Tilburg University

First order conditions for the maximum likelihood estimation of an exact ARMA model

 van der Leeuw, J.L.Publication date:
1993

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van der Leeuw, J. L. (1993). First order conditions for the maximum likelihood estimation of an exact ARMA model. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 611). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM

RYI

> Estimartion Model

FIRST ORDER CONDITIONS FOR THE MAXIMUM LIKELIHOOD ESTIMATION
OF AN EXACT ARMA MODEL
Jan van der Leeuw
FEW 611

Communicated by Prof.dr. B.B. van der Genugten

K.U.B

BIBLIOTHEEK TILBURG

FIRST ORDER CONDITIONS FOR THE MAXIMUM LIKELIHOOD ESTIMATION OF AN EXACT ARMA MODEL

Jan van der Leeuw ${ }^{1}$
Dept. of Econometrics
Tilburg University
P.O.Box 90153
NL - 5000 LE Tilburg

Abstract

Using the exact covariance matrix of $\operatorname{ARMA}(p, q)$ errors first order conditions for the parameters are derived and solved. This is done for the pure MA case, the pure AR case and the general ARMA model. Our approach applies both to maximum likelihood and minimum distance estimation. The exact covariance is written in the form of lag matrices, which can simply be differentiated. The resulting first order conditions have at least one solution.

The difference between maximum likelihood and minimum distance estimation amounts to a function of the elements of the covariance matrix. This function is simple in case of the pure MA or AR case, but more complicated in the general ARMA case. Of course, the solutions for the AR and MA parameters are in general conditional. Only in the pure MA and AR case of a time series model without explanatory variables direct solutions are found.

[^0]
1. Introduction

In a well known article C.M. Beach and J. MacKinnon (1978) presented a maximum likelihood procedure for estimating the parameters of a linear regression model with first-order autocorrelation. For a fixed value of the AR(1) parameter they estimate the regression parameter, next they calculate the AR(1) parameter conditional on this estimate. J.Magnus (1978) showed in a more general way that such a procedure converges and that it is possible to derive simultaneously the maximum likelihood estimates of the regression parameters and the parameters of the covariance matrix.

More recently several authors gave procedures to estimate the covariance parameters, be it for a pure time series model (Kohn and Ansley, 1985) or for a regression model (Zinde-Walsh and Galbraith, 1991). However, without a closed form of the general ARMA covariance matrix, the resulting formulas and algorithms become very complicated. In this paper we give a generalization of the Beach/MacKinnon procedure, using an expression for the exact ARMA covariance matrix in closed form. This is possible as this form of the covariance matrix is simple enough to be differentiated analytically. Conditional on the Aitken estimator and the corresponding residuals we can derive first order conditions for the likelihood function of the ARMA-parameters and solve them.

The results hold also for the pure time series model, without a matrix of regressors. At the same time we are able to show the differences between maximum likelihood and minimum distance estimators. In the pure $A R$ and MA case the difference amounts to a sum of the elements of the off-diagonals of the covariance matrix. The general ARMA model has the same property, be it that the function of the covariance is more complicated.

2. The linear model

Consider the linear model with ARMA-errors:

$$
y=X \beta+\varepsilon,
$$

where y has dimensions ($T \times 1$), $X(T x k), \beta(k x 1)$ and ε ($T \times 1$). The general form of ARMA distributed errors is given by

$$
\begin{equation*}
\varepsilon_{t}=-\sum_{i=0}^{p} \vartheta_{i} \varepsilon_{t-i}+v_{t}+\sum_{i=0}^{q} \alpha_{1} v_{t-1}, t=1, \ldots, T \tag{1}
\end{equation*}
$$

where v_{t} is a sequence of independently and identically distributed random variables. ϑ denotes the vector $\left(\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{p}\right)^{\prime}$ of AR-parameters, α is the vector $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}\right)^{\prime}$ of MA-parameters. Use $\sigma^{2} V$ to denote the covariance matrix of ε : $\sigma^{2} \mathrm{~V}=E \varepsilon \varepsilon^{\prime}$.

One way to estimate the unknown parameters β, ϑ and α is by minimizing the weighted sum of squares $\varepsilon^{\prime} V^{-1} \varepsilon$. Supposing normally distributed errors, we may prefer to maximize the (concentrated) likelihood function, which is equivalent to minimizing $\mathrm{S}=|\mathrm{V}|^{1 / T} \mathrm{e}^{\prime} \mathrm{V}^{-1} \mathrm{e}$ (Judge et al., p.284). Here $\mathrm{e}=\mathrm{y}-\mathrm{Xb}$, b being an estimator of β. It is clear, that this model reduces to a pure 'time series' model in case X is zero: e is identical to ε and y (see, e.g., Anderson and Mentz, 1982). If X is non-zero than we have to estimate ε as $e=y-X b$, with $b=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} y$, the Aitken estimator. In any case, S is a function of the parameter vectors α and ϑ.

Minimizing $S=|V|^{1 / T} e^{\prime} V^{-1} e$ is equivalent to solving the first order conditions, or $\partial \mathrm{S} / \partial \vartheta=0$ and $\partial \mathrm{S} / \partial \alpha=0$. We should realize that the differential $\mathbf{d}\left(e^{\prime} v^{-1} e\right)$ is equal to $e^{\prime} \mathbf{d}\left(V^{-1}\right) e$ because $e^{\prime} V^{-1} d e=\left(y^{\prime}-b^{\prime} X^{\prime}\right) V^{-1} X d b=0$. For the differential of the determinant part we get $d\left(|V|^{1 / T}\right)=1 / T|V|^{1 / T} \operatorname{trV}^{-1} d V$. Otherwise stated, the differential of S is

$$
\begin{equation*}
d S=|V|^{1 / T}\left\{s^{2} \operatorname{tr}^{-1} d V+e^{\prime} d\left(V^{-1}\right) e\right\} \tag{2}
\end{equation*}
$$

with $s^{2}=e^{\prime} V^{-1} e / T$. In the sequel we will show how ϑ and α can expressed as a function of e, be it computed or identical to y. First we will give some remarks about the exact covariance matrix before we present first order conditions in subsequent
sections.

2. Covariance matrix

Following Pagan (1974), we introduce two matrices for both the AR parameters and the MA parameters. These are special types of Toeplitz matrices. We define a (square) lower band matrix P of dimensions $T x T$, and a $T x p$ matrix Q as follows:
$\mathrm{Q}=\left[\begin{array}{cccc}\vartheta_{p} & \vartheta_{p-1} & \cdot & \vartheta_{1} \\ 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & & \\ 0 & & & \vartheta_{p} \\ 0 & \cdot & \cdot & 0 \\ 0 & & & \cdot \\ 0 & \cdot & \cdot & \end{array}\right] \quad \mathrm{P}=\left[\begin{array}{cllll}1 & & & \\ \vartheta_{1} & \cdot & & & \\ \cdot & \cdot & & & \\ & & & & \\ \vartheta_{p} & & & \\ & \cdot & & \cdot & v_{1} \\ & & \vartheta_{p} & \cdot & \vartheta_{1}\end{array}\right]$
The upper triangular part of a lower band matrix consists of zeros and the lower part has off-diagonals with the same elements. As is well-known its inverse can be obtained by a simple algorithm. An other important characteristic of these matrices is that they commute and that their product is a matrix of the same type. Q consists of an upper pxp part with an upper band matrix and a lower (T-p) xp part, which consists of only zeros. Like P and Q will be used to describe the $A R$ part of the error vector, so are M and N defined for the $M A$ part, replacing ϑ by α and p by q.

