-1}$,
(iv) if $m \equiv 3 \bmod 8$, then $m-2=\square$ and $\tau X^{2}+Y^{2}=2(m-1) Z^{2}$ must have a non trivial integral solution, if $m \equiv 11 \bmod 16$ then τ^{*} must be odd,
(v) if $m \equiv 4 \bmod 8$, then $m \equiv 4 \bmod 16, \tau^{*}$ is odd and $2 \tau X^{2}+(m-1) Y^{2}+\frac{1}{2}(m-2) Z^{2}=$ $\tau(m-1)(m-2) W^{2}$ has an integral solution in X, Y, Z and W with $X Y Z \neq 0$,
(vi) if $m \equiv 5 \bmod 8$, then $\tau=\square$ and $m-2 \in \mathcal{N}_{-2}$,
(vii) $m \not \equiv 7 \bmod 8$.

4 The proofs.

To prove Theorem 3.1 we use the following lemma.

Lemma 4.1

$$
\mathbb{T}_{m}\left(r_{0}, r_{1}, r_{2}\right) \cong\left[\frac{r_{1}}{m-2} I_{m-1}+\frac{r_{1}(m-4)}{m(m-2)} J\right]+\mathbb{T}_{m-1}\left(\frac{r_{0}(m-2)}{m}, \frac{r_{2}}{m-2}, r_{2}\right)
$$

Proof. Define

$$
\begin{aligned}
& E_{0}=\mathbb{T}_{m}(1,0,0)=\frac{2}{m(m-1)} J \\
& E_{1}=\mathbb{T}_{m}(0,1,0)=\frac{1}{m-2}\left(T_{m}+2 I-\frac{4}{m} J\right) \\
& E_{2}=\mathbb{T}_{m}(0,0,1)=\frac{-1}{m-2}\left(T_{m}+(m-4) I-\frac{2}{m-1} J\right)
\end{aligned}
$$

Then $E_{i}^{2}=E_{i}, E_{i} E_{j}=0$ if $i \neq j$, and $\mathrm{T}_{m}\left(r_{0}, r_{1}, r_{2}\right) E_{i}=r_{i} E_{i}$ (that is, the columns (and rows) of E_{i} are eigenvectors for the eigenvalue r_{i}) for $i=0,1,2$. Thus the matrices
E_{0}, E_{1} and E_{2} are the minimal idempotents of the triangular association scheme, see [5]. We partition the columns of these idempotents according to the partition of \mathcal{T}_{m} into an $(m-1)$-clique and $\mathcal{T}_{m-1}: E_{i}=\left[\begin{array}{ll}E_{i}^{\prime} & \tilde{E}_{i}\end{array}\right]$, and we define $Q=\left[\begin{array}{cc}E_{1}^{\prime} & \tilde{E}_{2}+\tilde{E}_{0}\end{array}\right]$. Then

$$
\begin{aligned}
Q^{\top} \mathbb{T}_{m}\left(r_{0}, r_{1}, r_{2}\right) Q= & {\left[r_{1} E_{1}^{\prime T} E_{1}^{\prime}\right]+\left[r_{2} \tilde{E}_{2}^{T} \tilde{E}_{2}+r_{0} \tilde{E}_{0}^{T} \tilde{E}_{0}\right] } \\
= & {\left[\frac{r_{1}}{m-2}\left(\left(J-I_{m-1}\right)+2 I_{m-1}-\frac{4}{m} J\right)\right] \dot{+} } \\
& {\left.\left[\frac{-r_{2}}{m-2}\left(T_{m-1}-(m-4) I_{(m-1}\right)-\frac{2}{m-1} J\right)+\frac{2 r_{0}}{m(m-1)} J\right] } \\
= & {\left[\frac{r_{1}}{m-2} I_{m-1}+\frac{r_{1}(m-4)}{m(m-2)} J\right]+\mathbb{T}_{m-1}\left(\frac{r_{0}(m-2)}{m}, \frac{r_{2}}{m-2}, r_{2}\right) . }
\end{aligned}
$$

