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II Feasible Aitken estimnation of the specified SUR-

models with unknown error variance-covariance matrix

In the first part of th’s paper, entitled ""Models and
Inference", various linear oUk-models were specified
together with tte statistic.l properties of the relating Aitken
estimators in the case of known variance-covariance ma-
trices of the disturbances.
If the error variance-covari ‘nce matrix is not a priori
known, a "convenient" statistical estimator of this matrix
has to be defined in order to «bta.n a "good" estimator of
the unknown parameter vector 8. Various statistical proper-
ties of such "two-round" estimators will v¢ discussed in

this section.

Definition 2.1

An Aitken estimator of B; in model (1.1)(generalized
least squares) or of R in model (1.2a)(seemingly unrela-
ted regression), based on an initial consistent estimator
of Qii or of §; is called a teasible Aitken estimator of
Bi’ resp. B

A feasible Aitken estimator of B in model(l.2a) may
be derived by substituting the unknown i-matrix (1.3)
by a first stage consistent, positive definite matrix

A

o= 4 aij} or

1

(2:1) g% = (X'Q_IX)_ X'Q-ly, with estimated variance-

covariance matrix

(2.2)v*(8*%)=e*[(8*-8) (8*-g) J=(x'2 " 'x)"!

( see also (1.6) and (Ls7) ).



Now, we shall show that the (feasible ) Aitken estimators

(2.1-2) are consistent , and,under certain conditions even

unbiased,while, for each SUR-estimator specified, some other
statistical properties will be briefly discussed in the subse-
quent paragraphs (%)

Theorem 2.1 1

X' X
If E{e) = 0 ; E(ee*) = @ , plim (— ( limit
T T

if X is non-stochastic) exists and is equal to the finite
matrix V and if the columns of Xi are asymptotically

independent of € (with Q non-stochastic), then B ,B*,
V (B) and V*(B*) are consistent estimators of R and

vV (B) (or v(g¥y.

Proof
1. B is a consistent estimator of B , because from C1.46),

the sampling error is:

(2.3% B=8 = {X*@ '¥) '%X'R Y& with probsbility iiwit

(inconsistency ):

(x) Since most statistical properties are well-known
from literature: see P.Dhrymes [7|,pp. 153=167,
A.Zellner [26] and [28], A.zellner and D.Huang|27],
only the most appealing properties will be thoroughly
studied. See also appendix A for an exact finite sample analysi
of two-equation models and §] for the BLU-property of
the Aitken estimator in models with known error

variance-covariance matrices.



< = o - 2 X
(2.4) inc (B) = plim B-B = plim[X 2 X|  1im Lex'a™ e (+)
T2 T—+o0 T T

= |
V plim L (x'Q g)

T>

(]
o

which holds by suitable choice of O =H'H
¢ see (1.6) and (1:5)).

5 BE

corresponding sampling error (see (2.1) and (2.3)):

is a consistent estimator of B, since from the

2=

(2.6) 8*—8 = (X'Q 'X) 'x'Q 'e and the consistency of Q:

'A . 'Q
(2.7 piial2 8 X = plim{Z X1 oy ( 24y,
T>o T T T

the sampling error (2.6) converges to zero in

probability:

(2.8) inc (8%) = plim 8%~ 8 = v p1im X% € _ y L1in
T+ T >0 T T T

(x) Slutsky's theorem, H.Cramér |6], p.255. Note also

that for X non stochastic the consistency follows from:

T = N
' '
(2:5) plim E—%——l = lim §~2T_3 =V or
T>co T>co
o1 -1 1
lim (X'Q X) =V 1im = = 0.
T+co T+ T

(xx) See Slutsky's theorem again.



A=l
which is obtained by expanding & around some parameter
value (see also (2.7) and further appendix B: the sole
difficulties occur when X contains lagged dependent

variables).

3. Since

(2.9) plim T(x'8 'x)”" = plim Tx'27'0)" = v (%) ,

T T+%

;(é) and V*(B*) are consistent estimators of V(é)

*
(ox of V(B )). A

Theorem 2.2 (%%)

The feasible Aitken estimator (2.1) is unbiased if
the error vector e(t) = [El(t), ez(t),...., EM(t)]'
follows an M-dimensional symmetric continuous probability
distribution about zero for all t, provided that the

0 ‘ * 5
mathematical expectation of B exists.

Proof

By the symmetry condition, the probability density
function of €(t), say f[s(t)], satisfies f[el(t), Ez(t),...
seny Eulr)] = f[—el(t), —52(:),...;, -€y,(t)] and the
sampling error (2.6), written as B -8B = C(€)eE, is an even

~

function of € because 2 is an even function of € (since

(¥) See Slutsky's theorem again.
(%*%) See N. Kakwani [IOJ, who discussed the classical SUR-
model with contemporaneously correlated disturbances

and a positive definite covariance matrix.



A

£ is invariant w.r.t.a change of sign of €, i.e. if all
elements of € change sign ) (%x).
So, C(e) = C(-€) or B*- g=g-g* in probability, i.e.
B*—B has the same probability density function as B—Bx
so that B* is symmetrically distributed around the value B.
Hence Bx is an unbiased estimator if its mathematical

expectation exists. A

Remark 2.1

Notice that the feasible Aitken estimator is unbiased if
the e(t)-vectors are multivariately symmetrically distributed,
although the first stage estimator of Q is generally biased

( but consistent).

(x)That Q is an even function of ¢ i8 readlly verified for
the classical SUR-model because then Q=Z [ 28 w1th

A A

E {A ; {e{gj} eiQineJ. ' 1t
=1 & o = = = - il
i3 T { = } and Q;=1, X, (XX X,

(Lgj=l ;2550 ,M).,



2.1 Contemporaneously correlated disturbances and positive

definite covariance matrix.

Under the assumptions that

- E(e)=0 and E(EE') = Q = I GIT ( neither autocorrelation
nor heterosceﬁasticity )

- the {Xi} matrices (i=1,2,...,M) are non stochastic ( so,

surely no lagged dep. variables),

some statistical properties, such as asymptOotic probability
distribution, efficiency, etc... of the estimators B8 and
B*, with the latter being:

1 U ~

/\—1 £
(2.10) g*%= [x'(z BIT)XJ X (2 eIy or

Lx [z ~1M Mo~ o i
g% !_o“x;xl SRR G O X!Xy, T o“x'yi
i . | & |
|~21 ~22 ~2M H =~ y& 1
Bg gO XX, © XIXps 0 «F XZXM' I @ Xzyl !
i i=1 i
|
. = . . . ’
(Zwii)d i '
i
Iy M ;
AM] ~ ~ AMl .
x ' M2 (] MM ' 'yl
EMJ L: 3 e 1 R s N ifl o X}

with I= {Oi'} a first round positive definite estimate
of I, based on the OLS residual vectors ei,ej(i,j=l,2,...,M),

will be studied.



Theorem 2.3

Consider model (1.2a) with

'y = = 18
1. Efege') Q z IT

b o QITX =1
2. the matrix lim (—— ) = V exists, is finite and
T+ i
non singular
3. the matrices Xi(i=l,2,...,M) are non stochastic

4. the error vectors E(t)=[€l(t), sz(t),....EM(tﬂ ' are
assumed to be mutually independent distributed with mean
E[e(tﬂ =0 and (constant) variance covariance matrix

E[e(t) e'"(t)]= I= {cij} (Ve) (%)

5. the matrices Xi are uniformly bounded and the error

vectors satisfy for any n>0:

T
. 1 2
(2+12) %i: T tirﬁ¢t| dFt(¢) =0 (xx).,

J¢tl>“/T

(x)Although all e(t) are assumed to be mutually independent

with the same mean and covariance matrix, they need not

be mutually independent and identicallx distributed!

(xx)A sequence of stochastic variables 5, with corresponding
distribution functions Ft(') converge uliforllx in z,
if for some ro>o:

r

(2.13) Vn>o dceRe vt:f|£t| odFt(E)<n (Etare convenient values

of z, )
ENER g =

i.e. if the tails of distribution about the ro'th absolute
moment are assumed to vanish., Condition (2.12) is commonly

known as the Lindeberg condition and points to convergence

saying that the terms 7£ become uniformly small if T increases.
T



where Ft(') is tbe distribution function of the M-dimensional
error vectors e(t),

then,

/T(B*-B) and /T(B-B) have the same asymptotic probability
distribution, which is normal with mean zero and variance

covariance matrix V.

Proof (%)

1. Asymptotically: /T(é—B)~N(0,V)

From the sampling error (2.3), we have to find the limit

distribution of

(2.14) /T(B-B)= z Eo sl
T VT
x'z"elTx -1
since the limit of |————_ exists; 18 Ffinite and
L

non—singular, we only have to bother with the asymptotic

probability distribution of the vector

=l

b b 81, € M

—————————— , which wcontains I ki = K elements,
VT i=1

(x)

The proof of this theorem is based upon chapter 3
and pp. 161-167 of Prof.P.Dhrymes's book 71



L
If we denote the t'th columm of Xi by pi(t),

'z 'e1_ ¢ i
€2.15)
/T

5

E,]X; olzx;.....olM

2154 22 i 2M
o X) o Xjeenno0

MI_, M2, MM
g X o Xy v ove0
B li

b2y I o pl(t)ei(t)
i=1 t=1

X O 5

I E o tp. e t)
i=1 t=1 2 =

M ' 3

Mi

E L o p.(t)e.(t)
i=1 t=1 H z
L ./

" —

z W](t)

t=1]

T

Z W.(t)

t=1 2

T

I W (t)

t=1 ¥ N

we observe that:

& |

senee

T
e(t) = % E w(t)e(t)-%
t=1

T
Z z2(t)
t=1

where the sum signs have been interchanged (which is

allowed since the oij's are finite and the matrices Xi

uniformly bounded)

and Hi(t) are(kixl)--atticel pi(t)oi' (2w, /2, 00 s Mg

E® ] 52 ;590 5T)

are



o'*are the i'"th rows of g~

W(t) are (KxM)-matrices [W (t),W,(t),...,W, ()] and
z(t) are the K-dimensional vectors W(t) e€(t) which are mutually
independent (‘since the £(t) are mutually independent and

the Xinon stochastic) with

(2.16) E[z(t)]=E[W(t)e(t)]=W(t)E[e(t)]= 0 and
(2.17) E[z(t)z"' (e )] =E[W(t)e(t)e' (IW' (t) =W(t)IW' (t) (%)

So, from the mutual independence of the z(t) vectors and
€ronm €2:15)yand (217 )%
1 |

T
1 -
®I X] =—X'I  BI_X=— I W(t)IW'(t)
T T T T ..y

1 1

_1_ U ; H T
(2.18) E[X'L” eI ee'X

and we find that the sequence of K-dimensional vectors

T

1 1 =i]

(2.19) z_=— I z(t)=>=(X'Z 8I_¢€)
T JT e=1 VT E

converges to a random variable, say z, which is K- variate
normally distributed with mean zero and variance covariance
matrix
y 1 iw™l
lim —=(X'Z
T(

]

GITX), or asymptotically

(x)

From which it is clear that, although it were assumed
that the e€(t) would be identically multivariately distri-
buted (pay attention to footnote on p.9), the variance
covariance matrices of the z(t) vary over time, so that

the z(t) are not identically distributed.




x'z']eITe " B
(2.20) ——=—=— -~ N(0, lim =(X'Z

VT T+

1
el X)),

because by the analogon of the Lindeberg condition
(2.12) for the uniform convergence of the K-vectors

z(t), after transforming to the univariate case:

T ' T
e - Y'z(t) -
(2:21) rTY ZT t£]7i._ t‘i'qt,

with Y an appropriate K-vector of real constants, we
find, denoting the distribution function of qtbij Gt(')
and of z(t) by Wt(.), for vn>o:

T
(2.22) 1lim I

T t=

T

T+

2 g 1 2
flqtl d6, (@)= lim ¢ I fly'zml a¥ (2)
t=1

lq, [>n [Y'z () |>nv/T

el

< lim
T Tow

L
z flylzlz(t)lzdwt(z) (Cauchy Schwarz)
t=1

|Y||Z(t)ljlY'z(t)|>n/T

T
= lim %llecEJ]Z(t)|2¢t(2)d2(t)- 0 with n]=?7T

T

|z(t)|>n,/T

and the Lindeberg-Feller central limit theorem (x) for
a sequence of mutually independent scglar random variables

r, with zero mean and variances % Y'(X'E—IBITX) Y

(T=1,2,...) may be applied , such that (2.20) is verified.

(x) See K.Chung [5], p. 187.



Finally, from (2.14) and (2.20), we obtain asymptotically:

(2.23) VT(B-B)~ N(0,lim :}V(X'Z&ITX)V) =N(0,V).

T>ce

2. Asymptotically: both v/T(8*-8) and /T(B-8)~ N(0,V)

I1f the sequence of vectors /T(?*-B) converges in
probability (weak convergence) to a random variable,
say b, then the corresponding distribution functions

F (.) (T=1,2,...) converge to the distribution

QT
function F  (.) of b (x),i.e. the vector segquence
= b, < 5 5 ; %
VT(E =3) also converges to b in distribution.
7 £ ‘ s ok
So, the asymptotic distribution of VT(E"-F) can be

derived if its probability limit is evaluated and since:

a= N - =

& YR I@IT:: L X'Z el;E

(2.24) plim VI(R"-3)= plimj ———— plim—— /7 (Slutsky)
T+ T >0 T ; T
J

/v =1 \—l e

[R'T "8I X | X'T el e

= lim i—————————— plim—— (%xx)

T \A G / T i

= plim ¥T (B—B)
T>co
or from part 1 of this theorem, both /T(Bx—S) and
VT(F--) have an identical asymptotic probability

density which is N(O,V) A

(*)gee M.LoEve, [15],p. 168

At A
(xx) -

= = S
Since L= [Siﬁ ={f%—l} is consistent (see theorem 2.1)



Corollary 2.1

If the error vectors e(:)-[el(t),ez(t),e3(c),....sM(t)]'

(t=1;2;000,T) are mutually independent M-dimensional identically
distributed and have non-vanishing finite variances ( variance

sums), then as T-w:

(2.25) /1(8*-8) and /T(B-B)- N(0,V)

=1 =1
XYL EITX

(x)

with V =1im
T+ T

Proof

If it is verified that the Lindeberg condition (2.12)
is satisfied under the accompanying assumptions, the results
of theorem 2.3 may be used to prove the conjecture (2.25)

for large T.

From (2.22), we derive:

T
(2.26) lim % I ety ) d¥ (2)= lim & : flw(:)e(t)ldw (We)

T+ t=] T+

Iz(t)|>nl/T Iw(t)e(t)|>n1/T

(*)Notice that if the joint probability distribution of

e(t) is M-dimensional normal with mean zero and variance-
covariance matrix I ( for all t), then the uniform
convergence condition (2.12) is not needed at a11 becauae
then for each sample size T: E'N(B (x'y OI X) ) while B
and B have the asymptotic distribution (2.25) ( see also

Properties of maximum likelihood estimators, e.g. in
H.Cramér [b] P.Dhrymes [7]).



j I 2 2
< lim g T []Wee) |7 [lece) |7 a¥, (We) = (%)
T—oco t=
[weey [ [leced ] 2] [wee)ece) | [>n, /T
1 e % = ni
= lim 3 & tr(W'(t)W(t))f]e(t)| dF (e)with ny= 1 :
T t=1 L-tr(w'(t)w(t))]
|e(t)|>n2/T
im L mc? ; : "(tDE. (e)de(t) with n, =
< lim T (0 ftr(s(t)s & g n3 =

T>oo t=1; IE(t)|>ﬂ3/T

and C is the maximum length of any columm vector of W(t) (x%x)
we find from the assumed existence of finite variances or

of the variance-covariance matrices of e€(t):

(2:29) limJ;r [e(t)s'(tﬂ dFt(E) = tr L
treel
:(t)

(x) Since:
(2.27) [W(e)e(e) | 2= &' (IMCEIW(E)eCe)<er (W' (£)W(E))er (e (t)e’ ()
or in general, the Euclidean(vector)norm ofe(t) is consistent

with the trace (matrix) norm of W(t):
(2.28) ||w(ere(e) |[[=]w(erece) |<||w(e) ]| Ile(t)l|=[;r(W'(t)W<t>ﬂ .