Next define the auxiliary vectors $\bar{\varepsilon}$ and $\overline{\mathrm{v}}$:
$\bar{\varepsilon}=\left(\varepsilon_{-p+1}, \varepsilon_{-p+2}, \ldots, \varepsilon_{-1}, \varepsilon_{0}\right)^{\prime}$
$\bar{v}=\left(v_{-q+1}, v_{-q+2}, \ldots, v_{-1}, v_{0}\right)^{\prime}$
Then we can write (1) in matrix form:
$\left[\begin{array}{ll}\mathrm{Q} & \mathrm{P}\end{array}\right]\left[\begin{array}{l}\bar{\varepsilon} \\ \varepsilon\end{array}\right]=\left[\begin{array}{ll}\mathrm{N} & \mathrm{M}\end{array}\right]\left[\begin{array}{l}\overrightarrow{\mathrm{v}} \\ \mathrm{v}\end{array}\right]$
As is proven elsewhere (Van der Leeuw, 1992) the exact covariance matrix for ARMA errors is equal to

$$
V=\left[\begin{array}{ll}
N & M \tag{3}
\end{array}\right]\left[\bar{P}^{\prime} \bar{P}-\bar{Q} \bar{Q}^{\prime}\right]^{-1}[N M]^{\prime}
$$

where \bar{P} is like P, but of order $(T+p) x(T+p)$ and \bar{Q} like Q, but of order $(T+p) \times p$, if the usual invertibility conditions hold.

Next we will consider the first order conditions for the pure MA case, the AR case, and at last the ARMA case.

3. MA first order conditions

From (3) we see, that the covariance matrix in the MA case is

$$
V=\left[\begin{array}{ll}
N & M
\end{array}\right]\left[\begin{array}{ll}
N & M \tag{4}
\end{array}\right]^{\prime}
$$

To be able to take differentials we rewrite (4) in the form of lag matrices. The definition of a lag matrix and some of its properties are found in the Appendix.

Lemma

Using lag matrices we can write the MA-covariance matrix as

$$
\begin{equation*}
V=\sum_{i=0}^{q}\left(\sum_{j=0}^{i} L_{j-i}^{\prime} \alpha_{j}+\sum_{j=i+1}^{q} L_{i-j} \alpha_{j}\right) \alpha_{i} \tag{5}
\end{equation*}
$$

where $\alpha_{0}=1$.
The differential of V is

$$
\begin{equation*}
d V=\sum_{i=0}^{q}\left(\sum_{i=0}^{i}\left(L_{j-i}+L_{j-i}^{\prime}\right) \alpha_{j}+\sum^{q}\left(L_{i-j}+L_{i-j}^{\prime}\right) \alpha_{j}\right) d \alpha_{i} \tag{6}
\end{equation*}
$$

Proof

Observe, that V can be written as $V=[O I] \bar{M} \bar{M}^{\prime}[O I]^{\prime}$, where \bar{M} has the same structure as M , but is of order $(\mathrm{T}+\mathrm{q})_{\mathrm{x}}(\mathrm{T}+\mathrm{q})$. O is a Txq zero matrix, I is the $\mathrm{Tx} T$ identity matrix. Using lag matrices, we can write \bar{M} as $\sum_{i=0}^{q} L_{i}(i, i) \alpha_{i}$ and for V we get $V=\left[\begin{array}{lll}O & I\end{array}\right]\left(\sum_{i=0}^{q} L_{1}(i, i) \alpha_{i}\right)\left(\sum_{j=0}^{q} L_{j}(j, j) \alpha_{j}\right)^{\prime}\left[\begin{array}{ll}\text { I }\end{array}\right]^{\prime}$

Transposing the j-sum part and multiplying:

$$
=\left[\begin{array}{lll}
O & I
\end{array}\right]\left(\sum_{i=0}^{q} \sum_{j=0}^{q} L_{i-j}(i, \max (i-j, O)) \alpha_{i} \alpha_{j}\right)[O \quad I]^{\prime} .
$$

Denoting vectors of length $T+q$ with a bar, we have $[O I]=\sum_{h=1}^{T} i_{h} \bar{i}_{h+q}^{\prime}$ and thus

$$
\left.V=\sum_{h=1}^{T} i_{h} \bar{i}_{h+q}^{\prime} \sum_{i=0}^{q} \sum_{j=0}^{q} L_{i-j}(i, \max (i-j, 0)) \alpha_{i} \alpha_{j}\right)\left(\sum_{h=1}^{T} i_{h} \bar{i}_{h+q}^{\prime}\right)^{\prime},
$$

which gives after some manipulations

$$
V=\sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{h=1+\max (0,1-j)}^{T-\max (0, i-j)+i-j} i_{h} i_{h-i+j}^{\prime} \alpha_{i} \alpha_{j} .
$$

This is equal to

$$
=\sum_{i=0}^{q} \sum_{j=0}^{q} L_{i-j}\left(\max (0, i-j), \max (0, i-j) \alpha_{1} \alpha_{j}\right.
$$

or

$$
=\sum_{i=0}^{q}\left(\sum_{j=0}^{i} L_{j-i}^{\prime} \alpha_{j}+\sum_{j=i+1}^{q} L_{i-j} \alpha_{j}\right) \alpha_{i},
$$

the first part of the lemma.

For the differential of V we get

$$
d V=\sum_{i=0}^{q} \sum_{j=0}^{q} L_{i-j}\left(\max (0, i-j), \max (0, i-j)\left(\alpha_{i} d \alpha_{j}+\alpha_{j} d \alpha_{i}\right)\right.
$$

Write out, interchange the indices in the second part:

$$
=\sum_{i=0}^{q}\left(\sum _ { j = 0 } ^ { q } L _ { i - j } \left(\max (0, i-j), \max (0, i-j) \alpha_{j}+\sum_{j=0}^{q} L_{j-i}\left(\max (0, j-i), \max (0, j-i) \alpha_{j}\right) d \alpha_{i}\right.\right.
$$

Splitting the sum over the j-index and take the transpose of the first and last part to get the result as stated in the lemma. a

Now we can give the (conditional) solution of the MA-parameter. Substituting the expressions of the lemma in (2) gives the result stated in the next theorem.

Theorem

Let $\phi=V^{-1}$ e and $f_{k}=\sum_{i=1}^{T-k} \phi_{i} \phi_{i+k}$, where ϕ_{i} is the $i^{t h}$ element of ϕ and d_{k} the sum of the elements of the $k^{t h}$ off-diagonal of V^{-1} times s^{2}.

The MA-parameter vector α satisfies $H \alpha=-h$, where the $(i, j)^{\text {th }}$ element of H is $f_{|i-j|}-d_{|i-j|}$ and $h_{i}=h_{i, 0}$.