Proof of Theorem 3.1. We use induction on m. By use of (1) to (4) of Lemma 2.1 we find that for $m=3$ the right hand side of formula 3.1 becomes $\left\langle 3 r_{0}\right\rangle+3\left\langle r_{1}\right\rangle-\left\langle 3 r_{1}\right\rangle$. On the other hand we have

$$
\mathbb{T}_{3}\left(r_{0}, r_{1}, r_{2}\right)=r_{1} I+\frac{1}{3}\left(r_{0}-r_{1}\right) J
$$

which is, by (5) of Lemma 2.1, congruent to $3\left\langle r_{1}\right\rangle \dot{-}\left\langle 3 r_{1}\right\rangle \dot{+}\left\langle 3 r_{0}\right\rangle$.
Suppose $m>3$. Now by Lemma 4.1 and the induction hypothesis we have

$$
\begin{aligned}
\overline{\mathrm{T}_{m}\left(r_{0}, r_{1}, r_{2}\right)}= & \overline{\frac{r_{1}}{m-2} I_{m-1}+\frac{r_{1}(m-4)}{m(m-2)} J} \dot{+} \\
& \left\langle 2 r_{0}(m-2)^{2}(m-1) / m\right\rangle \dot{+}(m-1)\left\langle r_{2}(m-3) /(m-2)\right\rangle \dot{-} \\
& \left\langle r_{2}(m-1)(m-3) /(m-2)\right\rangle \dot{+}\left(\binom{m-1}{2}-1\right)\left\langle r_{2}\right\rangle \dot{+}\left\langle 2 r_{2}\right\rangle \dot{-} \\
& (m-1)\left\langle r_{2}(m-3)\right\rangle \dot{+}\left\langle 2 r_{2}(m-3)\right\rangle \dot{-}\left\langle 2 r_{2}(m-2)\right\rangle .
\end{aligned}
$$

By use of Lemma 2.1 the first term of the right hand side equals

$$
\begin{aligned}
(m-1)\left\langle r_{1}(m-2)\right\rangle & -\left\langle r_{1}(m-1)(m-2)\right\rangle \dot{+}\left\langle r_{1}(m-1)(m-2)(m-3)\right\rangle \\
& =m\left\langle r_{1}(m-2)\right\rangle-\left\langle r_{1} m(m-2)\right\rangle
\end{aligned}
$$

and the remaining part equals

$$
\begin{aligned}
& \left\langle r_{0}\binom{m}{2}\right\rangle \dot{+}\left\langle 2 r_{2}\right\rangle \dot{+}(m-1)\left\langle r_{2}(m-2)(m-3)\right\rangle \dot{-}(m-1)\left\langle r_{2}(m-3)\right\rangle \dot{+} \\
& \left(\binom{m-1}{2}-1\right)\left\langle r_{2}\right\rangle \dot{-}\left\langle r_{2}(m-1)(m-2)(m-3)\right\rangle \dot{+}\left\langle 2 r_{2}(m-3)\right\rangle-\left\langle 2 r_{2}(m-2)\right\rangle \\
= & \left\langle r_{0}\binom{m}{2}\right\rangle \dot{+}\left\langle 2 r_{2}\right\rangle \dot{+}(m-1)\left\langle r_{2}\right\rangle-(m-1)\left\langle r_{2}(m-2)\right\rangle \dot{+} \\
& \left(\binom{m-1}{2}-1\right)\left\langle r_{2}\right\rangle \dot{+}\left\langle r_{2}(m-2)\right\rangle \dot{-}\left\langle 2 r_{2}(m-1)\right\rangle \dot{-}\left\langle 2 r_{2}(m-2)\right\rangle \\
= & \left\langle r_{0}\binom{m}{2}\right\rangle \dot{+}\left\langle 2 r_{2}\right\rangle \dot{+}\left(\binom{m}{2}-1\right)\left\langle r_{2}\right\rangle-m\left\langle r_{2}(m-2)\right\rangle \dot{+} \\
& 2\left\langle r_{2}(m-2)\right\rangle-\left\langle 2 r_{2}(m-1)\right\rangle \dot{-}\left\langle 2 r_{2}(m-2)\right\rangle .
\end{aligned}
$$

This finishes the proof, since $2\left\langle r_{2}(m-2)\right\rangle-\left\langle 2 r_{2}(m-2)\right\rangle=\left\langle 2 r_{2}(m-2)\right\rangle$.

