Tilburg University

The general linear seemingly unrelated regression problem (Part II

Plasmans, J.E.J.; Van Straelen, R.A.P.

Publication date:
1970

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Plasmans, J. E. J., \& Van Straelen, R. A. P. (1970). The general linear seemingly unrelated regression problem (Part II: Feasible statistical estimation and an application). (EIT Research memorandum / Tilburg Institute of Economics; Vol. 19). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

J. Plasmans and R. van Straelen

The general linear seemingly unrelated regression problem

II Feasible statistical estimation and an application

Research memorandum

TILBURG INSTITUTE OF ECONOMICS

DEPARTMENT OF ECONOMETRICS

The General Linear Seemingly Unrelated

Regression Problem

Part II Feasible Statistical Estimation and an Application

by
J.E.J. Plasmans and R.A. Van Straelen

Contents

The General Linear Seemingly Unrelated Regression Problem

Part I Models and Inference

§ 1 Specification of the seemingly unrelated regression models.

Appendix

A Some properties of pseudo-inverses and estimable functions

B A statistical test on the significance of latent roots of a covariance matrix

Part II Feasible Aitken Estimation and an Application

§ 2 Feasible Aitken estimation of the specified SURmodels with unknown error variance-covariance matrix
2.1 The "classical" SUR-model: contemporaneously correlated disturbances and positive definite covariance matrix
2.2 Intertemporal correlation of disturbances and nonconstancy of variances and covariances
2.21 First order autocorrelation
2. 22 Heteroscedasticity
2.3 The general linear SUR-model with an error variancecovariance matrix and non stochastic X_{i}-matrices of arbitrary rank
2.4 Feasible Aitken estimation of autoregressive models
§ 3 An application: a stochastic model for the generation of input-output production coefficients.

Appendix

A Analysis of a ciassical SUR-two equation model

1. The role of dependency between different set of explanatory variables w.r.t. efficiency
2. The efficiency of Aitken-relative to OLS-estimation concerning the unexplained variation
3. Exact finite sample properties of the feasible Aitken estimator in the classical SuR-model

B Properties of some statistical estimators regarding unbiasedness, consistency etc...

1. Finite sample bias of the ML-estimator of the serial correlation coefficient
2. The bias and inconsistency of the OLS-autoregression estimators in autoregressive models 2.1 First order autoregression and autocorrelation without exoge nous variables
2.2 First order autoregression and autocorrelation with exogenous variables 2.3 An additional specification error: estimation of a lst order i.s.o. a 2 nd order model
3. The consistency and asymptotic (in) efficiency of the feasible Aitken estimator

C A likelihood ratio test on vector equality with error variance covariance matrix of arbitrary rank

II Feasible Aitken estimation of the specified SURmodels with unknown error variance-covariance matrix

In the first part of th's paper, entitled "Models and Inference", various linear suh-models here specified together with the statistic. properties of the relating Aitken estimators in the case of known variance-covariance matrices of the disturbances.
If the error variance-covari nce matri* is not a priori known, a "convenient" statistical estimator of this matrix has to be defined in order to btain a "good" estimator of the unknown parameter vector β. Various statistical properties of such "two-round" estimators will ju discussed in this section.

Definition 2.1

An Aitken estimator of β_{i} in model (1.1) (generalized least squares) or of β in model (1.2a) (seemingly unrelated regression), based un an initial consistent estimator of $\Omega_{\text {ii }}$ or of Ω, is called a teasible Aitken estimator of β_{i}, resp. B.

A feasible Aitken estimator of β in model(1.2a) may

 be derived by substituting the unknown Ω-matrix (1.3) by a first stage consistent, positive definite matrix $\hat{\Omega}=\left\{\hat{\sigma}_{i j}\right\}$ or(2.1) $\beta^{*}=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} y$, with estimated variancecovariance matrix
$(2.2) \mathrm{V}^{\star}\left(\beta^{\star}\right)=\mathrm{E}^{\mathbf{\star}}\left[\left(\beta^{\star}-\beta\right)\left(\beta^{\star}-\beta\right)^{\prime}\right]=\left(\mathbf{X}^{\prime} \hat{\Omega}^{-1} \mathrm{X}\right)^{-1}$
(see also (1.6) and (1.7)).

Now, we shall show that the (feasible) Aitken estimators (2.1-2) are consistent, and, under certain conditions even unbiased, while, for each SUR-estimator specified, some other statistical properties will be briefly discussed in the subsequent paragraphs (*)
$\frac{\text { Theorem 2.1 }}{\operatorname{If} E(\varepsilon)=0}, E\left(\varepsilon \varepsilon^{\prime}\right)=\Omega, \underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1} \quad($ imit
if X is non-stochastic) exists and is equal to the finite matrix V and if the columns of X_{i} are asymptotically $\underset{\sim}{i n d e p e n d e n t ~ o f ~} \varepsilon_{i}$ (with Ω non-stochastic), then β, β^{*}, $\tilde{V}(\tilde{\beta})$ and $V^{*}\left(\beta^{*}\right)$ are consistent estimators of β and $V(\tilde{B})\left(\operatorname{or} V\left(\beta^{*}\right)\right)$.

Proof

1. B is a consistent estimator of B, because from (1.6), the sampling error is:
(2.3) $\tilde{\beta}-\beta=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} \varepsilon$ with probability limit (inconsistency):

[^0](2.4) inc $(\tilde{B})=\underset{T \rightarrow \infty}{\operatorname{plim}} \tilde{B}-\beta=\underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1} \underset{T \rightarrow \infty}{\operatorname{plim}} \frac{1}{T}\left(X^{\prime} \Omega^{-1} \varepsilon\right) \quad$ (\rightarrow)
$$
=V{\underset{T}{x \rightarrow \infty}}_{\operatorname{plim}} \frac{1}{T}\left(X^{\prime} \Omega^{-1} \varepsilon\right)=0
$$
which holds by suitable choice of $\Omega^{-1}=H^{\prime \prime} H$ (see (1.4) and (1.5)).
2. β^{\star} is a consistent estimator of β, since from the corresponding sampling error (see (2.1) and (2.3)):
(2.6) $\beta^{\star}-\beta=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} \varepsilon$ and the consistency of $\hat{\Omega}$:
(2.7) $\underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{x^{\prime} \hat{\Omega}^{-1} x}{T}\right)^{-1}=\underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{X^{\prime} \Omega^{-1} x}{T}\right)^{-1}=V$ ($\left.* *\right)$,
the sampling error (2.6) converges to zero in probability:

(*) Slutsky's theorem, H.Cramèr $|6|$, p.255. Note also that for X non stochastic the consistency follows from:

$\underset{T \rightarrow \infty}{\lim }\left(X^{\prime} \Omega^{-1} X\right)^{-1}=V \lim _{T \rightarrow \infty} \frac{1}{T}=0$.
(**) See Slutsky's theorem again.
which is obtained by expanding $\hat{\Omega}^{-1}$ around some parameter value (see also (2.7) and further appendix B: the sole difficulties occur when X contains lagged dependent variables).
3. Since

$\tilde{\mathrm{V}}(\tilde{B})$ and $V^{*}\left(\beta^{*}\right)$ are consistent estimators of $V(\tilde{\beta})$ (or of $\left.V\left(\beta^{*}\right)\right)$.
Δ

Theorem 2.2 (**)

The feasible Aitken estimator (2.1) is unbiased if the error vector $\varepsilon(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t), \ldots, \varepsilon_{M}(t)\right]$ ' follows an $M-d i m e n s i o n a l$ symmetric continuous probability distribution about zero for all t, provided that the mathematical expectation of β^{*} exists.

Proof
By the symmetry condition, the probability density function of $\varepsilon(t)$, say $f[\varepsilon(t)]$, satisfies $f\left[\varepsilon_{1}(t), \varepsilon_{2}(t), \ldots\right.$ $\left.\ldots, \varepsilon_{M}(t)\right]=f\left[-\varepsilon_{1}(t),-\varepsilon_{2}(t), \ldots,-\varepsilon_{M}(t)\right]$ and $t h e$ sampling error (2. 6^{1}), written as $\beta^{*}-\beta=C(\varepsilon) \varepsilon$, is an even function of ε because $\hat{\Omega}$ is an even function of ε (since
(*) See Slutsky's theorem again.
(*) See N. Kakwani [10], who discussed the classical SURmodel with contemporaneously correlated disturbances and a positive definite covariance matrix.

$$
\hat{\Omega}
$$

Ω is invariant w.r.t.a change of sign of ε, i.e. if all elements of ε change sign) ($\mathbf{*}$). So, $C(\varepsilon)=C(-\varepsilon)$ or $\beta^{\star}-\beta=\beta-\beta^{*}$ in probability, i.e. $\beta^{\star}-\beta$ has the same probability density function as $\beta-\beta^{\star}$, so that β^{\star} is symmetrically distributed around the value β. Hence β^{*} is an unbiased estimator if its mathematical expectation exists.

Remark 2.1

Notice that the feasible Aitken estimator is unbiased if the $\varepsilon(t)-v e c t o r s$ are multivariately symmetrically distributed, although the first stage estimator of Ω is generally biased (but consistent).
(*) That $\hat{\Omega}$ is an even function of ε is readily verified for the classical SUR-model because then $\hat{\Omega}=\hat{\Sigma}$. IT with $\hat{\Sigma}=\left\{\hat{\sigma}_{i j}\right\}=\left\{\frac{\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}_{j}}{T}\right\}=\left\{\frac{\varepsilon_{i}^{\prime} Q_{i} Q_{j} \varepsilon_{j}}{T}\right\}$ and $Q_{i}=I_{T}-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime}$ (i, $j=1,2, \ldots, M)$.

2. 1 Contemporaneously correlated disturbances and positive

 definite covariance matrix.Under the assumptions that

- $E(\varepsilon)=0$ and $E(\varepsilon \varepsilon)=\Omega=\Sigma \otimes I_{T}$ (neither autocorrelation nor heteroscedasticity)
- the $\left\{X_{i}\right\}$ matrices $(i=1,2, \ldots, M)$ are non stochastic (so, surely no lagged dep. variables),
some statistical properties, such as asymptotic probability distribution, efficiency, etc... of the estimators $\tilde{\beta}$ and β^{\star}, with the latter being:
$(2.10) \beta^{*}=\left[X^{\prime}\left(\hat{\Sigma}^{-1} \otimes I_{T}\right) x\right]^{-1} X^{\prime}\left(\hat{\Sigma}^{-1} \otimes I_{T}\right) y$ or

with $\hat{\Sigma}=\left\{\hat{\sigma}_{i j}\right\}$ a first round positive definite estimate of Σ, based on the OLS residual vectors $\hat{\varepsilon}_{i}, \hat{\varepsilon}_{j}(i, j=1,2, \ldots, M)$, will be studied.

Theorem 2.3
Consider model (1.2a) with

1. $E\left(\varepsilon \varepsilon^{\prime}\right)=\Omega=\Sigma I_{T}$
2. the matrix $\lim _{T \rightarrow \infty}\left(\frac{X^{\prime} \Sigma^{-1} \otimes I_{T} X}{T}\right)^{-1}=V$ exists, is finite and non singular
3. the matrices $X_{i}(i=1,2, \ldots, M)$ are non stochastic
4. the error vectors $\varepsilon(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t), \ldots, \varepsilon_{M}(t)\right]^{\prime}$ are assumed to be mutually independent distributed with mean $E[\varepsilon(t)]=0$ and (constant) variance covariance matrix $E\left[\varepsilon(t) \varepsilon^{\prime}(t)\right]=\Sigma=\left\{\sigma_{i j}\right\}\left(\forall_{t}\right) \quad(*)$
5. the matrices X_{i} are uniformly bounded and the error vectors satisfy for any $\eta>0$:

${ }^{(*)}$ Although all $\varepsilon(t)$ are assumed to be mutually independent with the same mean and covariance matrix, they need not be mutually independent and identically distributed!
(**) A sequence of stochastic variables z_{t} with corresponding distribution functions $F_{t}($.$) converge uniformely in z_{t}$ if for some $r_{o}>0$:

i.e. if the tails of distribution about the ro'th absolute moment are assumed to vanish. Condition (2.12) is commonly known as the lindeberg condition and points to convergence saying that the terms $\frac{t}{\sqrt{T}}$ become uniformly small if T increases.
where $\mathrm{F}_{\mathrm{t}}($.$) is the distribution function of the M-dimensional$ error vectors $\varepsilon(t)$,
then,
\checkmark T $\left(\beta^{\star}-\beta\right)$ and $\sqrt{ } T(\tilde{\beta}-\beta)$ have the same asymptotic probability distribution, which is normal with mean zero and variance covariance matrix V.

Proof (t)

1. Asymptotically: $\sqrt{ } T(\tilde{\beta}-\beta) \sim N(0, V)$

From the sampling error (2.3), we have to find the limit distribution of
(2.14) $\sqrt{ } T(\tilde{\beta}-\beta)=\left(\frac{X^{\prime} \Sigma^{-1} \otimes I_{T} X}{T}\right)^{-1} \frac{X^{\prime} \Sigma^{-1} \otimes I_{T} \varepsilon}{\sqrt{ } T}$, and
since the limit of $\left(\frac{X^{\prime} \Sigma^{-1} \otimes I_{T} X}{T}\right)^{-1}$ exists, is finite and non-singular, we only have to bother with the asymptotic probability distribution of the vector
$\frac{X^{\prime} \Sigma^{-1} \otimes I_{T} \varepsilon}{\sqrt{ } T}$, which contains $\sum_{i=1}^{M} k_{i}=K$ elements.
(*) The proof of this theorem is based upon chapter 3 and pp. 161-167 of Prof.P. Dhrymes's book [7].

If we denote the t 'th columm of X_{i}^{\prime} by $p_{i}(t)$, we observe that:
(2.15) $\frac{x^{\prime} \Sigma^{-1} \otimes I_{T}{ }^{\varepsilon}}{\sqrt{ } T}=\frac{1}{\sqrt{T}}\left[\begin{array}{ccc}\sigma^{11} x_{1}^{\prime} & \sigma^{12} x_{1}^{\prime} \ldots \ldots \sigma^{1 M_{1}} x_{1}^{\prime} \\ \sigma^{21^{1}} x_{2}^{\prime} & \sigma^{22} x_{2}^{\prime} \ldots \ldots \sigma^{2 M^{\prime}} x_{2}^{\prime} \\ \vdots & \vdots & \vdots \\ \sigma^{M 1} x_{M}^{\prime} & \sigma^{M 2} x_{M}^{\prime} \ldots \ldots \sigma^{M M} x_{M}^{\prime}\end{array}\right]\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{M}\end{array}\right]$

$$
=\left[\begin{array}{c}
\sum_{V}^{T} \\
\sum_{t=1}^{T} W_{1}(t) \\
\sum_{t=1}^{T} W_{2}(t) \\
\vdots \\
\sum_{t=1}^{T} W_{M}(t)
\end{array}\right] \varepsilon(t)=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} W(t) \varepsilon(t)=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z(t)
$$

where the sum signs have been interchanged (which is allowed since the $\sigma_{i j}$'s are finite and thematrices X_{i} are uniformly bounded)
and $W_{i}(t)$ are($k_{i} \times M$)-matrices $p_{i}(t) \sigma^{i} \quad(i=1,2, \ldots, M$;
$t=1,2, \ldots, T)$
σ^{i} are the i^{\prime} th rows of Σ^{-1}
$W(t)$ are $(K \times M)$-matrices $\left[W_{1}(t), W_{2}(t), \ldots, W_{M}(t)\right]^{\prime}$ and
$z(t)$ are the K-dimensional vectors $W(t) \varepsilon(t)$ which are mutually independent (since the $\varepsilon(t)$ are mutually independent and the X_{i} non stochastic) with
(2.16) $E[z(t)]=E[W(t) \varepsilon(t)]=W(t) E[\varepsilon(t)]=0$ and
(2.17) $E\left[z(t) z^{\prime}(t)\right]=E\left[W(t) \varepsilon(t) \varepsilon^{\prime}(t) W^{\prime}(t)\right]=W(t) \sum W^{\prime}(t) \quad$ (t)

So, from the mutual independence of the $z(t)$ vectors and from (2.15) and (2.17):
(2.18) $\frac{1}{T} E\left[X^{\prime} \Sigma^{-1} \otimes I_{T} \varepsilon \varepsilon^{\prime} \Sigma^{-1} \otimes I_{T} X\right]=\frac{1}{T} X^{\prime} \Sigma^{-1} \otimes I_{T} X=\frac{1}{T} \sum_{t=1}^{T} W(t) \sum W^{\prime}(t)$
and we find that the sequence of K-dimensional vectors
(2.19) $z_{T}=\frac{1}{\sqrt{ } T} \sum_{t=1}^{T} z(t)=\frac{1}{\sqrt{T}}\left(X^{\prime} \Sigma^{-1} \otimes I_{T} \varepsilon\right)$
converges to a random variable, say z, which is K- variate normally distributed with mean zero and variance covariance matrix
$\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}}\left(\mathrm{X}^{\prime} \Sigma^{-1} \otimes \mathrm{I}_{\mathrm{T}} \mathrm{X}\right)$, or asymptotically
${ }^{(*)}$ From which it is clear that, although it were assumed that the $E(t)$ would be identically multivariately distributed (pay attention to footnote on p.9), the variance covariance matrices of the $z(t)$ vary over time, so that the $z(t)$ are not identically distributed.

$$
\begin{aligned}
& \text { (2.20) } \frac{X^{\prime} \Sigma^{-1} \otimes I_{T} \varepsilon}{\sqrt{T}} \sim N\left(0, \lim _{T \rightarrow \infty} \frac{1}{T}\left(X^{\prime} \Sigma^{-1} \otimes I_{T} X\right)\right) \text {, } \\
& \text { because by the analogon of the Lindeberg condition } \\
& \text { (2.12) for the uniform convergence of the K-vectors } \\
& z(t) \text {, after transforming to the univariate case: } \\
& \text { (2.21) } r_{T}=\gamma^{\prime} z_{T}=\sum_{t=1}^{T} \frac{\gamma^{\prime} z(t)}{\sqrt{T}}=\sum_{t=1}^{T} q_{t} \text {, } \\
& \text { with } \gamma \text { an appropriate } K \text {-vector of real constants, we } \\
& \text { find, denoting the distribution function of } q_{t} b i j G_{t} \text { (.) } \\
& \text { and of } z(t) \text { by } \Psi_{t}(.) \text {, for } \forall \eta>0 \text { : } \\
& \text { (2.22) } \lim _{T \rightarrow \infty} \sum_{t=}^{T} \int\left|q_{t}\right|^{2} d G_{t}(q)=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \int\left|\gamma^{\prime} z(t)\right|^{2} d \Psi_{t}(z) \\
& \left|q_{t}\right|>n \quad\left|\gamma^{\prime} z(t)\right|>n \sqrt{ } \\
& \leq \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \int|\gamma|^{2}|z(t)|^{2} \mathrm{~d}_{t}(z) \quad \text { (Cauchy Schwarz) } \\
& |\gamma||z(t)| \geq\left|\gamma^{\prime} z(t)\right|>\eta \sqrt{ } T \\
& \begin{array}{c}
=\lim _{T \rightarrow \infty} \frac{1}{T}|\gamma|^{2} \sum_{t=\int}^{T} \int|z(t)|^{2} \phi_{t}(z) d z(t)=0 \quad \text { with } \eta_{1}=\frac{\eta}{|Y|} \\
|z(t)|>n_{1} \sqrt{ } T
\end{array}
\end{aligned}
$$

and the Lindeberg-Feller central limit theorem (*) for a sequence of mutually independent scalar random variables r_{t} with zero mean and variances $\frac{1}{T} \gamma^{\prime}\left(X^{\prime} \Sigma^{-1} \theta I_{T} X\right) \gamma$ ($\mathrm{T}=1,2, \ldots$) may be applied, such that (2.20) is verified.
(*) See K. Chung [5], p. 187 .