Proof

A solution for the MA-parameter α is found by solving the first order conditions: $s^{2} \operatorname{trV}^{-1} \partial V / \partial \alpha+e^{\prime}\left(\partial\left(V^{-1}\right) / \partial \alpha\right) e=0$. The determinantal part has as differential:
$\operatorname{tr}^{-1} d V=\operatorname{trV}^{-1} \sum_{i=0}^{q}\left(\sum_{j=0}^{i}\left(L_{j-1}+L_{j-i}^{\prime}\right) \alpha_{j}+\sum_{j=i+1}^{q}\left(L_{i-j}+L_{i-j}^{\prime}\right) \alpha_{j}\right) d \alpha_{1}$
or as $\operatorname{tr}^{-1} L_{j-1}^{\prime}=\operatorname{tr}^{\prime}{ }_{j-1} V^{-1}=\left(\operatorname{tr}^{-1} L_{j-1}\right)^{\prime}=\operatorname{tr}^{-1} L_{j-1}$:
$=2 \sum_{i=0}^{q}\left(\sum_{j=0}^{1} \operatorname{trV}^{-1} L_{j-1} \alpha_{j}+\sum_{j=i+1}^{q} \operatorname{trV}^{-1} L_{i-j} \alpha_{j}\right) d \alpha_{i}$
Let $k=|i-j|$. Then the lag index for both parts is $-k$ and we have

$$
\operatorname{trV}^{-1} L_{-k}=\operatorname{trV}^{-1} \sum_{h=1}^{T-k} i_{h} i_{h+k}^{\prime}=\sum_{h=1}^{T-k} \operatorname{tr}\left(i_{h+k}^{\prime} V^{-1} i_{h}\right)=\sum_{h=1}^{T-k} v_{h+k, h}^{*} \text {, where } v_{h+k, h}^{*} \text { is the }(h+k, h)^{t h}
$$

element of V^{-1}. Thus $\operatorname{trV}^{-1} L_{-k}$ is the sum of the elements of the $k^{\text {th }}$ off-diagonal of V^{-1}. Hence the derivative becomes

$$
s^{2} \operatorname{tr} V^{-1} \partial V / \partial \alpha_{i}=2\left(\sum_{j=0}^{1} d_{1-j} \alpha_{j}+\sum_{j=i+1}^{q} d_{j-1} \alpha_{j}\right), \quad i=1, \ldots, q
$$

To find the derivatives of the second part, we need $e^{\prime} d\left(V^{-1}\right) e$, which is equal to $-e^{\prime} v^{-1} d V v^{-1} e$, or $-\phi^{\prime} d V \phi$.

$$
\phi^{\prime} d V \phi=\sum_{1}^{q}\left(\sum^{1} \phi^{\prime}\left(L_{j-1}+L_{j-1}^{\prime}\right) \phi \alpha_{j}+\sum^{q} \phi^{\prime}\left(L_{i-j}+L_{i-j}^{\prime}\right) \phi \alpha_{j}\right) d \alpha_{1}
$$

$$
=\sum_{i=0}^{q}\left(\sum_{j=0}^{i} 2 \phi^{\prime} L_{j-i} \phi \alpha_{j}+\sum_{j=1+1}^{q} 2 \phi^{\prime} L_{i-j} \phi \alpha_{j}\right) d \alpha_{i}
$$

$$
\text { Now, } \phi^{\prime} \mathrm{L}_{\mathrm{k}} \phi=\sum^{\mathrm{T}+\mathrm{k}} \phi^{\prime} \mathrm{i}_{\mathrm{i}} \mathrm{i}_{\mathrm{i}-\mathrm{k}}^{\prime} \phi=\sum_{\mathrm{i}}^{\mathrm{T}+\mathrm{k}} \phi_{\mathrm{i}-\mathrm{k}}=\mathrm{f}_{-k} \text { and the derivative is }
$$

$$
\phi^{\prime} \partial V / \partial \alpha_{i} \phi=2\left(\sum_{j=0}^{i=1} f_{i-j} \alpha_{j}+\sum_{j=i+1}^{q} f_{j-i} \alpha_{j}\right), \quad i=1, \ldots, q \text {. }
$$

Combining we get for the first order condition for $\partial \mathrm{S} / \partial \alpha_{\mathrm{i}}$:

$$
\sum_{j=0}^{1} d_{1-j} \alpha_{j}+\sum_{j=i+1}^{q} d_{j-i} \alpha_{j}-\sum_{j=0}^{1} f_{i-j} \alpha_{j}-\sum_{j=i+1}^{q} f_{j-1} \alpha_{j}=0, \quad i=1, \ldots, q
$$

or because $\alpha_{0}=1$,
$\sum_{j=1}^{1}\left(f_{i-j}-d_{i-j}\right) \alpha_{j}+\sum_{j=i+1}^{q}\left(f_{j-1}-d_{j-1}\right) \alpha_{j}=-\left(f_{i}-d_{i}\right)_{2} \quad i=1, \ldots, q . \quad \square$

4. AR first order conditions

From (3) it follows that the inverse of the covariance matrix in the pure AR-case is

$$
\begin{equation*}
\mathrm{V}^{-1}=\mathrm{P}^{\prime} \mathrm{P}-\mathrm{QQ}^{\prime} \tag{7}
\end{equation*}
$$

P has dimensions $T \times T, Q$ Txp. Because of the definition we can write
$P=\sum_{1}^{q} L_{1}(i, i) \vartheta_{1}$. To be able to apply lag-matrices to Q we define the ($T_{x} T$) matrix \bar{Q} $i=0$

q

as $\sum_{i=0} L_{i-q} \vartheta_{1}$. Then we have $Q=\bar{Q}\left[\begin{array}{ll}I_{q} & O\end{array}\right]^{\prime}$, where $\left[\begin{array}{ll}I_{q} & O\end{array}\right]^{\prime}$ is of order $T \times q, I_{q}$ being the $\mathrm{q} \times \mathrm{q}$ identity matrix and O a $\mathrm{qx}(\mathrm{T}-\mathrm{q})$ zero matrix. The inverse of the covariance matrix can now be expressed in the form of lag-matrices and ϑ.

Lemma

Using lag matrices we can write the inverse of the AR-covariance
matrix as

$$
\begin{equation*}
V^{-1}=\sum^{q} \sum_{j-i}^{q} L_{j, j)} \vartheta_{i} \vartheta_{j} \tag{8}
\end{equation*}
$$

with $\vartheta_{0}=1$.
Its differential is

$$
\begin{equation*}
d V^{-1}=\sum_{i=0}^{q} \sum_{j=0}^{q}\left(L_{j-i}(j, j)+L_{j-1}^{\prime}(j, j)\right) \vartheta_{j} d \vartheta_{i} \tag{9}
\end{equation*}
$$

Proof

From the definitions we have
$V^{-1}=\left(\sum_{i=0}^{q} L_{i}(i, i) \vartheta_{1}\right)^{\prime}\left(\sum_{j=0}^{q} L_{j}(j, j) \vartheta_{j}\right)-\left(\sum_{i=0}^{q} L_{i-q} \vartheta_{i}\right)\left[I_{q} \quad 0\right]^{\prime}\left[I_{q} O\right]\left(\sum_{j=0}^{q} L_{j-q^{*}} \vartheta_{j}\right)^{\prime}$
The part before the minus sign is $\sum^{q} \sum_{j-1}^{q}(\max (0, i-j), j) \vartheta_{i} \vartheta_{j}$. The second part $\mathrm{i}=0 \quad \mathrm{j}=0$
is more complicated. First observe, that $\left[I_{q} O\right]^{\prime}\left[I_{Q} O\right]=\sum_{h=1}^{q} i_{h} i_{h}^{\prime}$, where i_{h} is a vector of length T, of which all elements are zero, except the $h^{\text {th }}$. Now,
$\left(\sum_{i=0}^{q} L_{i-q} \vartheta_{i}\right)\left[I_{q} 0\right]^{\prime}\left[I_{q} O\right]\left(\sum_{j=0}^{q} L_{j-q} \vartheta_{j}\right)^{\prime}=\sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{h=1}^{q}\left(L_{i-q} i_{h}\right)\left(L_{j-q} i_{h}\right)^{\prime} \vartheta_{i} \vartheta_{j}$.
Here $L_{k} i_{h}$ (with $k \leq 0$) is a lagged zero-one vector: $L_{k} i_{h}=i_{h+k}$. Therefore we have $L_{i-q} i_{h}=i_{i-q+h}$ and $L_{j-q} i_{h}=i_{j-q+h}$, with $1 \leq h \leq q, \quad 1 \leq i-q+h \leq T$ and $1 \leq j-q+h \leq T$, which means $1+q-i+\max (0, i-j) \leq h \leq q$.

$$
=\sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{\substack{h=1+q-1+\\ \max (0, i-j)}}^{q} i_{i-q+h} i_{j-q+h^{\prime}} \vartheta_{i} \vartheta_{j} .
$$

Changing the index from h to $h-i+q$ and interchange the i and j index:

$$
=\sum_{i=0}^{q} \sum_{j=0}^{q} L_{j-i}(\max (0, j-i), T-i) \vartheta_{i} \vartheta_{j}
$$

The lag matrices of the first and second part are $L_{j-i}(\max (0, i-j), j)$ and $L_{j-i}(\max (0, j-i), T-i)$. The difference is $L_{j-i}(j, j)$.