Proof of Theorem 3.2. By definition $\tau=y-x$, so (1) is obvious. Let H denote the $v \times b$ incidence matrix of the triangular design. Since \mathcal{T}_{m-1}^{c} is an induced subgraph of \mathcal{T}_{m}^{c}, H has a $v \times v$ submatrix \tilde{H} satisfying

$$
\tilde{H}^{\top} \tilde{H}=(k-x) I+\tau T_{m-1}^{c}+x J=\mathbb{T}_{m-1}\left(k^{2}, \tau, \tau(m-2)\right) .
$$

So $\operatorname{det} \tilde{H}^{\top} \tilde{H}=k^{2} \tau^{m-2}(\tau(m-2))^{\binom{m-2}{2}-1}$, hence $(m-2)^{\binom{m}{2}} \begin{gathered}\binom{m+1}{2}\end{gathered}=\square$ which proves (2). Moreover, $\mathrm{T}_{m-1}\left(k^{2}, \tau, \tau(m-2)\right)$ is decomposable, so by Theorem 3.1 and (1) of Lemma 2.1 we find

$$
\begin{gathered}
\left\langle\binom{ m-1}{2}\right\rangle \dot{+}(m-1)\langle\tau(m-3)\rangle \dot{-}\langle\tau(m-1)(m-3)\rangle \dot{+}\langle 2 \tau(m-2)\rangle \dot{+} \\
\frac{1}{2} m(m-3)\langle\tau(m-2)\rangle \dot{-}(m-1)\langle\tau(m-2)(m-3)\rangle \dot{+}\langle 2 \tau(m-2)(m-3)\rangle-\langle 2 \tau\rangle=0 .
\end{gathered}
$$

By (2) of Lemma 2.1 we have

$$
\begin{aligned}
\langle 2 \tau(m-2)\rangle \dot{+}\langle 2 \tau(m-2)(m-3)\rangle-\langle 2 \tau\rangle & =\langle 2 \tau(m-3)\rangle, \\
\langle\tau(m-3)\rangle \dot{-}\langle\tau(m-2)(m-3)\rangle & =\langle\tau(m-2)\rangle-\langle\tau\rangle, \\
\langle 2 \tau(m-3)\rangle-\langle\tau(m-1)(m-3)\rangle & =\langle 2 \tau(m-1)\rangle \dot{-}\langle\tau\rangle .
\end{aligned}
$$

Hence

$$
\left\langle\binom{ m-1}{2}\right\rangle \dot{+}\left(\binom{m}{2}-1\right)\langle\tau(m-2)\rangle \dot{+}\langle 2 \tau(m-1)\rangle-m\langle\tau\rangle=0,
$$

proving (3).
Proof of Corollary 3.3. We distinguish eight cases depending on the value of $m \bmod 8$. First we simplify the conditions (2) and (3) for these cases by use of Lemma 2.1. We find

$$
\begin{array}{lll}
m \equiv 0 \bmod 8: & & \langle 2 \tau(m-1)\rangle \dot{+}\langle 2(m-1)(m-2)\rangle=\langle\tau(m-2)\rangle, \\
m \equiv 1 \bmod 8: & \tau=\square, & \langle m-2\rangle \dot{+}\langle 2\rangle=\langle 2(m-2)\rangle, \\
m \equiv 2 \bmod 4: & \tau(m-2)=\square, & 2\langle m-1\rangle=0, \\
m \equiv 3 \bmod 8: & m-2=\square, & \langle 2(m-1)\rangle \dot{+}\langle 2 \tau(m-1)\rangle=\langle\tau\rangle, \\
m \equiv 4 \bmod 8: & & \langle 2 \tau(m-1)\rangle \dot{+}\langle 2(m-1)(m-2)\rangle \dot{+}\langle\tau(m-2)\rangle=0, \\
m \equiv 5 \bmod 8: & \tau=\square, & \langle m-2\rangle \dot{+}\langle 2(m-2)\rangle=\langle 2\rangle, \\
m \equiv 7 \bmod 8: & m-2=\square, & \text { irrelevant, since } 5 \text { is not a square } \bmod 8 .
\end{array}
$$

Now apply Lemmas 2.1 to 2.6 .