Finally, from (2.14) and (2.20), we obtain asymptotically:
(2.23) $\sqrt{ } T(\tilde{B}-\beta) \sim N\left(0, \lim _{T \rightarrow \infty} \frac{1}{T} V\left(X^{\prime} \Sigma I_{T} X\right) V\right)=N(0, V)$.
2. Asymptotically: both $\sqrt{ } T\left(\beta^{\star}-\beta\right)$ and $\sqrt{ } T(\tilde{\beta}-\beta) \sim N(0, V)$

If the sequence of vectors $\sqrt{ } T\left(\beta^{\star}-B\right)$ converges in probability (weak convergence) to a random variable, say b, then the corresponding distribution functions ${ }^{\mathrm{F}}{ }_{\star_{\mathrm{T}}}().(\mathrm{T}=1,2, \ldots)$ converge to the distribution function $F_{b}($.$) of b(*)$, ie. the vector sequence $\sqrt{ }\left(e^{*}-\beta\right)$ also converges to b in distribution.
So, the asymptotic distribution of $V T\left(S^{\star}-\beta\right)$ can be derived if its probability limit is evaluated and since:

$$
\begin{aligned}
& =\lim _{T \rightarrow \infty}\left(\frac{X^{\prime} \Sigma^{-1} \otimes I_{T} X}{T}\right)^{-1} \underset{T \rightarrow \infty}{p 1 i m} \frac{X^{\prime} \Sigma^{-1} \otimes I_{T} T^{\varepsilon}}{\sqrt{T}}(* *) \\
& =\underset{T \rightarrow \infty}{p} \lim _{T \rightarrow} / T(\beta-\beta)
\end{aligned}
$$

or from part 1 of this theorem, both $\sqrt{T}\left(\beta^{*}-\beta\right)$ and $\checkmark T(\beta-B)$ have an identical asymptotic probability density which is $N(O, V)$
(*) See M.Loève, [15], p. 168
(**)

$$
\text { Since } \hat{\Sigma}=\left\{\hat{\sigma}_{i j}\right\}=\left\{\frac{\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}^{j} j}{T}\right\} \text { is consistent (see theorem 2.1) }
$$

Corollary 2.1

If the error vectors $\varepsilon(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t), \varepsilon_{3}(t), \ldots, \varepsilon_{M}(t)\right]^{\prime}$ $(t=1,2, \ldots, T)$ are mutually independent $M-$ dimensional identically distributed and have non-vanishing finite variances (variance sums), then as $T \rightarrow \infty$:
(2.25) $\sqrt{ } T\left(\beta^{\mathbf{*}}-\beta\right)$ and $\sqrt{ } T(\tilde{\beta}-\beta) \sim N(0, V)$

$$
\begin{equation*}
\text { with } V=\underset{T \rightarrow \infty}{\lim }\left(\frac{X^{\prime} \Sigma^{-1} \otimes I_{T} X}{T}\right)^{-1} \tag{*}
\end{equation*}
$$

Proof

If it is verified that the Lindeberg condition (2.12) is satisfied under the accompanying assumptions, the results of theorem 2.3 may be used to prove the conjecture (2.25) for large T.

From (2.22), we derive:
(2.26) $\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \int_{|z(t)|>\eta_{1} \sqrt{ } V}|z(t)|^{2} d \Psi_{t}(z)=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \int|W(t) \varepsilon(t)| d \Psi_{t}(W \varepsilon)$
$|W(t) \varepsilon(t)|>\eta_{1} \sqrt{ } T$
${ }^{(*)}$ Notice that if the joint probability distribution of $\varepsilon(t)$ is M-dimensional normal with mean zero and variancecovariance matrix \sum (for all t), then the uniform convergence condition (2.12) is not needed at all because then for each sample size $T: \tilde{\sim} \sim N\left(B,\left(X^{\prime} \Sigma^{-1} \odot I_{T} X\right)^{-1}\right)$ while β^{*} and $\tilde{\beta}$ have the asymptotic distribution (2.25) (see also properties of maximum likelihood estimators, e.g. in H. Cramèr [6], P.Dhrymes [7]).

$$
\begin{aligned}
& \leq\left.\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \int| | W(t)| |^{2}| | \varepsilon(t)\right|^{2} d \Psi_{t}(W \varepsilon)=(t) \\
& ||W(t)|||\varepsilon(t)|\left|\geq||W(t) \varepsilon(t)||>\eta_{1} \sqrt{ } T\right.
\end{aligned}
$$

and C is the maximum length of any columm vector of W (t) (**) we find from the assumed existence of finite variances or of the variance-covariance matrices of $\varepsilon(t)$:
(2.29) $\lim _{t \rightarrow \infty} \int_{\varepsilon(t)} \operatorname{tr}\left[\varepsilon(t) \varepsilon^{\prime}(t)\right] \quad d F t(\varepsilon)=\operatorname{tr} \Sigma$
(*) Since:
(2.27) $|W(t) \varepsilon(t)|^{2}=\varepsilon^{\prime}(t) W^{Y}(t) W(t) \varepsilon(t) \leq t r\left(W^{\prime}(t) W(t)\right) \operatorname{tr}\left(\varepsilon(t) \varepsilon^{\prime}(t)\right)$ or in general, the Euclidean(vector) norm of $\varepsilon(t)$ is consistent with the trace (matrix) norm of $W(t)$:
(2.28) $||W(t) \varepsilon(t)||=|W(t) \varepsilon(t)| \leq||W(t)||| | \varepsilon(t)| |=\left[t r\left(W^{\prime}(t) W(t)\right)\right]^{\frac{1}{2}}$
$|\varepsilon(t)|$, where $|||\mid$ is the norm indication.
(**)
Since all elements of $W(t)$ are assumed to be bounded and non stochastic, there should exist a positive number C which may be put equalto the maximum length of the vectors contained in all $W(t)$.
and from the mutual independent and identical distributior of the $\varepsilon(t)$-vectors, by convenient (large) choice of η_{1} : (2.30) $\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T}|z(t)|^{2} d \Psi_{t}(z) \leq 1 i m M C^{2} \int \operatorname{tr}\left[\varepsilon(t) \varepsilon^{\prime}(t)\right] f_{t}(\varepsilon) d \varepsilon(t)=0$,
which is in accordance with the Lindeberg condition (2.12) so that the results of theorem (2.3) may be applied since all assumptions for it are satisfied. Δ

Theorem 2.4
The Aitken estimator (1.6) with $\Omega=\sum \otimes I_{T}$ is efficient w.r.t. OLS unless $\sigma_{i j}=0$ for all $i \neq j$ or all $X_{i}(i=1,2, \ldots, M)$ are equal.

Proof
This theorem can easily be proved from theorem 1.1 and corollary 1.1. Indeed, substituting $\Omega_{i j}=\sigma_{i, j} I_{T}=0$ or $X_{1}=X_{2}=\ldots . .=X_{M}$ and application of the above theorem and corollary show that $\tilde{\beta}$ is efficient w.r.t. $\tilde{\beta}$ unless both exceptions are satisfied, in which case corollary 1.1 demonstrates that $\tilde{\beta}=\hat{\beta}$.

This may also be indicated for the underlying contemporaneously correlated $S U R-m o d e l$ as follows (\quad).

Denote the ratio of the generalized variance of the Aitken estimator (1.6) w.r.t. that of the OLS-estimator (1.17) as: (2.31) $\alpha=\frac{\left|\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right|}{\left|\left(X^{\prime} \phi^{-1} X\right)^{-1}\right|}$, where from theorem $1.10 \leq \alpha \leq 1$.
(*)
See also A,Zel1ner. D.Huang [27], pp. 306-307

Using a general determinantal inequality (*) (see def. (2.11) :
(2.32) $\left|X^{\prime} \Omega^{-1} X\right|=\left|X^{\prime} \Sigma^{-1} \otimes I_{T} X\right| \leq\left|X_{1}^{\prime} X_{1}\right| \sigma^{11} \cdot\left|X_{2}^{\prime} X_{2}\right| \sigma^{22} \ldots . .\left|X_{M}^{\prime} X_{M}\right| \sigma^{M M}$,
where equality only holds if $\underset{i \neq j}{\forall i, j} \sigma_{i j}=0$ or $X_{i}^{\prime} X_{j}=0$,
i.e. if contemporaneous disturbance terms in different equations are uncorrelated or if the explanatory variables of different equations are mutually orthogonal.

Combining (2.31) and (2.32):
(2.33) $\frac{1}{\alpha}=\left|X^{\prime} \Sigma^{-1} \otimes I_{T} X\right| \quad\left|\left(X^{\prime} \phi^{-1} X\right)^{-1}\right|$

$$
=\left|X^{\prime} \Sigma^{-1} \otimes I_{T} X\right| \sigma_{11}\left|\left(X_{1}^{\prime} X_{1}\right)^{-1}\right| \sigma_{22}\left|\left(X_{2}^{\prime} X_{2}\right)^{-1}\right| \ldots \sigma_{M M}\left|\left(X_{M}^{\prime} X_{M}\right)^{-1}\right|
$$

$$
\leq\left|\sigma_{11} \sigma^{11} \mathrm{I}_{\mathrm{k}_{1}}\right|\left|\sigma_{22} \sigma^{22} \mathrm{I}_{\mathrm{k}_{2}}\right| \ldots \cdot\left|\sigma_{M M} \sigma^{\sigma^{M} I_{k_{M}}}\right| \quad \text { or }
$$

(2.34) $\left(\sigma_{11} \sigma^{11}\right)^{-k_{1}}\left(\sigma_{22} \sigma^{22}\right)^{-k_{2}} \ldots . .\left(\sigma_{\left.M M^{\sigma^{M M}}\right)^{-k_{M}} \leq \alpha \leq 1}\right.$
from which it is clear that the $1 . h . s$. becomes unity if $\sigma_{i j}=0$ for $\forall_{i \neq j}$ (then Aitken estimator is OLS estimator) Δ
(大) See R.Bellman [4], p. 127: for any ($n \times n$) matrix A, the general inequality: (2.32) $|A| \leq \prod_{i=1}^{n} a_{i i}$ holds.

There is only equality if $a_{i j}=0$ for $\begin{aligned} i, j \\ i \neq j\end{aligned}$

Remark 2.2

1. Since the expression on the $1 . h . s$. of (2.34) represents the maximal gain that can be realized, we find that the maximal gain in applying Aitken's estimator w.r.t. OLSestimator occurs when the disturbances of different equations are strongly correlated and when the explanatory variables in different equations are really orthogonal. (*)
2. When considering feasible Aitken estimator (2.10), the results on efficiency hold only asymptotically or for large T :
(2.35) $\left|\left(X^{\prime} \hat{\Sigma}^{-1} \otimes I_{T} X\right)\right|^{-1} \leq\left|\left(X^{\prime} \hat{\phi}^{-1} X\right)^{-1}\right|$ and because of the consis-
(2.36) $\underset{T \rightarrow \infty}{\operatorname{plim}}\left|\left(\frac{X^{\prime} \hat{\Sigma}^{-1} \otimes I_{T} X}{T}\right)^{-1}\right| \leq \underset{T \rightarrow \infty}{\mathrm{plim}}\left|\left(\frac{X^{\prime} \hat{\phi}^{-1} X}{T}\right)^{-1}\right|$

Proposition 2.1
An unbiased first round estimator for the variance covariance matrix Σ (and hence for Ω) is given by
(2.37)

$$
\hat{\Sigma}=\left\{\hat{\sigma}_{i j}\right\}=\left\{\frac{\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}_{j}}{T-k_{i}-k_{j}+k_{i} r_{H}^{2}}\right\}
$$

Where $r_{H}^{2}=\sum_{i=1}^{k} r_{i}^{2} \quad, k_{i} \leq k_{j}$ and r_{H}^{2} is Hooper's trace corre-
(*) See appendix A for a complete 2-equation analysis and for the effect of intercorrelation between X_{1} and X_{2}.
(**) See, however, appendix A for a 2 -equation model.
lation and r_{i}^{2} are the squared canonical correlation coefficients

Proof
(2.38) $\left.E\left(\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}_{j}\right)=E\left[\varepsilon_{i}^{\prime}\left(I_{T}-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime}\right)\left(I_{T}-X_{j}\left(X_{j}^{\prime} X_{j}\right)^{-1} X_{j}^{\prime}\right) \varepsilon_{j}\right)\right](i=1,2, \ldots, M)$

$$
\begin{aligned}
& =\sigma_{i j} \operatorname{tr}\left[I_{T}-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} x_{i}^{\prime}-x_{j}\left(x_{j}^{\prime} x_{j}\right) x_{j}^{\prime}+x_{i}\left(x_{i}^{\prime} x_{i}\right)^{-1}\right. \\
& \left.\qquad x_{i}^{\prime} x_{j}\left(x_{j}^{\prime} X_{j}\right)^{-1} x_{j}^{\prime}\right] \\
& =\sigma_{i j}\left[T-k_{i}-k_{j}+\operatorname{tr}\left(X_{i}^{\prime} x_{i}\right)^{-1} x_{i}^{\prime} x_{j}\left(x_{j}^{\prime} x_{j}\right)^{-1} x_{j}^{\prime} x_{i}\right]\left(k_{i} \leq k_{j}\right),
\end{aligned}
$$

where the last matrix between $[\square$ has $k i$ eigenvalues $\lambda_{i}=r_{i}^{2}$ or (2.38) becomes:
(2.39) $E\left(\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}_{j}\right)=\sigma_{i j}\left(T-k_{i}-k_{j}+\sum_{i=1}^{k} r_{i}^{2}\right)=\sigma_{i j}\left(T-k_{i}-k_{j}+k_{i} r_{H}^{2}\right) \quad$,

Since for $i=j, r_{H}^{2}=1,(2.37)$ provides an unbiased estimate of Σ, and hence of $\Omega \quad$ (**) Δ

2.2 Intertemporal correlation of disturbances and non-constancy of variances and covariances.

2. 21 First order autocorrelation

Si)_Model_I_(A1)
A feasible Aitken estimator of the parameter vector β
(*) See A. Zellner and D.Huang [27] pp 308-309. This theorem might be interesting when the error vectors $\varepsilon(t)$ are not T-dimensionally symmetrically distributed, and an unbiased estimator is still desired.
(夫夫) If the explanatory variables in the i'th and j'thequations are the same, then $X_{i}^{\prime} X_{j}=X_{i}^{\prime} X_{i}$ and $r_{H}^{2}=1$ so that the denominator in (2.37) becomes $T-k_{i}$.
If, an the contrary, the explanatory variables in the ith and j^{\prime} th equations are mutually orthogonal, then $X_{i}^{\prime} X_{j}=0$ and $r_{H}^{2}=0$ so that the denominator becomes $T-k_{i}-k_{j}$.
in model (1.34), where the disturbances $\varepsilon_{i}(t)$ are assumed to be both contemporaneously and serially correlated (by first order autoregressive scheme (1.28) and assumptions (1.28-31)), can be derived by the following three step procedure:

1. Estimate the parameter vectors B_{i} of equations (1.33) by OLS to obtain the consistent estimates:
$(2.40) \hat{\varepsilon}_{i}=y_{i}-X_{i} \hat{B}_{i} \quad$ with $\hat{B}_{i}=\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} y_{i} \quad(i=1,2, \ldots, M)$
with consistent estimate of the autoregressive parameters ρ_{i} (see app.Bl with $\varepsilon_{i}(o)$ either zero or stochastic: (B5) and (B. 42)):
(2.41) ${\hat{D_{i}}}_{i}=\frac{\sum_{i=1}^{T} \hat{\varepsilon}_{i}(t) \hat{\varepsilon}_{i}(t-1)}{\sum_{t=2}^{T} \hat{\varepsilon}_{i}^{2}(t-1)}$
2. Obtain a consistent estimate of the contemporaneous covariance matrix \sum by substituting the consistent estimator (2.41) into (1.32) to compute:

and apply OLS an the transformed equations (see (1.33)):
(2.43)

$$
\hat{R}_{i} y_{i}=\hat{R}_{i} x_{i} \beta_{i}+\hat{R}_{i} P_{i}{ }^{n} i \quad(i=1,2, \ldots, M)
$$

to yield estimates of the elements $\sigma_{i j}$ of Σ :
(2.44) $\hat{\sigma}_{i j}=\frac{\left(\hat{R}_{i} y_{i}-\hat{R}_{i} x_{i} \hat{\hat{\beta}}_{i}\right)^{\prime}\left(\hat{R}_{i} y_{i}-\hat{R}_{i} X_{i} \hat{\hat{\beta}}_{i}\right)}{T} \quad$ (*)
with $\hat{\hat{\beta}}_{i}$ the OLS-estimator of β_{i} in eq. (2.43).
Substituting (2.41) into (1.32) and (1.35) and (2.44)
into (1.37), we obtain an estimate of the variance covariance matrix Ω as:

$$
\begin{equation*}
\hat{\Omega}=\hat{P}\left(\hat{\Sigma} \otimes I_{T}\right) \hat{P}^{\prime} \tag{2.45}
\end{equation*}
$$

where \hat{P} is the (MTXMT)-block diagonal matrix of the $\hat{P}_{i}{ }^{\prime}$ s and $\hat{\Sigma}=\left\{\hat{\sigma}_{i j}\right\}$.
3. Finally, the vector β in model (1.34) is estimated as:
$(2.46) B^{*}=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} y=\left(X^{\prime} \hat{P}^{\prime-1} \hat{\Sigma}^{-1} \otimes I_{T} \hat{P}^{-1} X\right)^{-1} \mathrm{X}^{\prime} \hat{\mathrm{P}}^{\prime-1} \hat{\Sigma}^{-1} \otimes \mathrm{I}_{\mathrm{T}} \hat{P}^{-1} \mathrm{y}$.
Proposition 2.2
The estimated variance-covariance matrix $\hat{\Omega}$ in (2.45) is a consistent estimator for Ω and hence β^{*} in (2.46) is a consistent estimator for β.