The differential is
$d V^{-1}=\sum_{i=0}^{q} \sum_{j=0}^{q} L_{j-1}(j, j)\left(\vartheta_{j} d \vartheta_{i}+\vartheta_{i} d \vartheta_{j}\right)$
Writing out and interchanging the indices in the second part gives

$$
=\sum_{i=0}^{q} \sum_{j=0}^{q} L_{j-i}(j, j) \vartheta_{j} d \vartheta_{i}+\sum_{i=0}^{q} \sum_{j=0}^{q} L_{i-j}(i, i) \vartheta_{j} d \vartheta_{i}
$$

or

$$
=\sum_{i=0}^{q} \sum_{j=0}^{q}\left(L_{j-i}(j, j)+L_{j-i}^{\prime}(j, j)\right) \vartheta_{j} d \vartheta_{i} .
$$

Before stating a theorem concerning the first order conditions of the ARparameters, we give some properties of the determinant of the AR-covariance matrix. The determinant of the full $\mathrm{T}_{\mathrm{x}} \mathrm{T} A R$-matrix is equal to the determinant of its $\mathrm{q} \times \mathrm{q}$ (upper-left) submatrix. Moreover, this submatrix can be written in the same form as in (8), while the lag matrix is now of order $q \times q$.

Lemma

Let $V_{1}^{-1}=P_{1}^{\prime} P_{1}-Q_{1} Q_{1}^{\prime}$, where P_{1} is the $q \times q$ upper-left part of P and Q_{1}
is the upper $\mathrm{q} \times \mathrm{q}$ part of Q .
Then

1. $P_{1}^{\prime} P_{1}-Q_{1} Q_{1}^{\prime}$ is positive definite if the invertibility condition holds
2. $|\mathrm{V}|=\left|\mathrm{V}_{1}\right|$
3. $v_{1}^{-1}=\sum_{i=0}^{q}\left(\sum_{j=0}^{q-1-1} L_{j-i}(j, j) \vartheta_{j}-\sum_{j=q-i+1}^{q} L_{j-1}(q-i, q-i) \vartheta_{j}\right) \vartheta_{i}$

Proof

The first part of the lemma is proven in Van der Leeuw (1992). For the second part observe that P and Q can be partitioned in the following way:
$\mathrm{P}=\left[\begin{array}{c:c}\mathrm{P}_{1} & 0 \\ \mathrm{P}_{2} & \mathrm{P}_{3}\end{array}\right], \mathrm{Q}=\left[\begin{array}{c}\mathrm{Q}_{1} \\ \hdashline 0\end{array}\right]$, and thus $\mathrm{P}^{\prime} \mathrm{P}-\mathrm{QQ} \mathrm{Q}^{\prime}=\left[\begin{array}{c:c}\mathrm{P}_{1}^{\prime} \mathrm{P}_{1}+\mathrm{P}_{2}^{\prime} \mathrm{P}_{2}-\mathrm{Q}_{1}^{\prime} \mathrm{Q}_{1} & \mathrm{P}_{2}^{\prime} \mathrm{P}_{3} \\ \hline \mathrm{P}_{3}^{\prime} \mathrm{P}_{2} & \mathrm{P}_{3}^{\prime} \mathrm{P}_{3}\end{array}\right]$.
The upper-left element is $P_{1} P_{1}^{\prime}$, because $P_{2}^{\prime} P_{2}=\left[\begin{array}{ll}Q_{1}^{\prime} & 0\end{array}\right]\left[\begin{array}{l}Q_{1} \\ \frac{0}{0}\end{array}\right]=Q_{1}^{\prime} Q_{1}$ and $P_{1}^{\prime} P_{1}+Q_{1}^{\prime} Q_{1}=P_{1} P_{1}^{\prime}+Q_{1} Q_{1}^{\prime}$ (see Van der Leeuw, 1992). Apply the rules for the determinant of a partitioned inverse:
$\left|V^{-1}\right|=\left|P_{1} P_{1}^{\prime}\right|\left|P_{1} P_{1}^{\prime}-P_{2}^{\prime} P_{3}\left(P_{3}^{\prime} P_{3}\right)^{-1} P_{3}^{\prime} P_{2}\right|=\left|P_{1}^{\prime} P_{1}-Q_{1} Q_{1}^{\prime}\right|$, as $\left|P_{1}\right|=1$.
For the third part we write the matrices of which V_{1}^{-1} consists as lag matrices. Of course L is now of order $q \times q$. Using lag-matrices we get $P_{1}=\sum^{q-1} L_{j}(j, j) \vartheta_{j}$ and

$$
j=0
$$

$Q_{1}=\sum^{q} L_{j-q} \vartheta_{j}$, but as $L_{q}(q, q) \vartheta_{q}$ and $L_{-q} \vartheta_{0}=L_{q}^{\prime}(q, q)$ are zero, we write $j=1$
$V_{1}^{-1}=\left(\sum_{i=0}^{q} L_{i}(i, i) \vartheta_{i}\right)^{\prime} \sum_{j=0}^{q} L_{j}\left(j, j \vartheta_{j}\right)-\left(\sum_{i=0}^{q} L_{i-q} \vartheta_{i}\right)\left(\sum_{j=0}^{q} L_{j-q} \vartheta_{j}\right)^{\prime}$
Rewriting the transposed parts, multiplying and interchanging the indices in the second part gives:

$$
=\sum_{i=0}^{q} \sum_{j=0}^{q}\left(L_{j-i}(\max (0, j-i), j)-L_{j-i}(\max (0, j-i), q-i)\right) \vartheta_{i} \vartheta_{j}
$$

Conforming the definitions we get for the lag matrices:

$$
\begin{aligned}
& \sum_{\substack{\text { max }(0, j-1)}}^{\sum_{h-i}^{q-i} i_{h+i-j}^{\prime}} \sum_{h=1+}^{j} i_{\max (0, j-1)}^{\prime} i_{h+i-j}^{\prime}= \\
& 0 \text { if } i+j=q, \\
& \\
& =\sum_{h=j+1}^{q-1} i_{h} i_{h+1-j}^{\prime}=L_{j-1}(j, j) \text { if } j+i<q
\end{aligned}
$$

$$
=-\sum_{h=q-i+1}^{j} i_{h} i_{h+1-j}^{\prime}=L_{j-1}(q-i, q-i) \text { if } j+i>q .
$$

Hence

$$
V_{1}^{-1}=\sum_{i=0}^{q}\left(\sum_{j=0}^{q-i-1} L_{j-i}(j, j) \vartheta_{j}-\sum_{j=q-i+1}^{q} L_{j-i}(q-i, q-i) \vartheta_{j}\right) \vartheta_{i}
$$

or, as V_{1} is symmetric:

$$
=\sum_{j=0}^{q}\left(\sum_{i=0}^{q-j-1} L_{j-1}(j, j) \vartheta_{i}-\sum_{i=q-j+1}^{q} L_{j-1}(q-i, q-i) \vartheta_{i}\right) \vartheta_{j} . \square
$$

Theorem

Define $f_{i, j}$ as $\sum_{h=1}^{T-1-j} e_{h+j} e_{h+i}$ and $d_{i, j}$ as s^{2} times the sum of the elements of the $|i-j|^{\text {th }}$ off-diagonal of V_{1} without the first and last $\min (i, j)$ elements if $i+j<q$ and minus s^{2} times the sum without the first and last $\min (q-i, q-j)$ elements if $i+j>q$.