5 Known non-existence results.

The aim of this section is to show that for triangular designs Theorem 3.2 covers all other known non-existence results (at least the ones known to us). Several papers are written about restrictions on quasi-symmetric designs. Results relevant to triangular designs are in $[1,2,3,4,20]$. In this section we assume that p is an odd prime and $p \mid \tau$. (Remember that $\tau=y-x=\frac{a(m-a-1)}{2(m-3)}$.) Therefore $p \mid a$ or $p \mid(m-a-1)$. We may assume that $p \mid a$,
otherwise we consider the complementary design. Notice that $p \mid a$ and $p\rangle(m-3)$ implies $p|x, p| r, p|k, p| \lambda$ and $p \mid \tau$. We will use frequently the formula

$$
\begin{equation*}
r-\lambda=\tau(m-2) . \tag{5}
\end{equation*}
$$

In Corollary 3 of [1] B, Bagchi proves the following result:
Lemma 5.1 Consider a triangular design. Suppose p is an odd prime such that $p \mid \tau^{*}$ and $p / m(m-1)(m-2)$. Then
(i) $m \equiv 0,3 \bmod 4$.
(ii) If $m \equiv 0,3 \bmod 8$ then $\left(\frac{v}{p}\right)=1$.
(iii) If $m \equiv 4 \bmod 8$ then $\left(\frac{-v}{p}\right)=1$.

Claim. The restrictions given in Lemma 5.1 follow from Theorem 3.2.
Proof. The condition $p \mid \tau^{*}$ implies that $\tau \neq \square$. Since $p \nmid m-2$, also $\tau(m-2) \neq \square$. But if $m \equiv 1 \bmod 4$ then $\tau=\square$ and if $m \equiv 2 \bmod 4$ then $\tau(m-2)=\square$, by Corollary 3.3. Therefore we conclude (i). Next by considering in (i), (iv) and (v) of Corollary 3.3 the Diophantic equations modulo p, we find (ii) and (iii).

Note that, unlike Bagchi, we did not need that $p \| m$, so the second condition for p can be replaced by $p \| v$. In [4], Calderbank gives some restrictions for the existence of quasisymmetric designs. The statement restricted to triangular designs reads:

Lemma 5.2 Suppose p is an odd prime and $p \mid \tau$. Then either
(i) $r \equiv \lambda \bmod p^{2}$,
(ii) v is odd, $k \equiv x \equiv r \equiv \lambda \equiv 0 \bmod p$ and $\left(\frac{v}{p}\right)=-1$,
(iii) v is odd, $k \equiv x \equiv r \equiv \lambda \equiv 0 \bmod p$ and $\left(\frac{v}{p}\right)=\left(\frac{-1}{p}\right)^{(v-1) / 2}=1$.

Claim. The restrictions given in Lemma 5.2 follow from Theorem 3.2.
Proof. We assume that $p \mid a$. If $p \mid(m-2)$ then $p^{2} \mid(r-\lambda)$ by Formula 5. If $p \mid(m-a-1)$ then $p^{2} \mid \tau$ hence $p^{2} \mid(r-\lambda)$. All these cases correspond with Calderbank's case (i). Now we assume that $\operatorname{ord}_{p}(\tau)=1$ and p / v. Now we apply Lemma 5.1 . Hence $m \equiv 0,3 \bmod 4$, which implies that v is odd. Furthermore $\left(\frac{(-1)^{(v-1) / 2} v}{p}\right)=1$, hence $\left(\frac{-1}{p}\right)^{(v-1) / 2}=\left(\frac{v}{p}\right)$. If $m \equiv 0,3 \bmod 8$ then $v \equiv 1 \bmod 4$. This corresponds with Calderbanks case (iii). If $m \equiv 4 \bmod 8$ then $v \equiv 3 \bmod 4 .\left(\frac{v}{p}\right)=-1$ corresponds with case $(i i)$, while $\left(\frac{v}{p}\right)=1$ corresponds with case (iii).

From Theorem 5.1 of Blokhuis and Calderbank [2] it follows that triangular designs satisfy:

