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II Feasible Aitken estirR~tion of the specified SUR-
models with unknown e-ror variance-covariance matrix

In the first part of th's paper, entitled "Models and
Inference", various liaear ~Un-models tiere specified
together wíth tte statistic l prok~crties of the relating Aitken
estimators in the case of known variance-covariance ma-
trices of the di~turbances--
If [he error varianc~-covari nce m..tri.: is not a priori
known, a"convenient" statistical estinator of this matrix
has to be defined in ordtr to ,bta..n a"good" estímator of
the unknown parameter vector S. Various scatistical proper-
ties of such "two-round" estimators wi11 :~i discussed in
this section.

Definition 2.1
An Aitken estimator of Q. in mo~lel (I.1)(generalizedi

least squares) or of Q in model (1.2a)(seemingly unrela-
ted regression), based , n an initial consiStent estimator
of 2. or of S, is called a teasible Aitken estimator ofii - -
B;, resp. Q.

A feasible Aitken estimator of S in model(1.2a) may
be derived by substituting the unknown S2-matrix (1.3)
by a first stage consistent, positive definite matrix
~ ~ { a..} ori~

(2.1) Sz - (Y'~-1X)-1X'S2-ly, with estimated variance-

covariance matrix

(2.2)V~(St)~E~ ~(Sz-B)(Bz-S)'~-(X~~-1X)-1

( see also (1.6) and (1.7)).
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Now, we shall show that the (feasible ) Aitken estimators
(2.1-2) are consistent , and,under certain condítions even
unbiased,while, for each SUR-estimator specified, some other
statistical properties will be briefly discussed in the subse-
quent paragraphs (~)

Theorem 2.1
If E(e) - 0, E(Ee') - S2 , plim

T;~

if X is non-stochastic) exists and is equal to the finite
matrix V and if the columns of X. are asymptoticallyi
independent of Ei (with S2 non-stochastic), then ~,Sz,
V(R) and V~`(Sx) are consistent estimators of S and
V (S) (or V (S~)) .

Proof
l. S is a consistent estimator of S, because from (1.6),

the sampling error ís:

(2.3) R-S - (X'S2-~X)-~X'S2-~e with probability limit
(inconsistency ):

(i:) Since most statistical properties are well-known
from literature: see P.Dhrymes ~7~,pp. 153-167,
A.Zellner ~26~ and j28~, A.Zellner and D.Huang~271,
only the most appealing properties will be thoroughly
studied. See also appendix A for an exact finite sample analysi
of two-equation models and y~ for the BLU-property of
the Aitken estimator in models with known error
variance-covariance matrices.

T
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-i -i
(2.4) inc ( Q) - plim Q-Q - plim X,'~ X plim T (X'S2-lE)

T.~ Ty~ T T-.m

} -1
- V plim T (X'S2 e) - 0

T ~~
iwhich holds by suitable choice of S2- -}{'H

( see (1.4) and (1.5)).

2. Qx is a consistent estimator of Q, since from the
corresponding sampling error (see (2.1) and (2.3)):

(2.6) 3x-Q -(X'S2-~X)-~X'Sl-}e and the consistency of S2:

, -, , ' 1 1

(2.7) Plim X S2 X- - Plim X S2- X-- V( xx),
T-~~ T T-~~ T

the sampling error (2.6) converges to zero in
probability:

(a)

1 -1
(2.8) inc (Qx) - plim Qx- Q- V plim X~~- E- V lim X~~ E- 0T-'~ Tioo p .

T T-~m T

(x) Slutsky~s theorem, H.Cramèr ~6~, p.255. Note also
that for X non stochastic the consistency follows from:

X,~-1X -1 X ~-1 -1
(2.5) plim s lim XT ~ V or

T'~ T T-.oo

i -i
lim (X'S2- X) - V lim T z 0.
T~~ T~~

(xx) See Slutsky'~ theorem again.
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-1whích is obtained by expanding S2 around some parameter
value (see also (2.7) and further appendix B: the sole
difficulties occur when X contains lagged dependent
variables).

3. Since

(2.9) plim T(X'S2-1X)-1 - plim T(X'S2-1X)-~ - V (a) ,
T-~m T-~oo

V(S) and V~(s~) are consistent estimators of V(~)
~(or of V(B )). p

Theorem 2.2 (e~)
The feasible Aitken estimator (2.1) is unbiased if

the error vector E(t) -~E~(t), e2(t),...., eM(t)1'
follows an M-dimensional symmetric continuous probability
distribution about zero for all t, provided that the
mathematical expectation of R~ exists.

Proof
By the symmetry condition, the probability density

function of e(t), say f~E(t)J, satisfies f~E~(t), e2(t),...
.. , eM(t)] - f~-e (t), -E2(t),...., -eM(t)] and the1 ~
sampling error (2.6), written as S-S - C(e)e, is an even
function of E because S2 ís an even functíon of e(since

(~) See Slutsky's theorem agaín.
(~~) See N. Kakwani ~10~, who discussed the classical SUR-

model with contemporaneously correlated disturbances
and a positive definite covariance matrix.
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~ is invariant w.r.t.a change of sign of E, i.e. if all
elements of E change sign )(x).

So, C(E) - C(-E) or sx- S-S-Sx in probability, i.e.
x zS-S has the same probability density function as S-S ,

so that Sx is symmetrically distributed around the value ~.
Hence Sx is an unbiased estimator if its mathematical
expectation exists. p

Remark 2.1
Notice that the feasible Aitken estimator is unbiased if

the E(t)-vectors are multivariately symmetrically distributed,
although the first stage estimator of S2 is generally biased
( but consístent).

(x)That SZ is an even function of e is readily verified for
the classical SUR-model because then S2-E ~ITwith

E-{Qi~}-{ETE1}.{E1Q1QiE1
T } and QizIT-Xi(XiXi)-Igi

(1.]`1,2. . .M).
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2.1 Contemporaneously correlated disturbances and positive

definite covariance matrix.

Under the assumptions that
- E(E)-0 and E(eE,) - S2 - E MIT ( neither autocorrelation

nor heteroscedasticity )
- the {X.} matrices (i-1,2,...,M) are non stochastic ( so,i

surely no lagged dep. variables),

some statistical properties, such as asymptotic probability
distribution, efficiency, etc... of the estimators 3 and
~4~, with the latter being:

(2.10) S~- LX'(E-1~IT) XJ -~ X~ (E- ~IT)Y or
- 1 ..-

~~- '~Q11X{X a12XiX7......o~M X~XMI ~ a]~Xlyi

~ ~ i-1
~ :~2i ~2z ~2M ' ' ~2i--'Sz ~a X~Xi a XzXz......R X2XM; E a

i i-1

~ ~~Ml
3MI ia XMX~QM2 XMXz......oMMXMXM

J L

i

~yE QMiX i
i-1 M

wi[h E- {O. } a first round positive definite estímatei j ,. ,.
of E, based on the OLS residual vectors ei,E.(i,j-1,2,...,M),

J
will be studied.



- 9 -

Theorem 2.3

Consider model (1.2a) with

1 . E (EE' ) - S2 - EeIT

X'E-~gITX -1
2, the matrix Tim ( T ) n V exists, is finite and

non singular

3. the matrices Xi(i-1,2,...,M) are non stochastíc

4. the error vectors e(t)-~E~(t), e2(t),...,eM(t)~' are
assumed to be mutually independent distributed with mean
E~E(t)~ ~0 and ( constant) variance covariance matrix
E~e(t) e'(t)~- E- {Q,,} (Vt) (k)i~

5. the matrices X. are uniformly bounded and the errori
vectors satisfy for any n~0:

T
(2. 12) Ty~ T tE~~t ~ 2 dFt ( ~) IIO (i:ie) .

~~~t~'n~T

(z)Although all e(t) are assumed to be mutually independent
with the same mean and covariance matrix, they need not
be mutually independent and identically distributed! -

(xx)A sequence of stochastíc variables zt vith corresponding
distribution functions Ft(.) converQe u~iforaly- in zt
if for some r ~o:0

(' r
(2.13) dn~o 3ceRe dt:J~~t~ odFt(~)~n

I~tl? c
(~tare convenient values

of zt ) ,

i.e. if the tails of distribution about the r'th absolute0
moment are assumed to vanish, Condition (2.12) is conaonl7
known as the Lindeberg condítion and points to convergence
saying that the terms 0 t become uniformly small if T increases.T



where Ft(.) is the distríbution function of the M-dimensional
error vectors E(t),
then,

ic `rT(s -S) and .~T(S-S) have the same asymptotic probability
distribution, which is normal with mean zero and variance
covariance matrix V.

Proof (~c)

1. Asymptotically: ~T(S-S)„N(0 V)

From the sampling error (2.3), we have to find the limít
distribution of

X'ï-1~I X 1X'E-1~I E
(2.14) ~T(Q-4)- T T , and

T ~ dT

since the limit of
X,~-I~ITX -]

exists, is finite and

non-singular, we only have to bother with the asymptotíc
probability distribution of the vector

M
, which contains E k. - K elements.rT i-1 ~

T

(x) The proof of this theorem is based upon chapter 3
and pp. 161-167 of Prof.P.Dhrymes's book C71.



If we denote the t'th columm of Xi by pi(t), we observe that:

X'E-~~ITE ~
(2. 15) L -

~T rT

1
-T

I
'T

Q~iX~
~

a2~X'
2

Q12X'. ...a~MX~
~ . ~

~22X'. ...Q2MX~
2 ~ 2

QM1XM
QM2XM.....oMMX~

M

M T ~i
E E a p~(t)Ei(t)

i-1 t-1

M T
E E a21P2(t)Ei(t)

i-1 t-1

M T
E E aM1pM(t)Ei(t)

i-1 t-1

T
E W~ (t)

tal

T
E W2(t)

t-1

T
E WM(t)

t~l

1
T

E 1
E2

EM J

T M
E P (t) E Q~LE.(t)

tzl ~ i-~ 1

T M
E P (t) E QZ1E.(t)

t~l 2 isl 1

T M
E PM(t) E aMlei(t)

t'~ i-1

T T
E(t) ~~ E W(t)E(t)a~ E z(t)t-i t~~

where the sum signs have been interchansed (vhich ia
allowed aince the Qi~'s are finite and the ~atrices X. arei
unifor~ly bounded)

and Wi(t) are(kizM)-~atrices Pi(t)vl' ( i~1,2....,M;.
t~1,2,...,T)



- 12 -

Q1'are the i'th rows of E-1

W(t) are (KXM)-matrices ~WI(t),WZ(t),...,WM([)~' and
z(t) are the R-dímensional vectors W(t) E(t) which are mutually

independent ('since [he c(t) are mutually independent and
the X.non stochastic) withi

(2.16) ECz(t)~-ECW(t)c(t)~-W(t)E~e(t)~- 0 and

(2. 17) E~z(t)z' (t~ -E[W(t)e(t)E' (t)IJ' (t~ -W(t)F.W' ( t) (~c)
So, from the mutual independence of the z(t) vectors and
from ( 2.15)and(2.17):

T
(2.16) TE~X'E-1t9ITee'E-I~ITX~ -TX'E-IeITX-T E W(t)EW'(t)

t-1

and we find that the sequence of K-dimensional vectors

T
(2.19) zT-~ E z(t)-~(X'E-I~ITE)

JT t - 1

converges to a random variable, say z, which is K- varíate

normally distributed with mean zero and variance covariance
matrix

T -~ W

(~)From which it is clear that, although it were assumed
that the e(t) would be identically multivariately distri-

buted (pay attention to footnote on p.9), the variance
covariance matríces of the z(t) vary" over time, so that
the z(t) are not identically distríbuted.

lim T(X'E-I~ITX), or asymptotically
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X'E-l8I E
(2.20) ~TT .. N(0, lim ~(X'E-18I R)),Ti~ T T

because by the analogon of the Lindeberg condition
(2.12) for the uniform convergence of the K-vectors
z(t), after transforming to the univariate case:

(2.21) rT-Y'zT~ E YI~ ~ E qt,
t-1 t-1

with Y an appropríate K-vector of real constants, we
fínd, denoting the distribution function of qtbij GC(.)
and of z(t) by 4't(.), for yn~o:

T
(2.22) lim E

T-~~ t~
flqt~2dGt(q)- lim
J T-iw

Iqtl~n

1
T

T
E Í~IY'z(t)~2dY't(z)

t-1 J
IY'z(t) I ~r1.~T

T
~ lim 1 E rIYI2Iz(t)I2d`~t(z) ( Cauchy Schwarz)- T-'~ T t-1J

IYIIz(c)I?IY~z(c)I~n~T

T
- lim TIYI2 E~~z(t)I2~t(z)dz(t)~ 0 wíth nl-Tn -~

T~m t~ -lil
~z(t)I~n1~T

and the Lindeberg-Feller central limit theorem (!) for
a aequence of mutually independent scalar random variables
rt with zero mean and variances T y'(X'E-19ITX) Y

(Ta1,2,...) may be applied , such that (2.20) is

(x) See R. Chung ~5~ , p. 187.

verified.
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Finally, from (2.14) and (2.20), we ob[ain asymptotically:

(2.23) ~~T(Q-Q)~ N(O,lim TV(X'FE~ITX)V) -N(O,VI.
Tym

2. Asymptotically: both ~T((?z-Q) and ~~T(i~-Q)- N(O,V)

If the sequence of vectors o'T(':z-Q~' converges in

probabilityfweak convergence) to a random ~ariable,

sav b, then the corresponding distribution fn~:ctions

F !.) (T-i,-, ..j conrerge to the distributien
z .i.

iunction Fbi.) oi b(~),i.e. the vectoi teq.ience
,Tf~t-„ also con~~erges to b in di~~tribution.

z
So, tiie as~~mptet ic distributior of ~ T(. -c ) can ~e

derived if :ts probability limit is evalu.ated and sin~e:

.X's-1 -1 Y„--i~l

(2.24) plim ~~T(`.'z-c)- Plim 1 plim ~T (5lutskv!
T-.:x, T -.oo ~ T - ~1 v,.,

1~ -1 -I~X,1-IM1TX , Y'r ~IT;
- 1im plím lzzj

T-~~ ' T ~ T -x , T

- plim ~'T (Q-(3)
T-;~

(

or ircm part 1 of this theorem, botii .'T(~,z-F.) and

vT(í;-.) have an identical asymptotic probability

densit~- which is ti(O,V) L`

See M.Loève, r15~,p. 168

(z~) ,. ,.
~.~.i

Since ~- {~i~} -~ T 3 } is consistent ( see theorem 2.1}
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Corollary 2.1

If the error vectors E(t)~ ~E1(t),E2(t),E3(t),...,EM(t)]'

(t~1,2,...,T) are mutually independent M-dímenaional identically
distributed and have non-vanishing finite variances ( variance
sums), then as T-rm:

(2.25) ~T(sx-S) and rT(S-S)- N(O,V)

X'E-IeITX -1
with V ~lim (x)

T~~ T

Proof

If it is verífied that the Lindeberg condition (2.12)
is satisfied under the accompanying assumptions, the results
of theorem 2.3 may be used to prove the conjecture (2.25)
for large T.

From (2.22), we derive:

T T
(2.26) lim T E~z(t)~2d4't(z)~ lim T E r~W(t)E(t)IdY' (pe)

T-~m t ~ 1 T-~oo t 3 1 J t

~zít)~~n1rT IW(t)E(t)I~~irT

(x)Notice that if the joint probability diatribution of
e(t) is M-dimensional normal with mean zero and variance-
covariance matrix E( for all t), then the uniform
convergence conditíon (2.12) is not needed at all becauae
then for each sample aize T:S~N(6.(X'E-16ITX)-1) while Bz
and B have the asymptotic diatribution (2.25) ( see also
propertiea of maximum likelihood eetinators, e.g, in
H.Cramèr ~6~, P.Dhr~mes ~7J).
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T~ lim T E fIIW(t)II2 IIE(t)II2 d~rt(WE) -(~)
T-~~ t- 1 IIW(t)II IIE(t)II~IIW(t)E(t)II~n~~T

- lim ~ E tr(W'(t)W(t))Ile(t)~ZdF (E)with n- n~ }
T-~~ Tt-1 J t z~tr(w'(t)W(t))~

IE(t)I~nz~T
T

~ lim ~ MC2 E ftr(E(t)E'(t))f (E)d-E(t) with n- n~
- T-~~ T t- 1 J t 3 CIe(t)I~n3~T

and C is the maximum length of any columm vector of W(t) (x~t)
we find from the assumed existence of finite variances or
of the variance-covariance matrices of E(t):

(2.29) lim rr rE(t)E'(t] dFt(E) - tr E
t-~~Jj(t)

(x) Since:
(2.2Í) IW(t)E(t)I2~ E'(t)WCt)j~l(t)E(t)~tr(W'(t)W(t))tr(E(t)E'(t))
or in general, the Euclídean(vector)norm ofe(t) is consistent
with the trace ( matrix) norm of W(t):

(2.z8) IIW(t)E(t)II-IW(t)E(t)I~IIW(t)II IIE(t)II- [tr(w'(t)w(t)~ ~
Ie(t)~, where II II is the norm indícation.

(kx)
Since all elements of W(t) are assumed to be bounded and
non stochastic, there should exist a positive number C
which may be put equalto the maximum length of the vectors
contained in all W(t).
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and from [he mutual independent and identical distributioi
of the e(t)-vectors, by convenient(large) choice of n 1~

T
(2.30) lim T E ~z(t) I2d4'[ (z)~lim MC2rtrLe(t)e' (t)~ f[(E)de(t)-0,T-~~ t - I ,J

, E(t)~r13rT

which is in accordance with the Lindeberg condition
(2.12) so that the results of theorem (2.3) may be
applied since all assumptions for it are satisfied. ~

Theorem 2.4

The Ai[ken estimator (1.6) with S2-yt~IT is efficient
w.r.[. OLS unless aij-0 for all i~ j or all X.(i-1,2,...,Pf)iare equal.

Proof

This theorem can easily be proved from theorem l.l and
corollary l.l. Indeed, substituting 2, -6. I-0 ori ,j i-j TXI'X2-......-XM and application of the above theorem and
corollary show that f? is efficient w.r.t. S unless both
exceptions are satisfied, in which case corollary l.l
demonstrates that (3-s.

This may also be indicated for the underlying contem-
poraneously correlated SUR-model as follows (i~).

Deno[e the ratio of the generalized variance of the
Aitken estimator (1.6) w.r.t. that of the OLS-estímator (1.17)

i~-~~~ where fro th
~(X~~-IX)-]I

~(X'~-1X)-1I
a- ~ m eorem l.i O~a~l.

as:

(ic)
See also A,Zellner. D.Huang ~27~, pp. 306-307
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Using a general determinantal inequality ( i:) (see def.(2.11):

(2.32) Ig~~-1XI aIX~~-le1TXI~IX,X1IQ11,Ig2X2
a22..... X~X ~ oMM,~ I M M

where equality only holds íf di,j aij-0 or XiXj-O ,
ifj

i.e. íf contemporaneous disturbance terms in different

equatíons are uncorrelated or if the explanatory variables

of different equations are mutually orthogonal.
Combining (2.31)and(2,32):

(2.33) á-IX'E-IeITXI I(X'~-1X)-ll

-~X'~-181TXIQlII(X;XI)-1Ia22I(XZX2)-II.....aMMI(XMXM)-ll

~IQllalllk I ~a22Q22ík ~.....~aMMaMMik I or
1 2 M

-k -k -k
(2.34) (allall) 1(a22a22) 2......(aMMaMM) M ~a~]

from which it is clear that the l.h.s. becomes unity

if a..-0 for y. ( then Aitken estimator is OLS estímator) 4
lJ i~j

(~) See R.Bellman ~4~, p.127: for any nXn) matrix A, the
n

general inequality: (2.32) ~A~~ n aii holds.
i~l

There is only equality if sij~0 for Yi,j.
ifj
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Remark 2.2

l. Since the expression on the l.h.s. of (2.34) represents
the maximal gain that can be realized, we find that the
maximal gain in applying Aitken's estimator w.r.t. OLS-
estímator occurs when the disturbances of different
equations are strongly correlated and when the explana-
tory variables in different equations are really ortho-
gonal. (x)

2. When considering feasible Aitken estimator (2.10), the
results on efficiency hold only asymptotically or for
large T:

(2.35) ~(X'E-~~ITX)~-~~~(X'Q-~X)-~land because of the consis-

tency of s.CX'Ê-I~IT:{`-1 ~X, 1Xl -1
(2.36) plim I JI I ~ plim ~~-J I (!t!t)

T-~~ T Tim T

Proposítíon 2.1

An unbiased first round estimator for the varíance
covariance matrix E( and hence for 52) is given by

~,~
EiE~

(2.37) ~-{Qí~} s{

k.i
Where rHm.E rii~1

T-ki-k.tkirH
J

, ki~ k~ and rH is Hooper's trace corre-

(x) See appendix A for a complete 2-equation analysis and
for the effect of intercorrelation between X~and XZ.

(X~)See, however, appendix A for a 2-equation model.
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lation and r? are the squared canonical correlation coeffi-
i

cients (ie)

Proof
..,.. , , -~ , r -~ ,

(2.38) E(eiEj)-Erei(IT-Xi(XiXi) Xi)(IT-Xj(XjXj) Xj)Ej ( i-1,2,...,M)

, -~ e ~ ~ ~ -1-aijtr IT-Xi(XiXi) Xi-Xj(XjXj)XjtXi(XiXi)

~ ~ . ~ ~
XiXj(XjXj) Xj

-Qij[T-ki-kjttr(XiXi)-~XiXj(XjXj)-~X~Xi~ (ki~kj) ,

where the last matrix between~ ~ has k. eigenvaluesi
a.-r? or (2.38) becomes:i i

,.,,, kí 2 2(2.39) E(eiej)-oij(T-ki-kjt E ri)-aij(T-ki-kjtki rH) ,
i-1

Since for i-j, rH-1, (2.37) provides an unbíased estimate

of E, and hence of S2 (!z) ~

2.2 Intertemporal correlation of disturbances and non-constancy

of variances and covariances.

2.21 First order autocorrelation
Si~-Model-I-SAIZ

A feasible Aitken estimator of the parameter vector 6

(x) See A.Zellner and D.Huang ~27~ pp 308-309. This theorem
might be interesting when the error vectors e(t) are
not T-dimensionally symmetrically distributed, and an
unbiased estimator is still desired.

(xx) If the explanatory variables in the.i'th and j'th equations
are the same, then XiX.~XiXi and rH~l so that the deno-

J
minator in ( 2.37) becomes T-ki.
If, an the contrary, the explanatory variables in the i'th~
and j'th equations are mutually orthogonal, then XiXj~O
and rH-O so that the denominator becomes T-ki-kj.
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in model (].34), where the disturbances ei(t) are assumed
to be both contemporaneously and serially correlated ( by
first order .3u[oregressive scheme (1.28) and assumptions
(1.28-31)), can be derived by the following three step pro-
cedure:
I. Estimate the parameter vectors R, of equations (1.33) byi
OLS to obtain the consistent estimates:

(2.40)`,-y,-x.,-. with
1 i i i

, -1 ~
-(XiXi) xiyi ( i-1,2,.. ,M)

with consísten[ estimate of the autoregressíve parameters
pi ( see app.Bl with Ei(o) either zero or stochastíc:(BS) and
(B.42)):

(2.41)
~ tE1-i(t)~i([-t)

T ~
E ~i (t-I)

t-2

2. Obtain a consisten[ estimate of the con-temporaneous cova-
riance matrix ~ by substituting the consistent estimator (2.41)
into ( 1.32) to compute:

r ~
~

~(1-Pi) 0 0........0 ~i
-Pi 1 0........0

(2.42) P1-1 - n I - ~
~ 0 -pi 1........0 Rí

0 0....-p. 1, 1

and apply OLS an the transformed equa[ions ( see (1.33)):
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(2.43) R.Y.-R.X.S.tR.P.n. ( i ~1,2,...,M)i i i i i i i i

to yield estimates of the elements o.. of E:i~

a..(2.44) n -(Rlyl-R1XLS1),(Rlyl-R1Xls1) (ic)i~ T

with Si the OLS-estimator of Sí in eq.(2.43).

Substituting (2.41) into (1.32) and (1.35) and (2.44)
into (1.37), we obtain an estimate of the variance covariance
matrix Si as:

(2.45) S-P(EgIT) P'

where P is the ( MTxMT)- block diagonal matrix of the Pi's

and E- {Q, },ij
3. Finally, the vector s in model (1.34) is estimated as:

z '~-1 -1 'n-1 'n'-In-I ~- 1 -1 '~'-1n-1 ~-1(2.46)R -(X S2 X) X S2 Y-(X P E~ITP X) X P E BITP y.

Propositíon 2.2

The estimated variance-covariance matrix Sl in (2.45) is a
consístent estimator for S2 and hence S~ in (2.46) is a consistent
estimator for S.

Proof

Since the Xi's are assumed to be non stochastic, pi and
P are consistent estimates of pi and Pí and by Slutsky's

i
theorem:

(ic) The denominator of (2.44) might also be (T-ki)}(T-k~)~
to consider, if desired, finite sample effects, but sínce,
usually, only a consístent estimator of E ís required,
(2.44) will equally do.Notice also that, if

T ,.
E E (t)E ( t-1) k.

p13 t-1 i i f
T1. RiPi'IT.T

tE2Ei (t-I)
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(2.47) plim R- plim P r plim P - P-~~RTyo~ Tym -, - ` T-~m A ~'

and [he estimated residuals n. of the transformedi
equations (2.43) may be written as:

(2.48 r ~ ~ „~ ,. -~ ~ ~) ~í-(RíYí-RiXiQi) - LIT-RiXi(Xi Ri RiXi) Xi Ri~ni-(IT-Mi)~li

-Q . ~1 . ,i i
the probability limít of a. can be written as:ij

(2.49) plím ai~- plimC ~
ni(IT-Mi) (IT-M~)n~

T ~~ T

nin. niMin. ~.M.n. r~.M.M~r~~- Plim -~Z - plim J -plim 1 J J tplim i i
TiW T Tym T T-im T T-.~ T

~,. ~ ~,.~„ -~ ~,.~

- a. -plim ni R1X1 plim ~X1R1R1X1 lim X1Rin.
] t1 T-.~ T T~m ( T' T-.~ T

~,, r,.~„ -~ ~,.~~IiR.X. (X.R.R.X. X.R.t1.-plim -~~ plim J] t t ] J JiW plimT T T-.~ l T T-.~ T

'~ ~..~.. - 1 r..r..
p n1R1X1 plim X1RiR1X1

X.R.R~X~t lim plim 1 1
T~~ T Tim T T`ioo T

i ~~i
X.R.R.X. - X.lt.~.

plim J t t t plim ~-1
T-~m T T-.ao T

- a..1J

( Slutsky )
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and, again using Slutsky's theorem,

(2.50) plim S2 -plimLP(E~I ) P~~-plim P plim (E~I ) plim P~
T-~oo T-rao T T-roo Tim T T-~~o

-P {plim Qi~} ~IT P - PE~ITP ,
T-r~

By definition 2.1,(2.46) is a feasible Aitken estimator
for s and by theorem 2.1, S~ ís consistent, or, once
more by Slutsky's theorem:

' -1 -1 ' -1
(2.51) plim Q~-plim X ~ X plim X~ y

T~~ T-i~ T T-~~ T

X'plim S2-1X -1 X'plim 52-1 (Xs}E)
T~~ plim

T Ti~

- at

T-~~

~X' Si- 1 X - 1 X, Si- 1 E

`

T plim T
T-~m

T

- s. 0

Note Since Eand hence SZ is an even function of rt ( see (2.49)
and (2.50)) and, therefore, also of E, S~ is in general an
unbiased estimator of s because of theorem 2.2

Definition 2.2

A sequence {x(t)} of random vectors is called n-dependent
if there exists a non negative integer'n such that any finite
subset {x(tl), x(t2),.....,x(tp) } is stochastically indepen-

dent of any other subset of vectors {x(T1),x(Z2),.....,x(Z },
q

provided the index sets {t.}. and {T,},i i~1,2,....P ] ]-1,2,....q
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are chosen so as to satisfy min {t }-max {T,'~n(x)
i~1,2,....P 1 j31,2,...,q ~

Theorem 2.5

Consider model ( 1.34) with
l. E(6e')-~-PE(~n')P'-PEEaITP'

2. the matríx Timm (XtT-,XJ -I` -V exists and is positive definite

3. the matrices X, (i-1,2,..,,M) are non stochastici

4. the error vectors n(t)~n~(t),n2(t),..., nM(t)~' are assumed
to be mutually independent with E[n(t)7s0 anrl E[n(t)n'(t)~-E
while the error vectors e(t)-[e~(t),e2(t)., ,eM(t] '(t-1,2,,,,,T)
are allowed to be n-dependent for any T-1,2,... with zero
first order and finite second order moments.

S. the matrices X are uniformly bounded such that the Linde-iberg condition for finite second order ~oments of the
e(t) implies:

T
(2.52) Tim T tE' f~~t~2dFt(~)-0 is satisfied for any 6~0,

,J~~tI,dJT

then, rT(s~-S) and ~T(S-s),Sx being the feasible and R
the usual Aítken estimator of s in the autocorrelated
model, have the same asymptotic normal distribution with
mean zero and variance covariance matrix V.

Proof 1. Asymptotically ~T(B-S)..N(O,V)

From theorem 2.3 (2.15), the (Kxl) vector X~~-~E~ can be
wrítten as:

(z)Or simply, if q-p~n inplies that the two sets
{x(I), x(2),....x(P)} and {x(q). x(4t~)....,x(T)} are
stochastically independent, the sequence {x(t)} is said
to be n-dependent.
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~ ~-1 -1 -1
, -I X ! (E ~I )P e T

(2.53) X í2 e~ T ,c rT tE] A(t)E(t)
JT rT

] T- ~ tE] s(t) - sT.

where the (K~M)-matrices A(t) (t~1,2,...,T~ T-1,2,... )
are non stochastic satisfying the following inequality, due

to [he boundedness condition of X. and E:i

(2.54) ~~A(t)~~ ~ C ~ ~

where C is a positive constan[ and ~~ ~i may indicate
any "consistent" matrix norm for all A(t), such as e.g. the

maximum of all absolute values of the elements of A(t).
Since, in general, the error vectors e(t) are assumed to be

n-dependent for any sample size T, with mean E[.(t)~ -U and
equal variance-covariance matrix for any t:

E LF(t)~'(t4i)~ - t7 if ~~I~n

- 0 if ~~n

the first and second order moments of the mutually dependent

(2.55)

sT-vectors (T-1,2,... ) are computed as:

-1 T
(2.56) E(xr ~) - E(sT) -~ ~ A(t)E [E(t)~ - 0 and

r'P t-I

(2.57) T E [Y~ -]EE~n-]X] - T (X'2-]X)

T fl T-T r r ,
- T~ E A(t)4oAr(t); E E~A(t)~TA (t}T)t(A(t)~TA (ttT))] it-1 T-1 t-]

with A - min (n,T-1),
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from which it is easly verified that if the E(t) were
mutually independent distributed, the result (2.18) would
be obtained with A(t) -W(t) and ~-E. (y~)0

The composite 2nd term on the r h s of (2.57) specifies
the covariance structure between the dependent random vec-
tors {E(t),e(ttT)}.

The sequence of K-dimensional vectors sT- X~ conver-
ges now to a random variable, say s, which is normally
distributed with mean zero and variance covariance matrix

~
lim T(X S2-~X), the proof of which follows similar linesTy~
as outlined in theorem 2.3, where this time a central limit
theorem for dependent unívariate random variables has to be
applíed. (i:lc)

It develops along following ideas:
Reducing to the univariate case with a scalar vector a:

(2.58) ~T-a~sT- E ~'s(t) - E ~(t).
t-1 rT t~~

we may partition the observations ~~,~2,53,...,~T,
whose partial sums are stochastically independent (hence
also fot s~s2,...,sT defined e.g. as

~ E'~s(t)z ~ EI' A(t)e(t) ), performed under, say~tat t~t1

addítive representation such as:

(2.59) sT-uTk}vTk, T'1,2,3,...

k'1,2,3,....KT(KTioc as Ty~)

(!) He,nce, zero dependence, i.e.n~0 and so 9'0, is equivalent
to independence.

(it) See e.g. W.Hoeffding and H.Robbins ~9~, theorems 1- 3
PP. 774-776.
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where the uTk are stochastically independent variables
with zero mean and finite variance for each element so that the
analogon of the Lindeberg condition (2.52) may be utilized
on the uTk or also on the independent parts of ~(t)(see 2.22).

Hence, asymptotically

(2.60) ~T(f3-f3)~ N(O,V) (ye)

2. Asymptotically: both rT(B~-B)and rT(S-s) are N(O,V)

Since from lemma 2.1:

~,.-! -1
(2.62) plim ~T(Bz-R)-plim X ~ X plim X~

T~~ T-,~ T T-.oo

~ -! -! X~(plim Sl-!)e
-1im~X 52 X plim T-.~

T~~ ~ T T-~~ ~T

' -! -i ' -I
-1im X ~ X plim X ~ E-plim rT(S-S)
T-~m T T~~ rT T~~

and from part 1 of this theorem, both .~T(S~-S) and
.~T(f3-B) have the same limiting normal distribution wi[h
zero mean and V- lim ~X~~-!X ~-! as covariance matrix. 0

T-~m T

(ii) Model II (A2)
This model, guaranteeing the time invariancy of both

variances and covariances aij, may be estimated in the same
way as the parameters of model Al are estisated.

(x)It is a conjecture of us [hat the property (2.60) can
also directly be derived from ( 2.53) as:

~ ~-
X'~-IE X P 1(~-le1T)n ! T

(2.61) ~ s T -~ E B(t)r1(t), with n(t)
t-1

M-dimensional mutually independent random vectors (see
[heorem 2.3).The sole remaining difficulty is to specify B(t).

'n-1
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There is only one slight complication since premulti-
plication of system (].34) by R-P-1 does not reduce the
transformed system:

(2.63) Ry - R X S t rl

to the classical S U R-model with variance covariance matrix
E~IT because the off-diagonal blocks of the new covariance
matrix E(nr]') have the slightly altered form (1.43) instead
of aij IT.

Therefore, the estimation procedure runs like:

l. Estimation of the autoregressive parameters Pi by OLS as in (2.41);
2. The variance elements oii are estimated from OLS on the

transformed equations (2.43) as in (2.44), while the cova-
riance elements Q.. (i~j) are estimated from the estimatedi~
residuals of the transformed eq. (2.43), with the modifi-
cation that the first element of each residual vector is
discarded. Then each covariance block E(n.n') (if~j) is
estimated as:

(1-Pi)4(1-p~)~
0

(2.64) I-PiPj

0

and a consistent estimate

of S2 is directly obtained as Stap E(nn') P,
3. Obtain a feasible estimator s~ as in (2.46).

(iii) Model-III-SA3~

This model is estimated in a similar way as model A1. The
classical SUR-model is obtained for (T-1) observatíons. So,
given consistent estimates for Pi ( say by (2.41)), consistent
estimators of S1 and R are easily obtained utiliaing ((T-I)xT)-
transformation matrices Rx ( see (1.45)).
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Note Most statistical properties, presented for model A1,
equally apply on models A2 and A3.

2.22 Heteroscedasticity

(i) Model I (Hl)----------------
A feasible Aitken estimator is obtained by the following

three step procedure.

1. Apply OLS on equations (1.25) yielding yi-Xi~i (i-1,2,...,M)
2. Apply classical SUR-estimation on the trànsformed system

(1.52) i.e. on:

(2.65) Sy -SXBt u with E(uu')- E~I
T~

~
Q-1

1
0

where S-

0......0

Q2~....0

0 0......Q-1{
- MJ

r.

and Q.-(dia
21

1 g yl) -S1-](i-1,2,...,M),(~)

i.e., ín first instance, the Q„ s are estimated as:i~

(2.66) Qi~-

estimated as:

(2.67) ~-Q (E~IT) Q

T
so that ~ is

3. Finally, the S-vector in model ( 1.52) is estimated as:

(2.68) ~~-(X~~-IX)-i X'~-ly-(X~Q-l~-le1TQ-IX)-iX'Q-1~-le1TQ-~y

~
(SiYi-SiXisi) (S~y~-S~X~S~)

(x)We considered y, since, in the case of heteroscedasticity,i
the OLS-estimator of s remains unbiased.
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Theorem 2.b
zS is (generally) an unbiased and consistent estimator

of s, and ~T(s~-R) has the same limitíng normal distribution
as rT(3-R) with mean 0 and variance covariance matrix

lim
T~~

Proof

T

Under general conditions, e(t) has a multivariate
symmetric and continuous pdf so that from theorem (2.2)~S is an unbiased estimator of f3.

S~ is a consistent estimator of S,because in (2.68),
~-t is a consistent estimator of S2 which is proved as follows:

r.. `~ ~ ~ n -j r..~ u.u.
(2.69) plim ai - plim 1~- -plim

T~~ ] T-}W T T-~~ T T

r .. r ~ r „ r ..U.S.X. X.S.S,X. -t X.S.u. u,S.X.
-plim ~~- ] ] J ] ] ] ] i i i

T-~m T T tPlim
T T~m T

~ r.. - t ~ r.. r.. - t r ~
XiSiSiXi XiSiS~X~ X~S~S~X~ x.s.n.J ] ]
. T ~ T T T

and since (3i is a consistent estimator for Si and applying
Slutsky's theorem:

(2.70) plim Q „ : a..
Tim 1J i] or

(2.71 ) Plim Sl ~ plim ( QE 9 I Q) e QEeI Q z S2
T-.m T-.W T T

CXr~-1 1 -tJ -V.

uiSiXiJXiSiSiXi XiSiu.
I ]

and

(2.72) plim Rz -t3.
T-sm
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Following arguments similar to those set forth in the proof
of [heorem 2.3 ( but with matríces with different contents):

(2.73) - ~
,~T

T T
E W(t)E(t)- ~ E z(t)- zT

t-1 t-1

converges to'a random variable, say z, which is K-variate
normally distributed with mean zero and variance-covariance
matrix:

T ,
(2.74) lim ~ ( X'S2-~X) - 1im ~ E W(t)EtW(t),with Et-ECE(t)E'(t)],

T-F~ T T-r~ T t- 1

so that S is asymptotically normally distributed with
X'S2-~X { ~zero mean and variance-covariance matrix lim !!! ,and since:

T~~ ` T ~

(2.75) plim ~T ((3~-s)-plím ~T (S-S) or plim ~T ((3~-4) - 0,
T-,o~ T-~w T-ioo

X'S~-~E t

~(3 has the same limiting normal distribution as s. p

(ii) Model-II-SH2Z

The parameters are estimated in a 2-step procedure:
l. Estimate directly the transformed model (1.52), with Qi

equal to the expression (1.58), as a classical SUR-problem
to yield a consistent estimate of S~.

2. Compute the feasible Aitken estimator R~.

The statistical properties of sx are similar to those of the
feasible Aitken estímator in model Hl.
Note

Combinations of heteroscedastic and autocorrelated models
are generally estimated by a 3-s[ep prOCedure, obtained as a
combination of the procedures described above ( with covariance
specifications (1.59-60)).
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2.3 Singular error variance-covariance matrix and~or X-matrix
of incomplete rank.

If the true error covariance matrix S2-EBIT is unknown, the
last p-M-s eigenvalues of E, being of "preliminary" rank s
and based on OLS-estimates of Ei(i-1,2,...,M), may be tested
on their (sígnificant) departure from a preassigned small
value a(given E(t) is assumed to be M-dimensionally normally0
distributed) by the following X2-test statistic ( see app.B
of part I:theorem Bl):

(2.76) Xq-~T-1-s-6(2pa]-2t1)-lt!
~i~lP P

~p ln ~ 1 I E I t- s „
II ai ~o

i-1

with the d.f. 9-2 P(pfl)

Once the "real rank" of E, and hence of S2 -E MIT (and~or oft(X'S2 X)) is determined, feasible and consistent Aitken esti-
mators of s may be obtained by suitable aubstitution into the
expressions (1.77-80) and (1.119).

Due to the singularity of the moment or covariance matrices,
asymptotic normality in the senae of theorems 2.3,2.5 and 2.6
is not obtained. Despite the degeneracy in the pdf of the
e(t)'s, umbiasedness in the senae of theorem 2.2 'ay still be
proved for several generalized models.
2.4 Feasible Aitken estimation of autoregressive models.

A feasible Aitken estimator of S in model (1.150) may be
deríved if an initial consistent estimator for S2 can be found.
This may be obtained by several methods depending upon the
possible presence of autocorrelation in the disturbance vectors
ei (i~1.2~...,M).

(tr E- E ai)

]' s}~2 E 1
o ~

i-1(ai-ao)
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2.41 If no autocorrelation of the disturbance terms----------------------------------------------
with E[Ei(t) Ei(t-1) ~-0, then S2 is consistently estimated

by OLS (by ML if Ei(t) are NID (O.aii))'
In the presence of autocorrelation, however, the OLS esti-

mate of ;, is no longer consistent ( see appendix B2).

2.42 If autocorrelation of the error terms and form of-------------------------------------------------
au[ocorrelation known----------------------

Say first order autocorrelation:

(2.77) ti(t)- piEi(t-1) t Oi(t)

Then:
- in a first stage, the pi's may be estimated by OLS(see 2.41)
- in a second stage, the Cochran-Orcutt procedure is used to

obtain a consistent estimator S~, i.e. OLS is recursively
applied on:

k. ('
(2.78) Yi(t)-PiYi(t-1)- E1 ai,lzik(t)-Pizik(t-i)Ít

k - 1 ~L J

P,
i

L YiT~yi(t-T)-piYi(t-T-1), trli(t)
T- 1

or the p.-estimates are substituted in an equation peri
equation covariance matrix to obtain Aitken's generalized
least squares equation per equation estimates. From these
second round parameter estimates, a consistent S2 is derived.

2.43 If autocorrelation of the error terms but with unknown form.------------------------------------------------------------
Proposition 2.3

If the form of autocorrelation is unknown, the parameters
of an autoregressive model are consistently estimated by
instrumental variables.
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Proof
The purpose of instrumental variable estimation is to

replace the lagged dependent variables in equations (1.149)
by those linear combinations of all explanatory variables
Zik which are most strongly correlated with the correspon-
ding lagged explained variable but uncorrelated with the
error vector Ei, or the "best choice" instrumental variables
for yi(t-T) are the lagged values of:

k.~ 1 ~ ~(2 ~9) yi(t)- E~ikZik(t) with aik the OLS-coefficientsk-1
from regression of y. on Z..i i

Then the instrumental variable estímator for t3 is given by:

(2.ao) s~`-(x~ xi)-1 x~'yi
with x~- (zi,yé ) (í-1,z,...,M)~

where plim T X~~gi- 0 and plim x~,x1 exists and is non
Ti~ T-.m T ~

singular. -
The estimated parameter vectors (2.80) are consistent be-

cause:

~ ,
(2.81) plim Sx- plim (XZ Xi)-IX~ (XiSitEi)-s.tplim(Xx~X )-17{~tE.

Ti~ T-~m , 1 T-'oo 1 1 1 1

x~'x. -1 x~`~e.
- s.tplim 1 1 1plim

1 Tim T Ti~ T -S. . Qi

To estimate the variance-covariance matrix S2, one has to
introduce restrictions about the form of autocorrelation-(and~
or heteroscedasticity), so that S2 can directly be estimated
from the consistent ínstrumental variables estimator S~i(i-1,2,...,M). Many authors however ( see e.g. T.Amemiya and
W.Fuller ~1] and K.Wallis[24] ) propose to follow up the
instrumental variables estímation by an equation per equation
Aitken estimation of the parameters in the equation. Although
the resulting parameter estimation also yields consistent es-
timates, there emerges a-losa-of-asymPtotic-efficiency because
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of the joint occurrence of two factors:

- the use of an estimated variance-covariance matrix
- the presence of lagged dependent variables (see Appendix B3).

So, in fact, there is no fundamental reason to make the
job more complicated by further applying GLS after instrumen-
tal variables estimation of pi, the more since only consis-
tent estimators are needed.

Given an initial consístent estimator S2, the feasible
Aitken estimator of R is consistent since the estimator:

(2.82) g~n)-IX(n)2-~n)X(n)~-1X(n)~-(n)y(n)~

tends i.p. to the ML estimator for known 2 and increasing

n-MT (such as T yo as n-~m, e.g. if M remains fixed) obtained
from:

] ~ ,
(2.83) max L(YI 3,í2-~)-(2n)-2n152-~ I exp (- ~E Sé-~e)RK ~

If ELy(n)X(n)- ~[y(n)X(nl~ - A(n) are finite and lim A(") - A
- n~~ n

exists and is finite, where X(n) and Y(n) are the observations
on the dependent and explanatory variables written so as to
depend explicitly upon the number of observations.
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lII An Application: A stochastic model for the generation

production coefficients.

3.1 In economics, interindustrial analysis is dominated 6y
the famous Leontief model, based on the assumption of con-
stant production coefficients, being defined as:
(3.1) a..1J~t-qiJ.t qj t

with q. representing the input of industrlj,t y j at tíme t
of commodities produced by industry i and qj~t representing
the corresponding production at time t of industry j.

However it is generally recognízed, that the assumption
of constant production coefficients (or zero elasticity of
factor substítution) can only be valid as a first ( and very
rough) approximation. So, the problem arises whether it is
possible to build a model for the generation of production
coefficients themselves.

Economic reasoning involving market beháviour and pro-
duction theory on industry level (~;), may lead, under profit
maximization, to the following simple stochastic specification
of production coefficients:

l~ .i p. )
(3.2) a.. -a.. 1't .~~

iJ,t iJ,O pn~t) (pn~t) uij~t (l .j~},2,...,n-1)

In this equation pi~t and pj~t stand for the price of the
production, at time t, of industries i and j, where as pn,tsymbolizes the wage level (as a weighted average of all pri-
ces). The factor u.. refers to the disturbance term and a.1~'t i
and uj are unknown parameters.To some extent, this model
specification followa the Walrasian theory in which produc-
tion coefficients are ultimately explained by relative prices.

(fe) See R.A.van Straelen: Prijeontvikkeling en Productiestruc-
tuur

Ph.D.Thesis, Louvain, 1970 (Dutch-uapublished).
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As can be remarked, only 2(n-1) estimations of parameters
uj are needed for explaining ( n-1) coefficients of~i and z

production. This limited number of pazameters may be coasidered
as a very appealing feature of the model. Another attractive
feature of the model consists in its possible relationship to
the wellknown RAS-method for generating production coeffi-
cients: ,
(3.3) a. -r. a.. s.ij,t i,t iJ,O J,t
where a. represents the generated production coefficient~j,t
(i,j) by means of the corresponding production coefficient aij,0
of the base period and the RAS-multipliers ri t and s. t.. ].
If time series on a. are not available, one can use gene-1j,t ,.
rated production coefficients a. , provided that marginallj ,t
totals of input-output tables are known for each period t in
order to deduce the RAS-multipliers. We will concentrate on
this case by studying [he estimation aspects of the basic
model (3.2).

32. One of the problems we meet in estimating the parameters

of model (3.2) is the multicollinearity problem mainly caused
by the division of all production prices by a common factor viz.

the wage level. We can get rid of this difficulty by stating
the estimation procedure in terms of [he RAS-multiplíers (x).

It has to be noticed that these multipliers are only defined
for each period considered up to a constant multiple. Therefore,
we have to read equation (3.3) as follows:

(3.4) ai t-ri t(~~ai. Os. tvt.
]~ . `t J. J.

Random disturbances are assumed to represent the discrepancy
between ai~~t and aij~t. One can write:

(3.5) aij,t3aij,t~ij,t~

(t) The problem of multicollinearity could be tackled in other
ways, e.g. by a generalized inverse esCisation under cer-
tain parameter constraints. Hovever, the procedure would
seem less efficient.
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Rewriting (3.2) in terms of the generated production coefl
cients leads to:

(3.6) aij,t-ai ,0J

u.
pj t J uij , t

Ipn,t vij,t
and in accordance to the particular role of the RAS-multipliers
r. and s. we assume that:1 J

(3.7)
u.,~~t
v1J.t - wi'tzJ.t

where wi t are random error terms standing for "disturbances"~
over the rows (input structure) and zj~t random error terms
standing for "disturbances" over the columns (output structure).

Then ít hecomes possible, by combining (3.4) and (3.6), to
write:
(3.8) r.i,

(3.9) sj ~t~P J Jl...~ .
n,t vt

and

Expressing (3.8) and (3.9) for simplicity in (natural) loga-
rithms, we have:

~ ~ ~
(3.10) ri t-~i~i~t}wi t}vr , , t

(3.11) sj~t-UjnJ~t}z].t-vt

and

where the accent refers to the operation of taking (natural)
logarithms of magnitudes ínvolved and

(3.12) ni t-1n

p U

t and n. -1nJ,t Pj ~ t,pn,t

In this way, we obtain a rather simple system of equations
that allows us to estimate the unknown parameters a, and u.. By1 Jusing RAS-multipliers which are function of only one explanatory
variable, the problem of multicollinearity disappears. We now
turn to the estimation procedure.

i a.
Pi tl i

p 1 wi,tvt~n.tJ
r
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33. The multiples vt and their reciprocals, which are the
same for all RAS-multipliers of period t, can be interpreted
as additional parameters to be estimated or can be considered
as stochastic factors belonging to the disturbance terms of
the model. From the view point of estimation, both ways of
thínking lead to results which are asymptotically equivalent (x).
However, the firs't way is more complicated. Therefore, we are
only proceedíng along the second way.

By considering vt stochastically we obtain an interesting
application of a SUR-model, because the same residual compo-
nent appears in all equations of the same périod. Using matrix
and vector notation we can write the whole system of equations
for an arbitrary period t in the usual manner as follows:

(3.13) yt-XtBtut - ~
rt,~ `

in which yt is the 2(n-])-vector ís , Xt the diagonal matrix
-~ - ~ ti iw tiv

~ t . ~of order 2(n-1)x2(n-1) and u the 2(n-1)-vector
~-0 ~tj t Zt-ivt

omitting accents in order to avoid confusion with the transpos~
symbol. However, all variables which we have considered remain
expressed in (natural) logarithms. Vector i represents a vector
with all elements equal to unity.

In princíple, the variance-covariance matrix can be estimated
by using the residuals of the first round ordinary least squares.
Or ~ A '

(3.14) E-~ ï „ „T rt-rt ~rt-rt IT-1 t-1 st-st (st-st 1

which implies temporal independency of the dísturbance terms
(neither autocorrelation nor heteroscedasticity). Therefore, the
variance-covariance matrix enters the Aitken estimator as

(3.I5) E-1
BI2(n-1) (classical SUR-model) .

t t

(ic) We are due to Prof.A.P.Barten for this conclusion. See
also R.A. Van Straelen, o.c., Chapter 6.
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However, as explained above, it is possible to modify (3.15)
in order to take temporal dependencies among the disturbai.~e
terms into account. Obviously, the necessary condition to be
satisfied for non-singularity of(3.15) is

(3.16) T~2(n-1) .

If this condition is violated, additional assumptions are
to be made concerning the pdf of the disturbance terms and
their covariance matrix. An other possibility consists in de-
fining a generalized SUR-model with the help of E}. This pro-
cedure can also be followed when the variance-covariance matrix
turns out [o be "nearly singular". Test statistic (2.76) may
be utilized then for determining the "real significant rank"