[e(t)|, where || || is the norm indication.

(xx)
Since all elements of W(t) are assumed to be bounded and

non stochastic, there should exist a positive number C
which may be put equalto the maximum length of the vectors

contained in all W(t).



and from the mutual independent and identical distributio.
of the e(t)-vectors, by convenient (large) choice of n,:

T =

(2.30) 1im 1 I |2(e)|%a¥_ (2)<lim Mczf}rLe(c)s'(:)]ft(e)de(t)=o,

Too T =
E(c)>n3/1‘

which is in accordance with the Lindeberg condition
(2.12) so that the results of theorem (2.3) may be

applied since all assumptions for it are satisfied. A

Theorem 2.4

The Aitken estimator (1.6) with Q=EeIT is efficient
wW.r.t. OLS unless Oij=0 for all i# j or all Xi(i=1,2,...,M)
are equal.

Proof

This theorem can easily be proved from theorem 1.1 and
corollary 1.1. Indeed, substituting Q"=o"IT=O or
i :
X =X =......=XM and application of the above theorem and

c;roilary show that é is efficient w.r.t. é unless both
exceptions are satisfied, in which case corollary 1.1
demonstrates that é=é.

This may also be indicated for the underlying contem-
poraneously correlated SUR-model as follows (x).

Denote the ratio of the generalized variance of the

Aitken estimator (1.6) w.r.t. that of the OLS-estimator (1.17) as:

s
(2.31) @m » where from theorem 1.1 0<a<1.
[xr o™ 'xy™1

(x)
See also A,Zellner. D.Huang [22], pp. 306-307



Using a general determinantal inequality (%) (see def.(2.11):

10”1 - 151 < ' 11 ? '
2,32y |29 x| =|x'S GITX|_|X1X1|0 .|x2x2|dzz_““|xx | oMM,
MM
1
where equality only holds if Vi,j O..=0 or X.X.=0 ,
a9 i
i#]
i.e. if contemporaneous disturbance terms in different
equations are uncorrelated or if the explanatory variables
of different equations are mutually orthogonal.
Combining (2.31)and(2,32):
1_ e | T = =1
€2:33) a-lxz eITxl [exe "% |
SPSE B P T T3 T P G 1 T ) PRSI R 2 15 31
T 11 171 0922 272 TUUttTMM UMM

@..d°“1 |.....|0MM0 I, | se%

=l =k =K
11 1 22 2 MM M
(2.34) (0,0 ) (0,,0 ) ceeeee (O ) <a<l

from which it is clear that the l.h.s. becomes unity
if Oij=0 for V.#' ( then Aitken estimator is OLS estimator) A
17)]

(%) See R.Bellman [A], p.127: for any .(nXn) matrix A, the
n

general inequality: (2.32) |A|i M1 a, holds.
i=1

There is only equality if a..=0 for Vi,j.
= igj



Remark 2.2

1. Since the expression on the l.h.s. of (2.34) represents
the maximal gain that can be realized, we find that the
maximal gain in applying Aitken's estimator w.r.t. OLS-
estimator occurs when the disturbances of different
equations are strongly correlated and when the explana-
tory variables in different equations are really ortho-

gonal. (%)

2. When considering feasible Aitken estimator (2.10), the

results on efficiency hold only asymptotically or for

large T:
(2 ; 357 |(X'§_IGITX)|_]iI(X'a_lx)_]|and because of the consis-
tency of hlf -
X' "8I _X\-1 o =1 =1
(2.36) plim | i |< Plim ](X—u) | (xx%x)
T> T s T—>oco T

Proposition 2.1

An unbiased first round estimator for the variance
covariance matrix I ( and hence for Q) is given by

Ay A
€.E.,
L } B

2
T-ki kj+kirH

(2.37) =10} ={

k.
2. - 7 3 . ;
Where rH- 5 a kii kj and rH 1s Hooper's trace —corre-
i=1

(x) See appendix A for a complete 2-equation analysis and

for the effect of intercorrelation between Xland X2

% )
( )See, however, appendix A for a 2-equation model.



. 2 z q 5
lation and ri are the squared canonical correlation coeffi-
cients (%)

Proof
e

B 1 y ' =i}
(2:38) E(aisj)—E {ei(IT Xi(xixi)

1

X ) (I~X, (X.X.) "% ye (=
1)( T J(XJXJ) XJ)EJg(l 1525 +M)

1 1

1 - ' ' ' ' =
=0, :t =X 5 3K 5 « =X, e 3 o s
lJ‘t[IT Xl(XIXI) Xl XJ(XJXJ)XJ+X1(XLX1)

i} [ o
XX, (X:X:) X.
L7323 ]

1 =g ' -
=g. . |T-k.=-k.+t XX iR . F g w G
11[ T xR (XX xeJ (k <k

where the last matrix between[ ] has ki eigenvalues
Xi=r§ or (2.38) becomes:
i

<l B 2. 2
€2:.39) E(Eiej) Uij(T ki kj+ ri)_oij(T ki kj+ki rH) 5

i=1

Since for i=j, rz— (2.37) provides an unbiased estimate

Tl
of L, and hence of (x%x) A

2.2 Intertemporal correlation of disturbances and non-constancy

of variances and covariances.

2.21 First order autocorrelation

A feasible Aitken estimator of the parameter vector B

(x) See A.Zellner and D.Huang [27] pp 308-309. This theorem
might be interesting when the error vectors e(t) are
not T-dimensionally symmetrically distributed, and an
unbiased estimator is still desired.

(x%x) If the explanatory variables in the i'th and j'th equations
are the same, then X;ijX;xi and ri-l so tpat the deno-
minator in (2.37) becomes T-ki.

If, an the contrary, the explanatory variables in the i'th
and j'th equations are mutually orthogonal, then X;Xj=0

and ré=0 so that the denominator becomes T-ki-kj.



in model (1.34), where the disturbances Ei(t) are assumed
to be both contemporaneously and serially correlated ( by
first order autoregressive scheme (1.28) and assumptions
(1.28-31)), can be derived by the following three step pro-
cedure:
1. Estimate the parameter vectors Bi of equations (1.33) by
OLS to obtain the consistent estimates:

. 3 Sk 6 i g, B P21 52500 05M)
(2.40)e =y, -X 8, with B,=(X;X;) 'X;y, (i=1,2, ’

with consistent estimate of the autoregressive parameters

p. ( see app.Bl with Si(o) either zero or stochastic:(B5) and

(B.42)):
T 4 R
& E.e.(t)e, (£=1)
(3. 415 g, » E2L 3 3
b 5
E vz
4 Es (E=1)
t=2 1t

2. Obtain a consistent estimate of the contemporaneous cova-
riance matrix I by substituting the consistent estimator (2e41)

inte (1.32) to compute:

i ) 1

) !
(I‘Di) 0 Ol o/ 0 0 B
~ o Pl 1 O visseeeed® ~
(2.42) Pl | 0 ‘Di V5t 5.5 660 m 0 =R1
! . > . 2 e
- 0 0 0....-/pi 1 J

and apply OLS an the transformed equations ( see (1.33)):



(2.43) Riyi=RixiBi+RiPini ( ¥ #);25%00;M)
to yield estimates of the elements oij of %z
(R,y.-R.X.B;)'(R,y,~R.X.B.)
o - gl 1 p U Sl 3.k Y LA
(2.44) cij = - (%)

with Bi the OLS-estimator of Bi in eq.(2.43).

Substituting (2.41) amto (1.32) and (1:35) and (2.44)
into (1.37), we obtain an estimate of the variance covariance

matrix Q as:

(2.45) Q=P(ZSIT) P'
where P is the (MTXMT)- block diagonal matrix of the Pi's
and I= {0, .},

1]
3. Finally, the vector B in model (1.34) is estimated as:

.t gt o) W S T Pt P

%D - 2
(2.46)p%=x @ ') 'x g lyeqx p Yz ler Py "z 2 "'z lerly.

Proposition 2.2

The estimated variance-covariance matrix @ in (2.45) is a
consistent estimator for 2 and hence R¥* in (2.46) is a consistent

estimator for B.

Proof

Since the Xi's are assumed to be non stochastic, P; and
P, are consistent estimates of pi and Pi and by Slutsky's
b 3
theorem:

(x) The denominator of (2.44) might also be (T-ki)&('l‘—kj)i
to consider, if desired, finite sample effects, but since,
usually, only a consistent estimator of J is required,

(2.44) will equally do.Notice also that, if
T

T e (t)e (t-1) "
2 t=] { i i §P~I
Py T il S
E er te=1)

t=2 "1




(2.47) plim R = plim P 'a

equations

Y, 48) N.=CR. .0 %, =
( ) ni (Riyi Rixlsi)

(2.49) plim 8“=

T+ T+ T+

~

and the estimated residuals ni

(2.43) may be written as:

~
~ ~

=Qir’i1

[plim P]"= p 1

of the transformed

At A

the probability limit of oij can be written as:

plim

[ ng (Ip=M;) (1,

-Mj)nj]

T

T+ T

~ L} ~
[IT-RiXi(Xi Ri Rixi) X, R.]ni=(IT‘Mi)Hi

' "
Nafa n .M.n. n.M.M.n
= plim =1 - plim —2+J -plim —>J J +pli =B
T>oo T T T T+ T T T
A / 1AL A -1 L
n.R.X X:R.R.X XiRin.
= 0..-plim L plim ( S } z plim —=1
1] T—>oco T T+ K 4 T+ T
¥im LIPS =3 )
niR.X /;.R.R.X X.R.n
-plim d plim SR (R | e | plim J J J
T>x T T K T T+ T
LIPS YAl A ol Y il
niRiX XiRiRixl X.R.R. X,
+plim plim plim 21 11
T T T+ T T T
Va4 - o
X.R.R,X. X.R. N,
plim 1 J J plim =11 ( Slutsky )
T ) T+ T
= 9,



and, again usinglslutsky's theorem,

~ ~ ~ A ' . o # a .
(2.50) plim § =p1im[?(ZGIT) P‘]=p11m P plim (ZBIT) plim P

T> T T T T

’ ) ,
=P { plim o.j} eI, P = PIBIP .

T >0

By definition 2.1,(2.46) is a feasible Aitken estimator
for B and by theorem 2.1, 6* is consistent, or, once

more by Slutsky's theorem:

"amlo\-1 'a-l

(2.51) plim % plin] 22 X) Hiig 2N ¥
T T T T> T
S P N
X'plim @ "X X plim Q  (XB+eg)
T plim T+
i T T
x o 'x|™! x o e
= B+ plim ——— = B. A
T i T

A~

Note Since fand hence  is an even function of n ( see (2.49)
and (2.50)) and, therefore, also of €, 8* is in general an

unbiased estimator of B because of theorem 2.2

Definition 2.2

A sequence {x(t)} of random vectors is called n-dependent
if there exists a non negative integer n such that any finite

subset {x(tl), x(tz),.....,x(tp) } is stochastically indepen-
dent of any other subset of vectors {x(Tl),x(Tz),.....,x(Tq},

provided the index sets {t.}. and {T1.}
b1 0 [ PR . ]

=l s2Zyvee,q



are chosen so as to satisfy min {ti}-max {Tj}>n(x).
Lol 2 s 03P giml 2w w o
Theorem 2.5
Consider model (1.34) with
Vi E(ee')=Q=PE(nn')P'=PZGITP'
x'e lx) 7!
2. the matrix 1im<}————— =V exists and is positive definite
T+ T
3. the matrices x, (i=1,2,...,M) are non stochastic
i

4. the error vectors n(t) nl(t),nz(t),..., nM(ti]' are assumed

to be mutually independent with E[ﬁ(t)]=0 and E [n(t)n'(tﬂ =z
while the error vectors e(t)=[€l(t),ez(t)...,EM(tﬂ '(t=l,2,...,T)

are allowed to be n-dependent for any T=1,2,... with zero
first order and finite second order moments.

5. the matrices X are uniformly bounded such that the Linde-
berg conditionlfor finite second order moments of the

e(t) implies:

T
(2:52) tim 4 B |¢ lzdF ($)=0 is satisfied for any 6>0,
T+ Tt=l t t

|¢t|>6/T

then, /T(B*-B) and /T(B—B),B* being the feasible and B8
the usual Aitken estimator of B in the autocorrelated
model, have the same gsymptotic normal distribution with

mean zero and variance covariance matrix V.

Proof 1. Asymptotically /T(é—B)G-N(O,V)

=1
'
From theorem 2.3 (2.15), the (KX1) vector 5—%T—£ can be

written as:

(’)Or simply, if q-p>n implies that the two sets

{x(1), x(2),....x(p)} and {x(q), x(q+1),...,x(T)} are
stochastically independent, the sequence {x(t)} is said

to be n-dependent.



(3,58 EBB_E. . I - L
VT /7 VT

T
tEI A(t)e(t)

=

! =
VT eky 5(8) = Sps

where the (KxM)-matrices A(t) (t=l,2,...,T; T=ld 5250006 )
are non stochastic satisfying the following inequality, due

to the boundedness condition of Xi and I:

(2.54) ||ate) || 2 € = »

where C is a positive constant and || || may indicate
any '"consistent" matrix norm for all A(t), such as e.g. the
maximum of all absolute values of the elements of A(t).
Since, in general, the error vectors e€(t) are assumed to be
n-dependent for any sample size T, with mean E[:(tﬂ =0 and

equal variance-covariance matrix for any t:

1
e

elecorer e ] = o, if |tfzn

(255
= 0 if |z|>n

the first and second order moments of the mutually dependent

~vectors {T=1,2,... ) are computed as:
E(x'2 ey .=
(2.56) —-;—Jf—;—— = E(sT) = 5 Y A(t)E E(t)] = 0 and
vT t=1
1 Sy - g L |
(2:5%) T E[k 2 "ee'f X] =7 (x'Q@ "X)
1 T ' ) T=% . ' Y ,
= -T-{tElA(t)%A (t)+T£] ti][}x(c)chA (e+1)+(A(E)¢ A (c*T))]}

with 8 = min (n,T-1),



from which it is easly verified that if the e€(t) were
mutually independent distributed, the result (2.18) would
be obtained with A(t) =W(t) and ¢°=E. (x)

The composite 2nd term on the r h s of (2.57) specifies
the covariance structure between the dependent random vec-
tors {e(t),e(t+1)}. .

The sequence of K-dimensional vectors S E_%T_E conver-
ges now to a random variable, say s, which is normally

distributed with mean zero and variance covariance matrix

.=
lim % (X Q lX), the proof of which follows similar lines
T

as outlined in theorem 2.3, where this time a central limit
theorem for dependent univariate random variables has to be
applied. (xx)

It develops along following ideas:

Reducing to the univariate case with a scalar vector Az

. T T
(2.58) £.=A's;= & ATS“—) = I E(t),
t=1 T t=1

we may partition the observations 51,52,53,...,ET,
whose partial sums are stochastically independent (hence

also for alsz, ceeaSy defined e.g. as

t" t"
1 1
vl tft's(t) 7T :Ee A(t)e(t) ), performed under, say,

additive representation such as:

(2.59) s_=u,_. +v

T %k VK T i 52 5 356w

k'l,2,3,...,KT(KT*W as T-w)

(%) Hence, zero dependence, i.e.n=0 and so 6=0, is equivalent
to independence.