Proof

Since the X_{i} 's are assumed to be non stochastic, $\hat{\rho}_{i}$ and \widehat{P}_{i} are consistent estimates of ρ_{i} and P_{i} and by Slutsky's theorem:
(*) The denominator of (2.44) might also be $\left(T-k_{i}\right)^{\frac{1}{2}}\left(T-k_{j}\right)^{\frac{1}{2}}$ to consider, if desired, finite sample effects, but since, usually, only a consistent estimator of Σ is required, (2.44) will equally do.Notice also that, if

$$
\hat{\rho}_{i}=\frac{\sum_{t=1}^{T} \hat{\varepsilon}_{i}(t) \hat{\varepsilon}_{i}(t-1)}{\sum_{t=2}^{T} \hat{\underline{\varepsilon}}_{2}^{2}(t-1)}+\frac{\mathbf{k}_{i}}{T}, \hat{R}_{i} P_{i} \tilde{\sim} I_{T} .
$$

(2.47) $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} \lim _{\mathrm{m}}} \hat{\mathrm{R}}=\underset{\mathrm{T} \rightarrow \infty}{\operatorname{plim}} \hat{\mathrm{P}}^{-1}=\left[\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} \lim _{\mathrm{m}}} \hat{\mathbf{P}}\right]^{-1}=\mathrm{P}^{-1}=\mathrm{R}$
and the estimated residuals $\hat{\hat{n}}_{i}$ of the transformed equations (2.43) may be written as:
(2.48) $\hat{\eta}_{i}=\left(\hat{R}_{i} y_{i}-\hat{R}_{i} X_{i} \hat{\hat{\beta}}_{i}\right)=\left[I_{T}-\hat{R}_{i} X_{i}\left(X_{i}^{\prime} \hat{R}_{i}^{\prime} \hat{R}_{i} X_{i}\right)^{-1} X_{i}^{\prime} \hat{R}_{i}^{\prime}\right] \eta_{i}=\left(I_{T}-M_{i}\right) \eta_{i}$

$$
=Q_{i}^{\eta} i^{\prime}
$$

the probability limit of $\hat{\sigma}_{i j}$ can be written as:
(2.49) $\underset{T \rightarrow \infty}{p l i m} \hat{\sigma}_{i j}=\underset{T \rightarrow \infty}{\operatorname{plim}}\left[\frac{\eta_{i}^{\prime}\left(I_{T}-M_{i}\right)^{\prime}\left(I_{T}-M_{j}\right) \eta_{j}}{T}\right]$

$$
\begin{aligned}
& =\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{\eta_{i}^{\prime} \eta_{j}}{T}-\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{\eta_{i}^{\prime} M_{i} \eta_{j}}{T}-\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{\eta_{i}^{\prime} M_{j} \eta_{j}}{T}+\underset{T \rightarrow \infty}{p \lim } \frac{\eta_{i}^{\prime} M_{i} M_{j} \eta_{j}}{T} \\
& =\sigma_{i j}-\underset{T \rightarrow \infty}{\operatorname{prim}} \frac{\eta_{i}^{\prime} \hat{R}_{i} x_{i}}{T} \underset{T \rightarrow \infty}{p \lim _{T}}\left(\frac{X_{i}^{\prime} \hat{R}_{i}^{\prime} \hat{R}_{i} x_{i}}{T}\right)^{-1} \underset{T \rightarrow \infty}{\operatorname{plim}} \frac{X_{i}^{\prime} \hat{R}_{i}^{\prime} \eta_{i}}{T} \\
& -\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{\eta_{i}^{\prime} \hat{R}_{j} X_{j}}{T} \underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{X_{j}^{\prime} \hat{R}_{j}^{\prime} \hat{R}_{j} X_{j}}{T}\right)^{-1} \underset{T \rightarrow \infty}{\operatorname{plim}_{T}} \frac{X_{j}^{\prime} \hat{R}_{j}^{\prime} \eta_{j}}{T} \\
& \underset{T \rightarrow \infty}{p \lim } \frac{\eta_{i}^{\prime} \hat{R}_{i} X_{i}}{T} \underset{T \rightarrow \infty}{p} \lim _{T \rightarrow}\left(\frac{X_{i}^{\prime} \hat{R}_{i}^{\prime} \hat{R}_{i} X_{i}}{T}\right)^{-1} \underset{T \rightarrow \infty}{\operatorname{plim}} \frac{X_{i}^{\prime} \hat{R}_{i}^{\prime} \hat{R}_{j} X_{i}}{T} \\
& \operatorname{plim}_{T \rightarrow \infty}\left(\frac{X_{j}^{\prime} \hat{R}_{j}^{\prime} \hat{R}_{j} X_{i}}{T}\right)^{-1} \underset{T \rightarrow \infty}{\operatorname{plim}} \frac{X_{j}^{\prime} \hat{\mathbf{R}}_{j}^{\prime}{ }^{\eta} j}{T} \quad \text { (Slutsky) } \\
& =\sigma_{i j}
\end{aligned}
$$

and, again using Slutsky's theorem,

$$
\left.=P \underset{T \rightarrow \infty}{\{\underset{T}{p} 1 i m} \hat{\sigma}_{i j}\right\} \quad \otimes I_{T} P^{\prime}=P \sum \otimes I_{T} P^{\prime}
$$

By definition 2.1, (2.46) is a feasible Aitken estimator for β and by theorem 2.1, β^{*} is consistent, or, once more by Slutsky's theorem:

$$
\begin{align*}
& =\left(\frac{X_{T \rightarrow \infty}^{\prime p} \lim _{T} \hat{\Omega}^{-1} X}{T}\right)^{-1} \operatorname{plim}_{T \rightarrow \infty} \frac{X_{T \rightarrow \infty}^{\prime} \operatorname{plim}_{T} \hat{\Omega}^{-1}(X \beta+\varepsilon)}{T} \\
& =\beta+\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1}{\underset{T}{T \rightarrow \infty}}_{p} \lim _{T} \frac{X^{\prime} \Omega^{-1} \varepsilon}{T}=\beta .
\end{align*}
$$

Note Since $\hat{\Sigma}$ and hence $\hat{\Omega}$ is an even function of η (see (2.49) and (2.50)) and, therefore, also of ε, β^{*} is in general an unbiased estimator of β because of theorem 2.2

Definition 2.2

A sequence $\{x(t)\}$ of random vectors is called n-dependent if there exists a non negative integer n such that any finite subset $\left\{x\left(t_{1}\right), x\left(t_{2}\right), \ldots ., x\left(t_{p}\right)\right\}$ is stochastically independent of any other subset of vectors $\left\{x\left(\tau_{1}\right), x\left(\tau_{2}\right), \ldots, x\left(\tau_{q}\right\}\right.$, provided the index sets $\left\{t_{i}\right\}{ }_{i=1,2, \ldots, p}$ and $\left\{\tau_{j}\right\} \quad j=1,2, \ldots, q$

Theorem 2.5
Consider model (1.34) with

1. $E\left(\varepsilon \varepsilon^{\prime}\right)=\Omega=P E\left(\eta \eta^{\prime}\right) P^{\prime}=P \sum \otimes I_{T} P^{\prime}$
2. the matrix $\lim _{T \rightarrow \infty}\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1}=V$ exists and is positive definite
3. the matrices $X_{i}(i=1,2, \ldots, M)$ are non stochastic
4. the error vectors $\eta(t)=\left[\eta_{1}(t), \eta_{2}(t), \ldots, \eta_{M}(t)\right]$, are assumed to be mutually independent with $E[\eta(t)]=0$ and $E\left[\eta(t) \eta^{\prime}(t)\right]=\Sigma$ while the error vectors $\varepsilon(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t) \ldots, \varepsilon_{M}(t)\right]^{\prime}(t=1,2, \ldots, T)$ are allowed to be n-dependent for any $T=1,2, \ldots$ with zero first order and finite second order moments.
5. the matrices X are uniformly bounded such that the Lindeberg condition for finite second order moments of the $\varepsilon(t)$ implies:
(2.52) $\lim _{\mathrm{T} \rightarrow \infty}^{\lim } \frac{1}{\mathrm{~T}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \int \underset{\left|\phi_{\mathrm{t}}\right|>\delta \sqrt{ }}{\int\left|\phi_{\mathrm{T}}\right|^{2} \mathrm{dF}} \mathrm{t}(\phi)=0$ is satisfied for any $\delta>0$, then, $\sqrt{ } T\left(\beta^{*}-\beta\right)$ and $\sqrt{ }(\tilde{\beta}-\beta), \beta^{*}$ being the feasible and $\tilde{\beta}$ the usual Aitken estimator of β in the autocorrelated model, have the same asymptotic normal distribution with mean zero and variance covariance matrix V.
Proof 1. Asymptotically $\sqrt{ } T(\tilde{\beta}-\beta)$ in $N(0, V)$
From theorem $2.3(2.15)$, the $(K \times 1)$ vector $\frac{X^{\prime} \Omega^{-1} \varepsilon}{\sqrt{T}}$ can be written as:
${ }^{(*)}$ Or simply, if $q-p>n$ implies that the two sets $\{x(1), x(2), \ldots . x(p)\}$ and $\{x(q), x(q+1), \ldots, x(T)\}$ are stochastically independent, the sequence $\{x(t)\}$ is said to be n-dependent.

- 20 -

(2.53) $\frac{X^{\prime} \Omega^{-1} \varepsilon}{\sqrt{ } T}=\frac{X^{\prime-1}\left(\Sigma^{-1} \bullet I_{T}\right) P^{-1} \varepsilon}{\sqrt{ } T}=\frac{1}{\sqrt{ } T} \sum_{t=1}^{T} A(t) \varepsilon(t)$

$$
=\frac{1}{\sqrt{T}}{ }_{t=1}^{T} s(t)=s_{T} \text {, }
$$

where the ($\left.K_{\times M} M\right)$-matrices $A(t)(t=1,2, \ldots, T ; T=1,2, \ldots)$ are non stochastic satisfying the following inequality, due to the boundedness condition of X_{i} and Σ :
(2.54) $||A(t)| \leq C<\infty$
where C is a positive constant and \||| may indicate any "consistent" matrix norm for all $A(t)$, such as e.g. the maximum of all absolute values of the elements of $A(t)$. Since, in general, the error vectors $\varepsilon(t)$ are assumed to be n-dependent for any sample size T, with mean $E[(t)]=0$ and equal variance-covariance matrix for any t :
(2.55)

$$
E\left[\varepsilon(t) \varepsilon^{\prime}(t+\tau)\right]=\Phi_{\tau} \quad \text { if }|\tau| \leq n
$$

$$
=0 \quad \text { if }|\tau|>n
$$

the first and second order moments of the mutually dependent S_{T}-vectors $(T=1,2, \ldots)$ are computed as:
(2.56) $\frac{E\left(X^{\prime} \lambda^{-1} \varepsilon\right)}{\sqrt{ } T}=E\left(s_{T}\right)=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} A(t) E[\varepsilon(t)]=0$ and
(2.57) $\frac{1}{T} E\left[X^{\prime} \Omega^{-1} \varepsilon \varepsilon^{\prime} \Omega^{-1} X\right]=\frac{1}{T}\left(X^{\prime} \Omega^{-1} X\right)$

$$
\begin{aligned}
& =\frac{1}{T}\left\{\sum_{t=1}^{T} A(t) \Phi_{0} A^{\prime}(t)+\sum_{\tau=1}^{\theta} \sum_{t=1}^{T-\tau}\left[A(t) \Phi_{\tau} A^{\prime}(t+\tau)+\left(A(t) \Phi_{\tau} A^{\prime}(t+\tau)\right)^{\prime}\right]\right\} \\
& \text { with } \theta=\min (n, T-1),
\end{aligned}
$$

from which it is easly verified that if the $\varepsilon(t)$ were mutually independent distributed, the result (2.18) would be obtained with $A(t)=W(t)$ and $\Phi_{0}=\Sigma$. ($\left.*\right)$

The composite 2nd term on the r h of (2.57) specifies the covariance structure between the dependent random vectors $\{\varepsilon(t), \varepsilon(t+\tau)\}$.

The sequence of $K-d i m e n s i o n a l$ vectors $s_{T}=\frac{X^{\prime} \Omega^{-1} \varepsilon}{\sqrt{T}}$ converges now to a random variable, say s, which is normally distributed with mean zero and variance covariance matrix $\underset{T \rightarrow \infty}{\lim } \frac{1}{T}\left(X^{\prime} \Omega^{-1} X\right)$, the proof of which follows similar lines as outlined in theorem 2.3, where this time a central 1 imit theorem for dependent univariate random variables has to be applied. (**)

It develops along following ideas: Reducing to the univariate case with a scalar vector λ : (2.58) $\xi_{T}=\lambda^{\prime} s_{T}=\sum_{t=1}^{T} \frac{\lambda^{\prime} s^{\prime}(t)}{\sqrt{ } T}=\sum_{t=1}^{T} \xi(t)$,
we may partition the observations $\xi_{1}, \xi_{2}, \xi_{3}, \ldots, \xi_{\mathrm{T}}$, whose partial sums are stochastically independent (hence also for $s_{1} s_{2}, \ldots, s_{T}$ defined e.g. as
$\frac{1}{\sqrt{T}} \sum_{t=t^{\prime}}^{t^{\prime \prime}} s(t)=\frac{1}{\sqrt{T}} \sum_{t=t^{\prime}}^{t^{\prime \prime}} A(t) \varepsilon(t)$, performed under, say, additive representation such as:

$$
\begin{aligned}
(2.59) \mathrm{s}_{\mathrm{T}}=\mathrm{u}_{\mathrm{Tk}}+\mathrm{v}_{\mathrm{Tk}}, \quad \begin{array}{l}
\mathrm{T}
\end{array}=1,2,3, \ldots \\
\mathrm{k}=1,2,3, \ldots, \mathrm{~K}_{\mathrm{T}}\left(\mathrm{~K}_{\mathrm{T}} \rightarrow \infty \text { as } \mathrm{T} \rightarrow \infty\right)
\end{aligned}
$$

(*) Hence, zero dependence, i.e. $n=0$ and so $\theta=0$, is equivalent to independence.
(*t) See e.g. W. Hoeffding and H.Robbins [9], theorems 1-3 pp. 774-776.
where the $u_{T k}$ are stochastically independent variables with zero mean and finite variance for each element so that the analogon of the Lindeberg condition (2.52) may be utilized on the $U_{T k}$ or also on the independent parts of ξ (t) (see 2.22).

Hence, asymptotically
(2.60) $\sqrt{ } T(\tilde{\beta}-\beta) \sim N(0, V) \quad$ ($*$)
2. Asymptotically: both $\sqrt{ } T\left(\beta^{\star}-\beta\right)$ and $\sqrt{ } T(\tilde{B}-\beta)$ are $N(0, V)$

Since from lemma 2.1:

$$
\begin{aligned}
& =\lim _{T \rightarrow \infty}\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1} \underset{T \rightarrow \infty}{p \lim _{T}} \frac{X^{\prime}\left(\mathrm{p} \lim _{T \rightarrow \infty} \hat{\Omega}^{-1}\right) \varepsilon}{\sqrt{ }}=
\end{aligned}
$$

and from part 1 of this theorem, both $\sqrt{ } T\left(\beta^{*}-\beta\right)$ and $\sqrt{ } \mathrm{T}(\tilde{\beta}-\beta)$ have the same limiting normal distribution with zeromean and $V=\lim _{T \rightarrow \infty}\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1}$ as covariance matrix. $\quad \Delta$ (ii) Model_II (A2)

This model, guaranteeing the time invariancy of both variances and covariances $\sigma_{i j}$, may be estimated in the same way as the parameters of model Al are estimated.

There is only one slight complication since premultiplication of system (1.34) by $R=P^{-1}$ does not reduce the transformed system:

(2.63) $\mathrm{Ry}=\mathrm{R} \mathrm{X} \beta+\eta$

$n:$
to the classical S U R-model with variance covariance matrix ${ }^{\otimes} I_{T}$ because the off-diagonal blocks of the new covariance matrix $E\left(\eta \eta^{\prime}\right)$ have the slightly altered form (1.43) instead of $\sigma_{i j} I_{T}$.

