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Abstract

Using the exact covariance matrix of ARMA(p,q) errors first order conditions for
the parameters are derived and solved. This is done for the pure MA case, the pure
AR case and the general ARMA model. Our approach applies both to maximum likeli-
hood and minimum distance estimation. The exact covariance is written in the form
of lag matrices, which can simply be differentiated. The resulting first order
conditions have at least one solution.

The difference between maximum likelihood and minimum distance estimation amounts

to a function of the elements of the covariance matrix. This function is simple in

case of the pure MA or AR case, but more complicated in the general AR:~fA case.
Of course, the solutions for the AR and M.4 parameters are in general conditional.
Only in the pure MA and AR case of a time series model without explanatory varia-
bles direct solutions are found.

lI am indebted to H.H. Tigelaar for his suggestions and comments on an earlierdraft.
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1. Introduction

In a well known article C.M. ~Beach and J. MacKinnon (1978) presented a maximurn

likelihood procedure for estimating the parameters of a linear regression model

with first-order autocorrelation. For a fixed value of the .AR(1) parameter they

estimate the regression parameter, next they calculate the AR(1) parameter con-

ditional on this estimate. J.Magnus (1978) showed in a more general way that such

a procedure converges and that it is possible to derive sim ultaneously the maximum

likelihood estimates of the regression parameters and the parameters of the co-

variance matrix.

More recently several authors gave procedures to estimate the covariance parame-
ters, be it for a pure time series model (Kohn and Ansley, 1985) or for a regres-
sion model (Zinde-Walsh and Galbraith, 1991). However, w.ithout a closed form of
the general ARMA covariance matrix, the resulting formulas and algorithms become
very complicated. In this paper we give a generalization of the Beach~MacKinnon
procedure, using an expression for the exact ARM.A covariance matrix in closed
form. This is possible as this form of the covariance matrix is simple enough to
be differentiated analytically. Conditional on the Aitken estimator and the cor-
responding residuals we can derive first order conditions for the likelihood func-
tion of the ARMA-parameters and solve them.

The results hold also for the pure time series model, without a matrix of regres-
sors. At the same time we are able to show the differences between maximum likeli-
hood and minimum distance estimators. In the pure AR and MA case the difference
amounts to a sum of the elements of the off-diagonals of the covariance matrix.
The general ARM.4 model has the same property, be it that the function of the co-
variance is more complicated.

2



2. The linear model

Consider the linear model with ARMA-errors:

Y-XRtE.

where y has dimensions (Txl), X(TXk), (3 (kXl) and e(TX1). The genera] form of

AR.lt.A distributed errors is given by

P q

~t-- ~ ~~ec-~4yc} ~ aivc i~ t-1,..,T
~-o i-o

(1)

where vt is a sequence of independently and identically distributed random var-

iables. s denotes the vector (~91,~9z,..,~7P)~ of .4R-parameters, a is the vector

(a1,a2,..,aq)~ of MA-parameters. Use vzV to denote the covariance matrix of e:

v2V-E'ee ~ .

One way to estimate the unknown parameters ~3, ~9 and a is by minimizing the weight-
ed sum of squares e~V-le. Supposing normally distributed err;rs, we may prefer to
maximize the (concentrated) likelihood function, which is equivalent to minimizing
S- I V I liTe~ V-le (Judge et ai., p.284). Here e-y-Xb, b being an estimator of (3. It
is clear, that this model reduces to a pure 'time series' model in case X is zero:
e is identical to e and y(see, e.g., Anderson and Mentz, 1982). If X is non-zero
than we have to estimate e as e-y-Xb, with b-(X~ V-1X)-1X~ V-ly, the .Aitken estima-
tor. In any case, S is a function of the parameter vectors a and ~9.

Minimizing S- ~ V ~ l~Te~ V-le is equivalent to solving the first order conditions, or

asia,s-o and aS~aa-O. ~Ve should realize that the differential d(e~ V-le) is equal to

e~ d(V-1)e because e~ V-lde-(y~ -b~ X~ )V-1Xdb-0. For the differential of the determi-

nant part we get d(IV~~~T)- 1~TIVIt~TtrV-~dV. Other wise stated, the differential

of S is

dS- I V I liT{sZtrV-1dVte~ d(V-1)e1 (2)

with sz-e~ V-le~T. In the sequel we wiil show- how ~9 and a can expressed as a func-

tion of e, be it computed or identical to y. First we will give some remarks about

the exact covariance matrix before we present first order conditions in subsequent
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sections.