(zx) See e.g. W.Hoeffding and H.Robbins[}], theorems 1-3
Pp. 774-776.



where the U, are stochastically independent variables
with zero mean and finite variance for each element so that the
analogon of the Lindeberg condition (2.52) may be utilized
on the Ure OF also on the independent parts of £ (t)(see 2, 22

Hence, asymptotically
(2.60) VT(B-B)~ N(0O,V) (%)

2. Asymptotically: both /T(B*-B)and /T(E-S) are N(0O,V)

Since from lemma 2.1:

'A_l =1 A 1
(2.62) plim vT(8%-pg)=plim(X L X | " 1in Xﬁ—
T+ T—>oo T T->c0
L . ==1
[’ - X (plim @ ")e
X0 5 Trc0
=lim; —= Plim =
T—»ao\ h i T /T
x o 'x 7! R ps
=lim{ ———= plim ——— =plim /T(B-B)
T+ T T>oo VT T+

and from part | of this theorem, both /T(Bx—B) and

VT (B-B) have the same limiting normal distribution with
rto=-1 = s
zero mean and V= 1inp E—g—-§> as covariance matrix. A
T+ T

This model, guaranteeing the time invariancy of both

variances and covariances cij’ may be estimated in the same

way as the parameters of model Al are estimated.

(x)

It is a conjecture of us that the prbperty (2.60) can
also directly be derived from (2.53) as:

L =
g5y Fe g 'eron | 1 ;
(2.61) 7T = 7T = 75 tEIB(t)n(t), with n(t)

M-dimensional mutually independent random vectors (see

theorem 2.3).The sole remaining difficulty 1is to specify B(t).



There is only one slight complication since premulti-
Plication of system (1.34) by R=P-1 does not reduce the

transformed system:
(2.63) Ry = R X B + n e

to the classical S U R-model with variance covariance matrix
ZeIT because the off-diagonal blocks of the new covariance
matrix E(nn') have the slightly altered form (1.43) instead
of oij IT.
Therefore, the estimation procedure runs like:
1. Estimation of the autoregressive parameters P; by OLS as in (2.41)
2. The variance elements 0j; are estimated from OLS on the
transformed equations (2.43) as in (2.44), while the cova-
riance elements Oij (i#j) are estimated from the estimated
residuals of the transformed eq. (2.43), with the modifi-
cation that the first element of each residual vector is
discarded. Then each covariance block E(nin;)‘(i#j) is

estimated as:

(1—85)4<1—8§>5
0

AR
. pipj and a consistent estimate

0 IT-I

(2.64) 0O

A A .

of @ is directly obtained as Q=p E{nm") P .
3. Obtain a feasible estimator B* as in (2.46).

This model is estimated in a similar way as model Al. The
classical SUR-model is obtained for (T-1) observations. So:,
given consistent estimates for Di ( say by (2.41)), consistent
estimators of Q and B are easily obtained utilising ((T-1)xT)-

transformation matrices R: ( see (1.45)).



Note Most statistical properties, presented for model Al,

equally apply on models A2 and A3.

2.22 Heteroscedasticity

A feasible Aitken estimator is obtained by the following
three step procedure.
1. Apply OLS on equations (1.25) yielding ;i=xi§i (i=152500s ; M)
2. Apply classical SUR-estimation on the trdnsformed system
(1a52) 1.es ofi '

(2.65) Sy =SXB+ u with E(uu')= Il ,
rA
Qll O vssssh
0 Q;}.. .0 ri
~ . " : - . 7 2_"‘ -1 (%)
where S= . 5 . and Q,=(diag y,) =5, (i=1,2,...,M), "
0 o a-'
k S Qy
i.e., in first instance, the 0..'5 are estimated as:
ij
Ay A 7 &, 2 UE A 2
7 u, . (8. %:=8:X.8:) (S5.¥.=8,%:B.)
(2.66) 0;,= 2 ) = T 2 % %3 1 [ N so that Q is
i i

estimated as:

A o ~

(2.67) Q=Q (Z81,) Q

3. Finally, the B-vector in model (1.52) is estimated as:

e S M EE Bard | .

(2.68) 8*=(x 2 'x)7! x' 87 Vy=(x'Q" 'z sITa"

lig—1 =1

) 'x 7'z 8I1.Q 'y

(%)

We considered Y5 since, in the case of heteroscedasticity,

the OLS-estimator of B remains unbiased.



Theorem 2.6

Bx is (generally) an unbiased and consistent estimator
of B, and /T(B*-B) has the same limiting normal distribution

as VT(8-B) with mean 0 and variance covariance matrix

x o7 'x) 7!
lim SN & =v.
T>e T

Proof

Under general conditions, €(t) has a multivariate
symmetric and continuous pdf so that from theorem (2.2)

B* is an unbiased estimator of 8.

= B* is a consistent estimator of B,because in (2.68),
27 is a consistent estimator of Q which is proved as follows:
' P " /’IA ~ - 1A
A u.u. u.S.XW X ;8.8 . %, X.8 i,
(2.69) plim 0, .=plim ——L -plim{—1L ‘( =1 1 1l
T+ i E R | T+ T ]\ T T
4 A (] =i} ' R B
uiS.X s 58X, X.S.,u,. S
-5 lim i | s e ) - § aptiy L L
T+ T T T T+ T
Ya A =1 A & "A A -1 (P
5.8 %} "%, 8.8.2. V{%.8.5.x. X.S.n
1111 T X 33 J J 1 1] J 1 3

~

and since Bi is a consistent estimator for Bi and applying

Slutsky's theorem:

(2+70) plim @, , = ag.. or
T+ 1] 2]

(2.71) plim R = plinm (62911,6) = QZ8I,Q = 2 and

T+» T+

(2.72) plim g% =B,

T+



Following argumeﬁts similar to those set forth in the proof

of theorem 2.3 ( but with matrices with different contents):

v T T
B8 k. %T I W(t)e(t)= 3= I z(t)= 2

VT t=1 t

(2:73)

converges to’a random variable, say z, which is K-variate

normally distributed with mean zero and variance-covariance

mat e ixk
1 ~1 i 2 ] )
(2.74) lim = (X'Q 'X) =1im — I W(t)th(t),with Zt=E[;(t)e'(t)],
T+ T T+ T t=]
so that B is asymptotically normally distributed with
= s o= o e
s o 3 : 'R X :
zero mean and variance-covariance matrix lim =——= sand since:
T> % T &

(2.75) plim VT (B¥-B)=plim v¥T (B-B) or plim vT (8%-B) = o0,

T—>oo T> T>co

Bx has the same limiting normal distribution as B. A

The parameters are estimated in a 2-step procedure:
1. Estimate directly the transformed model (1.52), with Qi
equal to the expression (1.58), as a classical SUR-problem
to yield a consistent estimate of 0.

2. Compute the feasible Aitken estimator Bx.

The statistical properties of Bx are similar to those of the
feasible Aitken estimator in model HI.

Note

Combinations of heteroscedastic and autocorrelated models
are generally estimated by a 3-step procedure, obtained as a
combination of the procedures described above ( with covariance

specifications (1.59-60)).



2.3 Singular error variance-covariance matrix and/or X-matrix

of incomplete rank.

If the true error covariance matrix Q=EsIT

A

last p=M-s eigenvalues of I, being of "preliminary" rank s
and based on OLS-estimates of éi(i=l,2,...,M), may be tested

Oon their (significant) departure from a preassigned small

is unknown,

the

value Ao (given €(t) is assumed to be M-dimensionally normally

distributed) by the following Xz-test statistic ( see app.B

of part I:theorem Bl):

2
(2.76) )(2=KT-1-5--]—(21:+|-2— At e i T T
q 6 p+1 p+1 i=] i.-
1 0.
S
]gl (tr g_ifl A1) i
{p In ) -1 R + P }

I A Ao

with the d.f. q=% p(p+1)

Once the "real rank" of I, and hence of § =5 GIT (and/or of

A4 " P ' : 3 .
(X'Q X)) is determined, feasible and consistent Aitken esti-

mators of B may be obtained by suitable substitution into the

expressions (1.77-80) and (1:119).

Due to the singularity of the moment or covariance matrices,

asymptotic normality in the sense of theorems 2.3,2.,5 and 2.6
is not obtained. Despite the degeneracy in the pdf of the

€(t)'s, umbiasedness in the sense of theorem 2.2 may still be

proved for several generalized models.

2.4 Feasible Aitken estimation of autoregressive models.

A feasible Aitken estimator of B in model (1.150) may be

derived if an initial consistent estimator for % can be found.

This may be obtained by several methods depending upon the

possible presence of autocorrelation in the disturbance vectors

B [dml 2 s v M),



2.41 If no autocorrelation of the disturbance terms

with E [Ei(t) g; (e=1) ]=0, then 2 is consistently estimated
by OLS (by ML if Ei(t) are NID <O’Oii))'
In the presence of autocorrelation, however, the OLS esti-

mate of £ is no longer consistent ( see appendix B2).

Say first order autocorrelation:

€277 Ei(t)= pisi(t—l) + T (&)
Then:
~ in .a first stage, the oi's may be estimated by OLS(see 2.41)
- in a second stage, the Cochran-Orcutt procedure is used to
obtain a consistent estimator ﬁ, i.e. OLS is recursively

applied on:

k.
A 1 ~
(278 yi(t)-oiyi(t—l)= kzl aik[zik(t)_oizik(t-]?J+
8.
V‘]. {_ A~ |
T;,YiTLyi(t T oiyi(t T 1)_; +ni(t)

or the oi-estimates are substituted in an equation per
equation covariance matrix to obtain Aitken's generalized
least squares equation per equation estimates. From these

A
second round parameter estimates, a consistent  is derived.

2.43 If autocorrelation of the error terms but with unknown form.

Proposition 2.3

If the form of autocorrelation is unknown, the parameters
of an autoregressive model are consistently estimated by

instrumental variables.



Proof

The purpose of instrumental variable estimation is to
replace the lagged dependent variables in equations (1.149)
by those linear combinations of all explanatory variables
L which are most strongly correlated with the correspon-—
ding lagged explained variable but uncorrelated with the
error vector €., or the "best choice" instrumental variables

for yi(t_T) are the lagged values of:

=

i

A~

A.. 2 () with X. the OLS-coefficients

x =
12.78) Jo(ede B Ao 2.0 ik

k=1
from regression of yi on Zi'
Then the instrumental variable estimator for B is given by:
B ok = " 2 & % Sp
(2.,80) Bi_(xi Xi) Xi yi with Xi_ (Zi,yei) (=142 0 0w s D)
1

'
where plim L X? €.= 0 and plim

\ exists and is non
T A T>co T /

singular.

The estimated parameter vectors (2.80) are consistent be-

cause:
' - ' ' = *
(2.81) plim 8§= plim (x: 2,3 ‘xf (XiBi+€i)=Bi+p1im(X: X;) ’x? e
T T>co 3 T+ s
%*'X =1 X*'e
= B.+plim =—2 plim ——2% =R, A
1 1oe T T+ T 1

To estimate the variance-covariance matrix 2, one has to

introduce restrictions about the form of autocorrelation (and/
or heteroscedasticity), so that 9 can directly be estimated
from the consistent instrumental variables estimator B?
(i=1,2,...,M). Many authors however (see e.g. T.Amemiya and
W.Fuller [IJ and K.Wallis[ZQ] ) pPropose to follow up the
instrumental variables estimation by an equation per equation
Aitken estimation of the parameters in the equation. Although
the resulting parameter estimation also yields consistent es-

timates, there emerges a loss of asymptotic_effi



of the joint occurrence of two factors:
- the use of an estimated variance-covariance matrix

= the presence of lagged dependent variables (see Appendix B3).

So, in fact, there is no fundamental reason to make the
job more complicated by further applying GLS after instrumen-
tal variables estimation of P the more since only consis-
tent estimators are needed.

Given an initial consistent estimator {, the feasible

Aitken estimator of B is consistent since the estimator:

T ~_ =R Aol
(2.82) g% =L Q X X, .0 ;
By Xe® m*mry] *m® m¥m
tends i.p. to the ML estimator for known £ and increasing
n=MT (such as % +0 as n »», e.g. if M remains fixed) obtained
from:
o 1o, -1} 1. "a=]
(2.83) max L(y| 8,8 ")=(27) 2 |@ “|*% exp (- 5€ & "€)
K 2
R
i - 1 ]
If ELy(n)X(n)l [y(n)x(n)j = A(n) are finite and 1lim Aled o

n+>® n
exists and is finite, where X(n) and Y(n) are the observations

on the dependent and explanatory variables written so as to

depend explicitly upon the number of observations.



IIT An Application: A stochastic model for the generation

production coefficients.

3.1 1In economics, interindustrial analysis is dominated by
the famous Leontief model, based on the assumption of con-

stant production coefficients, being defined as:

(B:1) a.. =q..
ij,t Ti.tfa; o

with q; representing the input of industry j at time t

1],t

of commodities produced by industry i and q representing

t
the corresponding production at time t of 1néustry I
However it is generally recognized, that the assumption
of constant production coefficients (or zero elasticity of
factor substitution) can only be valid as a first ( and very
rough) approximation. So, the problem arises whether it is
possible to build a model for the generation of production

coefficients themselves.

Economic reasoning involving market behaviour and pro-
duction theory on industry level (%), may lead, under profit
maximization, to the following simple stochastic specification

of production coefficients:

(3.2) a5 =ay; (p—lr—‘> ( > e ad=i,2,..0,0-1)

In this equation P; ,t and pJ & stand for the price of the
production, at time t, of Lndusttxes i and j, where as pn,t
symbolizes the wage level (as a weighted average of all pri-
ces)., The factor uij,t refers to the disturbance term and X
and uj are unknown parameters.To some extent, this model
specification follows the Walrasian theory in which produc-

tion coefficients are ultimately explained by relative Prices.

(x) See R.A.van Straelen: Prijsontwikkeling en Productiestruc-

tuur,

Ph.D.Thesis, Louvain, 1970 (Dutch-unpublished).



As can be remarked, only 2(n-1) estimations of parameters
Ki and u. are needed for explaining (n-l)2 coefficients of
production. This limited number of parameters may be considered
as a very appealing feature of the model. Another attractive
feature of the model consists in its possible relationship to
the wellknown RAS-method for generating production coeffi-
cients:A
€3:3) aij,t=ri,taij,05j,t
,t represents the generated production coefficient
(i,j) by means of the corresponding production coefficient aij,O

where a. .
1]

of the base period and the RAS-multipliers L e and sj i
’ ’

If time series on aij . are not available, one can use gene-
. =
rated production coefficients aij e
’
totals of input-output tables are known for each period t in

provided that marginal

order to deduce the RAS-multipliers. We will concentrate on
this case by studying the estimation aspects of the basic

model (3.2).

32. One of the problems we meet in estimating the parameters

of model (3.2) is the multicollinearity problem mainly caused
by the division of all production prices by a common factor viz.
the wage level. We can get rid of this difficulty by stating

the estimation procedure in terms of the RAS-multipliers (x%).

It has to be noticed that these multipliers are only defined

for each period considered up to a constant multiple. Therefore,

we have to read equation (3.3) as follows:

~

1
(342 aij,t_ri,t(;:)aij,Osj,tvt'

Random disturbances are assumed to represent the discrepancy

between a.. and a,. . One wri g
13,k 15,4¢ can write

(3+5) aij,t=aij,tvij,t'

(t) The problem of multicollinearity could be tackled in other
ways, e.g. by a generalized inverse estimation under cer-
tain parameter constraints. However, the procedure would

seem less efficient.