of F. Alternatively, a consis[ent minimax norm as e.g.;,iZ~n-I)~2,

i-1 1
with F, the maximum relative error innthe eigenvalues, may be
subtracted from each eigenvalue of E. The rank is then equal
to the number of positive corrected eigenvalues.
34. A dynamic version of the model can be obtained by intro-
ducíng lagged variables. Demand and supply'often react not only
to present but also to previous prices. Up to now we know very
little about the precise form of lag structures. However, an
important and useful structure is that of Koyck. As it is well
known, the Koyck lag structure rests upon the basic assumption
of a geometrícally declining effect. Applying [he Koyck trans-
formation leads to a very simple dynamic specification. Our
model formed by the equations (3.10) and (3.11) now becomes:

(3.17) iSt `o ~t lu~ st-11 P
tu t

As can be noticed the number of parameters increases only
with (n-]) resulting from assuming the same lag parameters for
the corresponding row and column multipliers. This makes sense
by considering the argument that if there exists some lagged
behaviour in an industry, it is very likely to happen at all
levels more or less in the same manner. Obviously, the content
of the disturbance term ut differs completely from [he residual

t-1
rrt -r~t O ~~~I ~ O ~ I pt



- 42 -

ut defined in (3.13). The price parameters of both models are
related to each other as follows:

(3.18) ax-a(1-p) and Ux-u(1-P)

The estimation of the parameter vector p can be done in an

easy way by taking the sum of the vectors of row and column
multipliers. By means of this sum we are gettinQ rid of the
constant multiple vt. Estimating p in this way no longer
forms an application of an autoregressive SUR-model. So, au-
toregressive constrained and unconstrained SUR-estimates
(2(n-1) in number) will be compared in the next paragraph.
After obtaining consistent first round estimates, they can be
substituted in (3.17) (x) whích allows us to obtain consistent

second round es[imates eíther of ax,ux,pl and p2 in the auto-
regressive SUR-model or of aX and Ux in the classical SUR-

models ~aith redefined dep~ndent variables

rt rt-1 U - p-
(3.19) ~ -

s t 0 st-1 P

We now turn to some briefly commented numerical results.

35. Some experíments have been performed for [he Belgian economy
duríng the period 1953-1967. Basic data were:annual relative
prices, the input-output table for 1959 and annual marginal to-
tals on 12 aggregate industries.

A complete report on the numerical results does not meet the
objectives of thís memorandum ( icx). So, we have limited ourselves
to [he statement of some main results. Estimates are given for

two industries:one for which the performance of the model was
relatively poor (building industry) and another one for which

the performance of the model was relatively good (energy sector).
Five models have been retained:

(x) With obviously a vector p] and p2 for row and column multi-
pliers in the case of a real autoregressive SUR-model.

(xx) See R.A.Van Straelen, o.c., for a more detailed description
of the numerical experiments.
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1. the classical SUR-model
2. the classical SUR-model with redefined dependent

variables ( autoregressive nature)
3. the real autoregressive SUR-model with 24 p.-para-imet ers
4. a"static" generalized SUR-model with positive semi-

definíte variance covariance matrix S2 (see 1)
5. a"dynamic" generalized SUR-model with positive

semi-definite 52 (see 2).

The results are presented in the followíng tables, where OLS and
SUR estimates are given for the unknown parameter values and
their standard deviatíons.

OLS

Table 1 Energy Sector

Classical SUR-model

a - -0.3621
(O.I02])

U - 0.6407
(0. 1252)

SUR ~ a - -0.2613
(0.0948)

- 0.5163
(0.1164)

u

Classical SUR-model
(auroregressive nature)

p - 0.1948 (ML)
~ - -0.2867

(0.0914)
U - 0.5313

(0.1094)

a - -0.2137
(0.0852)

U - 0.4371
(0.1019)

"Static" generalized SUR-model

a - -0.2659
(0.1042)

u - 0.5335
(0.1185)

"Dynamic"

Real autoregressive
SUR-model

a - 0.0413 p~ - 1.1041
(0.1476) (0.4285)

u - -0.0293 pu - 1.121]
(0.1531) (0.2687)

a - -0.0230 p~ - 0.8226
(0.0751) (0.1370)

u - 0.0084 pu - 1.1558
(0.0657) (0.0660)

generalized SUR-model

n p z 0.1948 (ML)
a - -1.1945
n ( 1 .1 556~
u a 0.9189

(0.9506)
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Table 2 . Building Industry

Classical SUR-model Classical SUR-model Real autoregressive
(autoregressive SUR-model

nature)

p - 0.8271 (ML)
OLS ~ - -6.9024 a - -1.9700 a ' -0.8715 p~ - 1.0097

(1.6636) (0.6565) (1.5773) (0.2760)
u- 2.9459 u- 0.9974 u- 1.2619 Pu - 0.7155

(0.6142) (0.3324) (1.3439) (0.5976)

SUR a- -4.4845 a--1.3107 a--0.8883 p~ - 0.9316
(1.3994) (0.5522) (0.4897) (0.0935)

u- 2.1162 U- 0.8035 u- 1.1226 pu - 0.7399
(0.5140) (0.2785) (0.1229) (0.0802)

"Static" generalized SUR-model "Dynamic" generalized SUR-model

P - 0.8271
SUR a - -4.5582 a - - 1.3702

(1.3998) ( 0.5526)
u - 2.1724 U - 0.8080

(0.5166) (0.3009)

As can be observed, differences between OLS and SUR are quite
important. Judged against .the usual standards of the t-test for
determiming the significance of individual parameter estimates,
model 3(the real autoregressive model) gives no satisfactory re-
sults compared with the first two models.

By analyzing the eigenvalues of the estimated variance cova-
riance matrix E, used in S2i-Ei8í2(n-1) (ial,2) for models I and 2,
we observed that, taking account of a limited error on the accuracy
of the variance-covariance elements, the "real rank" of E1 could
be fixed at 21 and of ï2 at 20. Also, the sole break in the evolu-
tion of the eigenvalues occurréd at those places.
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Table 3 Smallest 6 eígenvalues of E1 and E2.

Nr. E1 Nr.

19 0.001385 19 0.001733
20 0.001303 20 0.001615
21 0.001253 21 0.000566
22 0.000556 22 0.000515
23 0.000488 23 0.000452
24 0.000436 24 0.000369

Therefore, pseudo-inverses of E1 and E2 were computed, resp.
with ranks 20 and 21 (ic). The estimates of models 4 and S given
in tables 1 and 2 are obtained from:

(3.20) Sz-(X~S2}X)-1X1S2{y

(3.21) V~(E3k)-(XISl}X)-1

(see (1.65)) and

(see (].66)).

Notice, however that (3.20) is not asymptotícally most ef-
ficient, which follows immediately from prQpositíon I.l, but is
consistent if S2 is a consistent estimate of 52. -

To judge the relevance of the parameter estimates, some
simultaneous tests on a priori restrictions of the parameters
have been performed:

a. for modele 1,2,4 and 5:
- Ho:al-a23.....aa12-u1-U2'....-U12~0

- Ho:al-a2a..... .....~~`l2sul:u2' ~u12
- Ho:a~-u1;a2'u2;.....,a12-u12.

(zero restrictions)

(t) Since, in fact, the pseudo-ínverse of an "approximate
matrix" (corresponding to the"postulated rank") is com-
puted by the method retained, it was interesting to no-
tice that in both cases the elements of the approximant
differed with only 27, at the maximum from the original
elementa in E) and E2, which is largely within the ran-
ge of the allowed inaccuracy.
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b. for model 3:

- Ho:
~p~ I1 J
ru1 ~u2~.

i
~~12 UJ

,' u . .,~ io `
- Ho. - -.....-

01 t
pu I. `pu2; ~ u 1 2i

` ~ ~

- Ho: ~ ~1`- ~2 ~ -.....- ~12

~p~ oa ~
L 1, ~ z' t

~P

( „ ~~ ) (~)

(vector equality)

(

The test statistic on zero restrictions can simply be wrít-

ten as a simultaneous significance test of the parameters:

7c ~ nt ic
(3.22) F~ -s-K yT~~y~,

K, s-K K y 5~ y-y

s-K y~~}y!c
z -- ,..} ~x~ X
Y K Y~ Y-Y ~ Y

'~t -1 'nt
with y~-X~?z-X(X S2 X) X S2 y, which is asymptotically F-dis-

tributed with K and s-K degrees of freedom (s being the rank of

S~ )

The remaining a priori restrictions may all be expressed as

linear homogeneoue restrictions on the parameter vector ~,

written as:
ai U~ i,j-1,2,...,12

(x) The equality hypothesis for y
pai pUj i.j

could not be tested since the complete SUR model (24 equa-
tions with 48 explanatory variables) was too large for the

dimensions of the present programming system available at

the Tilburg University ICL-installation. Therefore we had

to split the problem into 2 submodels, both of 12 equations

(row,víz. column multípliers) and 24 explanatory variables,

so that the a,- and U.-coefficients of model 3 ar-E not
i ~

"really global" SUR-results.

;' ~ , 2 01-.....- (zero restrictions)
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(3.23) CS-O

with C a known ( qxK) matrix, q being the number of restric-
tions.

Following propositions Cl and C2 of the appendix we observe
that:

(3.24) F~ -s-K B~~C~CC(X~Sl}X)-1C~~-]CRz
q.s-K q ~~t t !cY ~ Y- Y~ Y

is asymptotically distribu[ed as F q,s-K~

The results are given in the underlying table:

Table 4 Asymptotic F-tests on a priori restrictions

Mcdel 1 Model 2 Model 4 Model 5

~
F24,336-44.8
x
F23,336-19.4
z
F12,336-19.2

~
F24,312-29.8
~

F23,312-15.6
z

F12,312-20.8

Model 3
t

F24,144-167.2
x
F24,144-472.7

16.6

92.2

t
F24,291-42.1
~

F23,291-18.0
x
F12,291-20.0

~ -22 624,256 'F

!
F23,256-10.7
x

F12,312-11.8

Comparing the results contained in the above table wíth the
critical values of an F-table, we immediately see that all ze-
ro hypotheses are strongly rejected (even at a signíficance
level of 992).

Finally, the performance of the alternative models is com-
pared by computing performance indices indicating the fitting
degree of the model to the data. So, if zt are the observations
for time periods 1,2,...,T and z~ the corresponding calculated
values, the perforwance index is defined as:

Tï(zt-zt) 2
(3.25) P,I.
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which commonly indicates a good performance if it ís smaller

than 0.4. Such indices have been calculated for the observed
and estimated marginal totals. Some results are presented in
table 5. For both sectors, energy and building, the first fi-
gure refers to the performance index of the row total, where

as the second figure refers to the performance index of the
column total; for all ]2 sectors together the figure mentioned
refers to the overall performance regarding all marginal totals.

Table 5 Performance Indices.

Energy Sector

Row P.I. Column P.I.

Model 1 0.047 : 0.052
Model Z 0.041 : 0.034
Model 3 0.044 : 0.307
Model 4 0.137 : 0.170
Model 5 0.129 : 0.120

Building Industry
All Sectors

Row P.I. Column P.I.

0.353 ' 0.137
0.145 : 0.069
0.207 : 0.287
0.605 : 0.531
0.445 : 0.351

0.066
0.051

0.273
0.561
0.502

The above table indicates that the "generalized models" 4 and

S give inferior performance compared with the first three,

except for the performance of the column totals of the energy

sector which is worst for the real autoregressive model 3.

Indeed, it strikes immediately that the column totals are rather

badly predicted by model 3, although this model does not give

a very poor global performance (overall P.I. is smaller than

0.4 and row totals are even better predicted than with model 1).

Also a substantial improvement of the building industry pre-

diction capacity is noticed by ueing the lagged model 2 instead

of the unlagged model 1. In general, this model 2 has the best

performance of all models retained.
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Appendix A Analysís of a classical SUR-two equation model (ic)

1. The role of dependency between different sets of expl, atory
variables w.r.t. effíciency

Proposition AI
If the variance covariance matrix S2 is known, Aitken

estimation of S in model

Y-
ryl - X1 0

I~y 2 0 S1 el
s2 } E2

where Xi(i-1,2) are non-stochastic (Txki)-matrices of
explanatory variables, yields maximum gain in efficiency w,r.t.
OLS if Xi X2- 0 and the disturbance vectors of the 2 equations
are highly correlated.
Proof (see also theorem 2.4 for general M-equation systems)

ít is assumed that I~il- U and

i ~ ~ a111T a121T
E~2~(E1 E2)]-~- , is equal to:

aZi1T Q221T

'sl
(A.2) ss ~s2

~ ~ ~ ~allxlXl a12xiX2 -i a1lXlyl t a12X1y2

a21X2Y1 a22E2X2 a21X2y1 } a22X'y
2 2

with variance covaríance matrix (see l.7)

(A.3) V(B)-ECíB-B)í8-B)~

~ , ~1ailX,X, a12X.X-I-1 W W -1

~ ,Q21X2X1 a22X2X2~

The Aítken estimator of S-(s~,g~)' in model (A.1) where

x2

ll 12

W21 W22

(~)The exposition in this appendix is based upon A.Zellner~28~ ,
A.Zellner and D.Huang C27~.
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and leading submatrix for the first equation's coefficients:

(A.4) V(t31)-(W11-W12W22w21)-1-L~11X;X1
- (Q12)2XiX2(a22)-1

(X2X2)-1X2X1~ -1.

Remembering that the simple correlation coefficient between
the disturbances of the 2 equations is defined as p-a12

ra11rQ22
and a11-(`11-~12a22a2t)

-1 -a~~(I-P2) 1,

the variance covariance matrix (A.4) of the í?,-vector may be

written as:
-.-1

, 2 ~ ~ -1 ~
(A.5) ~(,1)- ~ (~ (xlxl)- ~ 2 (xlx2)(x2x2) (x2x1)'

1 1 a 1 1( 1-r~ ) -.

and its generalized variance as:

(A.6) ~V(l31)~-(1-p2)k1611~rX1X1~-I~~IkI-P2D~-1 with

~ -1 ~ ~ -1 ~
(A.7) D-(X1X1) ( X1X2)(X2X2) X2X1 and

kl
2(A.8) IIk -G D~-~~i. where ai are the eigenvalues of

1 i-1

Ik -p2D, satísfying the characteristic determinantal
1equation:

(A.9)IiIk -p2D)-~Ik I - ~D- (lZ~) Ik ~ . 0.
1 1 p 1

So, the values of 12~ are the characteristic roots of D,
P

being equal to the squared canonical correlation coefficients
ri for the sets X1 and X2 or

2 1-~. 2 2
(A.10) ri- 21 and a,-1-p ri, and the generalized variance(A.6)

P 1
becomes, taking account of (A.8) and (A.10):
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(1-p2)klQlll(g~gl)-ll 2
(A.II) ~IV(r51)~- k , and sir.ce O~r.~l

(1-P ri)
~ Z 2 - 1'
i- 1

(A.12) IV((31)I~alll(X1X1)-ll, from which it is clear that
the equality sign only holds when all canonical correlation
coefficients are equal to uníty ( i.e.if X1-X2). If the
column vectors of X1 and XZ are mutually orthogonal, i.e. if
X1XZ-0, then all canonical correlation coefficients are
equal to zero and maximum gain in efficiency is obtained w.r.t.

2
OLS, because then ( A.11) is minimum for a certain p~ o
(denominator-l). In this case ( X1X2-0) the higher the corre-
lation among the disturbance terms amounts to, the more is
gained , relative to OLS, by estimating model (A.l) by Aitken's
method . d

2. The efficiency of Aitken relative to OI.S-estimation concerning

the unexplained variation

Proposition A 2

The unexplained variation (generalized unexplained variance)
of the OLS estimation of model (A.l) with X1X2-0 will be greater

than that associated with the Aitken estimation of R in (A.1)

k2tk2}k k p2

unless T~ 1 2 1 2 , where p is the simple correlation- kl}kz

coefficient between tha disturbance vectors E1 and EZ(assump-

tion: S2-EBIT ís known).

Proof.
Since:
(A.13) E El - LI-X(X'E-18ITX)-1R'E-IiIT~ E and X1X2a0,

EZ

the residual vector of system (A.l) amounts to:
1 , -I ,

E 1 I 0 all Xl(X1X1) X
T

2 0 IT 0
o22X2(XZXZ)-iX2J
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rQIII Q12I

1QZ1IT Q22IT
T T ]

' -1 l ~ Q12 ' -1 ' 12(A.15) E1~CIT-X1(Xlxl) X'lel-a11X1(X1X1) XIE2 and since~l~--~221a21-
- p rQ 1 1 and taking variance-covariance elements:

a22 .

(A.16) E(EiEi)~ aii(T-kitp2ki) (i-1,2) (see also (2.38-39)) and

~-E !E LI -X (X X )-~X,LI -X (X X )-IX,] El 1 T 1 1 1 1 T 2 2 2 2 2

Q11 ~ ~ -1 r ~ ~ Q

}PJa22E2X1(xlxl)
X1[IT-X2(X2X2)-1x2~E2}PrQll

E1[IT-X1(x]X1)-1X1~

Xlx2(X2X2)-1x2e1 }

x2(x2x2)-1x2e1}p2E2x1(xlx])-1

~ Ta12 (see (2.38)).

or the generalized unexplained variance of the Aitken esti-
mators of the disturbances is given by:

ti~L tiry
)Z(E1E1) E(ElE2)

(A.18) VA-
E(E2tl) E(e2e2)

or

all(T-k1}klp2) Q12T

a T a22(T-k2tk2p2)21

- aila22CT-k1(i-P2)~ CT-k2(1-P2)~ - Q12T2

while the generalized unexplained varíance of the OLS-residuals
is (see (2.39) with rH-O):

(A.19) VOLSLa11o22(T-kl)(T-k2)-a12(T-kl-k2)2 or

(A.20)
VOLS-VAaQI1Q22{ L`T-kl)(T-k2)-p2(T-kl-k2

C(T-kl(1-P2))(T-k2(1-p2))-p2T2 ~ ~

Sa11a22P2CT(kl}k2)-(kltk2tkik2p2)~ '
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from which it is seen that VOLS~VA if

k~tk2tklk2p2
(A.21) T ~ ,

kitk2

so that ,certainly, the unexplained variatíon through
OLS-estimation of model ( A.l) is larger than the unexplained
variation through Aitken estimation as long as the number
of observations is at least as large as the total number of
explanatory variables in the system under consideration
(T~kltk2). ~

3. Exact finite sample properties of the feasible Aitken
estimator in the classical SUR-model.

We consíder the followíng model (see (A.])):

(A. 22)

Yl

y2

Xl 0 41

o x2 s2 ~

t

El

E2

with ( i) Xi non stochastíc ( Txki)-matrices ( i-1,2) of explana-
tory variables;

(ii) X1X2-X2X1-0: pairwíse orthogonality of the explanatory
varíables in the 2 equations ~x)

E ~ ,
(iii) E 1-0 and E 1 (E E) -52-

alllT a12IT~

E 1 22 2 a21IT Q22IT

and S2 is unknown;

(x) In proposition Al it was shown that there is maximum
gain in efficiency if X1X2-X2X1-0 for certain p~0.
This result only holds asymptotically for the feasible
Aitken estimator. Furthermore, the condition of
pairwise orthogonality is assumed in this section for
ease of derivation. Hence, this assumption is not
essential to the results obtained.
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(iv) e(t)a[e~(t),e2(t)~ ~are assumed to be bivaríate normal
for each t(t-1,2,...,T) with E~e(t)] -0 and
E~e(t)e'(t)~ - E, so that the e(t) are assumed
to be mutually independent identically normally
distributed with zero mean and E variance-
covariance matrix.

3.1 Exact sample moments of the feasible Aitken estimator S~

Theorem A1.

The feasible Aitken estimator (3~ of R ín model (A.22) has
the following finite-sample-moments-

(A.23) E (B~)-S (~) and r

~~II(X~X~)-I

(A.24) V(~~)-E[(~~-S)(Q~-S)~ -(i-P2)n-2

0

where n-T-k~-k2~0

Proof

Í
0

Q22(XZX2)-1

The feasible Aitken estimator ~~ of model (A.22) ís given by:
~ , ~ ~~ Q11X'X, ~ ~ -1 Q11Xty1

} Q12X~y2~s~
(A.25) s~`- ~ - .S~ o Q22X2X2z

~ ,
a21XZy~ } Q22X2y2

' ~ n12 ~ ~
~
XiX~)-iX~y~ t

Qii (XiXi)-~Xiyz

a21 ' -1 ' ~ ~
Qz2(x2x2) x2 y~ } (xzx2) ~g2y2

(x) From theorem 2.2, normality of e(t) about zero ia a suffi-
cient condition for unbiasedness of S~.
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~ -1 ~
(XIX~) XIYI - Q12 (X,XI)-IXIY2

22

' -1 ' ~12 ' -1 '(X2X2) X2 Y2 - ~ (X2X2) X2y1
a11

with variance covariance matrix:

I (XIXI)-1 0 I
~ ~ all n2(A.26) V(~ )- I -(1-P )

0 (X2X2)-
a22 (

Q11(XIX1)-1 0

,. ,. Ê ~ e .
where E-{aij1-{~)(i,j-1,2) based on the maximum likelihood

T
(OLS) estimation of the parameter vectors of the equations
involved in (A.22) and pthe correlation coefficient between

Eland E2: P-
a12

QJ 11a22

To establísh the exact finite sample moments of (A.25), con-
sider the model:

(A.27) - -------.Y1' XIX2 :---0-0-
0 0 '

al
~lo

szos2
t

which is equivalent to model (A.22) if 810-(?20-0.

Under the assumption that e(t)~EI(t),e2(t)~ are bivariate
normal with mean 0 and variance covariance matrix E for all
t, the ML estimator of the parameter vector in (A.27) is:

Y2 : XIX2
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(A.28) s}-
'szol
is I
L 2 J

- ~ with the E-matrix,

I (x]x])-]X]y]1
' . -] ' I(x2x2) x2y]
(X]X])-]X]yz

, -, ,
(XZX2) X2y2

consistently estimated as:

(A.29) Ê- Q11
CQ21