Lemma 5.3 Let p be an odd prime. Suppose $\operatorname{ord}_{p}(\tau)=e$ and e is odd. Then either
(i) $r \equiv \lambda \bmod p^{e+1}$,
(ii) v odd, $\operatorname{ord}_{p}(x)$ is odd and $\left(\frac{(-1)^{(v-1) / 2}(v-x)^{*}}{p}\right)=1$,
(iii) v odd, $\operatorname{ord}_{p}(x)$ is even and $\left(\frac{(-1)^{(v-1) / 2} x^{*}}{p}\right)=1$.
Claim. The restrictions given in Lemma 5.3 follow from Theorem 3.2.
Proof. If $p \mid(m-2)$ then $\operatorname{ord}_{p}(r-\lambda)>e$, which is Blokhuis and Calderbanks case (i). Hence we will assume that $p \nmid(m-2)$. This implies (by Corollay 5.1) that $\operatorname{ord}_{p}(\tau)=$ $\operatorname{ord}_{p}((m-2) \tau)=e$, which eliminates the cases $m \equiv 1,2 \bmod 4$. Hence v is odd. Let $\operatorname{ord}_{p}(a)=\alpha, \operatorname{ord}_{p}(m-a-1)=\beta$ and $\operatorname{ord}_{p}(m-3)=\gamma$. Then we have $\alpha+\beta-\gamma=e$. If $\gamma>0$ then $\alpha \beta=0$ and if $\alpha \beta>0$ then $\gamma=0$. We distinguish several cases:
(i) If $\gamma>0$ then either $p \mid a$ or $p \mid(m-a-1)$. We may assume that $p \mid(m-a-1)$. Now $a \equiv m-1 \equiv 2 \bmod p$. Hence $x \equiv 1 \bmod p$. But also $v \equiv 1 \bmod p$. Hence $\left(\frac{(-1)^{(v-1) / 2} x^{*}}{p}\right)=\left(\frac{(-1)^{(v-1) / 2} v}{p}\right)=1$ by Lemma 5.1.
(ii) If $\alpha>\beta$ and α is odd (hence β is even) then $v-x \equiv v \bmod p^{\alpha}$ and $\operatorname{ord}_{p}(v)=\beta$. It is easy to verify that $\left(\frac{(-1)^{(v-1) / 2} v^{*}}{p}\right)=1$.
(iii) If $\alpha>\beta$ and α is even (hence $\beta>0$) then $a \equiv m-1 \bmod p^{\alpha}$ hence $x^{*} \equiv v^{*} \bmod p$.
(iv) If $\alpha<\beta$ then interchange a and $m-a-1$. Now we get case (ii) or case (iii).

For the case of $p=2$ we found two relevant results, one by Calderbank [3] and one by Skinner [20]. Calderbank's result (Theorem 1 in [3]) restricted to triangular designs gives.

Lemma 5.4 If $2 \mid \tau$. Then either
(i) $r \equiv \lambda \bmod 4$,
(ii) x is even, $k \equiv 0 \bmod 4$ and $v \equiv \pm 1 \bmod 8$,
(iii) x is odd, $k \equiv v \bmod 4$ and $v \equiv \pm 1 \bmod 8$.

Claim. The restrictions given in Lemma 5.4 also follow from Theorem 3.2.
Proof. If m is even then (since τ is even) $4 \mid \tau(m-2)$ hence (i) holds. If $m \equiv 1 \bmod 4$ then τ is a square and again case (i) is satisfied. If $m \equiv 3 \bmod 16$ then $v \equiv 1 \bmod 8$ and τ is even implies that $a \equiv 0,2 \bmod 8$. If $a \equiv 0 \bmod 8$ then we have case (ii), if $a \equiv 2 \bmod 8$ then we have case (iii). If $m \equiv 11 \bmod 16$ then τ has to be odd (see Corollary 3.3). This agrees with Calderbank's result.

The result by Skinner [20] is an extension of the previous result and has the following consequence for triangular designs.

Lemma 5.5 Suppose $\operatorname{ord}_{2}(\tau)=e$ and e is odd. If $\operatorname{ord}_{2}(r-\lambda)=e$ then $v \equiv 1 \bmod 8$ and $k \equiv 0,1 \bmod 4$

Claim. The restrictions given in Lemma 5.5 follow from Theorem 3.2.
Proof. $\operatorname{ord}_{2}(r-\lambda)=\operatorname{ord}_{2}(\tau)$ implies that m is odd (see Formula 5). Since $\operatorname{ord}_{2}(\tau)$ is odd, $\tau \neq \square$, so $m \not \equiv 1 \bmod 4$. Hence $m \equiv 3 \bmod 8$. Corollary 3.3 implies that $m \equiv 3 \bmod 16$. Hence $v \equiv 1 \bmod 8$. Moreover, since $a(m-a-1)=2 \tau(m-3), \operatorname{ord}_{2}(a(m-a-1)) \geq 6$. So without loss of generality $8 \mid a$ and hence $k=a(m-2) / 2 \equiv 0 \bmod 4$.