Rewriting (3.2) in terms of the generated production coefi

cients leads to:

P ¥ P ‘' u
(3.5 By cmage o {0 ] * (PEA YT Bag e
1j,t 13, Kpn’t \Pn't vij,t

and in accordance to the particular role of the RAS-multipliers

ri and s. we assume that:

b S P
o
3.7 1.t o . :
( ) T 1,695,k

where Wi ¢ @re random error terms standing for "disturbances"
’

over the rows (input structure) and zj E random error terms
’

standing for "disturbances" over the columns (output structure).

Then it becomes possible, by combining (3.4) and (3.6), to

write: \
(3..8) w2 = 1 =%yl .V and
it P, EJ 1,t t
J Bla
(3.9) s, Piat —laE |
Tot § By ¢ Ve
t]

Expressing (3.8) and (3.9) for simplicity in (natural) loga-

rithms, we have:

1 W 1 1]
(3.10) r, t=Ai"i't+wi +v and

'
3:11 s, =0, T +Z . -v
( ) 3ot UJ st st TE ¢

where the accent refers to the operation of taking (natural)

logarithms of magnitudes involved and

P.
= _],t:/
& 1n Pn,t .

In this way, we obtain a rather simple system of equations

(3.12) w. =ig Pi,e and T
: U Pn,t i

that allows us to estimate the unknown pParameters A and uJ By
using RAS-multipliers which are function of only one explanatory
variable, the problem of multicollinearity disappears. We now

turn to the estimation procedure.



33. The multiples Y, and their reciprocals, which are the

same for all RAS-multipliers of period t, can be interpreted

as additional parameters to be estimated or can be considered

as stochastic factors belonging to the disturbance terms of

the model. From the view point of estimation, both ways of
thinking lead to results which are asymptotically equivalent (x%).
However, the first way 1is more complicated. Therefore, we are

only proceeding along the second way.

By considering L stochastically we obtain an interesting
application of a SUR-model, because the same residual compo-
nent appears in all equations of the same period. Using matrix
and vector notation we can write the whole system of equations

for an arbitrary period t in the usual manner as follows:

(3.13) y =X RBR+u £ 5
E t /rt\
in which L is the 2(n-1)-vector ;s . Xt the diagonal matrix
rﬁt 0 \ 5/ wt+1vt
| ~ |of order 2(n-1)%X2(n-1) and u_ the 2(n-1)-vecto 5
i € :
lO I z. —LV
B t | t t,

omitting accents in order to avoid confusion with the transpose
symbol. However, all variables which we have considered remain
expressed in (natural) logarithms. Vector i represents a vector

with all elements equal to unity.

In principle, the variance-covariance matrix can be estimated

by using the residuals of the first round ordinary least squares.

o r -r et |
~ T t & t t
(3.14) T=—— L ~ ~ l
T=1 €&=1 |8 -8 8. "8 |
t & _t t_

which implies temporal independency of the disturbance terms
(neither autocorrelation nor heteroscedasticity). Therefore, the

variance-covariance matrix enters the Aitken estimator as

1

(3.15) £ ' B (classical SUR-model) .

Iz(n-l)

(x) We are due to Prof.A.P.Barten for this conclusion. See

also R.A. Van Straelen, o.c., Chapter 6.
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However, as explained above, it is possible to modify (3.15)
in order to take temporal dependencies among the disturbance
terms into account. Obviously, the necessary condition to be

satisfied for non-singularity of(3.15) is
(3.16) T>2(n-1) .

If this condition is violated, additional assumptions are

to be made concerning the pdf of the disturbance terms and

their covariance matrix. An other possibility coEsists in de-

fining a generalized SUR-model with the help of Z+. This pro-

cedure can also be followed when the variance-covariance matrix

turns out to be "nearly singular'". Test statistic (2.76) may

be utilized then for determining the "real significant rank"

of g. Alternatively, a consistent minimax norm as e.g.g/zén")x?,
i=1 5

with £ the maximum relative error inAthe eigenvalues, may be

subtracted from each eigenvalue of I. The rank is then equal

to the number of positive corrected eigenvalues.

34. A dynamic version of the model can be obtained by intro-
ducing lagged variables. Demand and supply ' often react not only
to present but also to previous pPrices. Up to now we know very
little about the precise form of lag structures. However, an
important and useful structure is that of Koyck. As it is well
known, the Koyck lag structure rests upon the basic assumptioﬁ
of a geometrically declining effect. Applying the Koyck trans-

formation leads to a very simple dynamic specification. Our

model formed by the equations (3:10) and (3.11) now becomes:
r 5 x
rt rﬂt 0 (A rt_1 0 p
€31 %) = + +u
x ~ t
Se ;0 ﬁt tj. ‘_0 Seoq] (P

As can be noticed the number of parameters increases only
with (n-1) resulting from assuming the same lag parameters for
the corresponding row and column multipliers. This makes sense
by considering the argument that if there exists some lagged
behaviour in an industry, it is very likely to happen at all
levels more or less in the same manner. Obviously, the content

of the disturbance term u, differs completely from the residual



u, defined in (3.13). The price parameters of both models are

related to each other as follows:
(3.18) A*=a(1-p) and p*=p(1-p)

The estimation of the parameter vector p can be done in an
easy way by taking the sum of the vectors of row and column
multipliers. By means of this sum we are getting rid of the
constant multiple L Estimating P in this way no longer
forms an application of an autoregressive SUR-model. So, au-
toregressive constrained and unconstrained SUR-estimates
(2(n-1) in number) will be compared in the next paragraph.
After obtaining consistent first round estimates, they can be
substituted in (3.17) (x) which allows us to obtain consistent
second round estimates either of X*,ux,p] and Py in the auto-
regressive SUR-model or of A% and ux in the classical SUR=
models with redefined deperndent variables

oS g s e

{ 0
\rt rt—] P

¢3.19) | '
Lst_ ) 0 S 1P

ity cam i

We now turn to some briefly commented numerical results.

35. Some experiments have been performed for the Belgian economy
during the period 1953-1967. Basic data were:annual relative
prices, the input-output table for 1959 and annual marginal to-
tals on 12 aggregate industries.

A complete report on the numerical results does not meet the
objectives of this memorandum (%%). So, we have limited ourselves
to the statement of some main results. Estimates are given for
two industries:one for which the performance of the model was
relatively poor (building industry) and another one for which
the performance of the model was relatively good (energy sector).
Five models have been retained:

(x) With obviously a vector p. and p2 for row.and column multi-

1
pliers in the case of a real autoregressive SUR-model.
(xx) See R.A.Van Straelen, o.c., for a more detailed description

of the numerical experiments.



the classical SUR-model

variables (autoregressive nature)

meters

the classical SUR-model with redefined dependent

the real autoregressive SUR-model with 24 oi-para—

4. a "static" generalized SUR-model with positive semi-

definite variance covariance matrix (see 1)

5. a "dynamic" generalized SUR-model with positive

semi-definit

e 2 (see 2).

The results are presented in the following tables, where OLS and

SUR estimates are given for the unknown parameter values and

their standard devia

tions.

Table 1 Energy Sector
Classical SUR-model | Classical SUR-model Real autoregressive
(auroregressive nature) |SUR-model
o = 0.1948 (ML)
OLS| A = -0.3621 £ = -0.2867 A= 0.0413 p, = 1.1041
(01021 (0.0914) (0.1476) (0.4285)
L= 0.6407 MW= 0.5313 u = -0.0293 Su = 1.1211
(04 11252) (0.1094) (06 1530 ) (0.2687)
SUR| A = -0.2613 A= -0.2137 A = -0.0230 DA = 0.8226
(0.0948) (0.0852) (0, 0751) (0.1370)
= 0.5163 H = 0.4371 H = 0.0084 DU = 1.1558
(0.1164) (0.1019) (0.0657) (0.0660)
"Static" generalized SUR-model "Dynamic" generalized SUR-model

\

A= -0.2659
(0.1042)
1= 0.5335
(0.1185)

>

=
n

o =
-1.1945
(1.1556)
0.9189
(0.9506)

0.1948

(ML)
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Table 2 : Building Industry
Classical SUR-model | Classical SUR-model Real autoregressive
(autoregressive SUR-model
nature)
p = 08271 (ML)
OLS| A = -6.9024 A = -1.9700 A ™ =0,8715 px = 1.0097
(1.6636) (0.6565) (1lw5773) (0.2760)
uwe= 2.9459 u = 0.9974 it = 1.2619 pLl = 0.7155
(0.6142) (0:3324%) (1.3439) (0.5976)
SUR | A = -4.4845 A= -1.3107 A= -0.8883 Py = 0.9316
(1.3994) €0=5522) (0.4897) (0.0935)
u = 2,1162 u = 10.8035 u = 1:1226 p1J = 0.7399
(0.5140) (0.2785) (01229} (0.0802)
"Static" generalized SUR-model "Dynamic'" generalized SUR-model
o = 0.8271
SUR A= -4.5582 A = =1:3702
(1.3998) (0.5526)
u = 2+ 1724 o= 0.8080
(0.5166) (0.3009)

As can be observed, differences between OLS and SUR are quite
important. Judged against .the usual standards of the t-test for
determiming the significance of individual parameter estimates,
model 3 (the real autoregressive model) gives no satisfactory re-
sults compared with the first two models.

By analyzigg the eigegvalues of the estimated variance cova-
riance matrix X, used in Qi=zi812(n—l) (i=1,2) for models 1 and 2,
we observed that, taking account of a limited error on the accuracy
of the variance-covariince elements, thé "real rank" of El could
be fixed at 21 and of 22 at 20. Also, the sole break in the evolu-

tion of the eigenvalues occurréd at those places.
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Table 3 Smallest 6 eigenvalues of Zl and 22.
Mee I, e I3

19 0.001385 19 0.001733

20 0.001303 20 0.001615

21 0.001253 21 0.000566

22 0.000556 22 0.000515

23 0.000488 23 0.000452

24 0.000436 24 0.000369

Therefore, pseudo-inverses of Zl and Zz were computed, resp.
with ranks 20 and 21 (%). The estimates of models 4 and 5 given
in tables | and 2 are obtained from:

(3.20) 8*=(x 2*x) 'x oYy (see (1.65)) and

1

(3.21) v¥@e%=(x'a*x)" (see €i:66))s

Notice, however that (3.20) is not asymptotically most ef-
ficient, which follows immediately from Proposition 1.1, but is

consistent if  is a consistent estimate of 918

To judge the relevance of the parameter estimates, some
simultaneous tests on a priori restrictions of the parameters

have been performed:
a. for models 1,2,4 and 5:
- Ho:A]-X2=.....-X’2=u]=u2=....=u12-0 (zero restrictions)
= Ho:kl-A2=.....-Alz-ul-u2=.....=u12

- Ho:k‘-ul;lz-uz;.....,A]2=u12.

(x) Since, in fact, the pseudo-inverse of an "approximate
matrix" (corresponding to the"postulated rank") is com-
puted by the method retained, it was interesting to no-
tice that in both cases the elements of the approximant
differed wit& only EZ at the maximum from the original
elements in Z' and 22. which is largely within the ran-

ge of the allowed inaccuracy.



b. for model 3:

‘ / 4

- Ho:i Al = jl2\|=.....=( Xlz dx (zero restrictions)
Py ) Fagj o 0/

- Ho PRy =.....='ru‘2\'= [ § . ) (%)

‘ :

s s, ’3“12/ 0
(M\ A [ i) .

-  Ho =i Seeees=, (vector equality)
IPIRYY [Py
T ¥ Byp

- Ho }=, TR ¢ 2 & )
SOVERS \?“12/

The test statistic on zero restrictions can simply be writ-

ten as a simultaneous significance test of the parameters:

| (R A
(3.22) ¥ =K yx ﬂ+y* _s-K y Q+1i
. % T ™% %'+ % Vg T+ % >
»8-K K y Q@ y-y" Ry K yQy-yQy

1

; x x Eox =l Ve ’ x : g
with y"=XR"=X(X & X) X 'y , which is asymptotically F-dis-

Eributed with K and s-K degrees of freedom (s being the rank of
Q).

The remaining a priori restrictions may all be expressed as
linear homogeneous restrictions on the parameter vector 8,
written as:

i 5 u. =l 52 o 12

1 ]

(%) The equality hypothesis 0 5 for vy
A s i,]

could not be tested since the complete SUR model (24 equa-

tions with 48 explanatory variables) was too large for the
dimensions of the present programming system available at
the Tilburg University ICL-installation. Therefore we had
to split the problem into 2 submodels, both of 12 equations
(row,viz. column mulEipliers) and 24 explanatory variables,
so that the ii_ and u.-coefficients of model 3 are not

"really global'" SUR-results.



(3.23) cB=0

with C a known (gxK) matrix, q being the number of restric-

tions.

Following propositions Cl and C2 of the appendix we observe

thats
1 ] A = =
r3.245 P® 8K £ lecx'8* 57" ] 1ce®
’ ss=K g ot Yo %
y- yQy

is asymptotically distributed as F i
q,s-K

The results are given in the underlying table:

Table 4 Asymptotic F-tests on a priori restrictions
Model 1 Model 2 Model 3 Model 4 Model 5
F;4’144=167.2
F;4,336=44.8 F34,312=29.8 F;a,144=472.7 F;4’29]=42.l F§4’256=22,6
F;3’336=l9.4 F;3,312=15.6 F;2’144= 16.6 F;3’291=18.0 F;3,256=10.7
12,336 12,312 Tai,uka~ 92:2 Wy o0 Fi2,312"

i i =19.2 F* 20.8 = - T 20,0 = 11.8
Comparing the results contained in the above table with the
’ critical values of an F-table, we immediately see that all ze-
ro hypotheses are strongly rejected (even at a significance
level of 997).
Finally, the performance of the alternative models is com-
‘ pared by computing performance indices indicating the fitting
| degree of the model to the data. So, if z, are the observations
for time periods 1255447 and z: the corresponding calculated

values, the performance index is defined as:

T

/= Zzzj

Tt

(3:25) P, T.=
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which commonly indicates a good perf&rmance if 4 ds smaller
than 0.4. Such indices have been calculated for the observed
and estimated marginal totals. Some results are presented in
table 5. For both sectors, energy and building, the first fi-
gure refers to the performance index of the row total, where
as the second figure refers to the performance index of the
column total; €or all 12 sectors together the figure mentioned

refers to the overall performance regarding all marginal totals.

Table 5 Performance Indices.
Energy Sector Building Industry
All Sectors

Row P.I. Column P.I. Row P.I. Column P.I. o
Model 1 0.047 ¢ 0052 0.353 " 0137 0.066
Model 2 0.041 . 0.034 0.145 . 0.069 0.051
Model 3 0.044 : 0,307 0..207 o 1002187 0.273
Medel 4 0.137 . 0.170 0.605 5 0.53 0.561
Model 5 0,129 e 8. 120 0.445 e 0 350 0.502

The above table indicates that the '"generalized models" 4 and

5 give inferior performance compared with the first three,
except for the performance of the column totals of the energy
sector which is worst for the real autoregressive model 3.
Indeed, it strikes immediately that the column totals are rather
badly predicted by model 3, although this model does not give

a very poor global performance (overall P.I., is smaller than

0.4 and row totals are even better predicted than with model 1).
Also a substantial improvement of the building industry pre-
diction capacity is noticed by using the lagged model 2 instead
of the unlagged model 1. In general; this model 2 has the best

performance of all models retained.



Appendix A Analysis of a classical SUR-two equation model (%)

l. The role of dependency between different sets of expl. atory

variables w.r.t. efficiency.

Proposition Al

If the variance covariance matrix is known, Aitken

estimation of B in model

[y‘ % % 1% i

(A.1) y= = & 8 L
L2

where Xi(i=],2) are non-stochastic (Txki)-matrices of

explanatory variables, yields maximum gain in efficiency w.r.t.