The AR-parameter vector ϑ is satisfies $H \vartheta=-h$, where the $(i, j)^{\text {th }}$ element of H is $f_{i, j}-d_{i, j}$ and $h_{i}=h_{i, 0}$.

Proof

A solution for the AR-parameter \hat{v} is found by solving the first order conditions $s^{2} \operatorname{tr} V^{-1} \partial V / \partial \vartheta+e^{\prime}\left(\partial\left(V^{-1}\right) / \partial \vartheta\right) e=0$. The determinantal part has as differential:
$\operatorname{tr}_{1}^{-1} d V_{1}=-\operatorname{tr} V_{1} d V_{1}^{-1}$.
For the differential we get

$$
\begin{aligned}
d V_{1}^{-1}= & \sum_{i=0}^{q}\left(\sum_{j=0}^{q-1-1} L_{j-1}(j, j) \vartheta_{j}-\sum_{j=q-i+1}^{q} L_{j-i}(q-i, q-i) \vartheta_{j}\right) d \vartheta_{1}+ \\
& \sum_{j=0}^{q}\left(\sum_{i=0}^{q-j-1} L_{j-1}(j, j) \vartheta_{1}-\sum_{i=q-j+1}^{q} L_{j-i}(q-i, q-i) \vartheta_{i}\right) d \vartheta_{j}
\end{aligned}
$$

Interchanging i and j in the second part and using $\operatorname{tr}_{1} L_{i-j}(i, i)=\operatorname{tr} V_{1} L_{j-i}(j, j)$ as
$V_{1}=V_{1}^{\prime}$, the result is

$$
\operatorname{tr} V_{1} d V_{1}^{-1}=2 \sum_{i=0}^{q}\left(\sum_{j=0}^{q-i-1} \operatorname{trV} V_{1} L_{j-1}(j, j) \vartheta_{j}-\sum_{j=q-i+1}^{q} \operatorname{tr} V_{1} L_{j-i}(q-i, q-i) \vartheta_{j}\right) d \vartheta_{1}
$$

The derivative is
$s^{2} \operatorname{tr} V_{1}^{-1} \partial V_{1} / \partial \vartheta_{1}=-2 s^{2}\left(\sum_{j=0}^{q-i-1} \operatorname{trV}_{1} L_{j-i}(j, j) \vartheta_{j}-\sum_{j=q-i+1}^{q} \operatorname{tr} V_{1} L_{j-i}(q-i, q-i) \vartheta_{j}\right)$.
Here $\operatorname{trV}_{1} L_{j-1}(j, j)=\sum_{h=j+1}^{q-1} \operatorname{tr}\left(i_{h-j+1}^{\prime} V_{1} i_{h}\right)=v_{i+1, j+1}^{*}+\ldots+v_{q-j, q-i}^{*}$, where $v_{i, j}^{*}$ is the
$(i, j)^{\text {th }}$ element of V_{1}. In the same way we get for the second part
$\operatorname{tr} V_{1} \mathrm{~L}_{\mathrm{j}-1}(\mathrm{q}-\mathrm{i}, \mathrm{q}-\mathrm{i})=\mathrm{v}_{\mathrm{q}-\mathrm{j}+1, \mathrm{q}-1+1}^{*}+\ldots+\mathrm{v}_{1, j}^{*}$.
Thus for the derivative to ϑ_{1} the coefficient of ϑ_{j} is the sum of the $(i-j)^{\text {th }}$ offdiagonal of V_{1} without the first and last $\min (i, j)$ elements times $-2 s^{2}$ if $i+j<q$. If $i+j>q$ we have a similar sum without the first and last min($q-i, q-j)$ elements times $2 s^{2}$.

For the second part $\mathrm{e}^{\prime}\left(\partial\left(\mathrm{V}^{-1}\right) / \partial \vartheta\right) \mathrm{e}$ we have
$e^{\prime} d V^{-1} e=e^{\prime}\left(\sum_{i=0}^{q} \sum_{j=0}^{q}\left(L_{j-i}(j, j)+L_{j-i}^{\prime}(j, j)\right) \vartheta_{j} d \vartheta_{i}\right) e=2 \sum_{i=0}^{q} \sum_{j=0}^{q} e^{\prime} L_{j-i}(j, j) e \vartheta_{j} d \vartheta_{i}$.
But as $e^{\prime} L_{j-1}(j, j) e=\sum_{h=1} e_{h+j} e_{h+1}=f_{i, j}$, we get for the differential
$2 \sum_{i=0}^{q} \sum_{j=0}^{q} f_{i, j} \vartheta_{j} d \vartheta_{i}$ and for the derivative $e^{\prime} \partial V^{-1} / \partial \vartheta_{i} e=2 \sum_{j=0}^{q} f_{i, j} \vartheta_{j}, i=1, \ldots, q$.
The first order condition becomes:
$\sum_{i, j}^{q} \vartheta_{j}-\sum_{i, v^{\prime}}^{q} \vartheta_{j}=0, \quad i=1, \ldots q$
$j=0 \quad j=0$
or as $\vartheta_{0}=1$:
q
$\sum\left(f_{i, j}-d_{i, j}\right) \vartheta_{j}=-\left(f_{i, 0}-d_{i, 0}\right), \quad i=1, \ldots q$.
$\mathrm{j}=1$

5. ARMA first order conditions

In the ARMA case the covariance matrix is more complicated than in the MA or AR case. Nevertheless it is possible to find a (conditional) ML-solution for both the MA and AR parameters. First we will study the MA part, next the AR part. This is possible because the covariance matrix - if not inverted - is simple enough to isolate the two parameter vectors. We state the results in the following theorem, that is proved in the next sections. In this section we use q for the number of mA and AR parameters. This gives no loss of generality as it is always possible to fill up the shorter one with zeros.

Theorem

The first order conditions for the ARMA model can be split in a MA part and an AR part.

The MA parameter satisfies $H \alpha=-h$, where the $(i, j)^{\text {th }}$ element of H is $h_{i, j}=\phi^{\prime}(i) \Delta^{-1} \phi(j)-\sum_{k=1}^{T} \sum_{i=1}^{T} \delta(i, j, k, 1) \gamma(k, 1)$ and $h_{i}=h_{i, 0}$.
Here
Δ is the inverse of the enlarged $A R$ covariance matrix,
$\phi(\mathrm{i})=\left(0 \ldots 0 \phi_{1} \ldots \phi_{\mathrm{T}} 0 \ldots 0\right)^{\prime}, \phi_{\mathrm{i}}$ is element i of $\mathrm{V}^{-1} e$,
$\leftarrow \mathrm{q}-1 \rightarrow \leftarrow \mathrm{~T} \rightarrow \leftarrow 1 \rightarrow$
$\delta(i, j, k, 1)$ is the $(k+q-i, l+q-j)^{\text {th }}$ element of Δ^{-1},
$\gamma(k, 1)$ is the $(k, 1)^{\text {th }}$ element of V^{-1}.