2. Covariance matrix
Foilowing Pagan (1974), we introduce two matrices for both the .4R parameters and

the M.4 parameters. These are special types of Toeplitz matrices. W'e define a

(square) lower band matrix P of dimensions TxT, and a TXp matrix Q as follows:

flP t9p-1 . t9~

~ . . .

Q- 0 ~3P

~ . . ~

P-

t9P. . t91 l

The upper triangular part of a lower band matrix consists of zeros and the lower

part has off-diagonals with the same elements. As is well-known its inverse can be

obtained by a simple algorithm. An other important characteristic of these ma-

trices is that they commute and that their product is a matrix of the same type. Q

consists of an upper pxp part with an upper band matrix and a lower (T-p)xp part,

which consists of only zeros. Like P and Q will be used to describe the .4R part of

the error vector, so are M and N defined for the M.4 part, replacing ~9 by a and p

by q.

Next define the auxiliary vectors é and v:

e- (e ,e .,e e )~-P'~ -P!2'.. -l~ 0
V- (V V .,V V )~

-9`1~ -9~2'.. -1~ 0

Then we can write (1) in matrix form:

LQ PJ e- LN MJ ~.

As is proven elsewhere (Van der Leeuw, 1992) the exact co~-ariance matrix for ARMA

errors is equal to

~~-IN M1(P~ P-QQ~ 1 1[N M1~ (3)
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where P is like P, but of order (Ttp)x(Ttp) and Q like Q, but of order (Ttp)xp, if

the usual invertibility conditions hold.

Next we will consider the first erder conditions for the pure MA case, the AR

case, and at last the AR!~tA case.

3. MA first order conditions

From (3) w.e see, that the covariance matrix in the MA case is

V-(N M)(N M]~ (4)

To be able to take differentials we rewríte (4) in the form of lag matrices. The
definition of a lag matrix and some of its properties are found in the Appendix.

Lemma

Using lag matrices we can write the M.A-covariance matrix as

4 i Q

V- ~ ( ~ Li-~ai' ~ L~-iai)a~
~-o i-o i-~-i

where ao-1.

(5)

The differential of V is

Q ~ q

dV- ~ ( ~ (Li-~tL~-~)ait ~ (L;-i'L~-i)ai)da~ (6)

~-o i-o i-~-I

Proof

Observe, that V can be written as V-(0 I;biM~ [0 I)~ ,where M has the same structure

as M, but is of order (Tfq)X(Tfq). O is a TXq zero matrix, I is the TxT identity

matrix. L'sing lag matrices, we can write 1-t as

9 9

V-[0 11( ~ Li(i,i)a~)( ~ Li( j, j)ai)~ (0 1J~

~-o i-o

9

~ L;(i,i)ai and for V we get

i-o

Transposing the j-sum part and multiplying:

S



Q Q

-(O 11( ~ ~ L;.1(i.max(i-j,0))a;a1)(O [1~

i-o 1-0

T

Denoting vectors of length T.q with a bar, we have (O 11- ~ ihln,q and thus
n-1

T q 4 T

~- ~ rnln.q ~ ~ L;-1(i,max(i-j,0))a;a1)( ~ inih,q)~.
n-1 1-0 1-o n-1

which gives after some manipulations

q q T-max(o,i-11~~-1

~~- L L L l nlh-l-la~a1'
1-0 1-0 h-l~max(o,l-p

This is equal to

q q
-~ ~Ll-1(max(O,i-j), max(O,i-j)aial

1-0 1-0

or

q ~ Q

- (, ( ~ L1-lai} ~ Li-ia1)ai,
i-o i-o i-~-1

the first part of the lemma. o

For the differential of V we get

q 9

dV- ~ ~ L;-1(max(O,i-j),max(O,i-j)(a;daJtaldai)

;-0 1-0

Write out, interchange the indices in the second part:
q q q

- ~ ( ~ L;-1(max(O,i-j),max(O,i-j)aJt ~ L1-;(max(0, j-i),max(0, j-i)a1)daj

'-0 1-o i-o

Splitting the sum over the j-index and take the transpose of the first
part to get the result as stated in the lemma. t7

and last

Now we can give the (conditional) solution of the MA-parameter. Substituting the
expressions of the lemma in (2) gives the result stated in the next theorem.
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Theorem

T-k

Let tfl-~'-Ie and fk- ~~;~;.k, where ~; is the itn element of ~ and dk

~-i

the sum of the elements of the ktn off-diagonal of V-~ times sZ.