OoLS if Xi X2= 0 and the disturbance vectors of the 2 equations

are highly correlated.

Proof (see also theorem 2.4 for general M-equation systems)

The Aitken estimator of B=(8],82)' in model (A.1) where

it is assumed that D= 0 and

& & 3 Tiily T
E 5 (el ez) =Q= ,» is equal to:
YA

21T DB
= ollx'x ol2’ Hellyly 4 ol2xy
~ |8, 171 1%, &4 72
(A.2) B= =
8 2h" 9.2 2" '
2 ot x o“°x,x, o X, ¥, + 0% x,y,

11" 12" =]
. . _ g X'Xl [¢) X]xz wll le =
(A.3) v(B)=E[ (B-8) (B-8)] = E
21, 22"
(] szl (o] szz WZI sz

(x)The exposition in this appendix is based upon A.Zellner[zﬂ :
A.Zellner and D.Huang [27_]
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and leading submatrix for the first equation's coefficients:

=y N -1 -1_[11 N o PR 22 -1
(A.4) V(Bl)'(wll w12w22w2]) =|lo xlxl (o" %) X]XZ(O )

(XX y lxlx |77
g% oy

Remembering that the simple correlation coefficient between

the disturbances of the 2 equations is defined as p=/12 7
o

11 =il =1 =1 2= 117022

el e TR T LT =0 P s

the variance covariance matrix (A.4) of the Bl—vector may be

written as:

-=1

2
f 1 1 0 1 ' -1 1 i
5 B )= B X
(A.5) V(fl) [;__TTt377 (Xlxl) . (X XZ)(XZ 2) (XZX])
11 011(1 B ) =3
and its generalized variance as:
k i’ \
TR Frs =1 2=l .
(A.6) ]v(@l)|-(1 p%) onlo‘x]x‘/» Hlk] oD with
1 = ] ' S ¥
(A7) D=(X]Xl) (XlXZ)(XZXZ) X2X1 and
k
2 ! :
(A.8) \Ik -0 D|=[—1Xi, where Ai are the eigenvalues of
: i=1
Ik -OZD, satisfying the characteristic determinantal
. 1
equation:
(a.9 | (1 —DZD)-)\I | =|bp- £1=3) 3 | = 0.
k k 2 k
1 1 P 1
L=

So, the values of 5~ are the characteristic roots of D,

being equal to the squared canonical correlation coefficients
2

T for the sets X, and X, or
i 1 2

1-X. 5
(A.10) r§= 21 and A,=1-pzr§, and the generalized variance(A.6)
i

p
becomes, taking account of (A.8) and (A.10):




(-p%*i0, lax ™|

k
Z 2
ﬁ (1-p"r)

i=1

(A.11) IV(%1)|= , and since Oirii1

(A.12) |V(é])|§01,|(x;xl)—1|, from which it is clear that
the equality sign only holds when all canonical correlation
coefficients are equal to unity (i.e.if X1=X2). If the
c?lumn vectors of X1 and X2 are mutually orthogonal, i.e. if
X X2=O, then all canonical correlation coefficients are

eéual to zero and maximum gain in efficiency is obtained w.r.t.
OLS, because then (A.11) is minimum for a certain oz# o
(denominator=1). In this case (X;X2=O) the higher the corre-
lation among the disturbance terms amounts to, the more is
gained , relative to OLS, by estimating model (A.1) by Aitken's

method . A

2. The efficiency of Aitken relative to OLS-estimation concerning

the unexplained variation

Proposition A 2

The unexplained variation (generalized unexplained variance)
Al
of the OLS estimation of model (A.1) with X1X2=O will be greater
than that associated with the Aitken estimation of B in (A.1)

kf+k§+k]k2p2
unless TS ————————— 5 Where p is the simple correlation
k|+k2

coefficient between the disturbance vectors €, and ez(assump-

tion: Q=ZGIT is known).

Proof.

Since:
Ol (Y =151 P o

(A.13) N [I X(x'r” eI X) X'L OIT] € and X, X,=0,

the residual vector of system (A.1) amounts to:

) . =1,
Es y ok 7T B ARG T 0
aanl. I
) 5 1 1 LI
0 ::Tz'xz(xzxz) X,



22 =

12

& ag
and 81nce—TT=—0
g

11 12
o1, 0" "Ly rel
21 22 ox
IT o) IT [SZ

8 i P ot 5]

bl 1.5) 81'[IT'X1(X1X1) xﬂel o i®3
- a2001 2 . :

p — and taking variance-covariance elements:
22

~ 1~ 2
(A.16) E(eiei) cii(T ki+p ki)

(i=1,2)

(A.17) E(E,E )k {e;[IT—X](X;X])-]X]’] oty e85 'x, ] e,

o T veo-
+p/g——€2Xl(X]X])
22

' [ -1
EI[IT X](X]X]) X

' [ = 1
XIXZ(XZXZ) XZCI ‘ =

' ' = it 022
xl[IT X, (X%y) x2]52‘“"‘@:

[ ' W
]] X, (X,%,) " 'x e

2

I9ya

2 0 R
PR X, (X, X))

(see (2.38)).

or the generalized unexplained variance of the Aitken esti-

mators of the disturbances is given by:

l(elel) E(e]ez) g
(A.18) VA=

1T~

E(ezt]) E(ezez) o]

2]

2
-k +
TALELI

b 02

UIZT

2
2(T kz*kzp )

= 0,,0,,[Tk, (1-0%)] [T-kz(l-pz)] - cfzrz

while the generalized unexplained variance of the OLS-residuals

is (see (2.39) with r§=0):

2
(4.19) VOLS=GIIGZZ(T k])(T-kz) 0]2(T k] k

2

2) or

: 2 2
(A.20) VOLS-VA=011022{[(T-kl)('r—k2)-p (T-k,-k,) 2] -

2 2 2.2
[(T-k](l—p ))(T-k, (1-p"))-p“T J}

2 2.2 2
911922° [T(kn*“z) (ky+ky+k, k)P )J ,

22

(see also (2.38-39)) and

g

=



o P ; ” ;
from which it 1s seen that VOLS VA 1f
2., 2 2

k“+k‘+k k_p
¢h. 81y 7 22 1 & S

kl+k2
so that ,certainly, the unexplained variation through
OLS-estimation of model (A.1) is larger than the unexplained
variation through Aitken estimation as long as the number
of observations is at least as large as the total number of

explanatory variables in the system under consideration
>k o+ . A
(T>k +k,)

3. Exact finite sample properties of the feasible Aitken

estimator in the classical SUR-model.

——

We consider the following model (see (A.1)):

& X] 0 B] €

(As22) = +

Y, 0 X2 B €

with (1) Xi non stochastic (Txki)—matrices (i=1,2) of explana-
tory variables;
[} v
¢11.) X]X2=X2X1=O: pairwise orthogonality of the explanatory

variables in the 2 equations (%) ;

O lp % 20p

€ [
¢idiz.) E£]J=O and E[(;l)(elezi] =(=
2 2 02|IT g I

and @ is unknown;

(%)

In proposition Al it was shown that there is maximum
]

gain in efficiency 1if X;X2=X2X1=O for certain p#0.
This result only holds asymptotically for the feasible
Aitken estimator. Furthermore, the condition of
pairwise orthogonality is assumed in this section for
ease of derivation. Hence, this assumption is not

essential to the results obtained.
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(iv) €(t)=[€l(t),€2(t)J are assumed to be bivariate normal

for each t (&=1,2,:¢:5;T) with E[e(t)] =0 and
E[e(t)s'(t)] = I, so that the €(t) are assumed
to be mutually independent identically normally
distributed with zero mean and I variance-

covariance matrix.

3.1 Exact sample moments of the feasible Aitken estimator 8*

Theorem Al.

The feasible Aitken estimator Bx of B in model (A.22) has

(A.23) E (8%)=8 (%) and - a
, Mo 1
’Oll(xlxl) 0
(A.24) v(e*)=E[<s*-s)(e*—s)]=(l-oz>% . «'
i
l' et
. ° Ty (X,X,) )

where n=T—kl-k2>0
Proof
The feasible Aitken estimator 8* of model (A.22) is given by:
N ] = ~ 1 A [
Oll 1 11 12X

Bx xlx] 0 o le] * @ |y2
s
(A.25) B*=! =
\ ~22_ " 3 22"
B; 0 [of x2x2 0. xzyl + g x2y2
b i 1L T

(x]xl) Xy + gTT (xlx]) X7,
el _» ! 1, !

v -
(X,X,) 'X,7,

= v
522 272 2 +

(x) From theorem 2.2, normality of e€(t) about zero is a suffi-

cient condition for unbiasedness of BX.



' = ' t = '
(x'x )7 'x v, - A2 xx)7 'y, ]
1%y ] By DI 172 '
& i
o
' = J ~ 12 ' =
(X,X,) X, 9, = (X X5) X5,
_ 1 ]

with variance covariance matrix:

‘5 510 =T = "o 5=
X 0
f(xl 1) 0 ] ITICTEE
! 8]] o~
(4.26) v(8%)= | =(1-p?)
; vooa=1
.0 Z%) 0 G, (X, X,y
P =2z | o 22*%2%2
Pary.
PR €€,
where Z={0ij}={———lKi,j=l,2) based on the maximum likelihood
T

(OLS) estimation of the parameter vectors of the equations

involved in (A.22) and athe correlation coefficient between

(o]

A~ ~ 12
Eland 62: 0=8/:\

11%22

To establish the exact finite sample moments of (A.25), con-

sider the model:

B
4]
Yy EX, : 40 19 By
(A.27) af ~1-2.. B iy — + N
Y2 *9 i Bgky 820 €2
8,

which is equivalent to model (A.22) if BIO=820=0.
Under the assumption that E(t)ﬁ%l(t),ez(t) are bivariate
normal with mean 0 and variance covariance matrix 5§ for all

t, the ML estimator of the parameter vector in (A.27) is:

—



’VBI !" 1 = 0 =
I A DY Ry,
Elo ' . < mif
At (XZXZ) X27) 5 .
(A.28) B =l é = ' 8 with the I-matrix,
20 =
| / %% %;¥,
B, | S B
L® e T 2 |
| L
consistently estimated as:
e o o o Al A
a o €,€ €,E
&_ 11 1.2 L 8 171 172
(A.29) I= PN 8 "— T AL A Al A
921 25+ “a%y 3%

Following T.Anderson [2], p.183, H.Crameéer [6], p.185 and
P. Dhrymes [f], P. 166 the maximum likelihood estimator (A.28)
is normally distributed with mean B+= (B ,0,0,82)' and

variance-covariance matrix (since X]X2=X2XI=O ]

(A.30)E [(é*-e”‘) 8 -8%) ]=

Bll(x;x])"' 0 clz(x;x])-’ 0 "
0 o, (x.x,)" 1 0 o, (x.x)"!
11%%2%; 12 %%y
i R Ve =i
GIZ(X]X]) o} ozz(xlx]) 0
Y1 vo-1
. @ Tygtia%y) . VapNp¥s) |



while the random matrix TZ is independently distributed

according to Wishart with parameters Z and n=T—k|*k2 (%)

(x) This is derived from the (assumed) property that the
vectors e(t)= El(t),ez(ti]'are mutually independent
normally distributed for all t, with mean zero and
variance covariance matrix I or the joint likelihood

function of the sample considered is:

T
a.30d e]zHy=2m 7Tz ]|zexp|:-% £ e(e) T ls(t)J
=1
I
=(2ﬂ)_T|Z—,|2exp[}% o E'Z_ls]

. 1
exp[—% tE & lee] with

e={e(t)}=(2%XT) matrix of error terms or

=(2m)

transforming to the dependent variables

(Jacobian = 1):
T
-1 L+ =i =12 ] -1, !
oC(YlZ ,B y=(2m) |z expl-=trz (Y-XB) (Y-XB)
' ‘ [ 2" ] B] B20 or
with Y=XB+eg, Y=(yl,y2),x=(X],X2) and B= 8 8
10 P2
T i 4
(A.32)l(Y|Z_],B)=(21r)-T|Z_]|2exp{—%tr2_l[(Y—Xl)+X(B—B)] EY-XB)H((B-B]}
T - 2 o ”
=(2W)-T|Z_l|2exp{—%tr2-l[(Y—XB)(Y-XB)+(B-B) (x x)(n-sﬂ}
k| *k, o
=(2m) Tzt 2 exp{—-;_-tr):-‘[(B-B) (x x)(n-a)]}

Nl

IZ_l | exp (-—lz-ttZ—IA)

- B =l A
where B is the ML estimator of B,i.e.B=(X X) lX Y and A=TL.

So, it is verified that the kernel of the joint likelihood
of the original 2-variate normal density in €(t) may be

wrltten as the product between the kernel of a multlvarlate
pdf in B with mean B and variance-covariance matrix ZB(X X) =

(see (A.30)) and the kernel of a Wishart pdf in A=T% 5w



Then the feasible

Aitken estimator (A.25) becomes:

- g
* a -—1—2 2
A\ 81.8 820-]
(A.33) ’ A22 ! with mean:
\Bx/ 8 . %2 B,.|
2 L 2 g—— IOJ
11
-
WS :012 A
E(B,) - Ek?—— E(8,,) B,
. g
22/
(A.34) E(B®)= [ = (%),
~ g ‘ :
B 12 |
| E(B,) - E * )E(BIO)_‘ | 8,
11

which is in accordance with theorem 2.2 (see also footnote

on p.6), and variance-covariance matrix:
r
- 3 % k x x 3
E(B1 Bl)(Bl B]) E(BI_BI)(BZ_BZ)
(A.35) v(g¥)= ,
N % ; x '
1E(B,-8,) (87-8,) E(B;-8,) (8}-8,) :
L

where the occurring block matrices are defined as follows
1

'
(utilizing (A.32), X]X2=X2XI=0 and the mutually independent
distribution of the regression coefficients and the Oij's):

with variance covariance matrix I and degrees of
freedom n=T-kl-k2 >0. Hence,g or vec (E)=B+ and E are
independently distributed and they are jointly sufficient
for the parameters B+ and I (Fisher-Neyman criterion; see

e.g. P.Dhrymes [7], p.131-133).

