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PARAMETER ESTIMATIQN IN THE EXPONENTIAL
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A MONTE CARLO STUDY FOR SOME GOODNESS

OF FIT TESTS




Section 1

In this paper we first consider the two-parameter exponential
density function
(=

£f(x; a,8) =~ e B (x > a). I

1
B

from which n independent observations are drawn.
We shall derive unbiased estimators for a and B which have minimum va-
riance.

In doing this we make use of the following theorem ) &

For variables coming from an exponential density function, we can prove

the following:
n
e Py (éi - _(1)) has a I'(0, B, n-1) density;

n
z, (5i—5(1)) are statistically independent;

2. 5(1) and N
3. X4y has a TI'(a, % , 1) density.
ey
-1

Here T'(a, B, y) = —;l——— e 8 (x=a)Y (x>as B> 0,9 > 0)

8'T(y)
and EIRREE x_ (random variables) are drawings from (1.1),
= def . ( )
X1y = min (xy5...5x ).

The expectation of a I'(a,B,y) density function is a + By.

Now let's say we have x X independent drawings from a density func-

1

tion given by formula (1.1), then by making use of the quoted theorem,
n

we have 2 (Ei-£(1)) following a I (0,8,n-1) density function, so with

an expectation
n
g{lgl (li.l(‘]))} = (n-1)8 . .....(1.2)

An unbiased estimator B for B is



w B =

n (Xe=%;.1)
= F sletlle . e (1.3)

3 :i;imum variance [2] , [ 3] .

For o an unbiased estimator is

n
: i 2a)) (1.4)

‘1/ fl(n—‘l) .....

Thnis is easy 0 see

¥ = oo #

= | I¥

S 1
g(§)=6(1/1\?—
.

5 Jro

E. Zpstein [ 3] has proved that & has also minimum variance.

To test the hypothesis % : B = 30 we can use as a test statistic
n
2(n-1)% . 8 .-
o 2(n-1B 2 gE (% - xgy)
L: = 7 S = Hiadm {(t:5)
=1 ] B8
© o

which is distributed as 7 (0,2,n-1) under the null hypothesis, or as

o

- 2
X2(n=1)"
It is now possible to construct a two-sided confidence interval for §°

with an unreliability of 2e,

) n

2 3Iq bxy = xeqy) 2 GE (g - 2(q)) (1.6)
5 ; 2 e e .6),
Xa(n-1){1-¢) Xo(n-1){)

in which x;(n_1)(1-e) and xg(n_1)(a) are respectively the upper and

lower tail percentage points of the Xo( -distribution.

n-1)
‘we may construct a shortest confidence interval for B.

H

ne term shortest confiderce interval needs clarification.

be a random drawing from a distribution with density function

B

y
“(x3;8). In using the standard method for obtaining a confidence interval
ror 8, one seeks a random variable T(xX,,...X ; 8) = T(8) whose distribu-

tior 1is independent of 8. Then the probability statement

Pla < T(8) <b) = 1 -y



is converted to
Flg, < e x) = 1=y

, W, are calculated

and, after observing X ...x  the specific numbers w 5

]
and form the endpoints of the confidence interval.
For every T(8), a and b can be chosen in different ways, one of which

is to make w_, - W, & minimum.

2 1

Such an interval based up on T(8) is called the shortest interval.

It may, however, be possible to find another random variable T'(6) which
yields an even shorter interval.

We know that

n
;L4 (li_5(1)) is I'(0,B,n-1) distributed,

and making the transformation

2y n
z2 =45, wherey= .I, (5i_£(1))’ we find
2z
f(z) = —H:T_l_—__ e 2. Mo r(o,2,n-1) or X:(n—1)'
2 I'(n-1)
So the stochastic variable
n
z = ~ i£1 (Ei-£(1)) has a = densit
= B X2(n-1) e

n
2 @F (5.—5 )
P(&< 1=1 Bl (1) <b)= 1-y ....-(1-7)

or



n
E (x; x(1)) 2 ;Z, (x5 x(1))

P
( b a

The length of the interval is

T 5 wswawil1:9)

CJ“|—~l

n
=2,

i XX (1) B

The Lagrange function can be written as

b
, (ii_£(1)> {i w2 Fod 3o F 2le) dg ~ 1=y sl N0

a

H
[[[ssiye]

b (a,b,k) =2, %

The resulting conditions for a and b are

The numerical solution of (1.11) for a and b has been obtained to four

significant figures by Tate and Klett [ k1, for

v =2 (1) 29 ; v degrees of freedom

1-y = .90, . 95, . 99, . 995, . 999.