The AR-parameter vector satisfies $G \vartheta=-g$, where the $(i, j)^{\text {th }}$ element of G is

$$
g_{i, j}=\sum_{k=1}^{T+q-i-j} \zeta_{k+i} \zeta_{k+j}-\psi(i, j) \text { and } g_{i}=g_{i, 0} .
$$

Here
ζ_{1} is the $i^{\text {th }}$ element of $\zeta=\mathrm{Ze}, \mathrm{Z}=\Delta^{-1}[\mathrm{~N} \mathrm{M}]^{\prime} \mathrm{V}^{-1}$,
$\psi(i, j)$ is the sum of the elements of $(i-j)^{\text {th }}$ diagonal of
$Z V Z^{\prime}$, without the first and last $\min (i, j)$ elements.

5.1. MA-part conditions

To find the solution to the MA-part we proceed as follows. First define $\overline{\mathrm{M}}=\sum_{1}^{\mathrm{q}} \mathrm{L}_{1}(\mathrm{i}, \mathrm{i}) \alpha_{1}$ and $\phi=\mathrm{V}^{-1} \mathrm{e}$, as we did before, and $\Delta=\overline{\mathrm{P}}^{\prime} \overline{\mathrm{P}}-\overline{\mathrm{Q}} \overline{\mathrm{Q}}^{\prime} . \overline{\mathrm{M}}$ and $\overline{\mathrm{P}}$ have $\mathrm{i}=0$
dimensions $(T+q) \times(T+q), \bar{Q}(T+q) \times q$.
For the inverse of the covariance matrix we can write
$\mathrm{V}^{-1}=\mathrm{V}^{-1} \mathrm{VV}^{-1}=\mathrm{V}^{-1}\left[\begin{array}{ll}\mathrm{O}\end{array}\right] \overline{\mathrm{M}} \Delta^{-1} \overline{\mathrm{M}}^{\prime}\left[\begin{array}{ll}\mathrm{O} & \mathrm{I}\end{array}\right]^{\prime} \mathrm{V}^{-1}$.
Now, $\bar{M}^{\prime}\left[\begin{array}{ll}0 & I\end{array}\right]^{\prime} V^{-1} e=\bar{M}\left[\begin{array}{l}0 \\ \phi\end{array}\right]=\sum_{i=0}^{q} L_{i}^{\prime}(i, i)\left[\begin{array}{l}0 \\ \phi\end{array}\right] \alpha_{i}=\sum_{i=0}^{q} L_{-i}(0,0)\left[\begin{array}{l}0 \\ \phi\end{array}\right] \alpha_{i}=\sum_{i=0}^{q} \phi(i) \alpha_{i}$,
where $\phi(\mathrm{i})$ is defined above.
The quadratic part becomes $e^{\prime} V^{-1} e=\phi^{\prime} V \phi=\sum_{i=0}^{q} \sum_{j=0}^{q} \phi^{\prime}(i) \Delta^{-1} \phi(j) \alpha_{i} \alpha_{j}$ and its differen-
tial $d\left(e^{\prime} V^{-1} e\right)=e^{\prime} d V^{-1} e=2 \sum^{q} \sum^{q} \phi^{\prime}(i) \Delta^{-1} \phi(j) \alpha_{j} d \alpha_{1}$.
For the determinantal part we need $\operatorname{trV} V^{-1} d V$. As before we use $V=\left[\begin{array}{ll}I\end{array}\right] \bar{M} \Delta^{-1} \bar{M}^{\prime}[O I]^{\prime}$.
Observe,
$\left[\begin{array}{ll}0 & I\end{array}\right] \bar{M}=\left(\sum_{h=1}^{T} \mathbf{i}_{h} \overline{\mathrm{i}}_{h+q}^{\prime}\right)\left(\sum_{i=0}^{q} \sum_{h=1+1}^{T+q} \overline{\mathbf{i}}_{h} \overline{\mathrm{i}}_{h-1}^{\prime} \alpha_{i}\right)$.
Interchanging summations and replacing in the second part h by $k=h-q$, we get

$$
=\sum_{i=0}^{q} \sum_{h=1}^{T} i_{h} \bar{i}_{h+q-i}^{\prime} \alpha_{i} .
$$

Thus, V becomes

$$
V=\left(\sum_{i=0}^{q} \sum_{h=1}^{T} i_{h} \bar{i}_{h+q-i}^{\prime} \alpha_{i}\right) \Delta^{-1}\left(\sum_{j=0}^{q} \sum_{k=1}^{T} i_{k} \bar{i}_{k+q-j}^{\prime} \alpha_{j}\right)^{\prime}
$$

Interchange the summations and define the scalar $\delta(i, j, h, k)$ as $\bar{i}_{h+q-i}^{\prime} \Delta^{-1} i_{k+q-j}$,
the $(h+q-i, k+q-j)^{\text {th }}$ element of Δ^{-1}, the enlarged $A R$-covariance matrix. Now we have

$$
V=\sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{h=1}^{T} \sum_{k=1}^{T} \delta(i, j, h, k) i_{h} \bar{i}_{k}^{\prime} \alpha_{i} \alpha_{j} \text {, which gives }
$$

$$
d V=\sum^{q} \sum^{q} \sum^{T} \sum^{T} \delta(i, j, h, k) i_{h} \overline{\mathrm{i}}_{k}^{\prime}\left(\alpha_{j} d \alpha_{i}+\alpha_{i} d \alpha_{j}\right)
$$

$$
\mathrm{i}=0 \quad \mathrm{j}=0 \quad \mathrm{~h}=1 \quad \mathrm{k}=1
$$

$$
=2 \sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{h=1}^{T} \sum_{k=1}^{T} \delta(i, j, h, k) i_{h} \bar{i}_{k}^{\prime} \alpha_{j} d \alpha_{i}
$$

because $\delta(i, j, h, k)=\delta(i, j, h, k)^{\prime}=\delta(j, i, k, h)=\delta(j, i, h, k)$.
For $\operatorname{tr} V^{-1} d V$ we get, writing $\gamma(h, k)=i_{h}^{\prime} V^{-1} i_{k}$, the $(h, k)^{t h}$ element of V^{-1}, the inverse of the complete covariance matrix,

$$
\begin{aligned}
\operatorname{tr} V^{-1} d V & =\operatorname{trV}^{-1}\left(2 \sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{h=1}^{T} \sum_{k=1}^{T} \delta(i, j, h, k) i_{h} \bar{i}_{k}^{\prime} \alpha_{j} d \alpha_{i}\right) \\
& =2 \sum_{i=0}^{q} \sum_{j=0}^{q} \sum_{h=1}^{T} \sum_{k=1}^{T} \delta(i, j, h, k) \gamma(h, k) \alpha_{j} d \alpha_{i} .
\end{aligned}
$$

5.2. AR-part conditions

Again we have to evaluate $\operatorname{trV}^{-1} d V$ and $e^{\prime} d V^{-1} e$. The expression for V^{-1} is ($\left.[N M]\left[\bar{P}^{\prime} \bar{P}-\bar{Q} \bar{Q}^{\prime}\right]^{-1}[N M]^{\prime}\right)^{-1}$, while we only can isolate the AR-parameters in the expression $\Delta=\bar{P}^{\prime} \bar{P}-\bar{Q} \bar{Q}^{\prime}$ (cf. (9)). Therefore we define $Z=\Delta^{-1}[N \quad M]^{\prime} V^{-1}$. Then $V^{-1}=Z^{\prime} \Delta Z$, as is easily verified. The differential in the ϑ-direction is $d V^{-1}=-V^{-1} d V V^{-1}=-V^{-1}\left[\begin{array}{l}N\end{array}\right] d \Delta^{-1}\left[\begin{array}{ll}N\end{array}\right]^{\prime} V^{-1}=Z^{\prime} d \Delta Z$.