(x) 12

[of
are mutually independently distributed,

By the above mentioned independence property, also
& o
Bzo,resp -

and

12 ang 610

11

since by a change of variable, the normal-Wishart form(A.31)

g
xl—z)or

can be ex 8 @ 2 2 - -
~a ERTESSEd A N<Bl’on'Bzo'Bz)'”(°11'022'022

o] o o
NW( 1T, 22,3%%) (see also (A.41)),.



s - x_ x_ ! o= o = < - '_
(A-36)V(B])—E(B] B])(B] B]) E(B1 Bl)(B1 81)
A ~ =9
[ 02% |3 -p b, |- 22)e|a. (B.-8.)" ~~E/OL2 E(8, 8.
~ 1 734 Rg0 ~ 200 R0 =g kAZ 20820’
a a ag
gl 1 22 22
P . 2
' // a ag
=c”(x,xl)"[1-2E(A‘2 L2 48| ~12]22
952091 \9%22/%;
(A.37) i 8 o 20
Sl x_ ' f -1 R 12k T
V(B,)=E(B5-B,) (By-B,) =0,,(X,X,) Ll s e : ]a“d
1% 22 1 23
(A.38) -
c : Ji % x ' '=E(é -g)(é -8B )'—E w—GIZEé (é -Bis )
ov(Bl,62)—E(B|—Bl)(82-82) iR 2 "2 4 2,6 =2 ©9
22

e\ Te . e s A
-E ;— E[(BI-B])BIOJHJ(O )E(BZOBIO)
11

* 1 ’ '
-£[(8%-8,) (8%-8 )] =[cov($§,ef)] -0,

To evaluate (A.36) and (A.37), the first and second moments
Sf the ratio of random variables 012 and 022, resp 0]2 and
Gl]’ have to be determined. This may be carried out by
- 5 : o
deriving the density function, say of v= 12
%33
Since the (2x2) positive definite matrix of random variables

=TO”,a1 =T6 and a,,.=To,,is Wishart distributed with

2 2 112 22 22

11



covariance matrix I and degrees of freedom n=T-k —k2:
1

n=3
2 1

,Al exp(-%trz_ A) dA (%)

(A.39) f(A)dA=W(I,n)=

n
Z- 1 n =1
2"|z|'T 2T 7T Y

1 . =
g  pin 3)exp 1 i3y 2pa, *322\
2(1-p2) %) 70,1953 °22j

da, da,,da ,

1
nzz " )

Rewriting the Wishart p.d.f. in terms of a3, and

with c=

A

o a
v=;l£-—l3 (x%x) so that the Jacobian of the integrand trans-

922 359
formation is
3ajay,2,,)
(A.40) J=- = a
T TR

we find:

22”

| 1 1
5(n 3)a 7(n 1) l_vzazz f(“ 3)
22 all

(A.41) W(I,n)=ca

2 = *
1 i TPva,, 8,
exp| ——m—| —————— << da,6 da_.dv
J /™ —— O 11 22
2 11 Vo c 2 =
2(1-p 11722

(x) T.Anderson [2],p.67 and p.154.
(xx) The following reasoning is that of the appendix in
A.Zellner [28], pp.989-992.



a a2 02
& 222 _"12 1
Since v

2 n-3 l
v©a i 24 § n-3
(Aahd) (17225 = § Uy v a,, 455/,
a %
11 1=0

ai i! n—3'i)|
51 2 .

or the probability density (A.41) becomes:

i L G |
(-1)1v2ia1+ 2 (#:é)l a
Ch SR ) se B ot 2" ewpl- =il
=g i-12-32

. 2
By i!\F3§—i)| RLl=p"Jey,

i

.

a,, ZDV/EZZ
exp| - 5 1 dalldaZZdv
2(1=p )022 vo !

8914
and setting s=

2
2y = )c]]

s gl

BELE o iwd 23 g o
(A.44)W(Z,n)=c[}(I—DZ)O]] 21§ D v oa,, 1 5 (#—3)

A9 2
i=0 p
13[2(1—02)01134

a 2pvv/ao
exp[— 22 (1- /F_Ef) da22dv "
2(1-02)022 T

where use has been made of the property that the Jacobian

of the integrand transformation from a te & is 2 (l—pz)o]
and the gamma-integral:

' . _(i_n23)
E—é‘i = s e-sds #
2

2 2, s : . 5
T 5 =p (O:p’<!), a binomial expansion
11 1122 1122



< @ Z
i 24 i v-a
Since % (=1)"v 499 = exp[- ———22————i} » we get, after
i=0 § i a2
i![Z(l-pz)oll 241=p Jay,

integrating out ajys the marginal density of v:

[2(l-p )0“] (n 3)(—1?:‘;'(1 o )022] N
[1—2 ov \/?2 - ﬂ] 2

11 D

(A.45)W(Z,n)=c

and substituting for ¢, we find:

(A.46)W(Z,n)=F (v)dv=(1-p2) J ( ) = oe)
%y a E sl ]
()() g ( -2pv 0 ”)

n+

N

N

Q
N

!

—

s ")
2z 2
2 22
{1597 ) Wo— 1\ n+1 n+l
111‘(7) 2} 22 I
I e
22 .

V ib: r(“*") and if
(1-p2 o, I‘(Z)r( ) (v OJU—\ »

(lo)#

(v ) wg\) 92 2 :

v is transformed into Z=—m——eo wifh Jacobian J=(kl-o ) 5
22
o) :
%22

the pdf of z, and hence of v = 12 » is clearly in the standardized
[¢]
22

student t-form with n degrees of freedom:



)
(A.47)G(2)dz=22 d z
T(%)(%) (I*zz)

2 2
(A.48) E(2)=0 and E(z’ )-r E )):En))-ri;r Zig) n+2 az- T

terms of the original variables v:

‘/ﬁn 2 (""2)011 5 %11
(A.49) E(v)=p 5— and E(v7)= re— R 0" =
22 22 22

So that the exact second order block-diagononal matrix V(BT)

and first two moments (x)

n+

is found from substitution of (A.49) into (A.36):

. 2 x_ % _ ' _ ! =1
(A.50) v(BI)—E(B, B])(Sl B]) -o”(x]xl)

(). ]

! =0 . 2 m=1
](X]X]) (1=p=) == 9

M is the covariance matrix of the ML (OLS)

1
where © (X, X.)
R b Rt et
estimator B‘ and cll(l-p )(X]X]) the covariance matrix of
the Aitken estimator él (see (A.26)).
Taking account of (A.50),(A.37) and (A.38), the exact variance

3 . x
covariance matrix of B~ becomes:

](x;xl)'l 0
B =yl
(a.51) v(%)=(1-0%)2] .

=1
0 (x 2%5)

Computing the values of (1-02) %E% for varioﬁb values of n and

P, it is seen that there emerges a considerable gain in effi-

ciency » When deriving a feasible Aitken estimator of B in

(%) See M.Kendall and A.Stuart, [ll], vol I, pp. 59-60



b)

stead of its OLS-estimator, if p>0.30 (6bviously, the gain

becomes more considerable if n = T—k]-k2 increases) (%) A

3.2 Exact sample distribution of the feasible Aitken estimator B*

Theorem A2
The finite sample pdf of the feasible Aitken estimator

BT of B] satisfies:

n+l
1 k, r(z)

x X
(A.52)h(BT)dRT"h(z,)dz = .
1 1 1 1 [2nc“(1—pz)]7 Tﬁ;

i i KT n+kf)
+ Nz i+
-0t 1% 2 d Z;

2
0 i; 2(1-p )O]] P( n+k1+l)
2

i+
~

I a

with the (klxl)-vector z, equal to:zl=8]—81-wl2820=8* -B]
g 1
22
and n=T-k]-k2 and the matrix X] is assumed to consist of
Al
a set of mutually orthonormal vectors or X]X]=Ik
1
Proof ~ N 012
From (A.32) and (A.46), the joint pdf of B]’BZO and ~
5 2.2
can be written as:
= /3 = 5 5 a % & g &
g
(A:530n(B) .8y, 12)a8, 4B, amlleg(s .8, )e(~12)a8 4B, a <12
17720 = 1 20 o 1*720 & 17720 &
022 22 22 22

o
where g(.) 1is Zkl-variate normal and f(xl£)=f(v) is given

“op
by (A.46).
Transforming to the random variables.
z]=B|-B]-v820 5 22=820 and z4=v where z, and z, are k] =

vectors and z4 is a scalar random variable and the Jacobian

is 1, (A.53) becomes:

(x) See W.Vandaele [23], §4.3. If p is very small (p<0.1030.20)
OLS has to be preferred relative to feasible Aitken estimation.
Only for large samples, the covariance matrices are(approxi-

mately) equal (asymptotic equality for p=0).



(A.54) h(zl,z ,z3)dz]dzzdz3=g(z #2 .2 ,z )f(z )dz dz dz where

2

R

(A.55) g(zl+zzz3,zz)=g(61'8 320

2

(2m) k1
6,8\ fB,-8,\/6,-8 T -8
exp.lr-l : : [E(Bl 71 ! . : 1 where
2k = A & A
R20 B20 \ 820 B20
= |
= 1 =] ' =
& & 5 0 o R X ) (o] (X, X.)
B8] /81_81 1 125
(A.56) E { ~ = < - =
L) B i 1 '
\620 RANELRY 945 (% %D Fap18%,)
ot ‘ = TTE
Pl 8 (XIX]) (see (A.30)), with determinant ]ZI |X]X1| .

Without loss of generality, we may assume that the columm
]
vectors of Xl are mutually orthonormal or X1X1=I so that

k
substituting (A.56)and(A.46)into(A.54):

1
e exp{ _{ (z +z z ) (z1+2223)

(A.57) hi(z ,22; )dz dz dz =57

ag
-2 § V22 2yt 022 22 2
11 11

1z 1 22 *
+20 zz(zl+z223) + 0 zzzz'l}
dzldzzdz

3

) n H(ELL)
Sk 5 2
with ¢ equal to ¢ =1—k1—(0”02-50?2) g (l-pz)2 \@
(2m) ¥ r(zl\)r(%)

and rewiting as:



(A.58)h(zl,22,z3)§z]dzzdz3=

' T ke 2 11 12, 22 v 11 12
e exp(%ilzlgll) exp{-E-Ezzz(z3c +2z30 +0 )+222(z3 zlo +zlo )] }

1
r— I
Vv 222 992 2)2(n+ )
1-2p z + — 2z
c]] 3

11 3

dz
dzldz2 3,

we can integrate out z by rewriting the part of the above

2°?

3 5 5 i 2 1 12, .22
pdf containing z, with substitutions al=z3 a l+223cf +0 and
1 5 3
az=z32]ol]+z]0 2 » Where a, is a scalar random variable and
a,a k variate random vector as:

22 a a a,a
{ B SQJ exp{ (2 2 2)} j exp{ Ez +— zz+f)— 222_-Prdz2=
a
1
2m 2 2
E_ eXB

So that the joint pdf of z and z. becomes:

1 3
(A.60) h(z,,z3)dzldz3 =
k 1 . : .
fl 7 (n+1) —zlzldll ﬁ:'z](z30]l+0’2)
c(2m) 0]] ex 2 Xp 2
E(z o]]+2z cl + 22)
3 dz dz
= i 1 3
i il
Z_11 12 22) 2 2 =
(;30 +2z,0 “+0 (z239,, 2230,2*°||)
k Al
—l }(n+1) “E %
2
c(2m)® o, exp{—> a2 -}
) 2(230,,-224 0),%0 )
_kl i(n*kl+l) - dz] dz3

2 —, 2
(011022 012) 2 (z3 Osm=28. 9. . *g. . )

Expanding the exponent term in a Mac Laurin series and integrating

term by term w.r.t. 2z utilizing:

39



@ dz3 1
= i k .
(A.61) : i+§(n+kl+l) oi [b (l_pzi]1+£(n+ )
L. (z3022‘223012+0]1 221 11

n+k1
reor (e t) . :
vk 5 ( since O]2<022011)
I' (i+ )

we obtain the following joint pdf for the elements of

o &

=l -;2 = *—"

z]—Ll B = 520 B] B
%59

1 :

(A.62) h(zl)dzl=

-~ 1) g ? i ¢ dz
c(2m) 2 ¢ Z, 2z 3
- 11 w  [=ih §o1% dz
-k : all i+i(n+k +1) 71
8, o0 J—t =0 1, 2 (2, < ~2g 0 s F0. ) !
o122 Yoz 2 o VBT 95T Y 13 Ty gt
k
+k
71 f(n+1) =} i, i p €+n I)
« 1 =)
_ RLEWYT dg4 95 (D) ® (=19, f= %, 2 dz
=¥ jatk ) i=0 i ! |20, ¢1-p%) ol oy
2 " 1 1 Pt
(91192793 [011(] . )J

Or substituting for the constant c, given in (A.57), we

find as exact pdf of =z

1’
(A.63) h(zl)dz =

1 f(“+] i n+k1
[ ()
! 2) nlfzz & dz,
k oo\ ] 2 n+k +1
i —. Yi=0 Lo \20, . (=0 ] i 1 J
[27”’11("92)]2 q(z) i ,I’(u—__z

2. . 3 s
where U]l(l—o ) is the asymptotic variance of each element

I 18

of z, ( see (A.26)), which are all equal since it is assu-
1

med that X]X]=Ik .

As n increases, lhe ratio of the Gamma functions involved
in (A.63) will rapidly disappear so that the pdf of z,appro-
aches the following normal density:

-z'lz

= =i 11 .
(A.64) h(z]) dz] c'exp({ 5ETTTT:32)}dz] A



Appendix B

B.1 Finite sample bias of the ML estimator of the serial

correlation coefficient.

Theorem B.]I
The finite sample bias of the ML estimator for the

autoregression parameter B in the model:
(Bs1) yt=Byt_|+et with et~NID(0,02) (E=T 3.2 5.8 55 0w ) (x)
is equal to:
(B.2a)E(B)-B="28+0(BT"2) (xa) if the initial value y, is
T
fixed at zero or
(B.2b)E(B)-B=- - 8+0(8T 2) if the initial value . is fixed
T+1+c
at a constant value ¢ # 0 and

B+0 (BT 2) if the initial value ¥, is a random

(B.3) E(é)-B=—T+|

variable with the same mean and variance as the other y *

variables.

Proof
Following J.White [2§], the expansions for the mathematical

expectation will be given up to terms of order T-3 and 64

Model |1 The initial value ¥ is assumed constant: y°=c

Then, under the above assumptions, the ML-estimator of B in
(B.1) results from the unconstrained maximization of the loga-
rithmic transformation of the joint likelihood density of y:

-7 2

(8.4) 1, (718,0%) = (2m0%) " exp {-—Ly 1 2, B 3 T &
20" =)

It is clear that for this model the ML-estimator is equal

to the OLS estimator:

(x) The discussion of this theorem follows J. Wh1te [25] For
simplicity of notation and discussion, we assume that the

initial value is y and not Yy
o

(xx)See H.Cramér [6], P.122, for the determination of the order
of magnitude in probability of different functions.