Therefore, the estimation procedure runs like:

1. Estimation of the autoregressive parameters ρ_{i} by oLS as in (2.41);
2. The variance elements σ_{i} are estimated from OLS on the transformed equations (2.43) as in (2.44), while the covariance elements $\sigma_{i j}(i \neq j)$ are estimated from the estimated residuals of the transformed eq. (2.43), with the modification that the first element of each residual vector is discarded. Then each covariance block $E\left(\eta_{i} \eta_{j}^{!}\right)(i \neq j)$ is estimated as:
(2.64) $\quad \hat{\sigma}_{i j}$

$$
\left[\begin{array}{cc}
\frac{\left(1-\hat{\rho}_{i}^{2}\right)^{\frac{1}{2}}\left(1-\hat{\rho}_{j}^{2}\right)^{\frac{1}{2}}}{1-\hat{\rho}_{i} \hat{\rho}_{j}} & 0 \\
0 & \\
0 & I_{T-1}
\end{array}\right]
$$

and a consistent estimate
of Ω is directly obtained as $\hat{\Omega}=\hat{p} E\left(\hat{\eta} \eta^{\prime}\right) \hat{P}^{\prime}$.
3. Obtain a feasible estimator $\beta^{\text {* }}$ as in (2.46).
(iii) Model_III_(A3)

This model is estimated in a similar way as model Al. The classical SUR-model is obtained for ($T-1$) observations. So, given consistent estimates for ρ_{i} (say by (2.41)), consistent estimators of Ω and β are easily obtained utilising ($(T-1) \times T)$ transformation matrices \hat{R}_{i}^{*} (see (1.45)).

Note Most statistical properties, presented for model Al, equally apply on models A2 and A3.

2. 22 Heteroscedasticity

(i) Model_I_(H1)

A feasible Aitken estimator is obtained by the following three step procedure.

1. Apply OLS on equations (1.25) yielding $\hat{y}_{i}=X_{i} \hat{\beta}_{i}(i=1,2, \ldots, M)$
2. Apply classical SUR-estimation on the transformed system (1.52) i.e. on:
(2.65) $\hat{S} y=\hat{S} X \beta+u \quad$ with $E\left(u u^{\prime}\right)=\sum_{\otimes I_{T}}$,

(2.66) $\hat{\sigma}_{i j}=\frac{\hat{u}_{i} \hat{u}_{j}}{T}=\frac{\left(\hat{S}_{i} y_{i}-\hat{S}_{i} X_{i} \hat{\hat{\beta}}_{i}\right)^{\prime}\left(\hat{S}_{j} y_{j}-\hat{S}_{j} X_{j} \hat{\hat{\beta}}_{j}\right)}{T}$ so that Ω is
estimated as:
(2.67) $\hat{\Omega}=\hat{Q} \quad\left(\hat{\Sigma} \otimes I_{T}\right) \hat{Q}$
3. Finally, the β-vector in model (1.52) is estimated as:
(2.68) $\beta^{\star}=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} y=\left(X^{\prime} \hat{Q}^{-1} \hat{\Sigma}^{-1} \otimes I_{T} \hat{Q}^{-1} X\right)^{-1} X^{\prime} \hat{Q}^{-1} \hat{\Sigma}^{-1} \otimes I_{T} \hat{Q}^{-1} y$
(*) We considered \hat{y}_{i} since, in the case of heteroscedasticity, the OLS-estimator of β remains unbiased.

Theorem 2.6

β^{*} is (generally) an unbiased and consistent estimator
of β, and $\sqrt{ } T\left(\beta^{\star}-\beta\right)$ has the same limiting normal distribution as $\sqrt{ } T(\tilde{B}-\beta)$ with mean 0 and variance covariance matrix
$\lim _{T \rightarrow \infty}\left(\frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1}=V$.

$\underline{\text { Proof }}$

Under general conditions, $\varepsilon(t)$ has a multivariate symmetric and continuous pdf so that from theorem (2.2) β^{*} is an unbiased estimator of β.
β^{\star} is a consistent estimator of β, because in (2.68),
$\hat{\Omega}^{-1}$ is a consistent estimator of Ω which is proved as follows:
(2.69) $\underset{T \rightarrow \infty}{p \lim } \hat{\sigma}_{i j}=\underset{T \rightarrow \infty}{p} \lim _{T \rightarrow} \frac{u_{i}^{\prime} u_{j}}{T}-\underset{T \rightarrow \infty}{p \lim }\left(\frac{u_{i}^{\prime} \hat{S}_{i} X_{i}}{T}\left(\frac{X_{i}^{\prime} \hat{S}_{i} \hat{S}_{i} x_{i}}{T}\right)^{-1} \frac{X_{i}^{\prime} \hat{S}_{i}{ }^{u} j}{T}\right.$

$$
\begin{aligned}
& -\underset{T \rightarrow \infty}{ } \operatorname{plim}_{T} \frac{u_{i}^{\prime} \hat{S}_{j} x_{j}}{T}\left(\frac{x_{j}^{\prime} \hat{S}_{j} \hat{s}_{j} x_{j}}{T}\right)^{-1} \frac{x_{j}^{\prime} \hat{S}_{j} u_{j}}{T}+\underset{T \rightarrow \infty}{\lim _{T}} \frac{u_{i}^{\prime} \hat{S}_{i} x_{i}}{T} \\
& \left(\frac{x_{i}^{\prime} \hat{S}_{i} \hat{S}_{i} x_{i}}{T}\right)^{-1}\left(\frac{x_{i}^{\prime} \hat{S}_{i} \hat{S}_{j} x_{j}}{T}\right)\left(\frac{x_{j}^{\prime} \hat{S}_{j} \hat{S}_{j} x_{j}}{T}\right)^{-1}\left(\frac{x_{j}^{\prime} \hat{S}_{j} n_{j}}{T}\right),
\end{aligned}
$$

and since $\hat{\beta}_{i}$ is a consistent estimator for β_{i} and applying Slutsky's theorem:
(2.70) $\underset{T \rightarrow \infty}{\mathrm{p} 1 \mathrm{im}} \hat{\sigma}_{i j}=\sigma_{i j}$ or

(2.72) $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} 1 \mathrm{im}} \beta^{\mathbf{*}}=\beta$.

Following arguments similar to those set forth in the proof of theorem 2.3 (but with matrices with different contents): (2.73) $\frac{X^{\prime} \Omega^{-1} \varepsilon}{\sqrt{ } T}=\frac{1}{\sqrt{ } T} \sum_{t=1}^{T} W(t) \varepsilon(t)=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} z(t)=z_{T}$
converges to a random variable, say z, which is K-קariate normally distributed with mean zero and variance-covariance matrix:
(2.74) $\lim _{T \rightarrow \infty} \frac{1}{T}\left(X^{\prime} \Omega^{-1} X\right)=\underset{T \rightarrow \infty}{\lim } \frac{1}{T} \sum_{t=1}^{T} W(t) \sum_{t} W^{\prime}(t)$, with $\sum_{t}=E\left[\varepsilon(t) \varepsilon^{\prime}(t)\right]$,
so that $\tilde{\beta}$ is asymptotically normally distributed with zero mean and variance-covariance matrix $\left.\lim _{T \rightarrow \infty} \frac{X^{\prime} \Omega^{-1} X}{T}\right)^{-1}$, and since:

β^{*} has the same limiting normal distribution as $\tilde{\beta} . \quad \Delta$
(ii) Model_II_(H2)

The parameters are estimated in a 2 -step procedure:

1. Estimate directly the transformed model (1.52), with Q_{i} equal to the expression (1.58), as a classical SuR-problem to yield a consistent estimate of Ω.
2. Compute the feasible Aitken estimator β^{*}.

The statistical properties of β^{\star} are similar to those of the feasible Aitken estimator in model Hl.
Note
Combinations of heteroscedastic and autocorrelated models are generally estimated by a $3-s t e p$ procedure, obtained as a combination of the procedures described above (with covariance specifications (1.59-60)).

2.3 Singular error variance-covariance matrix and/or X-matrix

 of incomplete rank.If the true error covariance matrix $\Omega=\sum_{\otimes} I_{T}$ is unknown, the last $p=M-s$ eigenvalues of $\hat{\Sigma}$, being of "preliminary" rank s and based on OLS-estimates of $\hat{\varepsilon}_{i}(i=1,2, \ldots, M)$, may be tested on their (significant) departure from a preassigned small value λ_{o} (given $\varepsilon(t)$ is assumed to be M-dimensionally normally distributed) by the following χ^{2}-test statistic (see app.B of part I: theorem Bl):
(2.76) $x_{q}^{2}=\left\{\left(T-1-s-\frac{1}{6}\left(2 p+1-\frac{2}{p+1}\right)-\frac{1}{p+1}\left[\sum_{i=1}^{s}\left(\frac{\hat{\lambda}_{i}}{\hat{\lambda}_{i}-\lambda_{0}}\right)\right]^{2}+\lambda_{0}^{2} \sum_{i=1}^{s} \frac{1}{\left(\hat{\lambda}_{i}-\lambda_{0}\right)^{2}}\right\}\right.$

$$
\left\{p \ln \lambda,-\ln \left(\frac{\mid \hat{\Sigma}^{s}{ }_{\prod}^{s} \hat{\lambda}_{i}}{i=1}\right)+\frac{\left(\operatorname{tr} \hat{\Sigma}^{-} \sum_{i=1}^{s} \hat{\lambda}_{i}\right)}{\lambda_{0}}-p\right\}
$$

with the d.f. $q=\frac{1}{2} p(p+1)$
Once the "real rank" of $\hat{\Sigma}$, and hence of $\hat{\Omega}=\hat{\Sigma} \otimes I_{T}$ (and/or of ($\left.X^{\prime} \hat{\Omega}^{+} X\right)$) is determined, feasible and consistent Aitken estimators of β may be obtained by suitable substitution into the expressions (1.77-80) and (1.119).

Due to the singularity of the moment or covariance matrices, asymptotic normality in the sense of theorems $2.3,2.5$ and 2.6 is not obtained. Despite the degeneracy in the pdf of the $\varepsilon(t)$'s, umbiasedness in the sense of theorem 2.2 may still be proved for several generalized models.

2.4 Feasible Aitken estimation of autoregressive models.

A feasible Aitken estimator of β in model (1.150) may be derived if an initial consistent estimator for Ω can be found. This may be obtained by several methods depending upon the possible presence of autocorrelation in the disturbance vectors $\varepsilon_{i}(i=1,2, \ldots, M)$.

2.41 If n no_autocorrelation_of_the_disturbance_terms

with $E\left[\varepsilon_{i}(t) \varepsilon_{i}(t-1)\right]=0$, then Ω is consistently estimated by OLS (by ML if $\varepsilon_{i}(t)$ are $\left.\operatorname{NID}\left(0, \sigma_{i i}\right)\right)$.

In the presence of autocorrelation, however, the OLS estimate of B is no longer consistent (see appendix B2).
2.42 If autocorrelation_of_the_error_terms_and_form_of
autocorrelation known.
Say first order autocorrelation:
(2.77) $\quad \varepsilon_{i}(t)=p_{i} \varepsilon_{i}(t-1)+\eta_{i}(t)$

Then:

- in first stage, the $\mathrm{P}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$ may be estimated by OLS (see 2.41)
- in a second stage, the Cochran-orcutt procedure is used to obtain a consistent estimator $\hat{\Omega}$, i.e. OLS is recursively applied on:
(2.78) $y_{i}(t)-\hat{\rho}_{i} y_{i}(t-1)=\sum_{k=1}^{k} \alpha_{i k}\left[z_{i k}(t)-\hat{\rho}_{i} z_{i k}(t-1)\right]+$

$$
\sum_{\tau=1}^{\theta} \gamma_{i \tau}\left[y_{i}(t-\tau)-\hat{p}_{i} y_{i}(t-\tau-1)\right]+\eta_{i}(t)
$$

or the $\hat{\rho}_{i}$-estimates are substituted in an equation per equation covariance matrix to obtain Aitken's generalized least squares equation per equation estimates. From these second round parameter estimates, a consistent $\hat{\Omega}$ is derived.
2.43 If autocorrelation_of the error_terms_but_with_unknown_form.

Proposition 2.3

If the form of autocorrelation is unknown, the parameters of an autoregressive model are consistently estimated by instrumental variables.

Proof

The purpose of instrumental variable estimation is to replace the lagged dependent variables in equations (1.149) by those linear combinations of all explanatory variables $z_{i k}$ which are most strongly correlated with the corresponding lagged explained variable but uncorrelated with the error vector ε_{i}, or the "best choice" instrumental variables for $y_{i}(t-\tau)$ are the lagged values of:
(2.79) $y_{i}^{*}(t)=\sum_{k=1}^{k} \hat{\lambda}_{i k} z_{i k}(t)$ with $\hat{\lambda}_{i k}$ the OLS-coefficients from regression of y_{i} on Z_{i}.

Then the instrumental variable estimator for β is given by:
(2.80)

$$
B_{i}^{\star}=\left(X_{i}^{\star^{\prime}} X_{i}\right)^{-1} X_{i}^{\star^{\prime}} y_{i} \text { with } X_{i}^{\star}=\left(z_{i}, y_{\theta_{i}}^{\star}\right) \quad(i=1,2, \ldots, M)
$$

where $\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{1}{T} X_{i}^{\star^{\prime}} \varepsilon_{i}=0$ and $\underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{X^{\star^{\prime}} X}{T}\right)$ exists and is non singular.

The estimated parameter vectors (2.80) are consistent because:
(2.81) $\underset{T \rightarrow \infty}{\operatorname{plim}} \beta_{i}^{\star}=\underset{T \rightarrow \infty}{p \lim _{T \rightarrow}}\left(X_{i}^{\star^{\prime}} X_{i}\right)^{-1} X_{i}^{\star^{\prime}}\left(X_{i} \beta_{i}+\varepsilon_{i}\right)=\beta_{i}+\underset{T \rightarrow \infty}{p 1 i m}\left(X_{i}^{\star{ }^{\prime}} X_{i}\right)^{-1} X_{i}^{\star^{\prime}} \varepsilon_{i}$

$$
=\beta_{i}+\underset{T \rightarrow \infty}{p 1 i m}\left(\frac{X_{i}^{k^{\prime}} x_{i}}{T}\right)^{-1} \underset{T \rightarrow \infty}{p \lim _{m}} \frac{x_{i}^{\star^{\prime}} \varepsilon_{i}}{T}=\beta_{i} .
$$

To estimate the variance-covariance matrix Ω, one has_to introduce restrictions about the form of autocorrelation (and/ or heteroscedasticity), so that Ω can directly be estimated from the consistent instrumental variables estimator β_{i}^{*} ($i=1,2, \ldots, M$). Many authors however (see e.g. T.Amemiya and W.Fuller [1] and K.Wallis [24]) propose to follow up the instrumental variables estimation by an equation per equation Aitken estimation of the parameters in the equation. Although the resulting parameter estimation also yields consistent es timates, there emerges a_loss_of_asymptotic_efficiency because
of the joint occurrence of two factors:

- the use of an estimated variance-covariance matrix
- the presence of lagged dependent variables (see Appendix B3).

So, in fact, there is no fundamental reason to make the job more complicated by further applying GLS after instrumental variables estimation of ρ_{i}, the more since only consistent estimators are needed.

Given an initial consistent estimator $\hat{\Omega}$, the feasible Aitken estimator of β is consistent since the estimator:
(2.82) $B_{(n)}^{*}=\left[X_{(n)^{\prime}}^{\hat{\Omega}^{-1}(n)^{X}(n)}\right]^{-1} X_{(n)^{\prime}}^{\hat{\Omega}^{-1}(n)^{y}(n)}{ }^{y}$
tends i.p. to the ML estimator for known Ω and increasing $n=M T$ (such as $\frac{M}{T} \rightarrow 0$ as $n \rightarrow \infty$, e.g. if M remains fixed) obtained from:
(2.83) $\max _{R^{K}} L\left(y \mid B, \Omega^{-1}\right)=(2 \pi)^{-\frac{1}{2} n}\left|\Omega^{-1}\right|^{\frac{1}{2}} \exp \left(-\frac{1}{2} \varepsilon^{\prime} \Omega^{-1} \varepsilon\right)$

If $E[y(n) X(n)]_{-}^{\prime}[y(n) X(n)]=A(n)$ are finite and $\lim _{n \rightarrow \infty} \frac{A(n)}{n}=A$
exists and is finite, where $X(n)$ and $y(n)$ are the observations on the dependent and explanatory variables written so as to depend explicitly upon the number of observations.

III An Application: A stochastic model for the generation

production coefficients.

3.1 In economics, interindustrial analysis is dominated by the famous Leontief model, based on the assumption of constant production coefficients, being defined as:

$$
\begin{equation*}
a_{i j, t}=q_{i j, t} / q_{j, t} \tag{3.1}
\end{equation*}
$$

with $q_{i j}$, representing the input of industry j at time t of commodities produced by industry i and q, representing the corresponding production at time t of industry j.

However it is generally recognized, that the assumption of constant production coefficients (or zero elasticity of factor substitution) can only be valid as a first (and very rough) approximation. So, the problem arises whether it is possible to build a model for the generation of production coefficients themselves.

Economic reasoning involving market behaviour and production theory on industry level (*), may lead, under profit maximization, to the following simple stochastic specification of production coefficients:
(3.2) $a_{i j, t}=a_{i j, 0}\left(\frac{P_{i, t}}{P_{n, t}}\right)^{\lambda_{i}}\left(\frac{p_{j, t}}{p_{n, t}}\right)^{\mu} u_{i j, t} \quad(i, j=1,2, \ldots, n-1)$.