If $a=2$, triangular designs are $\left.2-\binom{m-1}{2}, m-2,2\right)$ designs. These designs are quasiresidual for (symmetric) $2-\left(\binom{m}{2}+1, m, 2\right)$ designs (better known as biplanes). By Hall and Conner [15] such a design is actually a residual designs, which means that it exists if and only if the corresponding biplane exists. Thus the Bruck-Ryser-Chowla conditions for biplanes give the following conditions for triangular designs.

Lemma 5.6 Suppose $a=2$, then

(i) if $m \equiv 2,3,6 \bmod 8$, then $m-2=\square$,
(ii) if $m \equiv 0,1 \bmod 8$, then $m-2 \in \mathcal{N}_{2}$,
(iii) if $m \equiv 4,5 \bmod 8$, then $m-2 \in \mathcal{N}_{-2}$,
(iv) $m \not \equiv 7 \bmod 8$.

Claim. The restrictions above and those given by Theorem 3.2 for $a=2$ are the same.
Proof. If $a=2$ then $\tau=1=\square$, and (2) and (3) of Theorem 3.2 become

$$
\begin{gathered}
(m-2)^{\binom{m}{2}}=\square \\
\left(\binom{m}{2}-1\right)\langle m-2\rangle \dot{+}\langle 2(m-2)\rangle \dot{+}\langle 2\rangle=0 .
\end{gathered}
$$

By Lemma 2.2, 2.3 and 2.6, we find the above formulas.

Note that we only used that $\tau=\square$. Therefore the conditions of Lemma 5.6 are precisely the conditions of Theorem 3.2 in case $\tau=\square$.

Unfortunately, but not suprisingly, Theorem 3.2 gives no new non-existence results for biplanes. We don't know of any other results than the ones mentioned here that give non-existence conditions for triangular designs. We have seen that Theorem 3.2 covers all these results. But the theorem is stronger. For instance the case $m=24, a=9$ is excluded by (3) of Theorem 3.2 (see the next section), but by none of the above results.

6 Some parameter sets.

In this last section we discuss some special sets of parameters for triangular designs.
The case $a=2$.
As remarked before, these are the residual designs of biplanes. Biplanes have been constructed for $m=4,5,6,9,11$ and 13 . These, and their complements provide the only known examples of triangular designs. The smallest value for which existence of a biplane is not known is $m=16$. This is also the smallest unknown triangular design (see tabel below).

The case $m \leq 100$ and $2<a<m / 2$.
Remember that we do not loose generality by requiring $a<m / 2$. We computed all feasible parameter sets for triangular designs in this range. It turned out that 48 values of (a, m) survived condition (1) of Theorem 3.2, and 16 survived (1) and (2). These 16 are given in the forthcoming tabel.

m	a	v	k	λ	x	y	τ	p
$\dagger 24$	9	253	99	42	36	39	3	11
27	8	325	100	33	28	31	3	
33	12	496	186	74	66	70	4	
36	11	630	198	62	55	59	4	
48	20	1081	460	204	190	196	6	
51	18	1225	441	165	153	159	6	
$\dagger 60$	21	1711	609	224	210	217	7	29
66	9	2080	288	41	36	40	4	
$\dagger 68$	15	2211	495	114	105	111	6	11
72	23	2485	805	268	253	261	8	
73	30	2556	1065	456	435	444	9	
$\dagger 80$	35	3081	1365	620	595	605	10	3
81	26	3160	1027	342	325	334	9	
83	32	3321	1296	518	496	506	10	
$\dagger 88$	17	3741	731	146	136	143	7	7
$\dagger 96$	33	4465	1551	550	528	539	11	11

The parameter sets indicated with \dagger are excluded by (3) of Theorem 3.2. For these parameters it is indicated modulo which prime p the Diophantic equation is not satisfied. This leaves only 10 possible parameters for $m \leq 100$.

In general a very big part of feasible parameter sets for triangular designs are excluded by Theorem 3.2. But on the other hand, some infinite series survive. We shall give some examples. First observe that from the definition of τ we derive for $2<a<m-3$

$$
\begin{equation*}
m=a+2 \tau+1+\frac{4 \tau(\tau-1)}{a-2 \tau} \tag{6}
\end{equation*}
$$

Therefore $a-2 \tau$ must be a divisor of $4 \tau(\tau-1)$.