T
" tflytyc-l

(B 5) B=

I o2

Yy

e=1 71

1.Ay =c=0
—_— T T 3
Setting U= Z]ycyt—l and V= I Ye—1 the joint moment generating

t= =

t=1
function of U and V is:
+

(B.6) E][EXP(UU+Vvﬂ =M](u,v)j exp (Uu+Vv) Ll(y)dy
Foo ;
=2m) " #Texp| (-4y Dy)dy=|p| "} (%)

-0

where D is a (TxT)-matrix with determinant

P qO0. s . . . 000

WP d O s & 5 o9 o. 010

I M
[D|= B g B e s s 5 = @00

e & § 2 G B

|

[+ @ 4

[ s & W@

0 0 : . P q

0 3 & & 1

with p=l+82-2v and q= -(B+u).
Expanding

E (B [0 oM v p ==
(B.7) o L. | 1 dv =-£J~ %IDI 2 %g dv
B B) Su u=o e u=o
in a Mac Laurin series and setting a=82 3
E](B) o2
(B.8) =Q, (0)=q, (0)+Q (o)a+Q gl 3= *eeecen, with

(B.92)Q, (o)== —J (—I 2 2
(B. 9b)Q (o)=-—J (’lnl_

(x) Where, without loss of generality, 02 is set equal to

~

since B is independent of o

) dv and
u=o

_D
du

| w




From (B.6), we may denote the (TXT)matrix D=D(T) and the right-
lower submatrices with D(T-1),D(T-2) etc.. so that D(T) satis-

fies the second order difference equation:

(B, 10) D(T)=pD(T—l)-q2D(T—2) with D(1)=1 and D(2)=p-q2

and solution:

T=2T=1 T Teg=1 2 B = —27 271
(B.11)D=D(T)=p "L (-1) |p -q p q

=D T T
=
=1 E=%—1 r=%-2 T=2<2T ¢
2 I (=1} [dz=n) =% (z+a) x with
=0 T %
=1—2v=p-82 and x=(8+u)2=q2 5

so that the derivatives involved in (B.9) and (B.10) may be

evaluated by means of the various values of D(i,j)

(B.12) D(i,§)=D(T,i,j)= a—(m ) since
a3 \5 x x=a/|a=0
(B.13) 1 3D(D| 1 3Dp(T) 3x|  _2(B+w) 3D(TL)| _, 3D(T)
B du |, B 3x 3Bu| _g 8 S5 g 3x | x=a
and D(T)]u=0 = D(T)lx=a=82
So,
o 5 3

- —

Q;(0)= {%D(T,O,O) 2p(T,0,1)D(T,1,0)-2D(T,0,0) 2D(T,1,1)} dv

: -%(T-l) T-3 T-3 %(T-l) (T-5)
i 5 (T-2)z  (z-1)z  (2-T-z)-22z z

BT—3)(T-A)-(T—Z)zz-(T-3)(T—Q)z] }av

o
(B‘IA)J{_(TEZ)Z 'i(T+3)_(T+2;(T—3)z'i(T+5)+T2+§T-127_-i(T+7)} dv

-

& L =l£+o(T_A nd similarl
(T+D) (T+3) (T+3) .3 ] 8 b




2 -
(B: 15)Q(0)m—tar2T23 =1-%+i7—3§+0(w 4y il
1 (T-1) (T+1) =
(B.16)Q, (0)=—28L1+8) 2240(1™%) . or substituting into (B.8):

(T+3) (T+5) (T+7) (T+9) T

iy=(1-200 2 Yauazg3 0805, -2
(B.17)E(B) 6 T+;7 - B+T36 +T38 *5.0 0= T)B+O(BT ) A

1B y0=c#0 (c is known)

Then the joint moment generating function (B.6) of the

composite variates U and V becomes:

= F 2
(B.18)M(u,v)=|D(T)| exp { §-[|-2%%%%l } with the first term

A

of the Mac Laurin series expansion (B.8) of Eé§l=Qc(a):

o

— o

' dv ( and integrand transformation)
u=0; B=0 :

2 Q.2
eic e e z[;_i(T+l)+(T-2+c2)z_%(T+BE]dz (z=1-2v)

1

If a =4(T+1) and x =ic2, we can integrate part by part to obtain:

_ & -
(B.20)Qc(0)=£ex[;a_lr(l-a,x)—iz(2a+2x—3)f(1-a,x)+(2a+2x—3)ea‘] ;

. 1 . 5
with T(l-a,x) the incomplete Gamma function (x)

I-a

=X
(B 2100 (12, x)mEX [1 . +0(a’(x+a) Jor (8.20)
x+a (x+a) (x+a)3 ). becomes:

(x) This asymptotic expansion of the incomplete Gamma function
IT(1-a,x)= " e-“u-adu ( if x=0, usual Gamma function) can
be found in Erdélyi, Higher Transcendental Functions, 2,
New York, Mc.Graw Hill, 1953,p.140.




2 .
2a+2x-2 T 2 T

(B.22)Q (0)=4( ) +o( )=,- 46 a4
é i (T+c2)4 2 2.4

(B.23)E(g)=(l ) Bl Bawmensns
T+l+c

From which it is seen that irrespectrive of the remaining
terms of Q (a), the bias of B vanishes if the initial known

constant ]Y I—ICI is large. A2}

Model 2 Stationarity condition:yo is random with same marginal

distribution as yt.

If (B.1) is assumed to satisfy an infinite stationary process:

&
(B.24)y =By, +€ = rfoBTet'T with € _ “NID(0,0%) and -1<B<1,
then
. 2T o2
(B.25) var (yt)=T§OB var(et_T) = ]-32 » SO
02 (o] 2
(B.26) YtZN(O,W)) and yO:N(O, (‘qz)) (%)

or the probability of obtaining a y -variable is equal to:
°

" 4 a2
®.27)1, (5,802 = LB op [-0-8) 2]

A}
and since the ets € €=Vgses:0), AFe mutually independently

normally distributed, the joint sample likelihood function is
(Jacobian of transformation of et-varxables to y variables

is unity):

-4(T+1) ‘
(B.28)L, (y|8,0%)=(2m02) (1-8%) dexp{ 51, =L [ cr-s? Yyl ; (y,-By,_ 1)j}

(x) For model | (yo-c), the marginal probability distribution
of each observation Yo depends critically on the complete
history of the stochastic process if |B|>l ( always pos-
sible since convergence is not postulated for model 1 and
estimator éB.S) can easily satisfy: l§l>l),rior this model g

o
Yo (1-82)

y with [g]<1.
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Logarithmizing (B.28),necessary ( first order ) conditions

for the maximum of the likelihood function are provided by:

x
31nL, (y|8,07) a : gs. "
(B.29) ==y +T[y B+ L (yt'BYt_l)yt_J =0 and
3R B=B (1-B") o t=1
alaL, (v]8,0%)] —— sa 4 ¥ a 2
(B.30) 3 2 A2="—A2—+ T[(]'B )y0+ z (yt—Byt_]) ]=0
30 0 =0 ] a t=1
or
T & b D
2 2
(B.31) I¥eYe =B I v, -¥oB+ZE.  ana
t=1 t= (1=87)
. A T = P
(B.32) o2=-] [(1—82>y§+ z (Yt-Syt_])j= L (a-288+8%0),
T+1 t=1 T+]1
with
(B.33) A= L ¥y s ‘B= XL ¥.¥. and C= I Y S
t=0 °© g=| ¢ ¢! t=2

Substituting (B.32) into (B.31), and taking account of (B.33),yields:

A

L (a-28B+8%c) —E
T+1 (1-8)

and rearranging terms according to the power of B:

(B.34) B=BC+

TP 111 0 [A+(T+])C]S¢(T+l) B _
T C TC 1 (o}

One root of this cubic equation in B is the real
R

maximum likelihood estimator, say B, of model 2. We may



EEry ito 1nvest1gate it by locating the three roots of g(B) (x),

Therefore, from (B.35), we ea511y determine values of g(B)

for the points B- + ® and B- ¥

1

successively:

(x)The roots may be determined analytically, but this is

very cumbersome and does not produce much contribution

for understanding. Indeed, denoting the coefficients
of the cubic equations (B.35) by a]=—z%l % 3
_Larcrenc] _T+1 B B
a, e nd a3‘ 5 & 2 the roots; say 61,82 and
83 may be given by:

- 1/3 143 =« 1/3 143 1/3 1/3
(B.36)B]= 1 +12 ;82—311] +azl2 and B o1, +a‘12
where

- T
(B.37)1, 5773~ * Vgky+a7k)
with
2
1.2 __1(1-1) A+ (T+1)C
(B.3Ba)kl 32,%a, 3 T2 5 TC and

TR
(B.38b)k,~z7a | 38;,8,%a,

oy 5 1
Clearly, 81’2

is implied by (B.36-38), exact computation does not

much comprehensing about the approximate numerical

of the roots.

are real if 7 k

1-D)[arcrenc B

)3 B3 1
8 2
C3 ) T2 Cc
1 3 ¢
—— b
+ 237 kl > 0, but as it
gain
value

+

T%1
T

Ol



g(ou) = ® and 8(—:») = -
(B.39)
g(l) TC 0O and g(-1) TC 0.
or the three roots of (B.35) satisfy:
(B.40) B,<=1%B . <*IXB (B in different motation as (B.36)),
1 2 2 142453

where, due to the presupposed stationmarity condition for
this model 2, é2=§ (unique maximum likelihood estimator
lying in feasible region (-1,+1)).

For T»~, the cubic equation (B.35) tends to:

~

~ /\2 A ~ ~
(B-41)g(8):63-%8 —B+%=(B—%)(82—l) =0 5 so that the three

roots of g(B) are asymptotically b]=1,b2=—]and b3= % 5 OF

in comparison with (B.40), the ML estimator for model 2 1is

asymptotically:

. B c§1ytyt_l
(B.42) 5=b3= B » 59 that in conjunction with (B.5),
2 .
L s §
t=2
it is found that the ML-estimators of both models 1 and 2

only differ by a term yz in the denominator (x)

g T
For U= I ytyt_, and V= L Y , the joint moment
t= =

1 t

generating function (B.6) becomes for this model:

oo

(B.43)E2[exp(Uu+Vvﬂ =M2(U,V)= exp(Uu+Vv)L2(y) dy

-

(x) Note that the ML estimator (B.42) can directly be derived
as a weighted least squares estimator minimizing
2 2 T 2 2
Q=(1-8")yg*+ I (¥, =By,_y) =A-2BB+g°C w.r.t. B((B.5)

t=1

is the unweighted least squares estimator).



SRS S PUNNENANY " g
=(21) (1-8%) exp(-4y D7y ) dy

2
=(1—82) |Dx| (see (B.28) for 02=1) "

Noi—

with D* a (T+1) X (T+1)-matrix with determinant

p=0 q Qs & » v s B 0 o0l

q P & B 0

(B.44) DX=D(T+1)= 0 q s w s s B @
. . . ‘

@ ¢ % & = 0 g

with p=]+82~2v & q==(B+u) and a=82
Expanding, as for (B.7), D*(T+1) by the elements of the first

(B.45) DX*(T+1)=(p-a)D(T)-q?D(T-1) , with D(T) defined as in
model 1 (see (B.11)). Combining (B.45) and (B.11) with

A
T =T+1, we find:

(B.46) DX(T+1)=D*(T )=(p-a)D(T -1)-q2D(T -2)=D(T )-aD(T -1) ,

and defining:

aD(T')

ER: AT DE(D, 0 5= 2 :
3a? 9x

x=qa a=0

while expanding the integrands in their Mac Laurin series

as in model 1, we obtain:

E,(8) , o
(B.48) =Q2(0)*Q2(0)G+Q (D) =—*45iiinee OF
2 2 .
- g - 5
(B.49) EZ(B)=<I-—2 Fim = . 3) B+ 28 7+ ] . L
(T+1) (T+1)2 (T+1) (1+1)% (1+1)?

(1-=2-)B+0 (8T~ %) A £
T+1

row:



B.2 The bias and inconsistency of the 0.L.S. autoregression

estimators in autoregressive models.

Theorem B.2
If the i'th equation of an M-equation model satisfies:

= - . » = 152, smasl
(B.SO)yi(t) Yilyi(t 1)+ei(t) with e, (t) piei(t 1)+ni(t) vt

with ni(t):(o,oii) and yi(0)=ei(0)=0 or stochastic,

then the OLS estimators of Yi, and pi are inconsistent.

Proof 1. The OLS-estimator of Yi, is neither unbiased nor

consistent:

From (B.5), the OLS-estimator of Yiq is given by:

o1
I B

i ]yi(t)yi(t-l) X yi(t)yi(t—l)

(B.Sl);il= = A58 (see alse (B.42)).

o~
[ |

2 z
yi(t-l) yi(t—l)

t=1" t=2

Elimination of the serially correlated disturbances in (B.50):

(B.52)yi(t)=Yilyi(t-l)+piyi(t—1)-Y yi(t-2)+ni(t) s

i1Pi

which multiplied with yi(t—l) and summed w.r.t.tgives:

i T . T P d
(B'53)t£2yi(t)yi(t-l)=(Yil+pi)t52yi(t_])_Yiloitizyi(t_]?yi(t-z)
i
* I n.lt)yy.(t=1)
t=2 3 | 1
or from (B.51) T T
. 3, yi(t—l)yi(t-z) & ni(t)yi(t-])
N o t=2 L t=2
B Y ™y P Ty Py b= ;
7
L yg(e-1) I yi(e-1)
t=2 t=2

from which it is seen that the bias of the O.L.S.estimator

~

Yil does not tend to zero if the number of observations grows

indefinitely.
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Indeed, the first ratio in (B.54) has the same probability

limit as Yil and the second ratio tends in probability to

zZ€ro, so that:

2= 3 = » which does not tend to Yil’ even

T ]+-yilp

~ W . ®D .
(B.55) plim ¥.

1§ ci is small (unless oi=0). Therefore, as long as the dis-
turbances of an auforegressive model are autocorrelated, the
OLS-estimator of Yil is inconsistent A

2. The OLS-estimator of Oi is biased and inconsistent .

Since the disturbance terms EZch are in fact unobservable,

the autocorrelatlon parameter is estimated from

(t) L (t—1)+n CE) with OLS-estimator:
i
T e.(c)s.(t-))
2 ~ £ ] 1 b1}
(B.56) oi—ri— 0 -
z Ei(t-])

and assuming that the autoregressive process of the residuals
<%

satisfies an infinite stationary process ([ri

] 1 - 7§
(B.57) plim T Z E (t-l)=p1im -_— I Ei(t-])

T+oo Ll Toe T Jpop

i ¥ o3 =
=plim =7 E vi (e=1)= 2p11m(Y l)p11m = Ly.(t=1)y.(t-2)+
T+ t=2 T T t=2 1 X

pllm———Zy (t=2) pllm(Y ,)

T>w T
2 3
E-pllm(Y )] o and
T >0 ¥y
b i T 2 ~
(B.58) T e, (t)s (e-1)= Z y; By, (e-1)- Y Z'yi(t-l)—vi Z y; (0)y, (e-2)
t=1 t=1 - t=2
~p 4
P yi(t-l)yi(t-Z)

11{_2

& T
Mgy & ¥ CEDY, (E= 2)*Y E Yi (t-l)y (2~2) .
1) eus len2



Proceeding in the same way as for determining the plim of

~

Yip? equation (B.52) may be multiplied with yi(t—Z) and sun

med w.r.t.t (and divided by T-1):

T

T
(35977 T y; ()y; (=2)=Cyy #0)my Ty (e=1)y; (622) -
t=2 =

P T 2 £
YuuPom—s B ¥.(E-2)% In.(t)y.(t-2)
1R (e % I:=2 i T p=g * i
A 1 T
so that subtracting Y. IT:T Z y (t-])y (t-2) from both sides

of (B.59) and transforming to plim's:

(B.60)plim——ro ]1 Z v (t)y (t=2)-plime——r lly Z Y (t—l)y (t=-2)
T>o0 t=2 T->oo =2

- b S 2
=[(Y.,+p.-plimy. )plle =¥ p{]o
L 11 1 rhe 11 T i > ) (R ()
or, from (B.58) and (B.60):
T

2
I e, <c)e (:—1)=—p11mv i e —plxmvll)plxmv 'Yi]pilcy,

T3 T

5 1
(B.6l)p11mT_I

T—>co =] T+

so that substituting p11mY by (B.55)in(B.61)and(B.57):

1.1

Treo
- = PyWaylYytRyd
(B.62)plim p.=plim r;= , or (B.55)and(B.62)imply:
T T (]+Yilpi)

(B 63)p11m(Y

T

+ = + z
LRI TRy
Hence the estimation cf pi by pi entails an inconsistency
which is exactly apposite to that generated in the estimation
. a
of Yil by Yipe A

The expressions (B.55),(1.62)and(B.63) imply that for large samples:

_Yil underestimates Y.

i1 for °i<0 and overestimates Yilfor pi>0;

~ ~

-ri=pi underestimates L and so pi (since the autocorre-



~

lation of the residuals Li(t) is more moderate than the
autocorrelation of the error terms Ei(t))if Oi>0 and over-

estimates the negative autocorrelation.

The inconsistency is reduced in magnitude if one or more exo-

genous variables appear among the explanatory variables of the
i'th equation. However, it only disappears if the disturbances
Ei(t) are not generated by a stochastic autoregressive process.

This will be the subject of the next paragraph.