To conctruct a confidence interval for a and a test for the hypothesis

HO e = ol s we make use of the following theorems.

First theorem [ 1 ]:

iy X, and x, are statistically independent with density function I'(0,8, y1)

X

~and I'(0,8, y2), then the stochastic variable y = has a B-density

: X%
function

Plyy¥y,)  v4-1
Bilys ¥ye ) = T Ty ¥ (1-y) (8 = 3 2 1



Second theorem [ 5 ]:

1 . -
= ?—z can be derived from the B-density-function.

Third theorem [ 5 ]:

If x. (i = 1,...n) are independent stochastic variables with density
=i

n
functions T (a., B, Yi)’ then the stochastic variablei§1§_i has a
i S
r (Z a5 B, I yi) density.
i i
So the test statistic
n(x -a) n(x;.~ a

P o=et1) ~ % = =31} To] (1.12)
L = = siwams 1w

i &7 xg)) * o (xgyme)) B (x- a)
has a B(1,n-1) density function under H , namely

n=-2
B(T,; 1,0-1) = (n=1) (1-T,) (8 =T _ <1) . cemswl1.13)
2 D — ey

The significance levels for a T2 value are

T2 n-2 1
k, = /7 (n=1) (1-u)""° dqu = 1-(1-1_ )™, NN o 919
1 2

o
k= [1-p 5
r 2

When 22 is a test statistic and f(T2) its density function under Ho,

then we mean with T2(e) that value, for which

T, (e)

é‘ f(TQ)dT2=e :

For the critical value T2(s) we find



:‘
1 |—

T () =1- (1=-€) and analogous T2(1—e) = 1-¢

The upper tail of the confidence intervel can be found as follows

FL, = Bote)) 5@+

Pla_ > 5qy7E Tp L2
o= 1-T2(e)

Méreover a is anyhow smaller than the smallest drawing from the density

Eimi)

SO

é“)'g T2 (6)
1-T, (€) (1) veee.(1.16)

is a confidence interval for a with unreliability €.

The question is if this is the best interval in the sense that the ex-
pected length of the interval is minimal in revue to other possible in-
tervals.

First of all we shall calculate the expected length of (1.1€6) and then
look for a better interval.

The expected length of (1.16) is

(a + £ )(1-1,(e)) - o = £+ Ty(e)(arb)

1 = T2 (el



T2 (e)

1
-, (o) CUw

If we deal equivalent with both sides of the interval, namely

E =
) - 2% @) xyy - ET,0-9) | (1.17)
, L :
) 1,18

€
1-T (2
then we can prove that the expected length of this last interval is

shorter than (1.16).
We shall now caiculate the expected length of the new interval (1.17)

%, £ piad = 8 £
2 + ==(a* 8) T, (1- 2) ) =t =0 (5)(at8)
z £
1= B {1= 5) 1= (3)
Suppose § = g/2
1 -
av 2 - (1-6"7"] (at8) ar £ 2 (12(126)"7T) (avp)
) " . kN
<Sn-1 (1_6)n—1
. 1 1 1
=i -) 8L i —
(1_6)n—1 5n-1

=
=

e\n-1
<§)

If interval (1.17) is better than (1.16), we must have

=

1
> =
1—T2(5) 4 1

)n-1

)n-1 (

=
e
1
o
N m



or
-
=1

[0 1 _ 1

=l

n=1 gy\n-1 eyn=-1
(1-¢) (1 - %) (%)
We know that
-1+ 11 > O
5 n-1
(=
1 1
= b
1 1 0
(1—e)n_1 (1 - %)n—T

We have found now that interval (1.17) is better. It was not possible

for us to construct s shortest interval for o with the test statistic

Section 2

We now consider the one-parameter exponential density function

£(x38) = % e

™ | X

w0 mim w2 1)

The likelihoodfunction for a sample of n independent observations is

n

184%4

oo B venenl2.2)