In this equation $P_{i, t}$ and $P_{j, t}$ stand for the price of the production, at time t, of industries i and j, where as $p_{n, t}$ symbolizes the wage level (as a weighted average of all prices). The factor $u_{i j}, t$ refers to the disturbance term and λ_{i} and μ_{j} are unknown parameters. To some extent, this model specification follows the Walrasian theory in which production coefficients are ultimately explained by relative prices.
(*) See R.A.van Straelen: Prijsontwikkeling en Productiestructure,

Ph.D.Thesis, Louvain, 1970 (Dutch-unpublished).

As can be remarked, only $2(n-1)$ estimations of parameters λ_{i} and μ_{j} are needed for explaining $(n-1)^{2}$ coefficients of production. This limited number of parameters may be considered as a very appealing feature of the model. Another attractive feature of the model consists in its possible relationship to the wellknown RAS-method for generating production coefficients:
(3.3) $a_{i j, t}=r i, t^{a}{ }_{i j, 0^{s}}^{j, t}$
where $\hat{a}_{i j}, t$ represents the generated production coefficient (i,j) by means of the corresponding production coefficient $a_{i j}, 0$ of the base period and the RAS-multipliers $r_{i, t}$ and $s_{j, t}$. If time series on $a_{i j}, t$ are not available, one can use generated production coefficients $a_{i j}, t$ provided that marginal totals of input-output tables are known for each period t in order to deduce the RAS-multipliers. We will concentrate on this case by studying the estimation aspects of the basic model (3.2).
32. One of the problems we meet in estimating the parameters of model (3.2) is the multicollinearity problem mainly caused by the division of all production prices by a common factor viz. the wage level. We can get rid of this difficulty by stating the estimation procedure in terms of the RAS-multipliers ($*$). It has to be noticed that these multipliers are only defined for each period considered up to a constant multiple. Therefore, we have to read equation (3.3) as follows:
(3.4) $\hat{a}_{i j, t}=r_{i, t}\left(\frac{1}{v_{t}}\right) a_{i j, 0}{ }_{j, t} v_{t}$.

Random disturbances are assumed to represent the discrepancy between $a_{i j, t}$ and $a_{i j, t}$. One can write:
(3.5) $a_{i j, t}=\hat{a}_{i j, t}{ }^{i j, t}$.
(*) The problem of multicollinearity could be tackled in other ways, e.g. by a generalized inverse estimation under certain parameter constraints. However, the procedure would seem less efficient.

Rewriting (3.2) in terms of the generated production coefr cients leads to:
(3.6) $\hat{a}_{i j, t}=a_{i j, 0}\left(\frac{p_{i, t}}{p_{n, t}}\right)^{\lambda}\left(\frac{p_{j, t}}{p_{n, t}}\right)^{\mu} \frac{u_{i j, t}}{v_{i j, t}}$
and in accordance to the particular role of the RAS-multipliers r_{i} and s_{j} we assume that:
(3.7)

$$
\frac{u_{i j, t}}{v_{i j, t}}=w_{i, t}{ }_{j, t}
$$

where ${ }^{i}$, t are random error terms standing for "disturbances" over the rows (input structure) and $z j, t$ random error terms standing for "disturbances" over the columns (output structure).

Then it becomes possible, by combining (3.4) and (3.6), to
(3.8) $r_{i, t}=\left(\frac{p_{i, t}}{p_{n, t}}\right)^{\lambda_{i}}{ }^{w}{ }_{i, t}{ }^{t} t \quad$ and
(3.9)

$$
s_{j, t}=\left(\frac{p_{j, t}}{p_{n, t}}\right)^{\mu j} \frac{z_{j, t}}{v_{t}} \text {. }
$$

Expressing (3.8) and (3.9) for simplicity in (natural) logarithms, we have:
(3.10) $r_{i, t}^{\prime}=\lambda_{i} \pi_{i ; t}+w_{i, t}^{\prime}+v_{t}^{\prime} \quad$ and
(3.11) $\mathrm{s}_{j, t}^{\prime}=\mu_{j}{ }^{\prime}{ }_{j, t}+z_{j, t}^{\prime}-v_{t}^{\prime}$
where the accent refers to the operation of taking (natural) logarithms of magnitudes involved and
(3.12) $\pi_{i, t}=\ln \left(p_{i, t} / p_{n, t}\right)$ and $\pi_{j, t}=\ln \left(p_{j, t} / p_{n, t}\right)$.

In this way, we obtain a rather simple system of equations that allows us to estimate the unknown parameters λ_{i} and μ_{j}. By using RAS-multipliers which are function of only one explanatory variable, the problem of multicollinearity disappears. We now turn to the estimation procedure.
33. The multiples v_{t} and their reciprocals, which are the same for all RAS-multipliers of period t, can be interpreted as additional parameters to be estimated or can be considered as stochastic factors belonging to the disturbance terms of the model. From the view point of estimation, both ways of thinking lead to results which are asymptotically equivalent (*). However, the firs't way is more complicated. Therefore, we are only proceeding along the second way.

By considering v_{t} stochastically we obtain an interesting application of a S R-model, because the same residual component appears in all equations of the same period. Using matrix and vector notation we can write the whole system of equations for an arbitrary period t in the usual manner as follows:

omitting accents in order to avoid confusion with the transpose symbol. However, all variables which we have considered remain expressed in (natural) logarithms. Vector i represents a vector with all elements equal to unity.

In principle, the variance-covariance matrix can be estimated by using the residuals of the first round ordinary least squares. Or
(3.14)

$$
\hat{\Sigma}=\frac{1}{T-1} \sum_{t=1}^{T}\left[\begin{array}{c}
r_{t}-\hat{r}_{t} \\
s_{t}-\hat{s}_{t}
\end{array}\right]\left[\begin{array}{l}
r_{t}-\hat{r}_{t} \\
s_{t}-\hat{s}_{t}
\end{array}\right]^{\prime}
$$

which implies temporal independency of the disturbance terms (neither autocorrelation nor heteroscedasticity). Therefore, the variance-covariance matrix enters the Aitken estimator as

$$
(3.15) \hat{\Sigma}^{-1} \otimes I_{2(n-1)} \quad(c l a s s i c a 1 \text { SUR-mode1) }
$$

(*) We are due to Prof.A.P.Barten for this conclusion. See also R.A. Van Straelen, o.c., Chapter 6 .

However, as explained above, it is possible to modify (3.15) in order to take temporal dependencies among the disturbal.ce terms into account. Obviously, the necessary condition to be satisfied for non-singularity of (3.15) is
(3.16) $\mathrm{T} \geq 2(\mathrm{n}-1)$.

If this condition is violated, additional assumptions are to be made concerning the pdf of the disturbance terms and their covariance matrix. An other possibility consists in defining a generalized SUR-model with the help of $\hat{\Sigma}^{+}$. This procedure can also be followed when the variance-covariance matrix turns out to be "nearly singular". Test statistic (2.76) may be $\hat{N}_{\hat{N}}$ ilized then for determining the "real significant rank" of $\hat{\Sigma}$. Alternatively, a consistent minimax norm as e.g. $\xi_{i=1}^{2} \sum_{i=1}^{n-1)} \lambda_{i}^{2}$. with ξ the maximum relative error in the eigenvalues, may be subtracted from each eigenvalue of $\hat{\Sigma}$. The rank is then equal to the number of positive corrected eigenvalues.
34. A dynamic version of the model can be obtained by introducing lagged variables. Demand and supply often react not only to present but also to previous prices. Up to now we know very little about the precise form of lag structures. However, an important and useful structure is that of koyck. As it is well known, the Koyck lag structure rests upon the basic assumption of a geometrically declining effect. Applying the Koyck transformation leads to a very simple dynamic specification. Our model formed by the equations (3.10) and (3.11) now becomes:

$$
\left[\begin{array}{l}
r_{t} \tag{3.17}\\
s_{t}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\pi}_{t} & 0 \\
0 & \lambda_{t}
\end{array}\right]\left[\begin{array}{l}
\lambda^{*} \\
\mu^{*}
\end{array}\right]+\left[\begin{array}{cc}
r_{t-1} & 0 \\
0 & \grave{s}_{t-1}
\end{array}\right]\left[\begin{array}{l}
\rho \\
\rho
\end{array}\right]+u_{t}
$$

As can be noticed the number of parameters increases only with ($n-1$) resulting from assuming the same lag parameters for the corresponding row and column multipliers. This makes sense by considering the argument that if there exists some lagged behaviour in an industry, it is very likely to happen at all levels more or less in the same manner. Obviously, the content of the disturbance term u_{t} differs completely from the residual
u_{t} defined in (3.13). The price parameters of both models are related to each other as follows:
(3.18) $\quad \lambda^{\star}=\lambda(1-\rho)$ and $\mu^{\star}=\mu(1-\rho)$

The estimation of the parameter vector ρ can be done in an easy way by taking the sum of the vectors of row and column multipliers. By means of this sum we are getting rid of the constant multiple v_{t}. Estimating ρ in this way no longer forms an application of an autoregressive SUR-model. So, autoregressive constrained and unconstrained SUR-estimates (2 ($n-1$) in number) will be compared in the next paragraph. After obtaining consistent first round estimates, they can be substituted in (3.17) (*) which allows us to obtain consistent second round estimates either of $\lambda^{\star}, \mu^{\star}, \rho_{1}$ and ρ_{2} in the autoregressive SUR-model or of λ^{*} and μ^{*} in the classical SURmodels vith redefined dep ρ ndent variables

We now turn to some briefly commented numerical results.
35. Some experiments have been performed for the Belgian economy during the period 1953-1967. Basic data were:annual relative prices, the input-output table for 1959 and annual marginal totals on 12 aggregate industries.

A complete report on the numerical results does not meet the objectives of this memorandum (**). So, we have limited ourselves to the statement of some main results. Estimates are given for two industries:one for which the performance of the model was relatively poor (building industry) and another one for which the performance of the model was relatively good (energy sector). Five models have been retained:
(*) With obviously a vector ρ_{1} and ρ_{2} for row and column multipliers in the case of a real autoregressive SUR-model.
(**) See R.A.Van Straelen, o.c., for a more detailed description of the numerical experiments.

1. the classical SUR-model
2. the classical SUR-model with redefined dependent variables (autoregressive nature)
3. the real autoregressive SUR-model with $24 \rho_{i}$-parameters
4. a "static" generalized SUR-model with positive semidefinite variance covariance matrix $\hat{\Omega}$ (see 1)
5. a "dynamic" generalized SUR-model with positive semi-definite $\hat{\Omega}$ (see 2).

The results are presented in the following tables, where OLS and SUR estimates are given for the unknown parameter values and their standard deviations.

Table 1 : Energy Sector

	Classical SUR-model	Classical SUR-model (auroregressive nature)		Real autoregressive SUR-model
OLS SUR	$\begin{aligned} \hat{\lambda}= & -0.3621 \\ & (0.1021) \\ \hat{\mu}= & 0.6407 \\ & (0.1252) \\ \hat{\lambda}= & -0.2613 \\ & (0.0948) \\ \hat{\mu}= & 0.5163 \\ & (0.1164) \end{aligned}$	$\begin{aligned} \hat{\rho}= & 0.19 \\ \hat{\lambda}= & -0.28 \\ & (0.09 \\ \hat{\mu}= & 0.53 \\ & (0.10 \end{aligned} \quad \begin{array}{r} 0.0 .21 \\ \hat{\lambda}=-0.08 \\ \hat{\mu}=\begin{array}{r} 0.43 \\ \\ \hat{\lambda} 0.10 \end{array} \end{array}$	(ML)	
	"Static" generalized	SUR-model	"Dynamic"	generalized SUR-model
	$\begin{aligned} & \hat{\lambda}=-0.2659 \\ & (0.1042) \\ & \hat{\mu}=\begin{array}{c} 0.5335 \\ (0.1185) \end{array} \end{aligned}$		$\begin{aligned} \hat{\rho}= \\ \hat{\lambda}=-1 . \\ \hat{\mu}=(1 . \\ 0 . \end{aligned}$	$0.1948 \quad$ (ML) 945 $556)$ 189 $506)$

Table 2 : Building Industry

As can be observed, differences between $O L S$ and $S U R$ are quite important. Judged against, the usual standards of the t-test for determiming the significance of individual parameter estimates, model 3 (the real autoregressive model) gives no satisfactory results compared with the first two models.

By analyzing the eigenvalues of the estimated variance covariance matrix $\hat{\Sigma}$, used in $\hat{\Omega}_{i}=\hat{\Sigma}_{i} \otimes I_{2(n-1)}(i=1,2)$ for models 1 and 2 , we observed that, taking account of a limited error on the accuracy of the variance-covariance elements, the "real rank" of $\hat{\Sigma}_{1}$ could be fixed at 21 and of $\hat{\Sigma}_{2}$ at 20 . Also, the sole break in the evolution of the eigenvalues occurred at those places.

Table 3

$$
\text { Smallest } 6 \text { eigenvalues of } \hat{\Sigma}_{1} \text { and } \hat{\Sigma}_{2} \text {. }
$$

Nr. $\quad \hat{\Sigma}_{1}$
$19 \quad 0.001385$
$20 \quad 0.001303$
210.001253
220.000556
230.000488
$24 \quad 0.000436$

Nr .

19
20
$21 \quad 0.000566$
22
23
0.000515
0.000452
0.000369

Therefore, pseudo-inverses of $\hat{\Sigma}_{1}$ and $\hat{\Sigma}_{2}$ were computed, resp. with ranks 20 and 21 (*). The estimates of models 4 and 5 given in tables 1 and 2 are obtained from:

Notice, however that (3.20) is not asymptotically most efficient, which follows immediately from proposition 1.1, but is consistent if Ω is a consistent estimate of Ω.

To judge the relevance of the parameter estimates, some simultaneous tests on a priori restrictions of the parameters have been performed:
a. for models 1,2,4 and 5:

- Ho: $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{12}=\mu_{1}=\mu_{2}=\ldots=\mu_{12}=0 \quad$ (zero restrictions)
$-\quad H o: \lambda_{1}=\lambda_{2}=\ldots m=\lambda_{12}=\mu_{1}=\mu_{2}=\ldots . .=\mu_{12}$
- $\boldsymbol{\text { но : }} \lambda_{1}=\mu_{1} ; \lambda_{2}=\mu_{2} ; \ldots, \lambda_{12}=\mu_{12}$.
(x) Since, in fact, the pseudo-inverse of an "approximate matrix" (corresponding to the"postulated rank") is computed by the method retained, it was interesting to notice that in both cases the elements of the approximant differed with only 2% at the maximum from the original elements in $\hat{\Sigma}_{1}$ and $\hat{\Sigma}_{2}$, which is largely within the range of the allowed inaccuracy.
b. for model 3:
$-\quad$ Ho: $\left(\begin{array}{l}\lambda_{1} \\ \rho \\ \lambda_{1}\end{array}\right)=\binom{\lambda_{2}}{\rho_{\lambda_{2}}}=\ldots . .=\binom{\lambda_{12}}{\rho_{\lambda_{12}}}=\binom{0}{0} \quad$ (zero restrictions)

$-\quad$ но: $\left.\left.\begin{array}{c}\mu_{1} \\ \rho_{\mu_{1}}\end{array}\right)=\begin{array}{l}\mu_{2} \\ \rho_{\mu_{2}}\end{array}\right)=\ldots . \quad\binom{\mu_{12}}{\rho_{\mu_{12}}} \quad(\quad \| \quad$).

The test statistic on zero restrictions can simply be written as a simultaneous significance test of the parameters:
(3.22) $F_{K, s-K}^{*}=\frac{s-K}{K} \frac{y^{\star} \hat{\Omega}^{+} y^{\star}}{y^{\prime} \hat{\Omega}^{+} y-y^{*}{ }^{\prime} \hat{\Omega}^{+} y^{\star}}=\frac{s-K}{K} \frac{y^{\prime} \hat{\Omega}^{+} y^{\star}}{y^{\prime} \hat{\Omega}^{+} y-y \hat{\Omega}^{+} y^{\star}} \quad$,
with $y^{\star}=X \beta^{\star}=X\left(X^{\prime} \hat{\Omega}^{+} X\right)^{-1} X^{\prime} \hat{\Omega}^{+} y$, which is asymptotically $F-\mathrm{dis}$ tributed with K and $s-K$ degrees of freedom (s being the rank of $\widehat{\Omega}$).

The remaining a priori restrictions may all be expressed as linear homogeneous restrictions on the parameter vector β, written as:
$\overline{(*)}$ The equality hypothesis $\binom{\lambda_{i}}{\rho_{\lambda_{i}}}=\left(\begin{array}{l}\mu_{j} \\ \rho_{\mu} \\ \mu_{j}\end{array}\right)$ for $\begin{array}{ll} & i, j=1,2, \ldots, 12 \\ i, j\end{array}$ could not be tested since the complete SUR model (24 equations with 48 explanatory variables) was too large for the dimensions of the present programming system available at the Tilburg University ICL-installation. Therefore we had to split the problem into 2 submodels, both of 12 equations (row, viz. column multipliers) and 24 explanatory variables, so that the $\hat{\lambda}_{i}-$ and $\hat{\mu}_{j}$-coefficients of model 3 are not "really global" SUR-results.
(3.23) $\quad C \beta=0$
with C a nown ($q \times K$) matrix, q being the number of restrictions.