Theorem B.3

The OLS-estimator of the autoregressive parameter ¥iy in

the equation:

(B.64)y, ()=, 2. . CeE)+y. .y, (e-1)¥e, (e)with £.(e)=g.e. (=1 )*n. ()
1 1 a i 1 | 1 1 =T 1

1 il

is biased and inconsistent with inconsistency amounting to:

2
& A Oi(l'Y;]) |
{B.. B5)Tmic: (Y. < J=plim¥.  ~¥..= " - y With
1] 1] 31 - 2 2
T+ (LEY . s ) e T =
LIz gl W _1).2.]
14 1§ 1

2

"

i
2 oo

a =that part of the variance of v.(t-1)= I YT z. (t-1-1)
Vs Z; ol i 1 N
=R L] T=
(Vt) which is not associated with the
variance of zi](t)(i.e. that part of the variance
being uncorrelated with zil)
2 ’ © T
o =variance of w,(t)=L Y: . E: (e=1) (VE) (x)
wi i =1 LETL

Proof
Since (B.64) or

(B.67)yi(t)=ai]zi](t)+Yilyi(t-1)+oiei(t-l)+ni(t)

(x) Or, from (B.64):

@ T
(B.66)yi(t)=ai z Yilzi

l(:-T)-r f yT
=0 =0

1 gy By LB~TIRE, %, (e 0w, 18]



is the "true" equation and, erroneously,

(B.68)yi(t)=ailzi](t)+Ci|yi(t-l)+ui(t) is estimated by OLS.

assuming ui(t)z (O,Sii), we may consider (B.68) as a "misspecified"

equation of the "true" relationship (B.76) (x)

(x) In general, the formula for (finite or asymptotic) specifi-

cation bias and specification inconsistency may be derived as

follows:

Consider the true model:

(B.69)yi=XiBi+ ei(i=l,2,...,M) with initial assumptions E(ei)=0,
E(E.E:)=O..I and the columns of X, statistically indepen-

1 i 11T 1
dent of € (always 1if xi non stochastic)

and the misspecified model:

i b §
(B.7O)yi=Xibi+ei with E(ei)=0’E(eiei)=siiIT and the columns of

Xi independent of €
Then:
(&7nsd.hxﬂiﬁlf"ny=EBi§.f'§xJe;pﬁ. :
i i~ i i i i S 3§
with (i;ii)-liixi ; matrix of regression coefficients in the

set of '

'auxiliary" OLS-regressions of each x in Xi on all the
x's in ii or
(B.72) bias (bi)=E(bi)-Bi=(Pi-Iszi and

- i = s’ 1
(B.73)inc(b)=plim b -8~ [(plimg(X X)) 'pliniX X‘H<J B, .

T T+ T 1
For the above problem (B.67-B.68), one relevant variable,

say xik.(t)gei(t_l) has been left out, so that there is only

one non>trivial "auxiliary" regression, that of X; . on all
s Ko
the included variables: B .
; g - L L U TR ’ +v, ¢
CH 74)x1,ki Pi1*i1"Pi2%i2 +p1,ki-lx1,ki—l i

_'_ - _l
(the other equations are identities), so that the (xixi) lxixi—

matrix can be partitioned into an identity matrix and a column

vector of the pi-values or Pi-(Iki-l,pi) oiﬁ

e

(B.75)E(bi)-B;+piBi'ki with (e;,si'ki)»-ei.sz having (k;=1)elements

(B.76)bias(bi)=8i k.Pi? and due to the lagged dependent variable in
oK «
i

(3'77)inc(bi)-ﬂi,kipi .

or



-

From (B.73)and(B.77), the plim of the OLS—-estimator ci 18%

(B. 78)p11m c "Y +p plim p i2 where P., is the regression
T 1 T+ &

coefficient of yi(t-l) in the auxiliary regression of si(t-l)

on zil(t) and yi(t-l).

But since

1 -
(B« 79)p11mT Z € (t l)z (t)—O and piZ-bEi(-l)yi(—l).z

T¥o =] ¥ il

Pe, -1y, 1 e -3z Py )

l—r2
yi(=Dezg,y
b 3
~ e; =Dy (-1) | 1
(B.80)plim p.2=p1im 5 = 5
T+ 1% Tse |]-r I
v.(-1)z. Ty.(-1)z
" i 1| i i
oy ¥
‘Ttglsi(t-l)yi(t-l)
plim’ B
T>o 1 i} :
= I (t-1) !
Teay

and because

(B.8¥)plim) z 2;, ()€, (£)=0 (see also (B.80)) and

T+ Tt
1 8 2
plim= I €.(t)e.(t-1)=p.0 and by (B.66):
Toroo Tt=l 1 1 1 Ei
1 T T
(B. 82)p11mf Z e (t)y (t)=plim I €. (t—l)y (t-1)=
T> T+ t=]

®© T
L YT plxml z B, (t)E (t=1
1=0 l'rew Te=g 1
a .ol
= 5 gy 0?02 - —t (stationarity),
=0 g g €, (]_Yilpi)

and since the probability limit of a ratio can be written as a

ratio of probability limits (x), (B.80) becomes:

(%) See Slutsky's theorem, e.g. in H.Cramér, [ﬁ],p.ZSS.




T
plimt I e, (t-1)y.(t-1)
» 1 Tro “g=1 ' B
(B.83)plim p.,= -
e 2 (1er] (=132, " { 2 3
£ i1 plimg I yi(e-1)
T+ =1
2
ce. 1
1
2 2
(1=, pis ) o —vs =z _ )
1.1 4 yi( 1) yi( l)zi]
or substituted into (B.78):
O2
- P oy €
(B.84)plim CilEpliin =Y. * =
il 4 gy 2 ~—3
T T+ (1 Yi]pi) Oyi(_])(l rYi('l)zi])

or the magnitude of the inconsistency depends upon oy and the

relative importance of €t
02

3 Py CH €

(B.85)1nc(Yi])=p11in]—Yi]- =

2 2
T+ (1—Yiloi) cyi(_l)(l ryi(-l)zil)

2
o

. €.
p]. p

C1~"Ny P ) © _
o 15) liae ¥ yi( ])zil

02 being the part of the variance of y.(-1) which is
yi(-l)zil i

uncorrelated with the variation of z. so that from equation

i1?”
(B.66) and the expression for the asymptotic variance of

oo
wi(t)= X Yzlei(t—T), the inconsistency (B.65) is obtained.
=0 ~

Therefrom, it is clear that Yit will asymptotically overestimate
Y;, @s long as Di>0 (see also 6pposite inconsistency in previous
model:(B.63)). A

Corollary B 1 The introduction of an exogenous variable z;, re-

duces the absolute value of the inconsistency of
the OLS estimator Yipe

Proof. From the expression (B.55), the inconsistency of Yil

for equation (B.50) is:



2
. Ay C1=vg )
(' .86)Inc (Y., J)=———— | which is larger in absolute value
W iey__p.)
1 b
than (B.65) (%). 4

Corollaryv s 2 If the observations of the exogenous variable zZ:

also follow a | st order Markov scheme with para-

meter Ri’ the expression (B.65) for inc(yi])becomes:

. Oi(i'Yin) 1
(E.“7‘Tnc(yi])= 5 5 5 3 (%% )
(1+Yi]Di) ( ai]ozi] (]_Ri)(]_YilCi)
].L
2 2
\ Osi (1 VilRi) (I*Yiloi)
R2 Q_ég_eééizienél_§essi§isési99_§££9££_2521925299_32_5_1_5E_Qzésr
i.8 of a 2 nd order model

Theorem B.4

Tf the true equation is the 2 nd order autoregressive lag scheme:

(B-oo;;i(t)=ai]zil(t)+vilyi(t-l)+Yi2yi(t-2)+fi(t)
but a first order model is estimated instead (by ‘OLS):
. 89) ¥y, =a. : - 7 = s

(B 8,)}1(t) axlzll(t)+c11y1(t 1)+u1(t)

where the zil(t) form a stationary and serially uncorrelated
process and the disturbances may be uncorrelated or correlated,
stationary or instationary, then the probability limit of the

0.L.S. estimator of ciy is equal to:

- - Ty
(B 90)plim Ci]=p11m Yi]=
T »oo T2 ) b le

Proof. From the stationarity and the serial uncorrelation of

2 2
zi,(t).cy(_l)—cyi and

(B S1)plim b

T>>

- . =plim b " _.+y=Plim b N N
yi( Z)Yi( 1).zi] o yi( 2)yi( 1) = y; ¢ l)yi( 2)

(x) Only 4if o =0, i.e. if there is no exogenous variable in

1
(B.64), both inconsistencies are equal.

(xx) The proof is left for the reader.



='plim b =plim cil=plim Y.
T+ T T 1

1 or from (B.73)and(B.77):

7 A~ Y&

(B.92)plim Y., =Y., +Y..plim y, =—=L (see also (B.78)) A
il il i2 il

T+co T+ ]-Yiz

B.3 The consistency and asymptotic (in) efficiency of the feasible

Aitken estimator in autoregressive autocorrelated models.

Theorem B 5.

If Aitken's G.L.S., is utilized (equation by equation) using
a consistent estimate of the error variance-covariance matrix
(say by instrumental variables), then the resulting estimates

are consistent but not asymptotic efficient if (a) lagged depen-

dent variable(s) occur(s) among the explanatory variables.

Proof. (x)

Consider the i'th equation:

(B.93)yi(t)=0t“zil (t)+Yilyi(t-l)+€i(t—1) with Ei(t)=pi€i(t-l)+ni(t)
with

T

1
;iimlx.xi a finite positive definite matrix with xi=(Zi,yei)1§i]yiéj))

the matrix of observations of the explanatory variables in the
i'th equation(i=1,2,...,M).
(1) TE p; and hence Qiiafé known, the Aitken estimator of oy

1
and Yire being
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(x) See also T. Amemiya and W.Fuller [1], Sectiom 5, pp 520-523
and K.Wallis [24], Appendix, pp. 566-567.
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is BLUE, consistent and asymptotically efficient if the error term
€ is assumed to be multivariate normally distributed. Then
the asymptotic variance-covariance matrix of /T(ail-ail) and

/T(;il—yil) is given by:
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(131) TE CH (and/or oii) is not known, then a consistent estimate

Q.iof Qii may be used to obtain:
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with sampling error:
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(B.99)Bi Bi_(xiQiixi) xiQiiei » and by Slutsky's theorem (x)
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Now, we shall evaluate the two probability Ii@its of the r.h.s.
of (B.100) upto order O(T-i).
(1.) First, consider the second plim.

Expanding ﬁ;; in a Taylor series about o yields:

(x)See footnote on p.82
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Since the (2x1)-matrix Xi
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from which it is seen that the 2nd element involves terms as

A

(x) Because pi is assumed to be a consistent estimator of pi

such that 6i~pi-0(T-i)



yi(t)si(t),yi(t)ei(t+l) and yi(t)ei(t+2) which are assumed

to converge in probability to resp.
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(%) So, the expression (B.104) completely vanishes if the set

of explanatory variables in the i'th equation consists only
of variables which are asymptotically uncorrelated with

the disturbance vector Ei.



Or, from equations (B.102) and (B.104), we find that
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limiting probability distributions.
Applying the same Taylor-series expansion as in (B.101)-

(B.102) for the covariance matrix, we find:
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Substituting into equation (B.100), we find that /T(Bi—Bi) is
asymptotically distributed as

o
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the second term of which implies that éi is not asymptotically
efficient. Thus, the magnitude of this asymptotic inefficiency
depends upon the asymptotic distribution of /T(pi-pi) and it is
a consequence of the joint occurrence of (a) lagged dependent
variable(s) and the (consistent) estimation of the covariance

matrix (otherwise, no Taylor series expansionms;see also previous

footnote). A
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Substituting (B.115) into the asymptotic distribution of /T(Bi-Bi):
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i is the asymptotic

variance- covariance matrix of the consistent first round

instrumental variable estimator B. Since ZViQiVi+viQi¢iini is
positive definiEe, there is a loss in asymptotic efficiency

when comparing éi and Ei,i.e. of the feasible w.r.t. the "usual"
Aitken estimator. The same can be said w.r.t. the initial
instrumental variable estimator since Vi+2viini is positive

definite. Only if pi=0, there is no loss in asymptotic efficiency.



Appendix C A likelihood ratio test on vector equality with

error variance covariance matrix of arbitrary rank.

Proposition C 1

The "test statistic'" on the vector equality hypothesis
(HO:B|=82=.....=BM):

~ 0y ] ¥ -1 =1 =
Bic |odx@a x) " CB
(c ])s-Mk
& # '+ Lie
q y @y -y Qy

is F distributed with q and s-Mk degrees of freedom,q being the
number of restrictions, s the rank of the variance covariance
matrix @ and k the number of explanatory variables in each
equation ( or here: q=(M-1)k).

The known matrix of restrictions is defined as:

Ik —Ik OswwsD
. By | 8 £, =i sseal

0 @Y omie = .Ik-Ik
Proof (%)

a) Under the null hypothesis, the system of lineaf‘equations becomes:

Y 5 &y
y X €

(C.3a) 2 1= 2 B‘ + . or
Y Xy Y

(C.3b) y-zB|+e

Following proposition 1.l an (sXMT)-transformation matrix G
) 1
exists such that E(GEE'G')=O?GQG'=C;IS and G ¢=a",
Putting Gy=y,GZ=é and Ge=€, the likelihood function under Hobecomes:

1 oy H
5 exp (';l!E €) with concentrated likelihood:

(C.4)L =
ERELEIE o)

(x) See also A.Zellner [26], Appendix A.
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b) Under the hypothesis that there are no restrictions on the
coefficients, we find, putting GX=X in model (1.64), the

likelihood function:
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(C.7)L2=————7 % exp (-—17-8 €) with concentrated likelihood:
(21702)_ 202
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From (C.5) and (C.8), the estimated likelihood ratio is then:

ot
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H, 2 2
2
°1
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which is asymptotically distributed as X%M—l)k , because by

defining a singular multivariate normal distribution on each
e(t) vector, we obtain, by the non singular transformation
G of €, a non singular multivariate normal distribution on
each é(e) vector for which the standard distribution proper-

ties for likelihood ratios can be applied,

Now in order to complete the proof, we have to show that:
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o
(C:12) - =1+—3 _F -MKk or alternatively:
=2 s-Mk 98

2
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with J an (MkXk) matrix consisting of M (kXk) unitary matrices,

the numerator of (C.13) may be written as:
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(C.15)y Q"xEx *x) -1 x 2*xd) ’J] £ 0=
{ # L - A} 1 A A\ - 1 1 A b
=y o*xx o*x) '[}x o*v)-x 'x @ x 'x) 7w x Q+£] (x atp)~!
X'Q+y

or to proof (C.1) it has to be verified that:

(C.l6)C'[?(X'Q+X)-lC'J_1C=(X'Q+X)-(X'QfXJ)(J'XQ+XJ)-l(J'X'Q*x),
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which is true since from premultiplicatio

] =
C (X Q+X) ! and postmultiplication by J:
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it follows from the definition (C.2) of t

both sides of (C.18) are equal to zero ma

Corollary C 1

Q>
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and qF = (M-

The quantities sln L
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both asymptotically distributed as Xi

Proof
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or from the convergence theorem in Cramér

corollary is proved A

Proposition € 2

If © is unknown and a consistent estim

the resultant test statistic, say F*, has

babils 7 i ;
probability distribution as Fq,s-Mk

Proof (%)

If it is shown that

(x) See A.Zellner [27], Appendix B for an

n of (C.16) with

or

he matrix C that

trices: A

1)kF are

(M-1)k,s-Mk

3
2 9\ g3 =
Fq,s-Mk+s( ) Fq,s-Mk""
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H. [6],p. 254, the

ate of it is employed,

the same asymptotic

alternative proof.
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(Ci 20 )F
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X 2y and 2 a consistent estimate of Q,

A —
yX=x8%=x(x 2%x)

has probability limit F defined in (C.1), we may
q,s-Mk

conclude that F¥* and F have the same limiting dis-

q,s-Mk
tribution.

This is easily established, utilizing the property that

(C.21) plim Q=Q and Slutsky's theorem in the probability
T+ -
limit of (C.20). A
Following corollary C 1, qF* and qF have the same
q,s-Mk

asymptotic Xz-distribution with q degrees of freedom,,
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