~~~ ~~~Q12~ - ] r E]E] E]E2

622 T LEZE] Ê,Ê J2 2

Following T.Anderson [2~, p.]g3, H.Cramèr C6], p.185 and
P. ~hrymes [7] , p. 166 the maximum likelihood estimator (A.28)
is normally distributed with mean S~- (S,,O~O~SZ)' and
variance-covariance matrix (since X]X2-XZX]-0 ):

~
(A.30)E (G}-s})(S}-B}) ] -

lali(XIX])-] 0 Q12(X]X])-] 0

0 o]](xZx2)-] 0 a12(x2x2)-]

Q12(X;x])-]
0 a22(X]X])-] 0

0
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while the random matrix TE is independently distributed
according to Wishart with parameters E and nLT-kl-k2 (x)

(x) This is derived from the (assumed) property that the
vectors e(t)- ~el(t),EZ(t)~ ~are mutually independent
normally distributed for all t, with mean zero and
variance covariance matrix E or the joint likelihood
function of the sample considered is:

n T r T ,
(A.31)oC~(elE-1)-(2~r)-TIE-1~2expLz E e(t) E-lE(t)~

t-1

T
~ -1-(2~r)-TIE-1~2exp -2 tr e E e~

T

-(2~r)-TIE-1 I 2exp L-2 tr E-lee1~ with

e-{e(t)}-(2xT) matrix of error terms or
transforming to the 3ependent variables
(Jacobian - 1):

T

p(' (Y~E-1,~})-(2~t)-TlE-ll2exp~ ZtrE-1(Y-XB)~(Y-XB1~
S Rt... , 1 1 20 or

with Y-XBte, Y-(y~,y2),X-(XI,X2) and B- S S
10 2

T
(A.32)o~(Y~E-l,B)~(2tr)-T~E-ll2exp{-2trE-I[(Y-RD)fX(B-B)''CY-XB)tX(B-BJ}

T ,. , ,. ., ~ ~
-(2~r)-TIE-1~2exp{-ZtrE-IC(Y-XB)(Y-XB)t(B-B) ( X X)(B-B)}

kl}k2
~(2n)-T~E-]~ 2 exp{-ZtrE-I[(B-B)~(X~X)(B-B)~ }

n
IE-ll2exp ~2trE-IA~

~ - 1 r
where B is the ML estimator of B,i.e.B-(X X) X Y and A~TE.
So, it is verified that the kernel of the joint líkelihood
of the original 2-variate normal density in e(t) may be
written as the product between the kernel of a multivariate

' ' -1pdf in B with mean B and variance-covariance matrix EA(X X)
(see (A.3D)) and the kernel of a Wishart pdf in A-TE
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Then the feasible Aitken estimator ( A.25) becomes:

z n 612
s11 Ql- n s2o~

(A.33)~ ~- a22 ~ with mean:
~.szí s . Q~z sloJ

L 2 Q
11

ÍE ( Q

(A.34) E(Q~)-

) - E~,a12; E(S20)

`a22~

i s] ,

~E(Q2) - E~a~r?~ E(B10)~
~ QP -

all

which is ín accordance with theorem 2.2 (see also footnote
on p.6), and variance-covariance matrix:

r ~
E(Q~-Ql)(Q~-Q1) E(Q~-Ql)(QZ-(32)rI

(A.3s) v(s~`)-

lE(QZ-B2)(Q~-sl)~ E(SZ-82)(B~`-81)~ I

where the occurring block matrices are defined as follows
(utilizing (A.32), X1X2-X2X1-0 and the mutually independent
distribution of the regression coefficients and the a. 's):ij

.... with variance covariance matrix E and degrees of
freedom n-T-k]-k2 ~0. Hence,B or vec ~ }(B)-B and E are
independently distributed and they are jointly sufficient
for the parameters B} and E(Fisher-Neyman criterion; see
e.g. P.Dhrymes ~7~, p.131-133).

(~)By the above
Q

R20,resp ,12.
à

11

mentíoned independence property, also a12 and
and S10

since by a change of
can be expressed as

N,W(all,a22,a12) ( see also (A.41)).
11

are mutually independentl a22
Y distributed,

variable, the normal-Wishart form(A.31)

N(Q1.Q10.Q20,S2).W(611,o22,a~) or
22
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(A.36)V(B~)-E(Gz-B~)(Sz- R~) ' -E(~~-B~)(f3~-R~),-

12 'a
(S~-~~)B20 -E ~-~E S20(Bt-R~)

a221 ~

2
tE~a12 E(S S, )2 20 20

a22

2

a22~a1] `a22~a11

(A. 37) - n `a a
~(Q2)-E(S2-C~2)(~2-52) '- a22(X2X2)-(I1-2E

r12 12}

L all a22 ~I1 22

Cov(Q~,SZ)-E(~~-Q~)(132-52) 1-E(R~-S~)(R2-Q2),-E a~~ ELS20(Q2-S2) ~
a22

a ~ 2 r , ,. 2 ,. ,. , .

-E ~c- E L (Q~-S~)Q~O~tE(P ) E(S20S10)a J
il

~E[(BZ-~2)(S~-B~)I] ~[Cov(Sz,~x)]'-0,

To evaluate (A.36) and (A.37), the first and second moments
of the ratio of random variables a12 and 022, resp a~2 and
a~~, have to be determined. This may be carried out by
deriving the density function, say of vL al2

a22

2

2 a~~ ~ and
a

Since the (2x2) positive definite matrix of random variables
a~~-Ta~~,a12-Ta12 and a22-Ta22is Wishart distributed with
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covariance matrix E and degrees of freedom n-T-k -k2:
]

n-3

~A~ 2 exp(-ZtrE-lA) dA (z)(A.39) f(A)dA-W(E,n)-
n

2n~E~Zr 1 r n r~-z 7

1 al1 2pa12 a22 1 i
2(i-p2)~~11- a~á22~a22IJ

dallda22da12

1

2 n ~ E ~ 2 n,~ 1n-2) I(n-3) I2 2

2 2(n-3)
-c~alla22-a12) exp

with c-

Rewriting the Wishart p.d.f, in terms of all,a22 and

v- (z!c) so that the Jacobian of the integrand trans-

formation is .

(A.40) J-o(alla22a12)

~(alla22 ~ )
- a22, we find:

2(n-3) 2(n-!), 2a22 2(n-3)1-(A.41) W(E,n)-ca11 a
22 1-v -

exp -~
2(I

a~l 2p~a22 a22 d
T11-~o1~2}a22 I

allda22dv

(ic) T.Anderson ~2~ ,n.67 and p. 154.
(zx) The fullowing reasoning is that of the appendix in

P..Zellner ~28~, PP.989-992.
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2 2
2a22 a12 a12 2 2Since v - - -p ( p~p ~l), a bínomíal expansí.~n
all alla22 alla22 -

(Newton) can be utilized:

~2a 2 ~ i 2i i n-3 ~
(A.42)(1- a 22) -~(-1) v a22 ( 2

11 i-0 n-3 I
1 i ~r-i~

.al1 l 2

or the probability density (A.41) becomes:

n-1
(-1)lv2ia1}Z n-31~ a

(A.G3)W(F.,n)-c F 22 2 1 eXp - 1]
i-0 i--(n-3)

~ 2 i~ ln-3 i ~ 2(1-p2)QI1
1 1 ~ 2 - )~

C a22 2pv~22`exp ~l- J da11da22dv
2(1-p2)a22 ` ~

and setting s- a~l

2(1-p2)a

n-1- n-1
m í 2i i2 (-1) v a 2 n-3(A.44)W(E,n)-c 2(1-p )Q1l 2 E 22 a22 ~ 2J ~-0 -1

1~~2(1-p2~Q11J .

a22 2pv~
exp - (]- ~ da22dv

C 2(1-P2)Q ~122

Í

where use has been made of the property that the Jacobian
of the integrand transformation from all to s is 2(1-p2)all
and the gamma-integral:

n-3
( - r~, -(i-2 )

n-3-i . Jllo

2

n-3

s e-sds .
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Since . we get, after
1 2 ~

1I[2(1-p2)ol~ 2(I-P )QI1

2
~ (-1)iv2ia22

- ex r
v a22PL-

i-0

integrating out a22, the marginal density of v:

hi,-,.2.~ Ín~l .- ....i .~C,. 2. ~

(A.45)W(E,n)-c
a22 a22 ntl

~I-2 pv - tv2
ai 1 a1 I J -

and substituting for c, we find:

n ntl
2 2 2 2 r( 2 d v

(A,46)W(E,n)-f(v)dv-(1-p ) .

a 1 1 r~2 r(2

ntl
2

dv

nt] ntl
~22 Iv2-2pv a22 fQ~l l 2
n}i ~ ~~l

2al~

. t

2~ r~n21~ d v-(1-p2) 22

al l r~2 ~2 1 Q22- 2 ntl
~ 2- allP,

ta~l(1-p2)
a22 a22

a22 r`n21I d v
(I-p2)611 r z~j'(nI

Iv-p 1I `2 n21

1}ll a221
a(1-p2) 11
a22

v is transformed into
Z- (I-p2) 11

a22

all

with Jacobian

, and if

a ~
J-~( 1-p2) 1 I~

.
a22

the pdf of z, and hence of v-a~2 , is clearly in the standardized
a22

2

ntl

student t-form with n degrees of freedom:
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(,A,471G(z)dz- d z
` nf 1

I'~Z~Z 1 (lfz2) 2

and first two mom2nts (ic)

(A.48 E z 0 and E z2 ~ 2~`n22~ ~~n22" - 1)()- ()- 1 n }n-2' n-2 n-2 or in
r~Z}~~2 ~2r z~

terms of the original variables v:

(1-P2)Q a
(A.49) E(v)-p Q~l and E(v2)- 11 tp2 11

22 (n-2) ~22 Q22
So that the exact second order block-diagononal matrix V(S~)
is found from substitution of (A.49) into (A.36):

(A.50) V(S~)-E(8~-81)(B~-Q1), -a11(X1X1)-1

P(nzl)

C 1-2p 11 612}all 1-p2}p21 a22
Q22 al 1 Q22 n-2 J ol 1~

-a11(X1X1)-1(]-P2) n.2 ,

where all(X1X1)-1 is the covariance matríx of the ML (OLS)
estimator S and a (1-p2)(X~X -11 11 1 1) the covaríance matrix of
the Aitken estimator sl (see (A.26)~.
Taking account of (A.50),(A.37) and (A.38), the exact varíance
covariance matríx of s~ becomes:

Q11(X1X1)-1 0

(A.51) V(S~)-(1-P2)n-2 i 0 Q22(XZX2)-1 ]
Computing the values of (1-p2) n-Z for varioua values of n and
p, it is seen that there emerges a considerable gain in effi-
ciency , when deriving a feasible Aitken estimator of s in

(z) See M.Kendall and A.Stuart rll~, , vol I, pp. 59-60
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stead of its OLS-estimator, if p~0.30 (obviously, the gain
becomes more consíderable if n- T-k~-k2 increases) (x) A

3.2 Exact sample distribution of the feasible Aitken estimator S~
Theorem A2
The finite sample pdf of the feasible Aitken estímator

G~ of B~ satisfies:

(A.52)h(S~)ds~`h(z~)dz~

~ i ntk~
0o i z z r i t~(-i) i i ~ 2 a Z
i-0 ii 2(1-p2)Q~~ ntk~tl

Proof

with the (k~xl)-vector z~ equal to:z~-B~-S~-Q,~g20-gX -~j~
~22and n-T-k~-k2 and the matrix X~ is assumed to consist of

a set of mutually orthonormal vectors or X~X~-Ik .
1

From (A.32) and (A.46), the joint pdf of B~,B20 and Q~?
can be written as: 22

(A.53)h(S S a12 )ds d8 dQ~?-8(S ,S )f(a~-2)d~ dg d al2
1' 20' ~ I 20 1 20 a 1 20 ~- '

Q22 Q22 22 a22

awhere g(.) is 2k~-variate normal and f~,c~?~ gf(v) is iven

by (A.46).
Transforming to the random variables.

z~-s~-s~-vs2o
, z2-S20 and z3av

a22

where z~ and z2 are k~ -
vectors and z3 is a scalar random varíable and the Jacobian
is 1, (A.53) becomes:

(x) See W.Vandaele ~231, 44.3. If p is very small (p~0.10à0.20)
OLS has to be preferred relative to feasible Aitken estimation.
Only for large samples, the covaríance matrices are(approxi-
mately) equal ( asymptotic equality for p~0).

r(n}~~
~ kl 2

~2n6~ ~ ( 1-p2)]~ r Z
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(A.54) h(z~,z2,z3)dz~dz2dz3-g(z~fz2z3,z2)f(z3)dz~dz2dz3, where

(A.55) g(z~tz2z3~z2)-g(~~-~~.520)-

~ -~

E(SZO~~X SZOS')

(2n) k1

wh er e

-I

(A.56) E' ~~-~~ ~a~-S~,
i

~a2o . ~~20 -

, -1
a~~(X~X~) a12(X~X~)-,~

, -1
a22(X~X~I

-1 -k , 2
E ~ (X~X~) (see (A.30)), with determinant IEI ~~X~X~I ,

Without loss of generality, we may assume that the columm
vectors of X~ are mutually orthonormal or X~X~-Ik so that
substitutin A.56)and(A.46 ~g ( )into(A.54):

c exp~-~ al~(z~tz2z3)~(z~fz2z3)
(A.57) h(z~,z2~3)dz~dz2dz3- l n}~

a
1-2 p 22 z t 22 z2 2

o~~ 3 a~~ 3

}2a12z2(z,}z2z3) } Q22z2z2

~~dz~dz2dz3

- k 1 n ~ ~n--.
JIwith c equal to c-~ k' ra~~a2~a12~ 2(~-p2)2 a22 2

(2n) t 11 ~~~~riz~
and rewiting as:
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(A.58)h(zl,z2,z3)dzldz2dz3-

~
c exp ~zlzlalll exp{-

a22

Ízz2(z3allt2z3a12ta2

~C 1-2p J a22 z f
1(ntl)z3 ~ 2

2 )t2z2(zs zlalltzla121J

dzldz2dz3'

we can integrate out z2, by rewriting the part of the above
pdf containing z2 with substitutions al-z3 allt2z3a12}a22

and

a2-z3zlali}z1a12 , where ai is a scalar random variable and
a2a kl- variate random vector as:

a 2z,a
(A. 59) expl-z1~Zz2} a2 2~d1 ` 1

t o0

}

~ a a a
z2- expf-21 [z2tál

~ `z2}a3)- a22~dz2-
-~ l i I

kl
a a ~2n 2 2 2ál exp 2al

So that the joint pdf of z and1
(A.60) h(zl,z3)dzidz3 -

kl 1
2

c(2n)2
all

(nf1) -zlzla II

z3 becomes:

~ 2 .zizl(z3a11}a12)

2(z3alit2z3a12~a22)
kl -

z2a11.2z a12fa22 2 2C 3 3 (z3a22-2z3a12tQ11)

k
1 1~(ntl)

c(2n)2.all eXp{ 2
-zlzl

2(z3c22-2z3 a12}all
~. }

-kl ~(n~kltl)

(a11a22-a12) 2 íz3 a22-2z3a12ta11)

f~

ex 2 xp

dzl dz3

dzl dz3

~

Expanding the exponent term in a Mac Laurin series and integrating
term by term w.r.t. z3, utilizíng:
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z1-C~l-

-~ 3 22 3 12 II

~ dz3 1
it} (nfk ) :

2 )i`~(ntk,fl)-a221a„(1-p2)~ 1(z a -2z a }a

ntk
r(z)r (it 2 ')

2nt t, ( since a12~a22a11)
r (it ~ )

we obtain the following joint pdf for the elements of

c 1 '2 ' !c~~~-5,-~,:

a22

(A.62) h(zl)dz,-
k I ai(ntl)

c('n) z c~ll (- ])i
z;zl i dz3

É
2 kl i-0 i~ 2 2 it3(ntk,tl)dzl

~~lla~2-a12~-2 ~ (z3a22-2z3ai2ta,1)

k
1 i -i ntk

c(2~) ~Il ~22Z r(i) ~(-1)1 zlzl 1 r it
2 1 dz2 z(n}1) ( ~

~ E 1
-k1 ~(ntk ) i-0 i . 2a] I1(1-p2) l.,~i}n{kI}1~
~

(~11~~22-~12) ~al ] (I-"2~ 2

or substituting for the constant c, given in (A.57), we
find as exact pdf of zl:

(A.63) h(zl)dz1- i n}k

1 ~`n21~~ (-1)1 zlz] r`i} 2 1~ dz
k n ` i-~ i ~ 2 nfk }1

C 11 2]
1 n( 1 2a„ (,-p ,r~i} 2, 1

2na (1-p ) 2 ` 2 J J

1

where a 2„(1-p ) is the asymptotic variance of each element
of z, ( see (A.26)), which are all equal since it is assu-
med that XIX,-Ik .
As n increases, ~he ratio of the Gamma functions involved
in (A.63) will rapidly disappear so that the pdf of z,appro-
aches the following normal density:

(A.64) h(z ) ~ c'ex
-z,z,

1 dz, P{ 2a, 1 1-p2) } dzl ~

E
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Appendix B

B.l Fínite sample bias of the ML estímator of the serial
correlation coefficient.

Theorem B.I
The finite sample bias of the ML estimator for the

autoregression parameter S in the model:

(B.1) Yt-SYt-1}et with Et~.NID(O,a2) (t-1,2,3,...,T) (x)
ís equal to:

(B.2a)E(B)-(3--?(3t0(sT-2)
T

fixed at zero or

(z!c) if the initial value y is0

(B.2b)E(S)-s-- 2 2gt0(ST-2) if the initial value y is fixedTtltc o
at a constant value c~ 0 and

(B.3) E(S)-(3--,1,}1St0(ST-2) if the initial value yo is a random
variable with the same mean and variance as the other y-

tvariables.

Proof
Following J.White [25~, the expansions for the mathematical

expectation will be given up to terms of order T-3 and s~.
Model 1 The initial value yo is assumed constant: yo-c

Then, under the above assumptions, the ML-estímator of S in
(B.I) results from the unconstrained maximization of the loga-
rithmic transformation of the joínt líkelihood density of y;

-~T 1 T 2
(B.4) L1(yls.a2) - (2na2) exp { -za2 tEl(yt-BYt-I) ) .

It is clear that for this model the ML-estimator ís equal
to the OLS estimator:

(!c) The discussion of this theorem follows J.White C25,. For
simplicity of notation and discussion, we assume that the
initíal value is yo and not yl.

( tx)See H.Cramèr ~6~, p.122, for the determination of the order
of magnitude in probability of different funetions.
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T '
~ ytyt-I

(B.5) g-tTl

t`~yt-i

1.A yo-c-0
T T 2

Setting U- E ytYt-~ and V- E Yt-~ the joint moment generating
t-~ t-1

function of U and V is:

rt ~

(B.6) E~~exp(UutVv)I -M~(u,v)~I exp(UutVv) L~(y)dy

~ - o~

-(2n)-~Tex J } (-~Y'Dy)dY-IDI-~ (~) .
- o,

where D is a(TxT)-matrix with determinant
P q 0 0..... 0 0 0~
q P q 0..... 0 0 0'

IDI- ~U 4 P 4..... 0 0 0
i: . : : : : :
i. . . . . . .
I. . . . . . .
0 0 0 0...., q p q
0 0 0 0..... 0 q 1;

with p-1fQ2-2v and q- -(Stu).
Expandingn

(B.7) EI(S) -~ ro aM~(u,v) dV o 1 -2 aDJI --~J s~D~ ,:.a a ~ au I - -mu o
2ín a Mac Laurin series and setting a-8 .

u-o

E~ (S) ~ ~~ 2
(B.8) -Q~(a)-Q~(o)tQ~(o)atQl(o) 2 t......,a

0 3
(B.9a)Q~(o)~-Z aa ~SIDI2 aD

au u-o
r ~ 3

(B. 9b)Q~(o)~-2J áa2 SIDI 2 aD
-~

2

o z --
1 dv and

u-o~
dv

dv

with

(x) Where, without loss of generality, az is set equal to l,
since s is independent of o2.



From ( B.6), we may denote the (TxT)matrix D-D(T) and the ríght-
lower submatrices wíth D(T-1),D(T-2) etc.. so that D(T) satis-
fies the second order difference equation:

(B.10) D(T)-pD(T-1)-q2D(T-2) with D(I)-1 and D(2)-p-q2 ,
and solution:

T-2T-1 T T-T-1 2 T-T- -ZT 2T(B.ll)D-D(T)-P E ( -1) P T -4 T P q
T-0

T-1 T T-T-1 T-T-2 T-2-2T T
- E (-1) (ztq) -x (zfa) x with

T-0 T T

z-1-2v-p-Rz and x-(Stu)z-qZ ,

so that the derivatives involved in (8.9) and (B.10) may be
evaluated by means of the various values of D(i,j) .

(B.12) D(i,j)-D(T,i,j)- a ~aD(T)
aa~ a x 1

(B.13) 1 aD(T)
B au

x-a~ a-0
since

- 1 aD(T) axl -2(Stu) aD(T) -2 aD(T)
u-o s ax ául,,,o - s ax u~o ax

and D(T)Iu-O - D(T)Ix-a-f3z

x-a

So ,

0 5 3
Q~(0)- ~{2D(T,0,0)-ZD(T,0,1)D(T,1,0)-2D(T,0,0) Z D(T,1,1)) dv

- r{3 z-2(T-1) T-3 T-3 Z(T-1) (T-5)
J 2 (T-2)z (z-1)z ( 2-T-z)-2z z~

[(T-3)(T-4)-(T-2)z2-(T-3)(T-4)z] tdv

(B.14)
J

o{-(T22)z -~(Tf3)-(Tt2~(T-3)z-~(Tf5)tT2t~T-12z-}(Tt7)} dv
-„

12
(T}1)(Tf3)(Tt5) -T3}0(T-4) and similarly,
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2
(B.15)Q(0)- T -2Tt3 -1-?t4 -2 t0(T-4) and

1 CT-1)(Tf1) T T2 T3

36(Tt8) 36 -4(B.16)Q~(0)- - t0(T ) or substituting into (B.8):
(Tf3) (Tt5) (Tt7) (Tt9) T3

(B. 17)E(R)-(I-Tt~-?3~S}~3s3t~3s5t....-(I-T)Sf0(f3T-2)
T T T T

IB y0-c~0 ( c is known)

Then the joint moment generatíng function (B.6) of the
composite variates U and V becomes:

-~
(B.18)M(u,v)-ID(T)I Zexp { Z- L]-DD(T))~ } with the first term

of the Mac Laurin series expansion (B.8) of ESS)-Qc(a);

(B. 19)Qc (0) J ~
] aM(u,v) dvS au u-0;s~0

( and integrand transformation)

22 -~c ze~c e rz-}(Tfl)t(T-2tc2)z-~(T}3~ dz (z-1-2v)2 L
1

If a -}(Tti) and x -~c2. we can integrate part by part to obtain:

a x
(B.20)Qc(0)-}ex xa-1T(1-a,x)-Xa(2af2x-3)}'(1-a,x)f(2at2x-3)eá~ ,

rwith ~1'(1-a,x) the incomplete Gamma function (ic)

1-a-x (' 4
(B.21)Í'(1-a,x)-extá L1 -(X}a)2 ~2a

3t0(a2(xta)-~~or (B.20)
(xfa) becomes:

(x) This asymptptic expansion of the incomplete Gamma function
~i(1-a,x)-~ e-uu-adu ( if x~0, usual Gamma function) can
be found ín Erdélyi, Higher Tranacendental Functions, 2,
New York, Mc.Graw Hill, 1953,p.140.
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2 2` 1 2 T 1(B.22)Qc(p)-~(2at2x-21 tp~ T 2 4 1- tp orxta (Ttc ) ~- Ttltc2 (Ttc2)4J

(B.23)E(f3)-~1- 2 ~ S t........` Ttltc2

From which it is seen that irrespectrive of the remaining
terms of Qc(a), the bias of S vanishes if [he initial known
constant ~Yol-lcl'ís large.

Model 2 Stationarity condition:yo is random with same marginal

distribution as y .t

If (B.1) is assumed to satisfy an infinite stationary process:
~

(B.24)yt'SYt-1tEt- T~pSTEt-7 with Et-T`NID(O,a2) and -I~E3~1,
then

(B.25) var
~ Q2

(Yt)-TEp~2T Var(Et-T) - 2 it-a so

z 2
(B.26) YtYN~O,Q7~ and Y'N(0, a )` (1-f3 ) o- ` (1-t32) (x)

or the probability of obtaining a y-variable is equal to:0

(B.27)L (Y ~sa2)-(1-f32)~ expr (1-52) y2
2 0~ á~ L- 2-~ o~

and since the Ets ( t-1,...,T), are mutually independently
normally distributed, the joint sample likelihood function is
(Jacobian of transformation of et-variables to yt variables
is unity):

-}(Ttl)
(B.28)L2(yIá.Q2)-(2no2) ( 1-62)~exP1-2o L~1-S2)yott~l(Yt-sYt-1) ~ }

(x) For model 1(yo~c), the marginal probability distribution
of each observation y depends critically on the completet
history of the stochastic process if ~s~~i ( always pos-
sible since convergence is not postulated for model 1 and
estimator t{B.5) can easily satisfy: ~t3~~t),ryor this model~

3'0~ 02 with ~SI~i.(t-a )}
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Logarithmizing ( B.28),r.ecessary ( first order ) conditions
for the maximum of the likelihood function are provided by:

(B.29)

(B.30)

or

a1nL2(Y~S,Q2)

as

a1nL2(yIs,Q2)~

a62

~
s~ }~r y2st

s-sv-(1-s2) Q2 L o

T ,.
E (Yt-RYt-1)Yt-~ -0 and

t-t

Q2-a2--(~2~)f 4 I (1-52)Yo~

(B.31) E YtYt-1-8 E Yt-1-Y~Sta2s,.2 and
t-1 t-1 (1-S )

(B.32) Q2-

with

~ L(1-52)Y~tTtl
T „
E (Yt-SYt-1)t-1

T „ 2
E (Yt-BYt-1) ~ -o

t-1

~(A-2SB4S2C),
Tf 1

T 2 T T 2(B.33) A- E Yt , B- ~ YtYt-1 and C- E Yt-1
t-0 t-1 t-2

Substitutíng (B.32) into ( B.31), and

(B.34) B-SCf~(A-2sBtS2C) S
Ttl (1-s2)

taking account of (B.33),yields.

and rearranging terms according to the power of S:

(B.35) g(s)-s3-(T-1) BS2-~At Ttl)C S}(Ttl) B- 0.
T C TC T C

One root of thís cubíc equation in S is the realamaximum likelihood estimator, say S, of model 2. We may
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try to investigate it by locating the three roots of g(s) (~)
Therefore, from (B.35), weneasily determine values of g(S)
for the points s- t~ and S- f 1 successively:

(!~)The roots may be determined analytically, but this is
very cumbersome,and does not produce much contribution
for understanding. Indeed, denoting the coefficients
of the cubic equations (B.35) by a--T-~ B,

1 T C

a2--~A4T~}~)CJ and a3-TT~ ~, the roots, say S~,s2 and

~3 may be given by:

~ 1~3 1~3 ,. 1~3 1~3 ,. 1~3 1~3(B.36)5~-1~ t12 ;sz-a~1~ } a212 and a3-a21~ ta 12 ,1
where

(B.37)1~.2--Zi } ~k2}27k1
with

(B 38a)k --~a2ta --I(T-1)2 BZ - At(Tt~)C
~ I 3 1 2 3 T2 C2 TC and

(B.38b)k -z a3-~a a ta -2 Ttl 3 B3-I (T-1)~At(Ttl)C7 B Tt1 B
2 27 1 3 1 2 3 27( T) ~3 3 T2 ~2 } T C'

Clearly, S~ Z are real if 4 k2 t 27 k~ ~ 0, but as it,
is implied by(B.36-38), exact computatíon does not gain
much comprehensing about the approximate numerical value
of the roots.
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(B.39)
8(m) - ~ and g(-m) -

i
B(1) ' - A?C ~0 awi g(-1) ~T~C ~0.

or the three roots of (B.35) satisfy:

(B.40) B~~-1~~2~t1~~3 ( 8~~2~3in different notation as (B.36)),

where, due to the presupposed stationarity condition for

this model 2, d2-s (unique maxímum likelihood estimator

lying in Teasible region (-l,tl)).