Following propositions C1 and C2 of the appendix we observe that:
(3.24) ${\underset{q}{*}}_{\star}^{*}, \mathrm{~s}-\mathrm{K}=\frac{\mathrm{s}-\mathrm{K}}{\mathrm{q}} \frac{\mathrm{B}^{\mathrm{*}^{\prime} \mathrm{C}^{\prime}\left[\mathrm{C}\left(\mathrm{X}^{\prime} \hat{\Omega}^{+} \mathrm{X}\right)^{-1} \mathrm{C}^{\prime}\right]^{-1} \mathrm{C} \beta^{*}}}{\mathrm{y} \hat{\Omega}^{+} \mathrm{y}-\mathrm{y}^{\prime} \hat{\Omega}^{+} \mathrm{y}^{\star}}$
is asymptotically distributed as $\mathrm{F}_{\mathrm{q}, \mathrm{s}-\mathrm{K}}$.
The results are given in the underlying table:

Table 4 Asymptotic F-tests on a priori restrictions

Model 1	Model 2	Model 3	Model 4	Model 5
		$\mathrm{F}_{24,144}^{*}=167.2$		
$\mathrm{F}_{24,336}^{\text {* }}$, 44.8	$\mathrm{F}_{24,312}^{*}=29.8$	$\mathrm{F}_{24,144}^{\text {* }}=472.7$	$\mathrm{F}_{24,291}^{*}=42.1$	$\mathrm{F}_{24,256}^{\text {* }}=22,6$
$\mathrm{F}_{23,336}^{\star}=19.4$	$\mathrm{F}_{23,312}^{*}=15.6$	$\mathrm{F}_{22,144}^{\mathrm{*}}=16.6$	$\mathrm{F}_{23,291}^{\text {* }}=18.0$	$\mathrm{F}_{23,256}^{\mathbf{*}}=10.7$
$\mathrm{F}_{12,336}^{\mathbf{*}}=19.2$	$\mathrm{F}_{12,312}^{*}=20.8$	$\mathrm{F}_{22,144}^{*}=92.2$	$\mathrm{F}_{12,291}^{\mathrm{*}}=20.0$	$\mathrm{F}_{12,312}^{*}=11.8$

Comparing the results contained in the above table with the critical values of an F-table, we immediately see that all zero hypotheses are strongly rejected (even at a significance level of 99%).

Finally, the performance of the alternative models is compared by computing performance indices indicating the fitting degree of the model to the data. So, if z_{t} are the observations for time periods $1,2, \ldots, T$ and z_{t}^{*} the corresponding calculated values, the performance index is defined as:
(3.25)

$$
\frac{\sqrt{\frac{1}{T} \sum_{t}\left(z_{t}-z_{t}^{*}\right)^{2}}}{\sqrt{\frac{1}{T} \sum_{t} z_{t}^{2}}}
$$

which commonly indicates a good performance if it is smaller than 0.4. Such indices have been calculated for the observed and estimated marginal totals. Some results are presented in table 5. For both sectors, energy and building, the first figure refers to the performance index of the row total, where as the second figure refers to the performance index of the column total; for all 12 sectors together the figure mentioned refers to the overall performance regarding all marginal totals.

Table 5 Performance Indices.

	Energy	Sector	Building Industry	All Sectors
Row P.I. Column P.I.			Row P.I. Column P.I.	
Model 1	0.047	0.052	$0.353: 0.137$	0.066
Model 2	0.041	0.034	$0.145: 0.069$	0.051
Model 3	0.044	0.307	$0.207 \quad 0.287$	0.273
Model 4	0.137	0.170	$0.605 \quad 0.531$	0.561
Model 5	0.129	0.120	$0.445 \vdots 0.351$	0.502

The above table indicates that the "generalized models" 4 and 5 give inferior performance compared with the first three, except for the performance of the column totals of the energy sector which is worst for the real autoregressive model 3. Indeed, it strikes immediately that the column totals are rather badly predicted by model 3, although this model does not give a very poor global performance (overall P. I. is smaller then 0.4 and row totals are even better predicted than with model 1). Also a substantial improvement of the building industry prediction capacity is noticed by using the lagged model 2 instead of the unlagged model 1 . In general, this model 2 has the best performance of all models retained.

Appendix A Analysis of a classical SUR-two equation model (*)

1. The role of dependency between different sets of expl. atory variables w.r.t. efficiency.

Proposition Al

If the variance covariance matrix Ω is known, Aitken estimation of β in model
(A.1) $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{ll}x_{1} & 0 \\ 0 & x_{2}\end{array}\right]\left[\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right]+\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right]$
where $X_{i}(i=1,2)$ are non-stochastic $\left(T \times k_{i}\right)$-matrices of explanatory variables, yields maximum gain in efficiency w.r.t. OLS if $X_{1}^{\prime} X_{2}=0$ and the disturbance vectors of the 2 equations are highly correlated.
Proof (see also theorem 2.4 for general M-equation systems)
The Aitken estimator of $\beta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ in model (A.1) where it is assumed that $\binom{\varepsilon_{1}}{\varepsilon_{2}}=0$ and
$E\left[\binom{\varepsilon_{1}}{\varepsilon_{2}}\left(\begin{array}{ll}\varepsilon_{1}^{\prime} & \varepsilon_{2}^{\prime}\end{array}\right]=\Omega=\left[\begin{array}{ll}\sigma_{11} I_{T} & \sigma_{12} I_{T} \\ \sigma_{21} I_{T} & \sigma_{22} I_{T}\end{array}\right]\right.$, is equal to:
(A. 2) $\tilde{\beta}=\left[\begin{array}{l}\tilde{\beta}_{1} \\ \hat{\beta}_{2}\end{array}\right]=\left[\begin{array}{cc}\sigma^{11} x_{1}^{\prime} x_{1} & \sigma^{12} x_{1}^{\prime} x_{2} \\ \sigma^{21} x_{2}^{\prime} x_{1} & \sigma^{2}{ }^{2} x_{2}^{\prime} x_{2}\end{array}\right]-1\left[\begin{array}{l}\sigma^{11} x_{1}^{\prime} y_{1}+\sigma^{12} x_{1}^{\prime} y_{2} \\ \sigma^{21} x_{2}^{\prime} y_{1}+\sigma^{22} x_{2}^{\prime} y_{2}\end{array}\right]$
with variance covariance matrix (see 1.7)
(A.3) $V(\tilde{\beta})=E[(\tilde{\beta}-\beta)(\tilde{\beta}-\beta)]^{\prime}=\left[\begin{array}{lll}\sigma^{11} x_{1}^{\prime} x_{1} & \sigma^{12} x_{1}^{\prime} x_{2} \\ \sigma^{21} x_{2}^{\prime} x_{1} & \sigma^{22} x_{2}^{\prime} x_{2}\end{array}\right]^{-1}=\left[\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right]^{-1}$
(*) The exposition in this appendix is based upon A. Zellner [28], A. Zellner and D.Huang [27].
and leading submatrix for the first equation's coefficients:

$$
\begin{align*}
& \mathrm{V}\left(\tilde{\beta}_{1}\right)=\left(W_{11}-W_{12} W_{2}^{-1} 2^{W}\right)^{-1}=\left[\sigma^{11} x_{1}^{\prime} x_{1}-\left(\sigma^{12}\right)^{2} x_{1}^{\prime} x_{2}\left(\sigma^{22}\right)^{-1}\right. \tag{A.4}\\
& \left.\left(X_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} x_{1}\right]^{-1}
\end{align*}
$$

Remembering that the simple correlation coefficient between the disturbances of the 2 equations is defined as $\rho=\frac{\sigma_{12}}{\sqrt{ } \sigma_{11} \sqrt{ } \sigma_{22}}$ and $\sigma^{11}=\left(\sigma_{11} \sigma_{12} \sigma_{22}^{-1} \sigma_{21}\right)^{-1}=\sigma_{11}^{-1}\left(1-p^{2}\right)^{-1}$,
the variance covariance matrix (A.4) of the \tilde{B}_{1}-vector may be written as:
(A.5) $V\left(\tilde{\beta}_{1}\right)=\left[\frac{1}{\sigma_{11}\left(1-\rho^{2}\right)}\left(x_{1}^{\prime} x_{1}\right)-\frac{\rho^{2}}{\sigma_{11}\left(1-\rho^{2}\right.}\right)^{\prime}\left(X_{1}^{\prime} x_{2}\right)\left(X_{2}^{\prime} x_{2}\right)^{-1}\left(x_{2}^{\prime} x_{1}\right)^{-1}$ and its generalized variance as:
(A.6) $\left.\left|v\left(\tilde{\beta}_{1}\right)\right|=\left(1-\rho^{2}\right)^{k_{1}} \sigma_{11} \mid \mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1}| | I_{k_{1}}-\left.\rho^{2} \mathrm{D}\right|^{-1}$ with (A.7) $\mathrm{D}=\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1}\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{2}\right)\left(\mathrm{X}_{2}^{\prime} \mathrm{X}_{2}\right)^{-1} \mathrm{X}_{2}^{\prime} \mathrm{X}_{1} \quad$ and (A.8) $\left|I_{k}-\rho^{2} D\right|=\prod_{i=1}^{\lambda_{i}}, \quad$ where λ_{i} are the eigenvalues of $I_{k_{1}}-\rho^{2} D$, satisfying the characteristic determinantal
equation! (A.9) $\left|\left(I_{k_{1}}-\rho^{2} D\right)-\lambda I_{k_{1}}\right|=\left|D-\frac{(1-\lambda)}{\rho^{2}} I_{k_{1}}\right|=0$. So, the values of $\frac{1-\lambda}{\rho^{2}}$ are the characteristic roots of D, being equal to the squared canonical correlation coefficients r_{i}^{2} for the sets X_{1} and X_{2} or (A. 10) $r_{i}^{2}=\frac{1-\lambda i}{\rho^{2}}$ and $\lambda_{i}=1-\rho^{2} r_{i}^{2}$, and the generalized variance(A.6) becomes, taking account of (A.8) and (A.10):
(A. 11) $\left|V\left(\tilde{\beta}_{1}\right)\right|=\frac{\left(1-\rho^{2}\right)^{k_{1} \sigma_{11}\left|\left(X_{1}^{\prime} X_{1}\right)^{-1}\right|}}{\prod_{i=1}^{k_{1}}\left(1-\rho^{2} r_{i}^{2}\right)}$, and since $0 \leq r_{i=1}^{2}$
(A.12) $\left|V\left(\tilde{\beta}_{1}\right)\right| \leq \sigma_{11}\left|\left(X_{1}^{\prime} X_{1}\right)^{-1}\right|$, from which it is clear that the equality sign only holds when all canonical correlation coefficients are equal to unity (i.e.if $X_{1}=X_{2}$). If the column vectors of X_{1} and X_{2} are mutually orthogonal, i.e. if $X_{1}^{\prime} X_{2}=0$, then all canonical correlation coefficients are equal to zero and maximum gain in efficiency is obtained w.r.t. OLS, because then (A.11) is minimum for a certain $\rho^{2} \neq 0$ (denominator=1). In this case $\left(X_{1}^{\prime} X_{2}=0\right)$ the higher the correlation among the disturbance terms amounts to, the more is gained, relative to OLS, by estimating model (A.l) by Aitken's method.
2. The efficiency of Aitken relative to OLS-estimation concerning
the unexplained variation

Proposition A ${ }^{2}$

The unexplained variation (generalized unexplained variance) of the ols estimation of model (A.1) with $X_{1}^{\prime} X_{2}=0$ will be greater than that associated with the Aitken estimation of β in (A. 1)
unless $T \leq \frac{k_{1}^{2}+k_{2}^{2}+k_{1} k_{2} \rho^{2}}{k_{1}+k_{2}}$, where ρ is the simple correlation
coefficient between the disturbance vectors ε_{1} and ε_{2} (assumption: $\Omega=\Sigma$ I I_{T} is known).

Proof.

$\begin{aligned} & \text { Since: } \\ & (A .13) \\ & \varepsilon\end{aligned}=\binom{\tilde{\varepsilon}_{1}}{\tilde{\varepsilon}_{2}}=\left[I-X\left(X^{\prime} \Sigma^{-1} \otimes I_{T} X\right)^{-1} X^{\prime} \Sigma^{-1} \otimes I_{T}\right] \varepsilon$ and $X_{1}^{\prime} X_{2}=0$,
the residual vector of system (A.1) amounts to:
(A.14) $\binom{\tilde{\varepsilon}_{1}}{\tilde{\varepsilon}_{2}}=\left[\left(\begin{array}{ll}I_{T} & 0 \\ 0 & I_{T}\end{array}\right)-\left(\begin{array}{ccc}\frac{1}{\sigma^{11}} & X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} & X_{1}^{\prime} \\ 0 & \frac{1}{\sigma^{22}} X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}\end{array}\right)\right.$
$\left.\left(\begin{array}{ll}\sigma^{11} \mathrm{I}_{\mathrm{T}} & \sigma^{12} \mathrm{I}_{\mathrm{T}} \\ \sigma^{21} \mathrm{I}_{\mathrm{T}} & \sigma^{22} \mathrm{I}_{\mathrm{T}}\end{array}\right)\right] \cdot\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right] \quad$ or
(A. 15) $\tilde{\varepsilon}_{1}=\left[I_{T}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\right] \varepsilon_{1}-\frac{\sigma^{12}}{\sigma^{11}} X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} \varepsilon_{2}$ and since $\frac{\sigma^{12}}{\sigma^{11}}=-\sigma_{22}^{-1} \sigma_{21}=$

- $\rho \frac{\sigma_{11}}{\sigma_{22}}$ and taking variance-covariance elements:
(A.16) $E\left(\tilde{\varepsilon}_{i}^{\prime} \tilde{\varepsilon}_{i}\right)=\sigma_{i i}\left(T-k_{i}+\rho^{2} k_{i}\right) \quad(i=1,2) \quad$ (see also (2.38-39)) and
(A.17) $E\left(\tilde{\varepsilon}_{1}^{\prime} \tilde{\varepsilon}_{2}\right)=E\left\{\varepsilon_{1}^{\prime}\left[I_{T}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\right]\left[I_{T}-X_{2}\left(X_{2}^{\prime} x_{2}\right)^{-1} X_{2}^{\prime}\right] \varepsilon_{2}\right.$

$$
\begin{aligned}
& +\rho V^{\sigma} \frac{11}{\sigma_{22}} \varepsilon_{2}^{\prime} x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime}\left[I_{T}-x_{2}\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime}\right] \varepsilon_{2}+\rho \gamma \frac{\sigma_{22}}{\sigma_{11}} \\
& \varepsilon_{1}^{\prime}\left[I_{T}-x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime}\right] x_{2}\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} \varepsilon_{1}+\rho^{2} \varepsilon_{2}^{\prime} x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1} \\
& \left.x_{1}^{\prime} x_{2}\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} \varepsilon_{1}\right\} \quad=T \sigma_{12} \quad(\text { see } \quad(2.38)) .
\end{aligned}
$$

or the generalized unexplained variance of the Aitken estimators of the disturbances is given by:
(A. 18) $\mathrm{V}_{\mathrm{A}}=\left|\begin{array}{cc}E\left(\tilde{\varepsilon}_{1}^{\prime} \tilde{\varepsilon}_{1}\right) & E\left(\tilde{\varepsilon}_{1}^{\prime} \tilde{\varepsilon}_{2}\right) \\ E\left(\tilde{\varepsilon}_{2}^{\prime} \tilde{\varepsilon}_{1}\right) & E\left(\tilde{\varepsilon}_{2}^{\prime} \tilde{\varepsilon}_{2}\right)\end{array}\right|=\left|\begin{array}{cc}\sigma_{11}\left(T-k_{1}+k_{1} \rho^{2}\right) & \sigma_{12} T \\ \sigma_{21} T & \sigma_{22}\left(T-k_{2}+k_{2} \rho^{2}\right)\end{array}\right|=$

$$
=\sigma_{11} \sigma_{22}\left[\mathrm{~T}-\mathrm{k}_{1}\left(1-\rho^{2}\right)\right]\left[\mathrm{T}-\mathrm{k}_{2}\left(1-\rho^{2}\right)\right]-\sigma_{12}^{2} \mathrm{~T}^{2}
$$

while the generalized unexplained variance of the ols-residuals is (see (2.39) with $\left.r_{H}^{2}=0\right)$:
(A.19) $\mathrm{V}_{\mathrm{OLS}}=\sigma_{11} \sigma_{22}\left(\mathrm{~T}-\mathrm{k}_{1}\right)\left(\mathrm{T}-\mathrm{k}_{2}\right)-\sigma_{12}^{2}\left(\mathrm{~T}-\mathrm{k}_{1}-\mathrm{k}_{2}\right)^{2}$ or
(A.20) $\mathrm{V}_{\mathrm{OLS}}-\mathrm{V}_{\mathrm{A}}=\sigma_{11} \sigma_{22}\left\{\left[\left(\mathrm{~T}-\mathrm{k}_{1}\right)\left(\mathrm{T}-\mathrm{k}_{2}\right)-\rho^{2}\left(\mathrm{~T}-\mathrm{k}_{1}-\mathrm{k}_{2}\right)^{2}\right]-\right.$

$$
\begin{aligned}
& {\left.\left[\left(T-k_{1}\left(1-\rho^{2}\right)\right)\left(T-k_{2}\left(1-\rho^{2}\right)\right)-\rho^{2} T^{2}\right]\right\}, } \\
= & \sigma_{11} \sigma_{22} \rho^{2}\left[T\left(k_{1}+k_{2}\right)-\left(k_{1}^{2}+k_{2}^{2}+k_{1} k_{2} \rho^{2}\right)\right],
\end{aligned}
$$

from which it is seen that $V_{O L S}>V_{A}$ if
(A.21) $\mathrm{T}>\frac{\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}+\mathrm{k}_{1} \mathrm{k}_{2} \rho^{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$,
so that , certainly, the unexplained variation through
OLS-estimation of model (A. 1) is larger than the unexplained variation through Aitken estimation as long as the number of observations is at least as large as the total number of explanatory variables in the system under consideration $\left(T \geq k_{1}+k_{2}\right)$.

3. Exact finite sample properties of the feasible Aitken

estimator in the classical SUR-model.