The likelihood estimator for B for n independent drawings XyeoooX
is
n
s Z. X
%Ii] L moalie 2 comenf 2.3)
B=Db
n
The density function for z, where z = ;L X5 is
_z
1 n-1 B - 3 P
flz38.40) = ., . & e and for the density function for b we
8 TI'(n)
get
bn
g(gsﬁ,n)=n*n (bn)? " e B
B°T(n)
A confidence interval is constructed as follows
ho(8) R
/s g(b3R,n)d b = €. o aiga o 0B
3 bn = 2bn gﬁ = o (B
Suppose > : + X B P ax 5
The integral in (2.4) becomes then
2nh, (8) &
_ 4 L=
fo 8 e & ! - £ dx = € ,
27 I(n)
from which h1(B) can be written as a function of B
2
BXop, (€)
h1(8) - — o wivie (20T
Analogous we find the other limit
2
BX21’1 (1-6)
B (B = —— : & s s 2]

2n



The confidence interval for B 1s now

n B
2 ik X by
> 3 > s amew (2.7)
Xop(1-€) Ko (e)

It is again possible to construct a shortest confidence interval for

B, via the test statistic T = 2%2 which follows a Xgn distribution.
We have as a probability statement
2n§

Bla ¢ —— < B} = 1 =¥
or

2n§ 2n§
P( < B < V& T=5

b a

The length of the interval is

2n§ 2n§
L= R and the Lagrange function
2n§ 2n§ b
g(a,b,)\)=—a—_—;+x {, £(T)at - (1-y)}} . swms o 0BLE)

The resulting conditions for a and b are a2f(a) = bzf(b) together

. . . b _ . .
with the integral Jafgn(t)dt = 1-y, where fgn(t) is the chi-square
density with 2n degrees of freedom, which will give a solution for

a and b which has been tabulated by Tate and Klett.
Section 3

Some goodness of fit tests for exponential distributions

3.1 The Cramdr - Von Mises - Smirnov statistic

The following - "atistical problem is treated: n independent drawings

% X from a continuous function F(.) are given and we want to test

10
the hypothesis HO



Thus, we want to test whether or not the observations are coming
from an exponential distribution with location parameter a and scale
parameter B.

The criterion for the test statistic is an integrated squared error

=l -y

between the empirical distribution En(.) of the data (i.e. Fn(x) =
if k observations are < x) and the exponential distribution F(.)
obtained by estimating the unknown parameters in F(.) assuming Ho is true.

The test function is then

€, =u J{E (%) - F(x)1° af(x) =
..... (3.2)
n JEo(x) d F(x) +n /FP(s) a F(x) - 2 n JF_(x) F(x) a F(x)

Integration along the real line gives:

first term

n fiz(x) d i(x) = % 5
second term
" B X
n IF2(x) dF(x)=n g, I (1) F2(x) d F(x) +n - n F(x =
- — i=2 x(l 1) =n =(n)
= 1-1 A 2 E 3
n oL 2 (E(E(i) = E(E(l 1))] +n-n E(E n)) =
n 8
g -1 & _
“n gk T Exgy) vns
n
n .
21 -1 2 .
T ik Ty Exgy) vns
e Here we have underlined F because F is a function of the

stochastic drawings, and thé grgument of the function is a stochastic
ordered drawing.



third term

- 2 n ﬁ() 1 -~
2n JE (x) E(x) d E(x) = 2 n I, fx(l : =L Bta) 4 Bk #
X(i-1
’ 2 2 — a2 22
+n Jé(p) F(x) a4 F(x) = z, Ci-3) LE (x(i} -F (5(i 1)H
~2 2
+nl1-F (é(n)] - ;L E (—(1) + H §
so that
s El a2 1 1 = e n
gn = ;L4 F(x i)) - P (23 = 1) E(é(i)) +3 where X1y Xy

denote stochastic ordered drawings.

The hypothesis HO must be rejected if gﬂ is suitable large.

The distribution of gn for n = 10, 20, = is approximated by J.v. Soest
[ 6] for the cases: a .a and B both unknown b .o known and B unknown.
A useful property for a Monte Carlo study is that Qn is invariant for
the transformation E%Q , so that the statistic is independent for spe-

cial values of a and B. This can be seen as follows

A, (5% - F 52

Suppose 5é5 =y > dx = B dy, so that gﬂ becomes I[En(y)—i(y)]2 dﬁ(y).