The quadratic form $e^{\prime} d V^{-1} e$ is, using $\zeta=\mathrm{Ze}$ and (9),

$$
\begin{aligned}
e^{\prime} d V^{-1} e & =-\zeta^{\prime} d \Delta \zeta \\
& =-\zeta^{\prime}\left(\sum_{i=0}^{q} \sum_{j=0}^{q}\left(L_{j-i}(j, j)+L_{j-i}^{\prime}(j, j)\right) \vartheta_{j} d \vartheta_{i}\right) \zeta \\
& =-2 \sum_{h=1}^{T+i-j} \zeta_{h+i} \zeta_{h+j} \vartheta_{j} d \vartheta_{i} .
\end{aligned}
$$

The determinantal part becomes, using lag matrices and some basic properties of the trace operator:

$$
\begin{aligned}
\operatorname{tr} V^{-1} d V & =-\operatorname{tr} V d V^{-1}=\operatorname{tr} V Z^{\prime} d \Delta Z=\operatorname{tr} Z V Z^{\prime}\left(\sum_{i=0}^{q} \sum_{j=0}^{q}\left(L_{j-i}(j, j)+L_{j-1}^{\prime}(j, j)\right) \vartheta_{j} d \vartheta_{1}\right) \\
& =2 \sum_{\substack{i=0 \\
T+q-1-j}}^{q} \sum_{\substack{ \\
\mathrm{j}=0}}^{T+q-1-j} \sum_{n=1}^{T} i_{h+j}^{\prime} Z V Z^{\prime} i_{h+1} \vartheta_{j} d \vartheta_{j} .
\end{aligned}
$$

Here $\psi(i, j)=\sum i_{h+j}^{\prime} Z V Z^{\prime} i_{h+1}$ is the sum of the elements of $(i-j)^{\text {th }}$ diagonal of $\mathrm{h}=1$
ZVZ' without the first $\min (i, j)$ elements. a

Appendix

Lag matrix

1. Definition

Define i_{1} as the $N \times l$ vector of which all elements are zero, except element i, which is 1. Next define
$\mathrm{N}-\mathrm{m}+\mathrm{k}$
$L_{k}(n, m)=\sum_{i=n+1} i_{i} i_{1-k}^{\prime},|k| \leq N-1, n \geq \max (0, k), m \geq \max (0, k)$. If both n and m are zero we will write L_{k}.

This definition of L implies that L has one (off-)diagonal consisting of one's, all other elements being zero. If $n=m=0$, then every element of this diagonal is equal to one. We allow, however, the first or last elements of this diagonal to be zero. To define which elements are zero we have the choice between the numbers of first rows and the last columns on the one hand, or first columns and last rows on the other. We take, arbitrarily, the first way. This means that n and m are positive in case k is positive. If $n=m=k=0$ we get the identity matrix. If k is positive L can be regarded as a lag matrix, with the same property as the usual lag operator. Let a be an arbitrary vector of length N. Then, for $k \geq 0$:

$$
\begin{aligned}
L_{k}(k, k) & =\sum_{i=1+k}^{N} i_{i} i_{i-k}^{\prime} a^{N} \\
& =\sum_{i=1+k} i_{1} a_{i-k}^{\prime} \\
& =\left(\begin{array}{lll}
0.0 & a_{1} . . a_{N-k}
\end{array}\right)^{\prime}
\end{aligned}
$$

If n or m is greater than k the $n-k$ first elements or $m-k$ last elements disappear. We do, however, not exclude negative values for k. In this sense k is not an ordinary lag matrix. In the next sections we give some properties of L.

2. Properties

Transpose:
$L_{k}^{\prime}(n, m)=L_{-k}(n-k, m-k)$
Proof

$$
\begin{aligned}
L_{k}^{\prime}(n, m) & =\left(\sum_{i=1+n}^{N-m+k} i_{i} i_{i-k}^{\prime}\right)^{\prime} \\
& =\sum_{i=1+n}^{N-m+k} i_{i-k} i_{i}^{\prime}
\end{aligned}
$$

Changing the index i to $j=i-k$ we get

$$
\begin{aligned}
& \sum_{j=1+n-k}^{N-(m-k)-k} i_{j} i_{j+k}^{\prime} \\
= & L_{-k}(n-k, m-k) .
\end{aligned}
$$

Multiplication:
$L_{k_{1}}\left(n_{1}, m_{1}\right) \cdot L_{k_{2}}\left(n_{2}, m_{2}\right)=L_{k_{1}+k_{2}}\left(\max \left(n_{1}, n_{2}+k_{1}\right), \max \left(m_{1}+k_{2}, m_{2}\right)\right.$
Proof

This expression is only non-zero if $j=i-k_{1}$, or $i=j+k_{1}=h$.

$$
\begin{aligned}
& \sum_{h=1+n_{1}}^{N-m_{1}+k_{1}} \sum_{h=1+n_{2}+k_{1}}^{N-m_{2}+k_{2}+k_{1}} i_{h-k_{1}} i_{h-k_{1}}^{\prime} i_{h-k_{1}-k_{2}}^{\prime}
\end{aligned}
$$

Here h runs from $\max \left(1+n_{1}, 1+n_{2}+k_{1}\right)$ to $\min \left(N-m_{1}+k_{1}, N-m_{2}+k_{2}+k_{1}\right)$, which is the same as from $1+\max \left(n_{1}, n_{2}+k_{1}\right)$ to $N-\max \left(m_{1}+k_{2}, m_{2}\right)+k_{1}+k_{2}$, while the lag is equal to $k_{1}+k_{2}$.

References

Anderson, T.W. and R.P. Mentz (1982), Maximum Likelihood Estimation in Autoregressive and Moving Average Models, Time Series Analysis: Theory and Practice, Amsterdam.

Beach, C.M. and J.G. MacKinnon (1978), A Maximum Likelihood Procedure for Regression with Autocorrelated Errors, Econometrica, 46.

Judge, G.C. et al.(1985), The Theory and Practice of Econometrics, New York.
Kohn, R. and C.F. Ansley (1985), Computing the Likelihood and its Derivatives for a Gaussian ARMA Model, J. Statistical Computation and Simulation, 22.

Van der Leeuw, J.L. (1992), The Covariance Matrix of ARMA-errors in Closed Form, Journal of Econometrics, forthcoming.

Magnus, J.R. (1978), Maximum Likelihood Estimation of the GLS Model with Unknown Parameters in the Disturbance Covariance Matrix, J. of Econometrics, 7.

Pagan, A. (1974), A Generalised Approach to the Treatment of Autocorrelation, Australian Economic Papers, 13.

Zinde-Walsh, V. and J.W. Galbraith (1991), Estimation of a Linear Regression Model with Stationary ARMA(p,q) Errors, J. of Econometrics, 47.

IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon
533 J.C. Engwerda, L.G. van Willigenburg LQ-control of sampled continuous-time systems Refereed by Prof.dr. J.M. Schumacher

534 J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{*} X^{-1} A=Q$. Refereed by Prof.dr. J.M. Schumacher

535 Jacob C. Engwerda The indefinite LQ-problem: the finite planning horizon case Refereed by Prof.dr. J.M. Schumacher

536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs Effectivity functions and associated claim game correspondences Refereed by Prof.dr. P.H.M. Ruys

537 Jack P.C. Kleijnen, Gustav A. Alink
Validation of simulation models: mine-hunting case-study Refereed by Prof.dr.ir. C.A.T. Takkenberg

538 V. Feltkamp and A. van den Nouweland Controlled Communication Networks Refereed by Prof.dr. S.H. Tijs

539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model Refereed by Prof.dr. Th.C.M.J. van de Klundert

540 J.J.G. Lemmen and S.C.W. Eijffinger
The Degree of Financial Integration in the European Community Refereed by Prof.dr. A.B.T.M. van Schaik