We consider the following model (see (A.1)):
(A. 22) $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{ll}x_{1} & 0 \\ 0 & x_{2}\end{array}\right]\left[\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right]+\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right]$
with (i) X_{i} non stochastic ($T \times k_{i}$)-matrices (i=1,2) of explanatory variables;
(ii) $X_{1}^{\prime} x_{2}=x_{2}^{\prime} x_{1}=0$: pairwise orthogonality of the explanatory variables in the 2 equations (*) ;
(iii) $E\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right]=0$ and $E\left[\binom{\varepsilon_{1}}{\varepsilon_{2}}\left(\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}\right)\right]=\Omega=\left[\begin{array}{ll}\sigma_{11} I_{T} & \sigma_{12} I_{T} \\ \sigma_{21} I_{T} & \sigma_{22} I_{T}\end{array}\right]$
and Ω is unknown;
(*) In proposition Al it was shown that there is maximum gain in efficiency if $X_{1}^{\prime} X_{2}=X_{2}^{\prime} X_{1}=0$ for certain $\rho \neq 0$. This result only holds asymptotically for the feasible Aitken estimator. Furthermore, the condition of pairwise orthogonality is assumed in this section for ease of derivation. Hence, this assumption is not essential to the results obtained.

$$
\begin{aligned}
\text { (iv) } \varepsilon(t)= & {\left[\varepsilon_{1}(t), \varepsilon_{2}(t)\right]^{\prime} \text { are assumed to be bivariate normal } } \\
& \text { for each } t(t=1,2, \ldots, T) \text { with } E[\varepsilon(t)]=0 \text { and } \\
& E\left[\varepsilon(t) \varepsilon^{\prime}(t)\right]=\Sigma, \text { so that the } \varepsilon(t) \text { are assumed } \\
& \text { to be mutually independent identically normally } \\
& \text { distributed with zero mean and } \sum \text { variance- } \\
& \text { covariance matrix. }
\end{aligned}
$$

3.1 Exact sample moments of the feasible Aitken estimator β^{*}

Theorem Al.

The feasible Aitken estimator β^{*} of β in model (A.22) has the following finite sample_moments:
(A.23) E $\left(B^{*}\right)=B$
(*)
and
(A. 24) $V\left(\beta^{*}\right)=E\left[\left(\beta^{*}-\beta\right)\left(\beta^{*}-\beta\right)^{\prime}\right]=\left(1-\rho^{2}\right) \frac{n-1}{n-2}$

$$
\begin{equation*}
\Gamma_{11}\left(X_{1}^{\prime} x_{1}\right)^{-1} \tag{0}
\end{equation*}
$$

0

$$
\sigma_{22}\left(\mathrm{X}_{2}^{\prime} \mathrm{X}_{2}\right)^{-1}
$$

where $n=T-k_{1}-k_{2}>0$

Proof
The feasible Aitken estimator β^{*} of model (A.22) is given by :
(A. 25) $B^{\star}=\left(\begin{array}{c}\beta^{*} \\ 1 \\ B_{2}^{*}\end{array}\right)=\left[\begin{array}{cc}\hat{\sigma}^{11} x_{1}^{\prime} x_{1} & 0 \\ 0 & \\ \hat{\sigma}^{2} 2 x_{2}^{\prime} x_{2}\end{array}\right]-1\left[\begin{array}{c}\hat{\sigma}^{11} X_{1}^{\prime} y_{1}+\hat{\sigma}^{12} x_{1}^{\prime} y_{2} \\ \hat{\sigma}^{21}{ }^{1} x_{2}^{\prime} y_{1}+\hat{\sigma}^{22} x_{2}^{\prime} y_{2}\end{array}\right]$

$$
=\left[\begin{array}{l}
\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y_{1}+\frac{\hat{\sigma}^{12}}{\hat{\sigma}^{11}}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y_{2} \\
\frac{\hat{\sigma}^{21}}{\hat{\sigma}^{22}}\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} y_{1}+\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} y_{2}
\end{array}\right]
$$

(*) From theorem 2.2, normality of $\varepsilon(t)$ about zero is a sufficient condition for unbiasedness of β^{*}.

$$
=\left[\begin{array}{cc}
\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y_{1}-\frac{\hat{\sigma}_{12}}{\sigma_{22}}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y_{2} \\
\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} y_{2}-\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{11}}\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} y_{1}
\end{array}\right]
$$

with variance covariance matrix:
(A.26) V $\left(B^{*}\right)=\left[\begin{array}{cc}\frac{\left(x_{1}^{\prime} x_{1}\right)^{-1}}{\hat{\sigma}^{11}} & 0 \\ 0 & \frac{\left(x_{2}^{\prime} x_{2}\right)^{-1}}{\hat{\sigma}^{2} 2}\end{array}\right]=\left(1-\hat{\rho}^{2}\right)\left[\begin{array}{cc}\hat{\sigma}_{11}\left(x_{1}^{\prime} x_{1}\right)^{-1} & 0 \\ 0 & \hat{\sigma}_{22}\left(x_{2}^{\prime} x_{2}\right)^{-1}\end{array}\right]$
where $\hat{\Sigma}=\left\{\hat{\sigma}_{i j}\right\}=\left\{\frac{\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}_{j}}{T}\right\}(i, j=1,2)$ based on the maximum likelihood (OLS) estimation of the parameter vectors of the equations involved in (A.22) and $\hat{\rho}$ the correlation coefficient between $\hat{\varepsilon}_{1}$ and $\hat{\varepsilon}_{2}: \quad \hat{\rho}=\frac{\hat{\sigma}_{12}}{\sqrt{\hat{\sigma}_{11} \hat{\sigma}_{22}}}$

To establish the exact finite sample moments of (A.25), consider the model:
(A. 27) $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{llrl}x_{1} x_{2} & \vdots & 0 & 0 \\ \hdashline 0 & 0 & x_{1} x_{2}\end{array}\right]\left[\begin{array}{l}\beta_{1} \\ \beta_{10} \\ - \\ \beta_{20} \\ \beta_{2}\end{array}\right]+\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right]$,
which is equivalent to model (A.22) if $\beta_{10}=\beta_{20}=0$.
Under the assumption that $\varepsilon(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t)\right]$ are bivariate normal with mean 0 and variance covariance matrix \sum for all t, the ML estimator of the parameter vector in (A.27) is:
(A. 28) $\hat{\beta}^{+}=\left[\begin{array}{c}\hat{\beta}_{1} \\ \hat{\beta}_{10} \\ \hat{\beta}_{20} \\ \hat{\beta}_{2}\end{array}\right]=\left[\begin{array}{c}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y_{1} \\ \left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} y_{1} \\ \left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y_{2} \\ \left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} y_{2}\end{array}\right]$ with the -matrix,
consistently estimated as:
(A.29) $\hat{\Sigma}=\left[\begin{array}{ll}\hat{\sigma}_{11} & \hat{\sigma}_{12} \\ \hat{\sigma}_{21} & \hat{\sigma}_{22}\end{array}\right]=\frac{1}{T}\left[\begin{array}{ll}\hat{\varepsilon}_{1}^{\prime} \hat{\varepsilon}_{1} & \hat{\varepsilon}_{1}^{\prime} \hat{\varepsilon}_{2} \\ \hat{\varepsilon}_{2}^{\prime} \hat{\varepsilon}_{1} & \hat{\varepsilon}_{2}^{\prime} \hat{\varepsilon}_{2}\end{array}\right]$

Following T.Anderson [2], p.183, H.Cramèr [6], p. 185 and P. Dhrymes [7], p. 166 the maximum likelihood estimator (A. 28) is normally distributed with mean $\beta^{+}=\left(\beta_{1}, 0,0, \beta_{2}\right)^{\prime}$ and variance-covariance matrix $\left(\right.$ since $\left.X_{1}^{\prime} X_{2}=X_{2}^{\prime} X_{1}=0\right)$:
(A. 30$) E\left[\left(\hat{\beta}^{+}-\beta^{+}\right)\left(\hat{\beta}^{+}-\beta^{+}\right)^{\prime}\right]=$
$=\left[\begin{array}{cccc}\sigma_{11}\left(x_{1}^{\prime} x_{1}\right)^{-1} & 0 & \sigma_{12}\left(x_{1}^{\prime} x_{1}\right)^{-1} & 0 \\ 0 & \sigma_{11}\left(x_{2}^{\prime} x_{2}\right)^{-1} & 0 & \sigma_{12}\left(x_{2}^{\prime} x_{2}\right)^{-1} \\ \sigma_{12}\left(x_{1}^{\prime} x_{1}\right)^{-1} & 0 & \sigma_{22}\left(x_{1}^{\prime} x_{1}\right)^{-1} & 0 \\ 0 & \sigma_{12}\left(x_{2}^{\prime} x_{2}\right)^{-1} & 0 & \sigma_{22}\left(x_{2}^{\prime} x_{2}\right)^{-1}\end{array}\right]$
while the random matrix $T \hat{\Sigma}$ is independently distributed according to wishart with parameters \sum and $n=T-k_{1}-k_{2}$ ((x)
(*) This is derived from the (assumed) property that the vectors $\varepsilon(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t)\right]^{\prime}$ are mutually independent normally distributed for all t, with mean zero and variance covariance matrix \sum or the joint likelihood function of the sample considered is:
(A.31) $\mathcal{L}\left(\varepsilon \mid \Sigma^{-1}\right)=(2 \pi)^{-T}\left|\Sigma^{-1}\right|^{\frac{T}{2}} \exp \left[-\frac{1}{2} \sum_{t=1}^{T} \varepsilon(t)^{\prime} \Sigma^{-1} \varepsilon(t)\right]$

$$
\text { (A. } 32 \text {) } \mathcal{L}\left(Y \mid \Sigma^{-1}, B\right)=(2 \pi)^{-T}\left|\Sigma^{-1}\right|^{\frac{T}{2}} \exp \left\{-\frac{1}{2} \operatorname{tr}^{-1}[(Y-X \hat{B})+X(\hat{B}-B)]^{\prime}[(Y-X \hat{B})+X(\hat{B}-B)]\right\}
$$

$$
\begin{aligned}
& =(2 \pi)^{-T}\left|\Sigma^{-1}\right|^{\frac{T}{2}} \exp \left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1}\left[(Y-X \hat{B})^{\prime}(Y-X \hat{B})+(\hat{B}-B)^{\prime}\left(X^{\prime} X\right)(\hat{B}-B)\right]\right\} \\
& =(2 \pi)^{-T}\left|\Sigma^{-1}\right|_{1}^{\frac{k_{1}+k_{2}}{2}} \exp \left\{-\frac{1}{2} t r \Sigma^{-1}\left[(\hat{B}-B)^{\prime}\left(X^{\prime} X\right)(\hat{B}-B)\right]\right\} \\
& \quad\left|\Sigma^{-1}\right|^{\frac{n}{2}} \exp \left(-\frac{1}{2} t r \Sigma^{-1} A\right)
\end{aligned}
$$

where \hat{B} is the ML estimator of B, i.e. $\hat{B}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ and $A=T \hat{\Sigma}$. So, it is verified that the kernel of the joint likelihood of the original 2-variate normal density in $\varepsilon(t)$ may be written as the product between the kernel of a multivariate pdf in \hat{B} with mean B and variance-covariance matrix $\sum Q\left(X^{\prime} X\right)^{-1}$ (see (A.30)) and the kernel of a Wishart pdf in $A=T \hat{\Sigma} \quad \ldots$.

$$
\begin{aligned}
& =(2 \pi)^{-T}\left|\Sigma^{-1}\right|^{\frac{T}{2}} \exp \left[-\frac{1}{2} \operatorname{tr} \varepsilon^{\prime} \Sigma^{-1} \varepsilon\right] \\
& =(2 \pi)^{-T}\left|\Sigma^{-1}\right|^{\frac{T}{2}} \exp \left[-\frac{1}{2} \operatorname{tr} \Sigma^{-1} \varepsilon \varepsilon^{\prime}\right] \quad \text { with } \\
& \varepsilon=\{\varepsilon(t)\}=(2 \times T) \text { matrix of error terms or } \\
& \text { transforming to the dependent variables } \\
& \text { (Jacobian = 1): }
\end{aligned}
$$

Then the feasible Aitken estimator (A.25) becomes:
(A. 3 3) $\binom{\beta_{1}^{*}}{\beta_{2}^{*}}_{2}=\left[\begin{array}{ll}\hat{\beta}_{1}-\frac{\sigma_{12}}{\hat{\sigma}_{22}} & \hat{\beta}_{20} \\ \hat{\beta}_{2}-\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{11}} & \hat{\beta}_{10}\end{array}\right]$
with mean:
(A.34) $\mathrm{E}\left(\mathcal{B}^{*}\right)=\left[\begin{array}{l}\mathrm{E}\left(\hat{\beta}_{1}\right)-\mathrm{E}\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) \mathrm{E}\left(\hat{\beta}_{20}\right) \\ \mathrm{E}\left(\hat{\beta}_{2}\right)-\mathrm{E}\left(\begin{array}{l}\hat{\sigma}_{12} \\ \hat{\sigma}_{11} \\ \hat{\sigma}_{1} \\ \hat{\sigma}_{2}\end{array}\right] \mathrm{E}\left(\hat{\beta}_{10}\right) \\ \beta_{2}\end{array}\right] \quad$ (*),
which is in accordance with theorem 2.2 (see also footnote on pr), and variance-covariance matrix:
$(A .35) V\left(\beta^{\star}\right)=\left[\begin{array}{ll}E\left(\beta_{1}^{\star}-\beta_{1}\right)\left(\beta_{1}^{\star}-\beta_{1}\right)^{\prime} & E\left(\beta_{1}^{\star}-\beta_{1}\right)\left(\beta_{2}^{\star}-\beta_{2}\right)^{\prime} \\ 1 E\left(\beta_{2}^{\star}-\beta_{2}\right)\left(\beta_{1}^{\star}-\beta_{1}\right)^{\prime} & E\left(\beta_{2}^{\star}-\beta_{2}\right)\left(\beta_{1}^{*}-\beta_{1}\right),\end{array}\right]$
where the occurring block matrices are defined as follows (utilizing (A.32), $X_{1}^{\prime} X_{2}=X_{2}^{\prime} X_{1}=0$ and the mutually independent distribution of the regression coefficients and the $\sigma_{i j}{ }^{\prime} s$):
... with variance covariance matrix \sum and degrees of freedom $n=T-k_{1}-k_{2}>0$. Hence, \hat{B} or vac $(\hat{B})=B^{+}$and $\hat{\Sigma}$ are independently distributed and they are jointly sufficient for the parameters β^{+}and Σ (Fisher-Neyman criterion; see e.g. P.Dhrymes [7], p.131-133).
(*) By the above mentioned independence property, also $\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}$ and $\hat{\beta}_{20}$, resp $\frac{12}{\hat{\sigma}_{11}}$ and $\hat{\beta}_{10}$ are mutually independently distributed, since by a change of variable, the normal-Wishart form (A.31) can be expressed as $N\left(\hat{\beta}_{1}, \hat{\beta}_{10}, \hat{\beta}_{20}, \hat{\beta}_{2}\right) \cdot W\left(\hat{\sigma}_{11}, \hat{\sigma}_{22}, \frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right)$ or $\hat{\sigma}_{11} \hat{\sigma}_{22, ~}^{\hat{\sigma}_{12}}$ (see also NW $\left(\hat{\sigma}_{11}, \hat{\sigma}_{22}, \frac{\hat{\sigma}_{12}}{\sigma_{11}}\right)($ see also (A.41)).
$(A .36) \mathrm{V}\left(\beta_{1}^{\star}\right)=E\left(\beta_{1}^{\star}-\beta_{1}\right)\left(\beta_{1}^{\star}-\beta_{1}\right)^{\prime}=E\left(\hat{\beta}_{1}-\beta_{1}\right)\left(\hat{\beta}_{1}-\beta_{1}\right)^{\prime}-$

$$
E\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) E\left[\left(\hat{\beta}_{1}-\beta_{1}\right) \hat{\beta}_{20}^{\prime}\right]-E\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) E\left[\hat{\beta}_{20}\left(\hat{\beta}_{1}-\beta_{1}\right)^{\prime}\right]+E\left(\frac{\hat{\sigma}_{12}^{2}}{\hat{\sigma}_{22}^{2}}\right) E\left(\hat{\beta}_{20} \beta_{20}^{\prime}\right)
$$

$$
=\sigma_{11}\left(X_{1}^{\prime} x_{1}\right)^{-1}\left[1-2 \mathrm{E}\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) \frac{\sigma_{12}}{\sigma_{11}}+\mathrm{E}\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right)^{2} \frac{\sigma_{22}}{\sigma_{11}}\right] \text {, }
$$

$$
\begin{aligned}
& \text { (A.37) } \\
& V\left(\beta_{2}^{\star}\right)=E\left(\beta_{2}^{\star}-\beta_{2}\right)\left(\beta_{2}^{\star}-\beta_{2}\right)^{\prime}=\sigma_{22}\left(X_{2}^{\prime} X_{2}\right)^{-1}\left[1-2 E\left(\frac{\hat{\sigma}_{12}}{\frac{\sigma_{11}}{\sigma_{11}}} \frac{\sigma_{12}}{\sigma_{22}+E\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{11}}\right.}\right)^{2} \frac{\sigma_{11}}{\sigma_{22}}\right] \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}\left(\beta_{1}^{\star}, \beta_{2}^{\star}\right)=E\left(\beta_{1}^{\star}-\beta_{1}\right)\left(\beta_{2}^{\star}-\beta_{2}\right) \quad & =E\left(\hat{\beta}_{1}-\beta_{1}\right)\left(\hat{\beta}_{2}-\beta_{2}\right)^{\prime}-E\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) E\left[\hat{\beta}_{20}\left(\hat{\beta}_{2}-\beta_{2}\right)^{\prime}\right] \\
& -E\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{11}}\right) E\left[\left(\hat{\beta}_{1}-\beta_{1}\right) \hat{\beta}_{10}^{\prime}\right]+E\left(\hat{\rho}^{2}\right) E\left(\hat{\beta}_{20} \hat{\beta}_{10}^{\prime}\right) \\
& =E\left[\left(\beta_{2}^{\star}-\beta_{2}\right)\left(\beta_{1}^{\star}-\beta_{1}\right)^{\prime}\right]^{\prime}=\left[\operatorname{Cov}\left(\beta_{2}^{\star}, \beta_{1}^{\star}\right)\right]^{\prime}=0,
\end{aligned}
$$