J. v. Soest has also calculated the power of the test, but unfortunely

only for a sample size of n = 20.

3.2 The Kuiper statistic for goodness of it

Kuiper [ 7 | has proposed !n’ an adaptation of the Kolmogorov statis-
tic, to test the null hypothesis that a random sample of size n, comes
from a populati 1 with given continuous distribution function.

The Kuiper test statistic is defined as



= 13 =

v, = sup {F () - F(x)} - inf E (=) = F(x)}.

—to< ¥ <o - <o

Kuiper has derived the asymptotic distribution function of yn.

It is independent of the form of F(x), and the convergence of the
cunulative distribution function of the test statistic to its asymp-
totic form is quite rapid.

M. Stephens [ 8] has given exact significance points of Xn for a

completely specified hypothesis.

When the null hypothesis is not completely specified and some para-
meters must be estimated from the sample, the distribution of yn is
no longer independent of the particular form of F(x), which implies
that a table of significance points must be made for every form of
F(x).

Making use of [ 9 ] it may be shown that the distribution of the test

statistic is independent of the true parameters of scale and location.

(This is an important property for the Monte Carlo study, which will
follow here after.)
The empirical distribution is the same as in section 3.1 and the

exponential distribution E(.) is as follows

(x-a)

8

a
=

X
ax = e (12} .

F(x) = fz é e
The procedure runs as follows.

Given a set of observations KyenoX) which are arranged in increasing
order, the Kuiper test statistic can be calculated.

To derive the distribution of !ﬂ we drew a random sample of‘sizg n
from the two parameter exponential distribution with location a and
scale B. We did the same also for the one parameter exponential dis-
tribution. Then B and ® were estimated, or B alone [see (1.3) and
(1.4)land the statistic Vn was computed. For every sample size n

we repeated this procedure until all the calculated eritical points of
!ﬂ were accurate to at least 0.001.

The significance levels used in the computation are 1%, 2,5%, 5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%.

In table 1 and 2 we give only the levels from 1% to 20%.



Table 1.

= 1 =

Estimated critical points for the Kuiper test statistic

for testing eXxponentiality with scale P and location ©
estimated .
Sample size Significance levels
n Number of 1% 2.5% 5% 10% 15% 20%
replications
N )

5 30.000 0.470 0.428 0.388 0.352 0.328 0.308

6 24,000 0.461 o0.423 0.392 0.349 0.324 0.306

7 39.000 0.459 o0.418 0.386 0.350 0.325 0.304

8 37.000 0.450 o0.412 0.379 0.343 0.320 0.302

9 27.000 o.k30 A hey 0.348 0,224k 0.312 n,205
1o} 22.000 0425 0.393 0,362 0,329 0.307 0.290
11 25.000 0.4b19 ©0.383 0.353 0.321 0.300 0.28%4
12 40,000 0.412 0.376 0.346 0.313 0.293 0.278
13 20.000 0.402 0.369 ©0.340 0.308 0.288 0.273
14 28.000 Pw393 D0.358 0,331 @.301 0.282 0.267
15 20.000 0.382 0.350 0.32% 0.295 0.276 0.261
16 17.000 0.378 @.3%2 0317 0,288 0.276 0,256
i 16.000 0,366 0.336 0,312 ©.28L 0.267 0.252
18 20.000 0+359 @©@.329 0.306 0.279 0.261% 0.248
19 19.000 0.354 0.322 0.300 0.273 0.256 0.243
20 14,000 0.347 0.318 0.296 0.269 0.253 0.240
21 29,000 0.340 0.312 0.289 0.265 0.2L8 0.236
22 25.000 0.333 1©0.305 0.283 ©0.260 0.24k 0.232
23 24,000 0.330 0.301 0.280 0.256 0.2L0 0.228
2L 26.000 O0.322 0Q.29% 0.276 0.253 0.238 0.226
25 20.000 0.318 10.293 0.272 0.248 0.933 0.522
26 12.000 0.312 0.287 0.26b6 0.2k6 0.230 0.219
27 19.000 0.310 0.284 o0.264 0,241 0.227 0.216
28 24,000 6.303 0.279 0,259 0.238 0.228 0.214