The MA-parameter vector a satisfies Ha--h, where the (i,j)tn element

of H is f I t-J I-d I~-J I and h;-h; o.

Proof

.A solution for the MA-parameter a is found by solving the first order conditions:

sZtrV-1c~V~8ate~ (8(V-1)~8a)e-0. The determinantal part has as differential:

q ~ 9
trV-IdV-trV-1 ~ ( ~ (LJ-~'L~-~)aJ. ~ ( Li-J`L~-J)aJ)da~

or
~-o J-o J-~-i

as trV-~L~-~-trL~-~V-1-(trV-1LJ-;)~-trV-1LJ-~:

q q
-2 ~ ( ~ trV-1LJ-iaJt ~ trV-1L~-JaJ)da~

}- o J-o J-i.1
Let k-~i-jl. Then the lag

T-k T-k
parts is -k

T-k

and we have

trV-1L-k-trV-~ ~ inih,k- ~ tr(ih.kV-~in)- ~ vh,k n, where vh,k n is the (htk,h)cn
n-i n-i n-i

element of V-I. Thus trV-1L-k is the sum of the elements of the ktn off-diagonal

of V-~. Hence the derivative becomes

~ q

sZtrV-18V~8a;-2( ~ di-JaJ} ~ dJ-laJ), i-1,

1-o i-~-1

.q.

To find the derivatives of the second part, we need e~d(V-1)e, which is equal to
-e~ V-1dVV-le, or -m~ dVm.

q t q

m~ dV~- ~ ( ~ m~ (LJ-;}L1-~)~Jf ~ ~~ (L~-J}L~-J)~aJ)da~

i-o J-o J-~~i

index for both
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q ~ q

- ~ ( ~ 2~ LJ-~~aJ} ~ Z~~ Lt-Jdai)da;

~-o i-o i-~-i
T~k T~k

Now, m Lkm- ~~ i;i;-km- ~~;~;-k-f-k and the derivative is
i-1

t q

~~ BV~da;m-2( ~ f~-iai} ~
1-o i-i-1

i-

fi-;a1), i-1,..,q.

Co mbining we get for the first order condition for BS~da;:
1 q ; q

L d~-1a1} ~ di-~a1- ~ fi-lai- ~ fi-~a1-~~ i'1~~~~q~
i-o i-~-1 i-o 1-~-~
or because ao-1,

I q

~(fi-l-di-1)a1` ~ (f}-1-d1-;)ai--(fi-d;),. i-1,..,q. o

J-~ 1-~-1

4. AR first order conditions

Fro m(3) it follows that the inverse of the covariance matrix in the pure AR-case

is

4'-1-P~ P-QQ~

P has dimensions TXT, Q Txp. Because of the definition we can write
q

P- ~ L;(i,i)~9;. To be able to apply lag-matrices to Q we define the (TxT) matrix
~-o

a

(7)

Q

as ~ L;-q~3;. Then we have Q-Q(Iq O]~, where [Iq O]~ is of order Txq, Iq being the
~-o

qxq identity matrix and O a qx(T-q) zero matrix. The inverse of the covariance
matrix can now be expressed in the form of lag-matrices and ~9.