For T~~, the cubic equation (8.35) tends to:

(B.41)g(~S)zG3-BQ2-atC-(S-B)(~.32-1) -0, so that the three

roots of g(~) are asymptotically b~-1,b2--~and b3- B, or

in comparison with (B.40), the ML estímator for model 2 is
asymptotically:

E YtYt-1
(B.42) ~-b3- C -t-1

~r 2

t-2
~ Yt-1

, so that in conjunction with (B.5),

it ís found that the ML-estimators of both models 1 and 2
only differ by a term y2 in the denominator (k) .0

T T 2
For U- tElYtyt-1 and V- tE2Yt-~ , the joint moment

generating function (B.6) becomes for this model:

(B.43)E2~exp(UutVv)'-M2(U,V)~~exp(UufVv)L2(y) dy

(~c) Note that the ML estimator (B.42) can directly be derived
as a weighted least squares estimator minimizing

T 2
Q2-(1-52)Y~t E (Yt-BYt-1) ~A-2SBtSZC w.r.t. S((B.5)

t~l

is the unweighted least squares estimator).
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i -z
-(1-52) ID~Í (see (B.28) for a2-1) ,

~ -with D a(Ttl) x(Tt])-matrix with determinant

p-a q 0..... 0 0 Oi

q P q..... 0 0 0~

(B.44) D~-D(Ttl)- 0 q p..... 0 0 0

0 0 . . . . . q P

with p-1tS2-2v , q--.((3tu) and a-s2 .
Expanding, as for (B.7), D~(Ttl) by the elements of the first row:

(B.45) Dx(T}I)-(p-a)D(T)-q2D(T-1) , with D(T) defined as in
model 1(see (B.11)). Combining (B.45) and (B.11) with
Tr-Tt1, we find:

-~(Tt]) ~ }m ,
-(2n) (1-52) exP(-liY DtY ) dy

0 0... .. 0 q 1

!c 7c ~ ~ 2 ~ ~ ~(B.46) D (Ttl)-D (T )-(p-a)D(T -1)-q D(T -2)-D(T )-aD(T -I) ,
and defining:

(B.47) Dx(T.i.J)- a
aaJ x-a a-0)

while expanding the integrands in their Mac Laurin series
as in model 1, we obtain:R

E (S) , ~
(B.48) á -Q2(D)tQ2(D)a}Q2(0) Z-t....... or

l 3 5(B.49) E2(S)-~1- 2 i 4 - 2 J S} 2s f 2S
(T'1) (T41)2 (Tfl)3 (Ttl)2 (Ttl)

(i-T}1)Sf0(BT-2) ~



B.2 The bias and inconsistency of the O.L.S. autoregression
estimators in autoregressiye models.

B.2.1First order autoregression and autocorrelation without----------------------- ----------------------------------
exo~enous-variables

Theorem B.2

If the i'th e.quation of an M-equation model satisfies:

(B.50)Yi(t)-Yi~Yi(t-1)fei(t) with 6i(t)-PiEi(t-1)tni(t) y i,2,...,T
t

with ni(t)~(O,Qii) and yi(0)-ei(0)-0 or stochastíc,
then the OLS estimators of yii and pi are inconsistent.

Proof l. The OLS-estimator of yii is neither unbiased nor
consistent:

From ( B.5), the OLS-estimatox of yii is given by:

T T
E Y.(t)Y.(t-1) E y.(t)Y.(t-])~ i i i i

(B.51)yii- t-i - t-2 (see also (B.42)).

E y?(t-1) E y?(t-1)
t- I ,1 t-2 1

Elimination of the serially correlated disturbances in (B.50):

(B.52)Yi(t)-YiiYi(t-1)}piyi(t-1)-yilpiyi(t-2)tni(t) ,

which multiplíed with yi(t-1) and summed w.r.t.tgives:

T T 2 T ~ .At
(B.53) E Yi(t)Yi(t-1)L(Yiitpi) E yi(t-1)-yílPi E yi(t-1)Yi(t-2)

t-2 ts2 t-2

T
4 E ni(t)Yi(t-I)

t-2
or from ( B.51) T T

E Y.(t-1)Y.(t-2) E n.(t)Y.(t-])~ ~2 1 1 1 1
(B.54)Yil-Yi]}pi-Yi1Pit

}tL2

E Y?(t-1) E y?(t-1)
t~2 1 t-2 1

from which it is seen. that the bias of the O.L.S.estimator
yii does not tend to zero if the number of observations grows
indefinitely.
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Indeed, the first ratio in (B.54) has the same probability
limit as Yil and the second ratio tends in probability to
zero, so that:

(R.55) plim n - Y11}pi
-.~- Y i 1

T 1}Yilpi
, which does not tend to Y. , evenil

if pi is small (unless pi-0). Therefore, as long as the dis-
turbances of an autoregressive model are autocorrelated, the
OLS-estimator of yil is inconsistent p
2. The OLS-estimator of pi is biased and inconsistent

Since the disturbance terms E. are in fact unobservable,i(t)
the autocorrelation parameter is estimated from
~i(t)-riEi(t-I)trli(t) with OLS-estimator:

(B.56) P.-r.-i i

T ~ ,.
E Ei(t)Ei([-1)

t-1
T
~ Ei(t-1)

t-1
and assuming that the autoregressive process of the residuals
satisfies an infinite s[ationary process (I r.l~1);

i

T T
(B.57) Plim T tElEi(t-I)-Plim ~ ~ E?(t-1)T-.~ T-.m T- 1 t-z 1

T T

-T-.oom T!It~ZYi(t-1)-2T-l.mm(Yil)P1imT~1 E yi(t-1)Yi([-2)a
T-i~ t-2

plim~Ey?(t-2) plim(Y? )Ty~ T-1 i ym ilT

r 2
- L -plim(Yil)~ aZ

Ti~ y
and

T,. ,. T T Z .. T(B.58) E E.(t)E.(t-i)- E y.(t)Y.(t-1)-y. E y.(t-1)-Y. E Y(t)Y.(t-2)
t-1 1 i iltsl it~l 1 1 llt~2 i i

~ 2 T
~ Yii E Yi(t-})Yi(t-2)

t-2

T T
~'Yil E Yi([)Yi(t-2)'Yil ~ yi(t-1)Yi(t-2) .

t~2 t~2
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Proceeding in the same way as for determining the plim of

Yil, equation ( B.52) may be multiplied with yi(t-2) and sun
med w.r.t.t ( and dívided by T-1):

T T
(B.59)T-1 ~ Yi(t)Yi(t-2)z(Yil;pi)T~1 E yi(t-1)Yi(t-2) -

t-2 t~2

T T
YilpiT'1 E yi(t-2)~T~1 E ni(t)Yi(t-2)

t-2 t-2

T
so that subtracting Yi1T11 ~ Yi(t-1)yi(t-2) from both sides

t-2
of (B.59) and transforming to plim's:

1 T 1 .. T
(B.60)Ti~mT-It~2Yi(t)Yi(t-2)-T-li~mT-lYilt~2Yi(t-1)Yi(t-2)

-I(Yi]'pi-plimYil)plimYi]-Yilpi~ a2L Tio~ T-.~o y

or, from (B.58) and (B.60):

T ..
(B.61)plim- E E.(t)e.(t-1)--plimY. (Y. tp.-plimY. )plimY. -Y. P. Qy,Ti~ T, 1 t- 1 i i T-~~ i 1~ i 1 i T-rao i 1 T-am i 1 i 1 í~

2

so that substituting plimyilby ( B.55)in(B.61)and(B.57):
T-~~

„ „ piYil(Yiltpi)
(B.62)plím p.-plim r.~

T~~ 1 Ty~ 1 (1}Yilpi)
, or (B.55)and(B.62)imply:

(B.63)plim(Yil}pi)zYiltp~ .
T~~

Hence the estimation cf pi by pi entails an inconsistency
which is exactly appoaitF to that generated in the estimation
of Yil bY Yil. ~ ~

The expressions (B.55),(1.62)and(B.63) imply that for large samples:
-Yil underestimates Yil for pi~0 and overestimates Yilfor pi~0;

-rízpi underestimates ri and ao pi ~since the autocorre-
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lation of the residuals r.(t) ís more moderate than thet
autocorrelation of the error terms ei(t))if oi~0 and over-
estimates the negative autocorrelation.

The inconsistency is reduced in magnitude if one or more exo-
genous variables appear among the explanatory variables of the
i`[h equation. However, it only disappears if the disturbances
-i(t) are not generated bv a stocha~tic autoregressív.~ process.
This will be the subject of the next paragraph.

B2.2 First order autoregression-and autocorrelation with---------------------- ---------------------
exo~enou5-variables.--- -- ----------

Theorem B.3

The OLS-estimator of the autoregressive parameter ,. ín
the equation:

(B.64)yí(t)- z. (t)tY. v.(t-1)t~.(t)with - (t)-c..-.~t-tit-.(t)i 1 i 1 i 1' i i i i i i

is biased and inconsistent with inconsistencv amounting to:

~
, ,, pi(1 Yil) 1

(B.65)Inc('yil)-pliml~il-Yil- . z ` , witn

Ty'~ (1}'rí ] ~ i) ryil~v. .z.
If ~i(-1) il

2 ~ tQ~ z-that part of the variance of vi(t-I)- ~ yilzil(t-1-T)
~(-t7 ~l ~-o

(Vt) which is not associated with the
variance of zil(t)(i.e. that part of the variance
being uncorrelated with zil)

aW -variance of w, (t)- E YilEi(t-1) ( tlt) (ic)
i 1 t-0

Proof

Since (B.64) or

(B.67)Yi(t)-ailzil(t)tYilYi(t-1){piEi(t-1)}Tli(t)

(z) Or, from (B.64):
(8.66)Yi(t)-ail r Yítzil(t-T){ É YilEi(t-T)-ailvi(t)fwi(t)

T-O Ts0
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is the "true" equation and, erroneously,

(B.68)yi(t)-aiiZíl(t)}cilyi(t-1)tui(t) is estimated by OLS

assuming ui(t); (O,sii), we may consider (B.68) as a"misspecified"
equation of the "true" relationship (B.76) (!c)

(z) In general, the formula for (finite or asymptotic) specífi-
cation bias and specífication inconsistency may be derived as
follows:
Consider the true model:
(B.69)yi-Xisit ei(i-1,2,...,M) with initial assumptíons E(Ei)-0,

E(Eiei)-aiilT and the columns of Xi statistically indepen-
dent of Ei (always if Xi non stochastic)

and the misspecified model:

(B.70)yiaXibitei with E(ei)-O,E(eiei)-siiIT and the columns of

Xi independent of ei. ,
Then:
(B.71)E(bi)-EC(XiXi)-1Xiy~-E{~(XiXl)-1XiX~ S

1-PiBi .

' -1-' ' Lwith (X.X.) X.X. a matrix of regression coeffícients in thei i i i
set of "auxiliary" OLS-regressíons of each x in X, on all thei
x's in X, or ~i ~
(B.72) bias ( bi)-E(bi)-Bi-(Pi-Ik)Si and

i
(B.73)inc(bi)-Plim bi-Sia r P1imT(X~X))-1p1imTX~X-Ik ~ Si ~T-~oo C Tioo Tioo 1

For the above problem ( B.67-B.68), one relevant variable,
say xik ( t)-Ei(t-1) has been left out, so that there is only
one nonltrivial "auxiliary" regression, that of xi k on all
the included variables: ~ 1 -

(B.74)x. ~p. x. tp. x. t.....tp. x. tv. `i,ki il il i2 i2 i,ki-I i,ki-I i .
(the other equations are identities), so that the (X,X.)-1XIX.-i i i i
matrix can be partitioned into an identity matrix and a column
vector of the pi-values or Pis(Ik -1 pi) or

1 ' .~~.~
(B.75)E(b.)-S-ip.s. with (s-,s. )-~B.,s- having (k.-1)elements ori i i i,ki i i,ki i i i

(B.76)bias(bi)L~i,k.pi' and due to the lagged dependent variable in Xi,
i

(B.77)inc(bi)~Bi k pi ,
. 1



- 82 -

From (B.73)and(B.77), the plim of the OLS-estimator cil is:

(B.78)plim cil-yil}piplim pi2 , where pi2 is the regression
T-~~ T~m

coefficient of yi(t-I) in the auxiliary regression of E.(t-1)i
on zi~(t) and yi(t-1).
But since T
(B.79)TLimTtL'Ei(t-1)zil(t)-0 and Pi2-bEi(-1)yi(-1).zi~--im

bEi(-1)Yi(-I)-bEi(-1)zilbzi~yi(-I)

1-r2yi(-1)zil

i,, bEi(-~)yi(-~)~ ~
(B.80)plim pi2-plim 2 2T-.~ T-.~ 1- r - I- ryi(-1)zi~- yi(-~)zil

and because

,. ~ T
T E Ei(t-1)Yi(t-1)

plím t-~
Tim T

T ~ Yi(t-1)
- t-1

T
(B.81)plim~ E z. ( t)E.(t)-0 (see also ( B.80)) and

T~~ Tt-1 11 i

T
T1imTtE'eí(t)ei(t-1)-piaE1 and by ( B.66):
~~

T T
(B.82)P1imT E ei(t)Yi(t)~Plim E ei(t-1)Yí(t-1)-

Ty~ t- ] T-~m t~ 1

m T ~ T
E y. plim- E e.(t)E.(t-t

Tap 1~T-.m Tt-1 1 1

2

~ T T 2 aEi
2T~OYilpiaEi- ( stationarity),

(I-Yilpi)
and since the probability limit of a ratio can be written as a
ratio of probability limíts ( ~c), (B.80) becomes:

(~) See Slutsk 's theorem e.y , g. in H.Cramèr, r6~,p.255.
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1

T
plim~ E E.(t-1)y.(t-1)Tim Ttsl i i

i )yWT 1-r
yi(-1)zil plimT E yi(t-1)

T-~~ t - 1

(B.83)plim p.2s z

2
a e.i

(1-Yilpi) a yi(-1)(1-ryi(-1)zil)

or substituted into ( B.78):

1

P.
(B.84)Plim cil-plimYil-Yil; 2 2 '

T-.~ T-.~ (1-Yilpi) Qyi(-1)(1-ryi(-1)zil)

or the magnitude of the inconsistency depends upon p. and thei
relative importance of ei:

P.
(B.85)inc(Yil)-P1imYil-Yil- 1 2 2T-~m (1-Yilpi) Qy ( -,l)(]-r

i

P-i

yi(-1)zil)

2aE.i
2

(1-Yilpí) a y.(-1)z.i il

a2 being the part of the variance of y.(-I) which is
yi(-1)zil 1

uncorrelated with the variation of zil, so that from equation
(B.66) and the expression for the asymptotic variance of

~

L

wi(t)- E Yilei(t-T), the inconsistency (B.65) is obtaíned.
T-0 ,.

Therefrom, it is clear that Yi~ will asymptotically overestimate

yil as long as pi~0 ( see also opposite inconsistency in previ~ s
model:(B.63)). ~

Corollary B 1 The introduction of an exogenous varíable zil re-
duces the absolute value of the inconsistency of

2a
~ ~ E.1 1

2a e.i

the OLS estimator Yi1~ ,.
Proof. From the expression (B.55), the inconsistency of Yil
for equation (B.50) is:
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~ Pi(1-Yil)
(;.R6)Inc(Yil)- , which is larger in absolute value(1tY. o.)il i
tt tn (R.65) (k).

C~~ullarv ts 2 If the observations of the exogenous variable zil
also follow a] st order Markov scheme with para-
meter Ri, the expression ( R.65) for inc('yil)becomes:

- oi(Í-Yil)
(r.~71Tn~(yil)- .

(lt'iil~i)

~
I'}

]
2 ? 2

ailaz. (]-Rí)(I-Yil'".)
i] `

2
~e (1-Yi]Ri)z(i~YilPili

R2.3 An additional specification error: estimation .,f a 1 st orcter-- ----------------- -----------------------------------------

Theorem is.5
i.s. of a' nd order model

?f the true equation is the 2 nd order autoregressive la~ scheme:

(B.ois;:i(t)-ailzil(t)}Yilyi(t-1)tYi2Yi(t-2)f~i(t)
but a first order model is estimated instead (by ciLS):

(B.Bq)yi(t)-ailzil(t)tcilyi(t-I)tui(t)
where the zil(t) form a stationary and serially uncorrelated

process and the disturbances may be uncorrelated or correlated,
stationary or instationary, then the probability limit of the
O.L.S. es[imator of cil is equal to:

(B 9Q)plim cíl-plim Y. - Yil
I...- Z. -,r 1 1

1- Yi2

Proof. From the stationarity and the serial uncorrelation of
zi.(t)-~z - 2 andY(-1) Jyi

(E 51)plim b - lim bT~~ yi(-?)~'i(-1).zil Ti~ yí(-2)yí(-1)-Tlwm byl(-1)yi(-2)

(x; Only íf ai1-0, i.e. if there is no exogenous variable in
(B.64), both inconsistencies are equal.

(xz) The proof is left for the reader.
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-'plim b-plim cil~plim yil or from ( B.73)and(B.77):
T-;m T-~W T-i~

(B.92)Tyim Yi1-Yii}yi2Ti~m yil-
Y11 (see also (B.78)) 4

1-Yi2

B.3 The consistency and asymptotic (in) efficiency of the feasíble

Aitken estimator in autoregressive autocorrelated models.

Theorem B 5.