The case $a=2 \tau+1$.
We derive that $m=4 \tau^{2}+2$. Hence $m \equiv 2 \bmod 4$. Notice that $m-2=4 \tau^{2}$ is a square. Since by Theorem $3.2 \tau(m-2)=\square$, we derive that $\tau=\square$. Thus we find the following infinite sequence of parameters satisfying all our conditions.

τ	a	m
u^{2}	$2 u^{2}+1$	$4 u^{4}+2$

The case $a=3 \tau-1$.
This implies that $m=9 \tau$. We consider the possible values of $m \bmod 8$.
0: $\quad \tau=8 u . m=72 u$ and $a=24 u-1$ satisfy Corollary $3.3(X=3, Y=1$ and $Z=1)$.
1: $\quad \tau=(2 u+1)^{2} . m$ and a satisfy Corollary 3.3 (as a consequence of Lemma 2.6).
2,6: Impossible! ($\tau(9 \tau-2)=\square$ has no integral solutions.)
3: $\quad m-2=q^{2}$ implies $q \equiv \pm 5 \bmod 18$. Now $\tau=\frac{1}{9}\left(q^{2}+2\right), m=q^{2}+2$ and $a=\frac{1}{3}\left(q^{2}-1\right)$ satisfy Corollary 3.3 with $X=3, Y=q$ and $Z=1$.
4: Condition (3) of Theorem 3.2 gives $\langle 2 \tau(9 \tau-1)\rangle \dot{+}\langle 2(9 \tau-1)(9 \tau-2)\rangle \dot{+}\langle\tau(9 \tau-2)\rangle=$ 0 . This is equivalent with $2\langle\tau\rangle+2\langle 9 \tau-2\rangle=0$. Since $\operatorname{gcd}(\tau, 9 \tau-2)=2$ both terms of the equation have to be zero. Hence $\tau, 9 \tau-2 \in \mathcal{N}_{-1}$.
5,7: Impossible, since 5 is not a square $\bmod 8$.
We find the following three series of possible values for a and m in case $a=3 \tau-1$.

τ	a	m
$8 u$	$24 u-1$	$72 u$
$(2 u+1)^{2}$	$3(2 u+1)^{2}-1$	$9(2 u+1)^{2}$
$36 u^{2} \pm 20 u+3$	$108 u^{2} \pm 60 u+8$	$(18 u \pm 5)^{2}+2$

The case $a=4 \tau$.
Then $m=8 \tau-1$, which is impossible by Corollary 3.3.
The case $\tau=u^{2}$.
If $\tau=u^{2}$, then the divisibility condition in Formula 6 reads $a-2 u^{2}$ divides $4(u-1) u^{2}(u+1)$. In this case the conditions of Theorem 3.2 are as given in Lemma 5.6, and many parameters survive.
The case $\tau=\binom{u}{2}$.
If $\tau=\binom{u}{2}$, the divisibility in Formula 6 is $a-u(u-1)$ divides $(u+1) u(u-1)(u-2)$. Many feasible parameters satisfy our conditions. One of these cases is given below. Notice that $m-2=(2 u-1)^{2}$ is a square. The Diophantic equation of Corollary 3.3 is satisfied, by $X=4, Y=2$ and $Z=1$.

τ	a	m
$\binom{u}{2}$	$2(u-1)^{2}$	$4 u^{2}-4 u+3$

Finally we remark that we expect that no triangular design with $2<a<m-3$ will ever be found. But we don't have enough evidence to conjecture that they don't exist.