Lemma

Using lag matrices we can write the inverse of the AR-covariance

8



m atrix as

with ~90-1.

q a
~ 1- ~ ~ L~-t~j,j)~;~9j

i-o j-o
(8)

Its differential is

Proof

9 q
dV-1-

~ L (L1-t(j,j)tLj-t(j,j))~9jd~9i (9)

i-0 j-0

From the definitions we have

q q q q

V 1-( ~ L;(i,i)~9i)~( ~ L}(j,j)~j)-( ~ Lt-q~t)(Iq O1~(Iq 01( ~ Lj-q~}),
t-o j-o t-o }-o

q a
The part before the minus sign is ~ ~Lj-;(max(O,i-j),j)~9;~9j. The second part

i-o j-o
q

is more complicated. First observe, that (Iq O1~(Iq O]- ~ ihih, where ih is a vec-
n-i

tor of length T, of which all elements are zero, except the hih. Now,

q q q 9 q

(~ Li-q~t)(Iq O1~ (Iq O1( ~ 1-j-q`~j) - L L ~(Lt-qih)(LJ-qih) ~9;,9J.

i-0 J-0 I-0 J-0 h-1

Here Lkih (with k~0) is a lagged zero-one vector: Lkih-ih,k. Therefore we have

L;-qih-i;-q,h and Lj-qih-ij-q.h, with l~hsq, lsi-qth~T and lsj-qthsT, w.hich means

ltq-itmax(0, i- j )shsq.

q q q

- L L L ~~-q'hlj-q'h~;9j.
I-0 j-0 h-1'q-I~

max(o,i-J)

Changing the index from h to h-itq and interchange the i and j index:
q q

-~ ~ Lj-;(max(O,j-i),T-i)~9;~9j.

t-o j-o

9



The lag matrices of the first and second part are L}-;(max(O,i-j),j) and

L}-;(max(O,j-i),T-i). The difference is L~-;(j,j). o

The differential is

9 9

dV-1-
~ L L}-i(j,j)(~91d5;t~9;d~91)

~-o }-o

w'riting out and interchanging the indices ín the second part gives
9 9 9 9

- ~ ~ L}-;( j, j)i91de9;t ~ ~ L;-}(i.i),9}d~9;

i-o }-o i-o ~-o

or
9 9

-~ ~(L}-;(j,j)tL}-;(j,j))~9}d,9;. o

i-o }-o

Before stating a theorem concerning the first order conditions of the AR-

parameters, we give some properties of the determinant of the AR-covariance

matrix. The determinant of the full TxT AR-matrix is equal to the determinant of

its qxq (upper-left) submatrix. Moreover, this submatrix can be written in the

same form as in (8), while the lag matrix is now of order qXq.

Lemma

Let 4'~1-P1P1-Q1Q1, where Pl is the qxq upper-left part of P and QI

is the upper qXq part of Q.

Then

1. P1P1-Q1Q1 is positive definite if the im.ertibility. condition

holds

2. IV1-1V,1

Q 9-~-1 9
3. V11- ~ ( ~ Li-i(j,j)~}- ~ L1-t(q-i,q-i)~9})~9;

I-0 }-0 1-9-I-1

10



Proof
The first part of the lemma is proven in Van der Leeuw (1992). For the second part
observe that P and Q can be partitioned in the following way:

P! ~ Q1 P;P1iPZPz-QiQi PzP3p- . , Q- , and thus P~ P-QQ~ - ..--- ---.-. - - :. ....- -.. .
Pz P3 ~ P3Pz 'P3P3

The upper-left element is P P~, because P~P -r~ 01 Q ~i i z z IQi J -~ -Q1Q; and
L 0

P1P1iQ1Q)-P1Pi}Q1Q1 ( see Van der Leeuw, 1992). Apply the rules for the determinant
of a partitioned inverse:
IV-11-1P1P~IIP1P~-PZP3(P3P3)-)P3Pz1-1p1P1-Q;Q~I, as IP;1-1.
For the third part we write the matrices of which V~) consists as lag matrices. Of

a-)
course L is now of order qxq. Using lag-matrices we get P1- ~ Li(j,j)5J and

J-o
a

Q1- ~ Li-q,9i, but as Lq(q,q)~9q and L-q~9o-tq(q,q) are zero, we write

i-i
Q 9 9 q

V1)-( ~ 1-;(i,i),9;)~ ~ LJ(j,j)~9i)-( ~ Li-a~~)( ~ Li-a~J),

)-o J-o (-o J-o

Rewriting the transposed parts, multiplying and interchanging the indices in the
second part gives:

Q 9

-~ ~(L~-((max(O,j-i),j)-LJ-;(max(O,j-i),q-i))~9i~9J

)-o J-o

Conforming the definitions we get for the lag matrices:

lh~h'~-)-

J

L lhlh

h-1~ h-1~

max(o,J-U max(0,)-1)

0 if it j-q,

q-1

- ~ lhlh-~-J-LJ-i(J,j)

n-1-1

if j}i~q

11



1

-- ~ lh~h~i-J-Li-i(q-i,q-i) if jti~q.

n-a-~-1

Hence

~'l1- ~ ( ~ LJ-;( j,j)~91- ~ L}-,(q-i,q-i)~91)~9;

1-0 j-0 }-q-i~l

or, as V1 is symmetric:

q q-1-1

- ~ ( ~ Ll-i(j,j)~i- ~ LJ-i(q-i,q-i)~9;)~3J. o

1-o i-o i-q-1-~

Theorem

T-i-1

Define f;,J as ~ eh,Jeh,; and di 1 as sz times the sum of the ele-

n-i
ments of the li-jlth off-diagonal of V; without the first and last

min(i,j) elements if itj~q and minus sz times the sum without the

first and last min(q-i,q-j) elements if itj~q.

The AR-parameter vector ~9 is satisfies H~9--h, where the (i, j)ih ele-

ment of H is f; 1-d;.J and h;-h;,o.

Proof

A solution for the AR-parameter i9 is found by solving the first order conditions

sZtrV-~8V~8,3te~(8(V-1)~8~9)e-0. The determinantal part has as differential:

trVi1dV1--trV1dV11.

For the differential we get
q q-i-1 q

dV11- ~ ( ~ LJ-t(j.j)~J- ~ LJ-i(q-i,q-i)~91)d~9;t

i-o 1'0 1-q-i-i
q q-)-1 Q

~ ( ~ LJ-i(j.j)~i- ~ LJ-;(q-i,q-i)~9;)d51

1-o i-o i-q-1~i

Interchanging i and j in the second part and using trV1L;-1(i,i)- trV1L1-;(j,j) as

12



V;-V 1, the result is

a a-~-i a
trVldl~~~-2 ~ ( ~ tr~'ILi-~íj~j)~3i- ~ trV;Li-;(q-i.q-i)6i)dt9;.

~-o i-o i-a-~-i

The derivative is

9-i-1 Q
sztrV1~8V;~8~9;--2sz( ~ trV;Li-i(j,j),9i- ~ trV1Li-;(q-i.q-i)5i).

i-o i-a-~-~
a-i

Here trV1Li-;(j,j)- ~ tr(in-J-;~;m)-v;-;,1-;t'.`va-i,a-i~ where v;,i is the

n-i-i

(i j)in element of V;. In the same way we get for the second part

trV1L1-i(q-i,q-i)- va-i~i.a-i.1t..tv~,1-

Thus for the derivative to ~9; the coefficient of t9i is the sum of the (i-j)tn off-

diagonal of V1 without the first and last min(i,j) elements times -2sz if itj~q.

If itj~q we have a similar sum without the first and last min(q-i,q-j) elements
times 2s2.

For the second part e~(d(V-11~8~9)e we have

9 Q 9 Q
e~ dV-le-e~ ( L L(L1-i(J,J)tLi-;(j,j)),9id~9;)e-2 ~~ e Li-;( j,j)e,9id,9;.

i-o i-o ;-o i-o
~ T-i-1

But as e~ Li-;( j, j)e- ~ en.ien,;-f; i, we get for the differential

n-i
Q q q

2~~ f; i~9id~9; and for the derivative e~ 8V-1~~~9ie-2 ~ f; i~9i, i-1,..,q.

'-oi-o i-o
The first order condition becomes:

a a
L fi~i~}- L d;,i~9i-0, i-1,..q

i-o i-o

or as ~90-1:

Q

~(fi,1-d~.i)~3i--(fi.o-di.o), i-1,..q. o

J-i

13



5. ARMA first order conditions

In the ARM.A case the covariance matrix is more complicated than in the MA or AR

case. Nevertheless it is possible to find a(conditional) ML-solution for both the

MA and AR parameters. First we will study the ~4A part, next the .AR part. This is

possible because the covariance matrix - if not im-erted - is simple enough to

isolate the two parameter vectors. We state the results in the following theorem,

that is proved in the next sections. In this section we use q for the number of MA

and AR parameters. This gives no loss of generality as it is alv`.ays possible to

fill up the shorter one with zeros.