If Aitken's G.L.S. is utilized (equation by equation) using
a consístent estimate of the error variance-covariance matrix
(say by instrumental variables), then the resulting estimates
are consistent but not asymptotic efficíent if (a) lagged depen-
dent variable(s) occur(s) among the explanatory variables.

proof. (ic)

Consider the i'th equation:

(B.93)yi(t)-ailzil(t)}Yilyi(t-1)tEi(t-1) with ei(t)-piei(t-1)tni(t)

with
~

plimTXiXi a finite positive definite matrix with
Xi-(Zi'y0.)~zilyi~'i))T-~~ i

the matrix of observations of the explanatory variables in the ~`
i'th equation(i-1,2,...,At).
(i) If pi and hence S2iiare known, the Aitken estimator of ail
and yil, being

ail zil -1 -1 zil -I(B.94) - 1Sti-(zil,Yi(-1)j r ~iiyi
Yi1 Yi(-1~ yi(-1) .

or

(B.95) Ri-(Xi~iiXi)-1Xi~iiyi with

(z) See also T. Amemiya and W.Fuller ~1~, Section 5, pp 520-523
and K.Wallis ~241, Arpendix, pp. 566-567.
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' ~ -Pi 0 ..... 0 0
2-Pi ItPi -pi ..... 0 0

(B.96)S2ii-Q~ 0 -Pi ltpi ..... 0 0
ii . ' . . .

0 0 0 . . 2 .
. ..l}Pi -pi

I 0 0 0 ... .. -Pi
' J

is BLUE, consisLtent and asymptotically efficient if the error term
~ is assumed to be multivariate normally distributed. Theni
the asymptotic variance-covaríance matrix of ,~T(ail-ail) and
rT(Yil-Yil) is given by:

, ~ Z 1 1 ~ - 1(B.97)Vi-Tiim T(Xi52iiXi)-1-plím T ~ii(zilyi(-1))
T~~ Y.(-1)i

-1

(ii) If pi (and~or oii) is not known, then a consistent estimate
S:, of 2, may be used to obtain:ii ii

~ ~a i 1
(B.98)Q.-

Yil

-(X S2 'X ) X S2 '1 I ~ i ii í i iiyi

~ii CZityi(-1)li
JJI

-1
~iiyí

yi(-1~

wíth sampling error:
~ ~~-1 -1 ,,,

(B.99)Bi-Si-(Xi~iiXi) X'~-1E~ ~ and by Slutsky's theorem (x)i ii i

~ ail - ail(B.100)plim ~T(B.-B.)-plim .~
T-~~ 1 1 Taao ~

Yi] Yíl
1 -1Xiiyi1Xi X'~-lE.

zplim plím 1 11 1
T-~ T T~~ ~

Now, we shall evaluate the two probability limits of the r.h.s.
of (B.100) upto order 0(T-}).
(l.) First, consider the second plim.

Expanding 2-1 in a Taylor series about pí yields:ii

(x)See fooCnote on p.82



n-1 -I ~i`'ii n ~ Z(B.101)~ii-~?ii} (pi-Pi)toCpi-Pi)
ap.i

-t as~~~ ,. t
-~`ii}óp.

(Pi-pi)t0(T)
i

~,~~-I
, '~ ii c

Xi~~ii~-i Xi~)iiEi ~~ Xi~`~pi ~ I
(B. ]02) - '~ t~(P.-p.1 - r'~í~ .

vT yi 1 1 T

Since the ('xl

íE.1031

.- 1
~'~ ' -'y ii~E
i( ~o.
` 1 i

0

-1

n

r .`-,~
'i~'-';i-matrix X. -- K. can be written as:1 ~o ~.~~ ~ ~ 1

~~il(I)'~il(2)~....,zil(-l) ~

yi(o).yi(1)~ .. ...,yi(T-1),

-I 0 P..... 0 0 1 Ei(I) ~

2p. -1 P..... 0 0 I F.(2) ii i II
-I 2Pi -1..... 0 0 ~ ~Ei(3) ~

I : : : : :

- I 0 0 0 0.... ~2 p
I 1L O

I

~ 1 1

0 o n..... -t
E.(T)i

J

Zit(1)rZ1Í(2),....,Zil(T)
~Ei(2)

yi(o).Yi(1)~ ....,yi(T-1)
Ei(1)t2piEi(2)-Ei(3)

-E.(2)t2p.e.(3)-E.(4)i i i i

`
~I

: I.
-Ei(T-2)tZPiEi(T-Í)-Ei(T ~f

E.(T-I)i
from which it is seen that the 2nd element ínvolves terms as

(z) Because pi is assumed to be a consistent estimator of pi
such that pi-pi~0(T-~)
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yi(t)Ei(t),yi(t)Ei(ttl) and yi(t)Ei(tf2) which are assumed
to converge in probability to resp.

2 2PiaE p2QE
i i i i- and (see ( B.81)and(B.82):stationarity)or

(1-Yilpi) ' (1-Yilpi) (1-Yilpi)

(tt. 1 i)4 )

I ' ~~`ii
pl"mTRi Ei
T' cG.

1

-~ p 1 im,I,
~iiT~~

~limT
iiTy~

i
-zil(1)Ei(2)tzil(2y-Eil(1)t2piEi(2)-Ei(3))t...izil(T)Ei(T-~

-yi(o)Ei(2)tyi(I)(-Ei(1)t2piEi(2)-ei(3))t...tyi(T-1)Ei(T-IJ

0

2Q2 ~ 2 2 2~ 2
pi E. 1PiO Qe. ~E

- 1 t(T-2)` ~i i- i

(1-Yi]Pi) (1-YiIGi) (I-YilPi)

0

2 2 ~ 2 -1 -IT(pi-1)-3Pit] aii(1-Gi)
(1-Yilpi)

-I
(1-y. P.)

T~~ T-1
(x)

~x) So, the expression (B.10G) completely vanishes if the set
of explanatory variables in the i'th equation consists only
of variables which are asymptotically uncorrelated with
the disturbance vector E..i

i] i

, since

T
p1imT ~ zi](t)ei(t-T)-0 ( T-0,1,2,...)
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Or, from equations (B.102) and (B.104), we find that

x~S2-~e. x~S2-~e. ,. o
1 11 ~ and

1 11 1
t,IT(pi-pi)

~T ~T - 1

(1-Yilpi)

have the same

limiting probability distributions.
Applying the same Taylor-series expansion as in (B.10])-

(B.IU2) for the covaríance matrix, we find:

(B.105)plim T(X~S2-~X.)-1-plim T(X~S?-~X.)-1 - V. .Ti~ i ii i Ty~ i ii i i

Substituting into equation (B.100), we find that rT(f3i-Si) is
asymptotically distributed as

T~iXi~iiEi}Vi~ -]0 1`~T(Pi-Pí) .

(1-Yilpí)

the second term of which implies that t3i is not asymptotícally
efficient. Thus, the magnitude of this asymptotíc inefficiency
depends upon the asymptotic distribution of rT(p.-p.) and it isi i
a consequence of the joint occurrence of (a) lagged dependent
variable(s) and the (consistent) estimation of the covariance
matrix (otherwise, no Taylor series expansiona;see also previous
footnote). ~
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Example--First round consistent estimation-by-Instrumental Variables.
If ~. is the consistent instrumental variables estimator:i

(B. 106); i-(x?~~Xí) 1}{~,yí and

(B.lo~)c.-Y.-x.8.- Ci -x.(xx~x.)-]x~ y y.- ri -x.(xx x.)-Ix~` 7E.1 1 L L~ T L L 1 1 J ~ l T L i 1 L-l L

~ ,
-Ei-xi(X~ Xi)-1X~ Ei

(B.108)~i(-1)-Yi(-1)-Xí(-1)Sí-Eí(-1)-Xí(-])(XZ1Xí)-IX~rEt with

~
plim~XZ X.-H, a finite and nonsingular matrix andT i i 1T ~~

~
Ty~mTX~ Eí-O, where X~ is a(Txki) matrix of observationsL

on instrumental variables for X..L
Then rtii is consistently estimated with the help of:

~ t~lEi(t)Ei(t-1) ., EíEí „2(B.109)p.- and Q. -I T li (1-pí) , with
E Ei(t-I) T

t-2
, .~

T T
(B.110)T1imTtElEi(t-])-Pi~m~ E Ez(t)-aÉ and-.~ T T-1ts2 i

L

T ,.
(B.111)Ty~mT E Ei(t)Eí(t-1)-P11mTEíEi(-I)-P1imTEíEí(-1)

t - I Tim T-.oo

~
-p11mTEíXí(-1)(X~~X,)-1Xx E,-p11ID~E~Xt(F~X~)-]x~E.(-1)Tym L L L L ,l,i~ T 1 1 L L 1 1

r r , , r
tplimTEiX~(XíX!)-IXiRí(-1)(X~ Xi)-IR~ Ei3piaE.T-~~

L

(or from (B.109-111), pí is a consistent estimator of

and since

pi) '

2 2, p.a~
(B.112)T~mmTEixi(-1)'pa~~TEi(zil(-1).yi(-2))~ 0,

L Ei
and

T (I-Yilpi)
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r
(B.113)p1imTXiEi(-1)~Pliml

Tim T-~m

so that from (B.109-B.113):

~ 1 ~(B.114)Plim~(Pi-Pi)-- 2T-~m a
E11

, Ei(-1)-
y.(-1)

i

, o

2
6
E.1

1(1-YilPl)f

. 2 2 ,
PiaE. Xx e.

0, 1 H-lplim
1 1

(1-Y: n.l 1 T-.m ~
11 ~ 1,

E1X~ ,
tplim 1 1 H -1
Tim ~ 1 20E.i

O

1(1-Yi]Pi)
and since ( B.114) is a scalar quantity:

2 '
~ (1}Pi) -1 ,X~i Ei(B.115)plim~(pi-pi)-- 0, H plím

T-.m (1-YilPi) 1 T-.m ~

]
Substituting ( B.115) into the asymptotic distributíon of ~(S.-B.):i i

~ X~Sl-1E. X~~E.
(B.116)plim~(s.-s.)zV.plim 1 li 1tV.Q H-lplim 1 1

.l,im 1 1 1 Ttm ~ 1 1 1
T-~m ~

0
(1-Yilpi)2 ~

or

r ~`~ Xi~iiEi ei~iiXi(B.117)Tlim T L (Si-si)(Si-Si) J - ViT;im plim Vi t
-.m ~ T~m ~

~ ,
Xi~iiei E.X~ ,Viplim ~ plim 1 1 H.-1Q.V, f

T-~m y 1 T,-im ~~ 1 1 1
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-1 xiEi Ei~iiXiV.Q.H, plim plim V. fi i i T-.~ ~ TyW ~ i

-1 XiEi Eixi~ '-1V.Q.H. plim plim H. Q.V. and by (B.97):i i i ~ i i iTim ~' T-~m

-V.t2V.Q V.tV.Q ~.Q.V.i 1 i i i i i i i'

where, implicitly, asymptotic expectations have been taken and

-I Xi~'~iiX~ '-1~.-H. plim H. is the asymptotici i Ty~ T 1

vaziance- covariance matrix of the consistent first round
instrumental variable estimator S. Since 2ViQiVi}ViQi~íQiVi is

positive definite, there is a loss in asymptotic efficiency
when comparíng B. and (i.,i.e. of the feasible w.r.t. the "usual"i i
Aitken estimator. The same can be said w.r.t. the initial
instru mental variable estimator since V.t2V.Q V. is positivei i i i
definite. Only if pi-0, there is no loss in asymptotic efficiency.
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Appendíx C A likelihood ratio test on vector equality with

error variance covariance matrix of arbitrary rank.

Proposition C 1

The "test statistíc" on the vector equality hypothesis
(Ho:G~-Q2-.....-RM):

~~ ~ ~ t -1 ' -1
s-Mk S C [C(X S2 X) C CS

(C.]) . } , y
q Y a Y- Y~ y

is F distributed with q and s-Mk degrees of freedom,q being the
number of restrictions, s the rank of the variance covariance
matrix S2 and k the number of explanatory variables in each
equation ( or here:q-(M-1)k).
The known matrix of res[rictions is defined as:r

(C.2)C-

Ik -Ik 0.....0

0 Ik -Ik....0

0 0......Ik-Ik

Proof (ic)

a) Under the null hypothesis, the system of linear equations becomes:

I yl I l Xl 1 I El ~

(C.3a) y2 I - I X2

yM XM

s~ . E2

EM

or

(C.3b) y-ZS~tE

Following proposition 1.1 an (sxMT)-transformation matrix G
exists such that E(GEE'G')-o~GSZG'-o~Is and G~G-52}.
Putting Gy-y,GZ-2 and Ge-6, the likelihood function under H becomes:0

exp (-!.,L.é È) with concentrated likelihood:(C.4)Ll-
'2 e '(2na~)2 2a~

(x) See also A.Zellner ~26~, Appendix A.
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x I 1(C.5) L~- ,2 s exp (-Zs) where
(2n~~)Z

,,
(C.6)G2-E1 s

(Y-Zf3 ~ ) (Y-ZB ~ )

- s with a~-(Z Z) ~Z y

b) Under the hypothesis that there are no restrictions on the
coefficients, we find, putting GX-X in model (1.64), the
likelihood function:

~ s ~ .~.
(C.7)L`- Z Z exp (-2 E e) with concentrated likelihood:

(2nQ2)- 2QZ

~ ~ s ~(C.8)L2- „2 exp (-Zs) where
(2no2)2

~. ~ - - ,. . . .
' " (Y-XB) (Y-XR)

(C.9)o2-ESE- s with s-(x x) 'x y .

From (C.5) and (C.8), the estimated likelihood ratio is then:

mHx L~ Lic Q2 -~s

(C. 10) Q.- o - 1 S 1
max LZ Li: QZ

H~ 2 2

(C.11) -21n ~,-sln
n2Q~

á2

or

(O~lc)) ~

which is asymptotically distributed as X(M-1)k ~ because by

defining a singular multivariate normal distribution on each
E(t) vector, we obtain, by the non singular transformation
G of E, a non singular multivariate normal distribution on
each e(0) vector for whích the standard distribution proper-
ties for likelihood ratios can be applied.

Now in order to complete the proof, ve have to show that:

a:
(C.12) ~ -~t~-p or alternatively:Q2 s-Mk q~s-Mk

2
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a~-a2-(y-ZBI){(y-ZBI)-(y-XS)~(y-xs)
(C.13)~-Fq~s-Mk- Q2 . ,,, . .,.

z (y-xs)'(y-xs)

y x(x x) 'x y-y z(z z) 'z y

y y-y x(x x) 'x y

y's~}x ( x's~}x) -1 x'sz}y-y's~}z ( z ~ s~}z ) -1 z ~ st}y

y~sz}y-y~st}x(x~st}x)-Ix~st}y

y'st} x(x'st`x)-Ix'-z(z'sz}z)-IZ~ sz}y

' t , t , t -i , tyszy-yszx(xs~x) xs~y

with Fq~s-Mk equal to (C.l)

Sínce XI XI 0..... 0
XZ 0 X2..... 0

(C.14) z- , - ; , :
: : : ' .
X,. 0 - m-~--~-YM

I Ik
Ik

Ik

with J an (Mkxk) matrix consísting of M(kxk) unitary matrices,
the numerator of (C.13) may be written as:

(C.15)Y~S2}XLX~S2}X)-1-J(J~X~S2}XJ)-IJ~ x'S2}yL

-y~52}X(X~S2}X)-1 ~(X~S2}X)-(X~S2}XJ) (J,X'S2}XJ)-1 (J1X~S2}X~ (X~S2}X)-1
L x~~}Y

or to proof (C.l) it has to be verified that:

(C. 16)C~~C(XISt}X)-IC'~-IC~(X~S2}X)-(x~S~;XJ) (J~XS2}XJ)-1 (J1X~St{R),
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which is true since from premultiplication of (C.16) with
' t -1C(X S~ X) and postmultiplication by J:

~ ~ ~ -1 ~ ~ f(C.17)C-C-CJ(J X`: X.T) (J X ~ X) or

(C.18)CJ-C(IMkJ-S)-CJ-CJ

it follows from the definition (C.2) of the matrix C that
both sides of (C.18) are equal to zero natrices. ;

Corollary C I „2
0

The quantities sln ~ and qF -(M-1)kF~2 q,s-Mk (M-1)k,s-Mk
a2

both asymptotically distributed as x2 .
q

Proof

Since (C.12) is

(C.19)-21nR-sln ~ -sln(1t q
~2 s-Mk62

n2R
q,s-Mk)

are

2 3
-~-F s q , F 2 t s~~-~ 3
s-Mk q~s-Mk- ~s-Mki 4,s-Mk s-Mk F9,s-Mk""

-qFq,s-Mk}C(s-1) .

or from the convergence theorem in Cramèr H. ~6~,p. 254, the
corollary is proved p

Proposition C 2

If 2 is unknown and a consistent estimate of it ís employed,

the resultant test statistic, say Fz, has the same asymptotic
probability distribution as F .q,s-Mk
Proof (z)

If it is shown that

(z) See A.Zellner ~27~, Appendix B for an alternative proof.
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(C.20)F~:s-Mk B~,C,~C(X~S2}X)-~C~ -~Cs~

4 ~nt ~n} ~Y ~ Y-Y ~ Y

, with

~~ ~~
yz-XSz-X(X S~}X)-iX S2}y and St a consistent estimate of S2,

has probability límit F defined in (C.l), we mayq,s-Mk

conclude that F~ and Fq~s-Mk have the same limiting dis-

tribution.
Titis is èasiiy estabiisiied, u~iiizing ihe property that

(C.21) plim 52-52 and Slutsky's theorem in the probability
T-y~

limit of (C.20). ~

Following corollary C l, qF~ and qFq~s-Mk have the same

asymptotic X2-dístribution with q degrees of freedom.

j, .
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