541 J. Bell, P.K. Jagersma
Internationale Joint Ventures
Refereed by Prof.dr. H.G. Barkema
542 Jack P.C. Kleijnen
Verification and validation of simulation models Refereed by Prof.dr.ir. C.A.T. Takkenberg

543 Gert Nieuwenhuis
Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten

```
544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
    Multi-Product Cycling with Packaging in the Process Industry
    Refereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. Engwerda
    Calculation of an approximate solution of the infinite time-varying
    LQ-problem
    Refereed by Prof.dr. J.M. Schumacher
```

546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach
Refereed by Prof.dr. A.J. de Zeeuw
547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op
Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties
voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution
restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart Towards an axiomatization of orderings Refereed by Prof.dr. P.H.M. Ruys

553 J.H.J. Roemen

The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen

```
556 Ton Geerts
    Regularity and singularity in linear-quadratic control subject to
    implicit continuous-time systems
    Communicated by Prof.dr. J. Schumacher
557 Ton Geerts
    Invariant subspaces and invertibility properties for singular sys-
    tems: the general case
    Communicated by Prof.dr. J. Schumacher
558 Ton Geerts
    Solvability conditions, consistency and weak consistency for linear
    differential-algebraic equations and time-invariant singular systems:
    the general case
    Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaïbi
    Monotonicity and stability of periodic polling models
    Communicated by Prof.dr.ir. O.J. Boxma
560 Ton Geerts
    Free end-point linear-quadratic control subject to implicit conti-
    nuous-time systems: necessary and sufficient conditions for solvabil-
    ity
    Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
    Expected Utility of Life Time in the Presence of a Chronic Noncom-
    municable Disease State
    Communicated by Prof.dr. B.B. van der Genugten
562 Jan van der Leeuw
    The covariance matrix of ARMA-errors in closed form
    Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
    Optimization of polling systems with Bernoulli schedules
    Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
    Density of the least squares estimator in the multivariate linear
    model with arbitrarily normal variables
    Communicated by Prof.dr. M.H.C. Paardekooper
565 René van den Brink, Robert P. Gilles
    Measuring Domination in Directed Graphs
    Communicated by Prof.dr. P.H.M. Ruys
566 Harry G. Barkema
    The significance of work incentives from bonuses: some new evidence
    Communicated by Dr. Th.E. Nijman
```

567 Rob de Groof and Martin van TuijlCommercial integration and fiscal policy in interdependent, finan-cially integrated two-sector economies with real and nominal wagerigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs. R.M.J. Heuts
The value of information in a fixed order quantity inventory system
Communicated by Prof.dr. A.J.J. Talman
569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. Talman
Finding a Nash-equilibrium in noncooperative N -person games by
solving a sequence of linear stationary point problems
Communicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression
analysis of simulation experiments
573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructur
574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods
and the Power-Series Algorithm
Communicated by Prof.dr.ir. O.J. Boxma
576 Herbert Hamers
A silent duel over a cake
Communicated by Prof.dr. S.H. Tijs
577 Gerard van der Laan, Dolf Talman, Hans Kremers
On the existence and computation of an equilibrium in an economy with
constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys
578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens
Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts

579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts
Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage Process Manufacturing Systems
Communicated by Prof.dr. F.A. van der Duyn Schouten
580 H.G. Barkema
The Impact of Top Management Compensation Structure on Strategy Communicated by Prof.dr. S.W. Douma

581 Jos Benders en Freek Aertsen
Aan de lijn of aan het lijntje: wordt slank produceren de mode?
Communicated by Prof.dr. S.W. Douma
582 Willem Haemers
Distance Regularity and the Spectrum of Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove
Strategic Marketing, Production, and Distribution Planning of an
Integrated Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
584 J. Ashayeri, F.H.P. Driessen
Integration of Demand Management and Production Planning in a
Batch Process Manufacturing System: Case Study
Communicated by Prof.dr. F.A. van der Duyn Schouten
585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt
Blending Modelling in a Process Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten
586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst
Application of Mixed Integer Programming to
A Large Scale Logistics Problem
Communicated by Prof.dr. F.A. van der Duyn Schouten
587 P. Jean-Jacques Herings
On the Structure of Constrained Equilibria
Communicated by Prof.dr. A.J.J. Talman

IN 1993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl The Twin-Debt Problem in an Interdependent World Communicated by Prof.dr. Th. van de Klundert

589 Harry H. Tigelaar
A useful fourth moment matrix of a random vector
Communicated by Prof.dr. B.B. van der Genugten
590 Niels G. Noorderhaven
Trust and transactions; transaction cost analysis with a differential behavioral assumption
Communicated by Prof.dr. S.W. Douma
591 Henk Roest and Kitty Koelemeijer
Framing perceived service quality and related constructs A multilevel approach
Communicated by Prof.dr. Th.M.M. Verhallen
592 Jacob C. Engwerda
The Square Indefinite LQ-Problem: Existence of a Unique Solution Communicated by Prof.dr. J. Schumacher

593 Jacob C. Engwerda
Output Deadbeat Control of Discrete-Time Multivariable Systems
Communicated by Prof.dr. J. Schumacher
594 Chris Veld and Adri Verboven
An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices
Communicated by Prof.dr. P.W. Moerland
595 A.A. Jeunink en M.R. Kabir
De relatie tussen aandeelhoudersstructuur en beschermingsconstructies Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers
Quasi-symmetric designs related to the triangular graph
Communicated by Prof.dr. M.H.C. Paardekooper
597 Noud Gruijters
De liberalisering van het internationale kapitaalverkeer in histo-risch-institutioneel perspectief
Communicated by Dr. H.G. van Gemert
598 John Görtzen en Remco Zwetheul
Weekend-effect en dag-van-de-week-effect op de Amsterdamse effectenbeurs?
Communicated by Prof.dr. P.W. Moerland
599 Philip Hans Franses and H. Peter Boswijk
Temporal aggregration in a periodically integrated autoregressive process
Communicated by Prof.dr. Th.E. Nijman

600	René Peeters On the p-ranks of Latin Square Graphs Communicated by Prof.dr. M.H.C. Paardekooper
601	Peter E.M. Borm, Ricardo Cao, Ignacio García-Jurado Maximum Likelihood Equilibria of Random Games Communicated by Prof.dr. B.B. van der Genugten
602	```Prof.dr. Robert Bannink Size and timing of profits for insurance companies. Cost assignment for products with multiple deliveries. Communicated by Prof.dr. W. van Hulst```
603	M.J. Coster An Algorithm on Addition Chains with Restricted Memory Communicated by Prof.dr. M.H.C. Paardekooper
604	```Ton Geerts Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems Communicated by Prof.dr. J.M. Schumacher```
605	B.B. van der Genugten Beat the Dealer in Holland Casino's Black Jack Communicated by Dr. P.E.M. Borm
606	Gert Nieuwenhuis Uniform Limit Theorems for Marked Point Processes Communicated by Dr. M.R. Jaïbi
607	```Dr. G.P.L. van Roij Effectisering op internationale financiële markten en enkele gevolgen voor banken Communicated by Prof.dr. J. Sijben```
608	R.A.M.G. Joosten, A.J.J. Talman A simplicial variable dimension restart algorithm to find economic equilibria on the unit simplex using $n(n+1)$ rays Communicated by Prof.Dr. P.H.M. Ruys
609	Dr. A.J.W. van de Gevel The Elimination of Technical Barriers to Trade in the European Community Communicated by Prof.dr. H. Huizinga
610	Dr. A.J.W. van de Gevel Effective Protection: a Survey Communicated by Prof.dr. H. Huizinga

Bibliotheek K. U. Brabant

17000011727428

[^0]: ${ }^{1}$ I am indebted to H.H. Tigelaar for his suggestions and comments on an earlier draft.