Theorem

The first order conditions for the ARMA model can be split in a MA

part and an AR part.

The h1A parameter satisfies Ha--h, where the (i,j)Lh element of H is

T T
-~

hi,i-~ (i)A efl(j)- ~ ~S(i,j,k,l)x(k,U and hi-hi,o.
k-1 1-1

Here

~ is the inverse of the enlarged .AR covariance matríx,

m(i)-(0...0 ~1...mT 0...0)~, ~~ is element i of V-Ie,
Fq-l~ E- T~ E i~

ó(i, j,k,ll is the (k}q-i,ltq-j)ih element of 0-1,

~(k,l) is the (k,l)th element of V-1.

The AR-parameter vector satisfies G~9--g, where the (i, j)th element

of G is

14



T'q-i-1

gi.i- ~ ~k.;Sk.i-~G(i.j) and g;-8i,o-

Here
k-1

~i is the íth element of ~-Ze, Z-~-1[N M1~ V-1,

tG(i,j) is the sum of the elements of (i-j)Lh diagonal of

ZVZ~ , without the first and last min(i, j) elements.

S.I. MA-part conditions

To find the solution to the MA-part we proceed as follows. First define
q

M-~Li(i,i)ai and ~-V-~e, as we did before, and A-P~P-QQ~. M and P have

i-o

dimensions (Ttq)x(Ttq), Q (Ttq)Xq.

For the inverse of the covariance matrix we can w~rite

V~-V 1VV ~-V 1[0 Ilhi~-1M~ [0 [1~ V-1.

q q q

Now, M~[0 11~V-~e-MI~ 1 -~L~(i,i)I~J a~-~L-i(0,0)(~lai-~m(i)ai,
L j-o L i-o L J i-o

where ~(i) is defined above.

q q
The quadratic part becomes e~ V~le-m~ V~- ~~ m~ (i)~-~~(j)aial and its differen-

i-o I-o
q q

tial d(e~ V-le)-e~ dV-1e-2 ~ ~~~ (i)~-1~( j)alda~.

i-o ~-o

For the determinantal part we need trV-idV. As before we use V-[0 11M~-1M~ [0 IJ~ .

Observe,
T q T.q

[~ IIM-( L lhlh~q)( L Z Íhlh-~ai).

h-1 1-0 h-1.i

Interchanging summations and replacing in the second part h by k-h-q, we get

15



q T

- L L Ihln,q-~iai.

1-0 h-1

Thus, V becomes

q T q T

`~-( L ~ ln~n'Q-ial)~ 1( ~ ~ lklk.q-1aJ)' -

i-0 h-1 J-0 k-1

Interchange the summations and define the scalar ó(i,j,h,k) as in.q-i~ ilk-q-J,
the (htq-i,ktq-j)tn element of ~-I, the enlarged AR-covariance matrix. Now w.e have

q q 7 T

V- ~~ ~ ~ ó(i, j,h,k)inikaiaJ, which gives
i-0 j-0 h-1 k-1

q q T T

dV- ~ ~ ~ ~ ó(i,j,h,k)inik(ajdaitaidaj)

1-0 J-0 h-1 k-1
q q T 7

-2 ~ ~ ~ ~ ó(i, j,h,k)inikajdai

1-0 J-0 h-1 k-1

because S(i,j,h,k)-ó(i,j,h,k)~-à(j,i,k,h)-ó(j,i,h,k).