29
30
Lo
50
60
70
80
90
100
250

22.000
15.000
22,000
15.000
16.000
16.000
11.000
18.000
12.000

9.000

1%

0,302
0.296
0.26L4
0.238
0.222
0.208
0.19k
0.186
0.179
0.114

- 15 -

2.5%

0.278
0272
0.2k4k
0.221
0.205
0.192
0,180
0.170
0.16L
0107

5%

0.258
0.25k
0.227
0.206
0.191
G108
0.168
0.159
0.153
0.100

10%

0.236
0.232
0.207
0.189
0.176
0.163
0, 1515
0.146
0.1k40
0.092

15%

0.222
0.219
0.196
0. 1/78
0.166
0.15k
0.146
0.138
0.132
0.087

20%

0.212
0.209
0.186
0170
0.158
0.148
0.1k%0
0.132
B 12T
0.08L4



Table 2. Estimated critical points for the Kuiper test statistic
for testing exponentiality with scale B estimated

Sample Number of significance levels

size replications 1% 2.5% 5% 10% 15% 20%
n N

5 L7500 0.716 0.667 0.616 0.549 0,510 0477
6 72500 0.701 0©.647 0.592 0.531 0.490 0.k459
7 47500 L0680 @.622 0.572 0.512 0.Lk7h 0.L443
8 92500 0.656 0.598 0.549 0.491 0.455 0.426
) 52500 0.634 0.578 0.529 0.475 0.438 0.409
10 55000 0.618 0.560 0.511 0.k457 0.k22 0.397
11 31000 0.601 0.546 0.500 0.LL46 0, bqg 0.387
12 30000 0.581 0,527 0.479 0.430 0.399 0373
13 31000 0.564 ©.513 ©0.467 o0.420 0.387 0.363
14 27000 0.550 0.500 0.L457 o0.ko7 0.378 0.355
15 25000 0.537 ©.485 O0.444 0.397 0.367 0.3k46
16 30000 0.533 0.480 0.L438 0.391 0.362 0.339
T 29000 0.516 0.464 0.423 0.380 0351 0330
18 23000 0502 @455 ©O.415 0.373 (= . 0.324
19 42000 0.493 o0.4ks o0.L0o6 0.363 0.337 0317
20 28000 0.485 0.438 0.400 0.357 0.329 0.310
21 31000 0.476 0.429 0.392 0.351 0.325 0.305
22 20000 0.460 0.421 0.384 0.3L45 0.320 0.300
23 24000 0.457 o0.410 0,376 0,337 0.312 0.293
2k 21000 o.u52 ©.40T 0,372 B.332 0.308 0.290
25 26000 0.449 0.403 0.366 0.328 0.30k 0.285
26 36000 0.436 0.392 ©0.357 0,321 0.297 0.279
2 23000 0,432 ©.387 0.353 0.316 0.294 0277
28 21000 0.424 0.382 0.346 0.311 0.288 0.270
29 19000 0.418 0.376 0.344 0.308 0.286 0.269
30 22000 0.407 ©.370 ©,336 0.301 0.279 0.263
Lo 22000 0.360 0.325 0.297 0.268 0.249 0.234
50 31000 0.326 0.29% 0.269 0.2L2 0.225 0.298g
60 21000 0.300 0,272 0.249 o0.224 0.208 0.196
70 15000 0.280 0.255 0.235 0,211 0.195 0.185
80 15000 0.265 ©.2h1 0,221 ©0.198 0.185 0L 1Tk
90 17000 0.249 0.224 0.206 0.187 0.17h 0.16}4

100 18000 0.23T7 0215 0,196 0,177 0,165 0.156



= T8 =

Because Monte Carlo simulation involves random values, the results are
subject to statistical fluctuations. Thus any estimate will not be exact
but will have an associated error band. '

The larger the number of trials in the simulation, the more precise will
be the final answer, and we can obtain as small an error as desired by
conducting sufficient trials.

The number of replications in table 1 and 2 are found as follows:

Given the significance levels 1%, 2.5%, —-——-, 50%, we calculated the
corresponding critical points to a given numerical accuracy.

For a certain sample size we can do the reverse procedure to determine
the number of replications:

Given some critical points, we first specify e, the maximum allowable
error in estimating the percentage p, and 1 - o the desired probability
or confidence level that the estimated proportion D does rot differ from
P by more than + €; and p1 is an initial estimate of p.