References

[1] B. Bagchi, On Quasi-symmetric Designs, Designs, codes and cryptography 2 (1992), 69-79.
[2] A. Blokhuis, A.R. Calderbank, Quasi-symmetric Designs and the Smith Normal Form, Designs, Codes and Cryptography 2 (1992), 189-206.
[3] A.R. Calderbank, The Application of Invariant Theory to the Existence of Quasisymmetric Designs, J. Combin. Theory A 44 (1987), 94-109.
[4] A.R. Calderbank, Geometric invariants for quasi-symmetric designs, J. Combin. Theory A 47 (1988), 101-110.
[5] P.J.Cameron and J.H. van Lint, Designs, Graphs, Codes and their Links, Cambridge University Press, 1991.
[6] J.W.S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
[7] L.C. Chang, The uniqueness and non-uniqueness of the triangular association scheme, Sci. Record Peking Math. 3 (1959), 604-613.
[8] S. Chowla and H.J. Ryser, Combinatorial Problems, Can. J. Math. 2 (1950), 93-99.
[9] W.S. Conner, On the structure of balanced incomplete block designs, Ann. Math. Stat. 23 (1952), 57-71.
[10] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, SpringerVerlag, New York, 1988.
[11] M.J. Coster, Quadratic forms in design theory, preprint.
[12] J.M. Goethals and J.J. Seidel, Strongly regular graphs derived from combinatorial designs, Can. J. Math. 22 (1970), 597-614.
[13] W.H. Haemers A Non-existence Result for Quasi-symmetric Designs, Proceedings R.C. Bose Memorial Conference, Calcutta 1988, to appear.
[14] M. Hall Combinatorial Theory, Wiley, New York, 1986, second edition.
[15] M.Hall and W.S. Connor, An imbedding theorem for balanced incomplete block designs, Can. J. Math. 6 (1954), 35-41.
[16] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1983, fifth edition.
[17] A.J. Hoffman, On the uniqueness of the triangular association scheme, Ann. Math. Stat. 31 (1960), 492-497.
[18] L.J.Mordell, Diophantine Equations, Academic Press, London, New York, 1969.
[19] M.S. Shrikhande and S.S. Sane, Quasi-Symmetric Designs, Cambridge University Press, 1991.
[20] C.M. Skinner, Non-symmetric 2-Designs modulo 2, Designs, Codes and Cryptography 3 (1993), 63-68.

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon
533 J.C. Engwerda, L.G. van Willigenburg
LQ-control of sampled continuous-time systems
Refereed by Prof.dr. J.M. Schumacher
534 J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{*} X^{-1} A=Q$. Refereed by Prof.dr. J.M. Schumacher

535 Jacob C. Engwerda The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs Effectivity functions and associated claim game correspondences Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink Validation of simulation models: mine-hunting case-study Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks Refereed by Prof.dr. S.H. Tijs

539 A. van Schaik Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma Internationale Joint Ventures Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg
543 Gert Nieuwenhuis Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes Refereed by Prof.dr. B.B. van der Genugten

```
544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
    Multi-Product Cycling with Packaging in the Process Industry
    Refereed by Prof.dr. F.A. van der Duyn Schouten
```

545 J.C. Engwerda

```
    Calculation of an approximate solution of the infinite time-varying
    LQ-problem
    Refereed by Prof.dr. J.M. Schumacher
```

546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach
Refereed by Prof.dr. A.J. de Zeeuw
547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op
Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties
voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution
restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart Towards an axiomatization of orderings Refereed by Prof.dr. P.H.M. Ruys

553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen

556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher
557 Ton Geerts
Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher
558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma
Ton Geerts
Free end-point linear-quadratic control subject to implicit conti-nuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Prof.dr. B.B. van der Genugten
562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper
565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys
566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence Communicated by Dr. Th.E. Nijman

567 Rob de Groof and Martin van Tuij1
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts The value of information in a fixed order quantity inventory system Communicated by Prof.dr. A.J.J. Talman

569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments

573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructuur
574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods
and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma
576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs
577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys
578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts
J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems
Communicated by Prof.dr. F.A. van der Duyn Schouten
580 H.G. Barkema
The Impact of Top Management Compensation Structure on Strategy Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen
Aan de lijn of aan het lijntje: wordt slank produceren de mode?
Communicated by Prof.dr. S.W. Douma
582 Willem Haemers
Distance Regularity and the Spectrum of Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove
Strategic Marketing, Production, and Distribution Planning of an
Integrated Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
584 J. Ashayeri, F.H.P. Driessen
Integration of Demand Management and Production Planning in a
Batch Process Manufacturing System: Case Study
Communicated by Prof.dr. F.A. van der Duyn Schouten
585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt
Blending Modelling in a Process Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst
Application of Mixed Integer Programming to
A Large Scale Logistics Problem
Communicated by Prof.dr. F.A. van der Duyn Schouten
587 P. Jean-Jacques Herings
On the Structure of Constrained Equilibria
Communicated by Prof.dr. A.J.J. Talman

IN 1993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl
The Twin-Debt Problem in an Interdependent World
Communicated by Prof.dr. Th. van de Klundert

17000011738367