For trV-1dV we get, writing ~(h,k)-ihV-tik, the (h,k)tn element of V-1, the inver-

se of the complete covariance matrix,
q q T T

trV-1dV-trV-1(2~ ~ ~ ~ó(i,j,h,k)inikajdai)

i-0 j-0 h-1 k-1
q q T T

-2 ~ ~ ~ ~ ó(i, j,h,k)~(h,k)ajdai. o

i-0 j-0 h-1 k-1

5.2. AR-part conditions

Again we have to evaluate trV-idV and e~ dV-ie. The expression for V-I is

([N MI[P~P-QQ~ ]-1W M1~ )-t, while we only can isolate the AR-parameters in the

expression ~-P~ P-QQ~ (cf. (9)). Therefore we define Z-~-1(N M1~ V-1. Then V-1-Z~~Z,

as is easily verified. The differential in the B-direction is

dV-i--V-1dVV-1--V-I(N M1d~-1[N M1~ V-1-Z~ dOZ.

The quadratic form e~ dV-le is, using {-Ze and (9),
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e d~' 'e--S d0{

9 9

--~ ( ~ ~ (Li-I(j.j)t~-J-i(j,j))t9Jdi9~)S

i-o 1-0
T'9-i-1

--Z ~ ~n,~~n,Jt9Jdt9~.

n-i
The determinantal part becomes, using lag matrices and some basic properties of
the trace operator:

9 9
trV-1dV--trVd4'-~-trVZ~ dOZ-trZVZ~ (~ ~(LJ-~(j, j)tL~-~( j, j))~9Jd~9~)

i-o 1-0
9 9 T'9-t-1

-2 ~ L ~ 1n~JZVZ~ in,~~91d,9~.

i-o J-o n-i
T-a-i-1

Here ~i(i, j)- ~ ih,1ZVZ~ in,~ is the sum of the elements of (i-j)tn diagonal of

n-i
ZVZ~ without the first min(i,j) elements. o
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Appendix

Lag matrix

1. Definition

Define ii as the tiXl vector of which all elements are zero, except element i,

which is 1. Next áefine

N-m~k

Lk(n,m)- ~ iii i-k, I k ~~N-1, n~max(O,k), m~max(O,k). If both n and m are zero we

1-n-1

will write Lk.

This definition of L implies that L has one (off-)diagonal consisting of one's,

all other elements being zero. If n-m-0, then every element of this diagonal ís

equal to one. We allow, however, the first or last elements of this diagonal to be

zero. To define which elements are zero we have the choice between the numbers of

first rows and the last columns on the one hand, or first colu mns and last rows on

the other. We take, arbitrarily, the first way. This means that n and m are posi-

tive in case k is positive. If n-m-k-0 we get the identity matrix. If k is posi-

tive L can be regarded as a lag matrix, with the same property as the usual lag
operator. Let a be an arbitrary vector of length N. Then, for k~0 :

M1

Lk(k,k)- ~ i i~ ai 1-k
1-I~k

N

- ~ ia~
i 1 -k

i-1~k

-(0..0 a1..aN-k)!

If n or m is greater than k the n-k first elements or m-k last elements disappear.
We do, however, not exclude negative values for k. In this sense k is not an ordi-
nary lag matrix. In the next sections we give some properties of L.
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2. Properties

Transpose:

Lk(n,m)-L-k(n-k,m-k)

Proof

N-m-k

Lk(n,m)-( ~ lii i-k)~

i-1-n
N-m~k

-
~ 1~-kl~

1-1.n

Changing the index i to j-i-k we get

N-(m-kl-k
- ~ iJi~.k

J-1.n-k

-L-k(n-k,m-k). o

Multiplication:

Lkl(nl,ml) . Lkz(n2,mz)-LklrkZ(max(nl,nZtkl),max(m1tk2,mZ)

Proof

N-ml.kl N-mL.k2

Lkl(nl,ml).Lkz(nZ.m2)- ~ iill-kl ~ 1J1J k- Z
1-1~n1 i-1~nZ

~ N-ml'kl N-m2'k2

- L ~
1-1.n1 1-1.nZ

lili-kllJl~-k2

This expression is only non-zero if j-i-kl, or i-jtkl-h.

N-ml'kl N-m2'k2'kl
-

~ ~ lhlh-kllh-kllh-kl-k2
h-1.n1 h-1.nZ.k1

Here h runs from max (ltnl,ltnztkl) to min (N-mltkl N-mZfkz}kl), which is the same

as from lfmax(nl,nZtkl) to N-max(m1tk2,m2)tkltkZ, while the lag is equal to kltkZ.
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