When € = 0.10 and 1 - o = 0.95, the following expression, based cn the
normal distribution approximation to the binomial distribution, may be

used to estimate the number of trials in a more statistical way:

:
N = (19,6)2 1—‘%-
P

But we can't use this procedure, because we don't have the critical points

to estimate the significance levels, but the reverse.

Next we have estimated the power of the test statistic. A large number

of samples of size n is drawn from an alternative distribution with specified
parameter(s) and for each sample we test the null hypothesis that this
sample has been drawn from a two-or one- parameter exponential distribution.
The fraction of the number of times that the null hypothesis is rejected
gives an estimate of the power. The procedure is done for several

alternatives.

Table 3 is for the two-parameter case, table 4 for the one-parameter case.



Table 3. Empirical power for the two-parameter case on a 5% and 10% level of significance and for different sample-sizes.

>wﬁmwdmdpwm n =20 n= 30 n =40 n = 50 n = 60 n = TO
distribution
xm MQMO.Om 4=0.10 @=0.05 0=0.10 @=0.05 @=0.10 0=0.05 &=0.10 0=0.05 o=0.10 0=0.05 a=0.10
d.f.1

0.283 0.396 0.465 0.577 0.611 0.723 0.746 0.828 0.814 0.880 0.870 0.925

r-distr. muw 6=3/0.327 0.450 0.503 0.618 0.687 0.791 0.810 0.885 0.882 0.937 0.929 0.962

r-distr. B=g &

n
W

0.315 0.458  0.497 0.623 0.675 0.781 0.804 0.886 0.903 0.940 0.983  0.967

r-distr. g=3 6=3/0.316 0.441 0.502 0.646 0.659 0.7T5 0.788 0.868 0.905 0.938 0.945 -0.973

"
W

r-distr. =1 6=2/0.187 0.283 0.294 0.413 0.375 0.501 0.504 0.622 0.594 0.717 0.700 0.813

[-distr. B=1 6

19 -

3{0.323 0.445 0.501 0.629 0.698 0.806 0.788 0.875 0.877 0.929 0.939  0.96T
v r-distr. muw 5=3]0.308 0.431 0.528 0.658 0,658 0.784 0.796 0.869 0.896 0.948 0.9k  0.972
Here we mean with xm :
A )
2 mlxM\m
f(x°) = - and with [-distribution the following density:
2
m X
2\ 2
_X
Hashd) = == e B x5,
g r(s)

This table gives the empirical power results against a Chi-Square alternative and some Gamma alternatives, which are
derived from 1,000 random samples.



Table k.

Empirical power for the one-parameter case on a 5% and 10% level of significance and for different sample-sizes.

Alternative _ . < it - _ _
e n =20 n = 30 n = Lo n = 50 n = 60 n =70
xm a=0.05 @=0.10 @=0.05 0=0.10 @=0.05 «=0.10 0=0.05 &=0.10 «=0.05 a=0.10 a=0.05 a=0.10
dofl

0.216  0.358 0.338 0.501 0.420 0.584 0.522 0.692 0.624 0.784 0.686 0.838

r-distr. muw 6=3]0.345 0.579 0.655 0.843 0.829 0.936 0.93% 0.983 0.979 0.995 0.995 0.999

r-distr. =4 6=3[0.680 0.832 0.903 0.977 0.985 0.995 0.997 0.999 1.0 1.0 1.0 1.0
I-distr. =3 6=3/0.879 0.958 0.985 0.997 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[ r-distr. g=1 6=2/0.971 0.984 0.994 0.998 1.0 1.0 1.0 1.0 140 140 1.0 1.0
m r-distr. =1 6=3]1.0 1.0 1.0 150 1.0 1.0 1.0 140 1.0 1.0 1400 1.0

[-distr. mudw §=3|0.951 0.987 0.996 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0




- O =

Conclusion

For the two parameter exponential distribution the Kuiper sta-
tistic seems not to be so good in power as the Cramér - Von Mises -
Smirnov and the Shapiro-Wilk statistic. But we see a very quick rise in
power for the Kuiper statistic when rising the sample size.

The results concerning the one parameter exponential distribution seem
to indicate that the Kuiper statistic is in general better in power than
the Cramér - Von Mises - Smirnov and the Shapiro - Wilk statistic.

See for a comparison our tables and the table mentioned by J. v. Soest

[ 61].
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