Abstract

To evaluate (A.36) and (A.37), the first and second moments of the ratio of random variables $\hat{\sigma}_{12}$ and $\hat{\sigma}_{22}$, resp $\hat{\sigma}_{12}$ and $\hat{\sigma}_{11}$, have to be determined. This may be carried out by deriving the density function, say of $v=\frac{\sigma_{12}}{\hat{\sigma}_{22}}$

Since the (2x2) positive definite matrix of random variables $a_{11}=T \hat{\sigma}_{11}, a_{12}=T \hat{\sigma}_{12}$ and $a_{22}=T \hat{\sigma}_{22}$ is Wishart distributed with
covariance matrix \sum and degrees of freedom $n=T-k_{1}-k_{2}$:

$$
\text { (A. 39) } f(A) d A=W(\Sigma, n)=\frac{|A|^{\frac{n-3}{2}} \exp \left(-\frac{1}{2} t r \Sigma^{-1} A\right)}{2^{n}|\Sigma|^{\frac{n}{2}} \Gamma \frac{1}{2} \Gamma \frac{n}{2} \Gamma \frac{n-1}{2}} d A
$$

$$
=c\left(a_{11} a_{22}-a_{12}^{2}\right)^{\frac{1}{2}(n-3)} \exp \left[\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{a_{11}}{\sigma_{11}}-\frac{2 \rho_{12}}{\sqrt{\sigma_{11} \sigma_{22}}}+\frac{a_{22}}{\sigma_{22}}\right)\right]
$$

$$
\mathrm{da}_{11} \mathrm{da}_{22} \mathrm{da}_{12}
$$

$$
\text { with } c=\frac{1}{\left.2^{n}|\Sigma|^{\frac{1}{2}}{ }^{n} \sqrt{\pi}\left(\frac{n-2}{2}\right)!\left(\frac{n-3}{2}\right) \right\rvert\,}
$$

Rewriting the Wishart p.d.f. in terms of a_{11}, a_{22} and $v=\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}=\frac{a_{12}}{a_{22}}$ (**) so that the Jacobian of the integrand transformation is :
(A.40) $J=\frac{\partial\left(a_{11} a_{22} a_{12}\right)}{\partial\left(a_{11} a_{22} v\right)}=a_{22}$, we find:
(A. 41) $W\left(\sum, n\right)=c_{a} 1^{\frac{1}{2}(n-3)} a_{22} 2^{\frac{1}{2(n-1)}}\left(1-v^{2} \frac{a_{22}}{a_{11}}\right)^{\frac{1}{2}(n-3)}$

$$
\exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{a_{11}}{\sigma_{11}}-\frac{2 \rho v a_{22}}{\sqrt{\sigma_{11} \sigma_{22}}}+\frac{a_{22}}{\sigma_{22}}\right)\right] \quad d_{a_{11}} d a_{22} d v
$$

(*) T.Anderson [2],p. 67 and p. 154 .
(**) The following reasoning is that of the appendix in A.Zellner [28], pp.989-992.

Since $v^{2} \frac{a_{22}}{a_{11}}=\frac{a_{12}^{2}}{a_{11} a_{22}}=\frac{\sigma_{12}^{2}}{\sigma_{11} \sigma_{22}}=\rho^{2}\left(0 \leq \rho^{2}<1\right)$, a binomial expansion (Newton) can be utilized:
(A. 42$)\left(1-\frac{v^{2} a_{22}}{a_{11}}\right)^{\frac{n-3}{2}}=\sum_{i=0}^{\infty} \frac{(-1)^{i} v^{2 i} a_{22}^{i}}{a_{11}^{i}} \frac{\left(\frac{n-3}{2}\right)!}{i!\left(\frac{n-3}{2}-i\right)!}$, or the probability density (A.41) becomes:
$(A .43) W(\Sigma, n)=c \sum_{i=0}^{\infty} \frac{(-1)^{i} v^{2 i} a_{22} i+\frac{n-1}{2}\left(\frac{n-3}{2}\right)!}{i-\frac{(n-3)}{2} i!\left(\frac{n-3}{2}-i\right)!} \exp \left(-\frac{a_{11}}{2\left(1-p^{2}\right) \sigma_{11}}\right)$ $\exp \left[-\frac{a_{22}}{2\left(1-\rho^{2}\right) \sigma_{22}}\left(1-\frac{2 \rho v \sqrt{\sigma}_{22}}{\sqrt{\sigma_{11}}}\right)\right] \quad \mathrm{da}_{11} d a_{22} \mathrm{dv}$
and setting $s=\frac{a_{11}}{2\left(1-\rho^{2}\right) \sigma_{11}}$
$(A .44) W(\Sigma, n)=c\left[2\left(1-\rho^{2}\right) \sigma_{11}\right]^{\frac{n-1}{2}}\left[\sum_{i=0}^{\infty} \frac{(-1)^{i} v^{2 i}{ }^{i} a_{22}}{i!\left[2\left(1-\rho^{2}\right) \sigma_{11}\right]}\right]^{i} a^{\frac{n-1}{2}}\left(\frac{n-3}{2}\right)!$

$$
\exp \left[-\frac{a_{22}}{2\left(1-\rho^{2}\right) \sigma_{22}}\left(1-\frac{\left.2 \rho v \sqrt{\sigma_{22}}\right)}{\left.\sqrt{\sigma_{11}}\right)}\right] \mathrm{da}_{22} \mathrm{dv}\right.
$$

where use has been made of the property that the Jacobian of the integrand transformation from a_{11} to s is $2\left(1-p^{2}\right) \sigma_{11}$ and the gamma-integral:

$$
\left.\left(\frac{n-3}{2}-i\right)\right|_{0}=\int_{0}^{\infty} s^{-\left(i-\frac{n-3}{2}\right)} e^{-s} d s
$$

Since $\sum_{i=0}^{\infty} \frac{(-1)^{i} v^{2 i} a_{22}^{i}}{i!\left[2\left(1-\rho^{2}\right) \sigma_{1} L^{i}\right.}=\exp \left[-\frac{v^{2} a_{22}}{2\left(1-\rho^{2}\right) \sigma_{11}}\right]$, we get, after integrating out a_{22}, the marginal density of v :
$(A .45) W(\Sigma, n)=c \frac{\left[2\left(1-\rho^{2}\right) \sigma_{11}\right]^{\frac{n-1}{2}}\left(\frac{n-3}{2}\right)!\left(\frac{n-1}{2}\right) \sum^{\left.\left(1-\rho^{2}\right) \sigma_{22}\right]^{\frac{n+1}{2}}}}{\left[1-2 \rho v \sqrt{\frac{\sigma_{22}}{\sigma_{11}}}+v^{2} \frac{\sigma_{22}}{\sigma_{11}}\right]^{\frac{n+1}{2}}} d v$
and substituting for c, we find:

$$
=\left(1-\rho^{2}\right)^{\frac{n}{2}} \sqrt{\frac{\sigma_{22}}{\sigma_{11}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{d v}{\left(\frac{\sigma_{22}}{\sigma_{11}}\right)^{\frac{n+1}{2}}\left[\left(v-\sqrt{\frac{\sigma_{11}}{\sigma_{22}}} \rho\right)^{2}+\frac{\sigma_{11}}{\sigma_{22}}\left(1-\rho^{2}\right)\right]^{\frac{n+1}{2}}}
$$

$$
\left.\left.\left.=\sqrt{\frac{\sigma_{22}}{\left(1-\rho^{2}\right) \sigma_{11}} \Gamma \frac{\Gamma\left(\frac{\mathrm{n}+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{\mathrm{n}}{2}\right)}} \frac{d \mathrm{v}}{\left[\left(\mathrm{v}-\rho \sqrt{\left.\frac{\sigma_{11}}{\sigma_{22}}\right)^{2}}\right.\right.}\right]^{\frac{\mathrm{n}+1}{2}}\right]^{\left(1-\rho^{2}\right) \frac{\sigma_{11}}{\sigma_{22}}}\right]^{\text {, and if }}
$$

v is transformed into $z=\frac{\left(v-\rho \sqrt{\frac{\sigma_{22}}{\sigma_{22}}}\right)}{\sqrt{\left(1-\rho^{2}\right) \frac{\sigma_{11}}{\sigma_{22}}}}$ with Jacobian $J=\left(\left(1-\rho^{2}\right) \frac{\sigma_{11}}{\sigma_{22}}\right)^{\frac{1}{2}}$,
the pdf of z, and hence of $v=\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}$, is clearly in the standardized student t-form with n degrees of freedom:
(A.47) $G(z) d z=\frac{i\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\left(\frac{n}{2}\right)} \frac{d z}{\left(1+z^{2}\right)^{\frac{n+1}{2}}}$ and first two moments (\quad)
(A.48) $E(z)=0$ and $E\left(z^{2}\right)=\frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{n-2}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{\Gamma\left(\frac{n-2}{2}\right)}{\frac{n-2}{2} r\left(\frac{n-2}{2}\right)} \frac{1}{n-2}$ or in
terms of the original variables $v:$
(A.49) $E(v)=\rho \sqrt{\frac{\sigma_{11}}{\sigma_{22}}}$ and $E\left(v^{2}\right)=\frac{\left(1-\rho^{2}\right) \sigma_{11}}{(n-2) \sigma_{22}}+\rho^{2} \frac{\sigma_{11}}{\sigma_{22}}$

So that the exact second order block-diagononal matrix $V\left(B_{1}^{*}\right)$
is found from substitution of (A.49) into (A.36):
$(A .50) V\left(B_{1}^{\mathbf{*}}\right)=E\left(\beta_{1}^{\star}-\beta_{1}\right)\left(\beta_{1}^{\star}-\beta_{1}\right)^{\prime} \quad=\sigma_{11}\left(X_{1}^{\prime} X_{1}\right)^{-1}$

$$
\begin{aligned}
& {\left[1-2 \rho \sqrt{\sigma_{11}}\right.} \\
& \sigma_{22}\left.\frac{\sigma_{12}}{\sigma_{11}}+\frac{\sigma_{11}}{\sigma_{22}}\left(\frac{1-\rho^{2}}{n-2}+\rho^{2}\right) \cdot \frac{\sigma_{22}}{\sigma_{11}}\right] \\
&=\sigma_{11}\left(x_{1}^{\prime} x_{1}\right)^{-1}\left(1-\rho^{2}\right) \frac{n-1}{n-2},
\end{aligned}
$$

where $\sigma_{11}\left(X_{1}^{\prime} X_{1}\right)^{-1}$ is the covariance matrix of the ML (OLS) estimator $\hat{\beta}_{1}$ and $\sigma_{11}\left(1-\rho^{2}\right)\left(X_{1}^{\prime} X_{1}\right)^{-1}$ the covariance matrix of the Aitken estimator $\tilde{\beta}_{1}$ (see (A.26)).
Taking account of (A.50), (A.37) and (A.38), the exact variance covariance matrix of β^{*} becomes:
(A.51)V $V\left(B^{*}\right)=\left(1-\rho^{2}\right) \frac{n-1}{n-2}\left[\begin{array}{cc}\sigma_{11}\left(x_{1}^{\prime} x_{1}\right)^{-1} & 0 \\ 0 & \sigma_{22}\left(x_{2}^{\prime} x_{2}\right)^{-1}\end{array}\right]$.

Computing the values of $\left(1-\rho^{2}\right) \frac{n-1}{n-2}$ for various values of n and ρ, it is seen that there emerges a considerable gain in efficiency , when deriving a feasible Aitken estimator of β in
(*) See M. Kendall and A.Stuart, [11], vol I, pp. 59-60
stead of its OLS-estimator, if $\rho>0.30$ (obviously, the gain becomes more considerable if $n=T-k_{1}-k_{2}$ increases) (*) Δ

3.2 Exact sample distribution of the feasible Aitken estimator $\beta^{\text {* }}$ Theorem A2

The finite sample pdf of the feasible Aitken estimator of β_{1} satisfies:
(A. 52$) h\left(B_{1}^{\star}\right) d B_{1}^{\star} z_{h}\left(z_{1}\right) d z_{1}=\frac{1}{\left[2 \pi \sigma_{11}\left(1-\rho^{2}\right)\right]^{\frac{k}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{\mathrm{n}}{2}\right)}$
$\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left[\frac{z_{1}^{\prime} z_{1}}{2\left(1-\rho^{2}\right) \sigma_{11}}\right]_{\Gamma\left(i+\frac{n+k_{1}+1}{2}\right)}^{r\left(i+\frac{n+k_{1}}{2}\right)} d^{i} z_{1}$
with the $\left(k_{1} \times 1\right)$-vector z_{1} equal to: $z_{1}=\hat{\beta}_{1}-\beta_{1}-\frac{\sigma_{12}}{\sigma_{22}} \hat{\beta}_{20}=\beta_{1}^{*}-\beta_{1}$ and $n=T-k_{1}-k_{2}$ and the matrix X_{1} is assumed to consist of a set of mutually orthonormal vectors or $X_{1}^{\prime} X_{1}=I_{k_{1}}$.

Proof

From (A.32) and (A.46), the joint pdf of $\hat{B}_{1}, \hat{\beta}_{20}$ and $\hat{\sigma}_{22} 12$
can be written as:
(A. 53)h $\left(\hat{\beta}_{1}, \hat{\beta}_{20}, \frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) d \hat{\beta}_{1} d \hat{\beta}_{20} \frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}=g\left(\hat{\beta}_{1}, \hat{\beta}_{20}\right) f\left(\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}\right) d \hat{\beta}_{1} d \hat{\beta}_{20} d \frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}}$,
where $g($.$) is 2 k_{1}$-variate normal and $f\left(\frac{\sigma^{\sigma}}{\sigma_{22}}\right)=f(v)$ is given by (A.46).
Transforming to the random variables.
$z_{1}=\hat{\beta}_{1}-\beta_{1}-v \hat{\beta}_{20} \quad, z_{2}=\hat{\beta}_{20}$ and $z_{3}=v \quad$, where z_{1} and z_{2} are k_{1} -
vectors and z_{3} is a scalar random variable and the Jacobian is 1, (A.53) becomes:
(*) See W.Vandaele [23], §4.3. If ρ is very small ($\rho \leq 0.10$ à0.20) OLS has to be preferred relative to feasible Aitken estimation. Only for large samples, the covariance matrices are (approximately) equal (asymptotic equality for $\rho=0$).
(A. 54$) h\left(z_{1}, z_{2}, z_{3}\right) d z_{1} d z_{2} d z_{3}=g\left(z_{1}+z_{2} z_{3}, z_{2}\right) f\left(z_{3}\right) d z_{1} d z_{2} d z_{3}$, where
(A. 55) $g\left(z_{1}+z_{2} z_{3}, z_{2}\right)=g\left(\hat{\beta}_{1}-\beta_{1}, \hat{\beta}_{20}\right)=\frac{\left|E\binom{\hat{\beta}_{1}-\beta_{1}}{\hat{\beta}_{20}}\binom{\hat{\beta}_{\hat{\beta}_{1}}-\beta_{1}}{\hat{\beta}_{20}}^{\prime}\right|^{-\frac{1}{2}}}{(2 \pi) k_{1}}$

$$
\begin{aligned}
& \exp \left\{-\frac{1}{2}\binom{\hat{\beta}_{1}-\beta_{1}}{\hat{\beta}_{20}}^{\prime}\left[E\binom{\hat{\beta}_{1}-\beta_{1}}{\hat{\beta}_{20}}\left\{\begin{array}{c}
\hat{\beta}_{1}-\beta_{1} \\
\hat{\beta}_{20}
\end{array}\right)^{\prime \prime}\right]^{-1}\left(\begin{array}{ll}
\hat{\beta}_{1} & -\beta_{1} \\
\hat{\beta}_{20}
\end{array}\right)\right\} \quad \text { where } \\
& \text { (A. } \left.56 \text {) }\left[\begin{array}{l}
E_{1} \hat{\beta}_{1}-\beta_{1} \\
\hat{\beta}_{20}
\end{array}\right)\binom{\hat{\beta}_{1}-\beta_{1}}{\hat{\beta}_{20}}^{\prime}\right]^{-1}\left[\begin{array}{ll}
\sigma_{11}\left(X_{1}^{\prime} x_{1}\right)^{-1} & \sigma_{12}\left(x_{1}^{\prime} x_{1}\right)^{-1} \\
\sigma_{12}\left(x_{1}^{\prime} x_{1}\right)^{-1} & \sigma_{22}\left(x_{1}^{\prime} x_{1}\right)^{-1}
\end{array}\right]^{-1}=
\end{aligned}
$$

$$
\Sigma^{-1} \otimes\left(X_{1}^{\prime} X_{1}\right)(\operatorname{see}(A \cdot 30)) \text {, with determinant }|\Sigma|^{-k_{1}}\left|X_{1}^{\prime} X_{1}\right|^{2} \text {. }
$$

Without loss of generality, we may assume that the columm vectors of X_{1} are mutually orthonormal or $X_{1}^{\prime} X_{1}=I_{k_{1}}$ so that substituting (A.56) and (A.46)into (A.54):
(A. 57) $h\left(z_{1}, z_{2} z_{3}\right) d z_{1} d z_{2} d z_{3}=\frac{c \exp \left\{-\frac{1}{2}\left[\sigma^{11}\left(z_{1}+z_{2} z_{3}\right)^{\prime}\left(z_{1}+z_{2} z_{3}\right)\right.\right.}{\left(1-2 \rho \sqrt{\frac{\sigma_{22}}{\sigma_{11}}} z_{3}+\frac{\sigma_{22}}{\sigma_{11}} z_{3}^{2}\right)^{\frac{n+1}{2}}}$

$$
\left.\underline{+2 \sigma^{12} z_{2}^{\prime}\left(z_{1}+z_{2} z_{3}\right)+\sigma^{22} z_{2}^{\prime} z_{2}} \mid\right\}_{\mathrm{d} z_{1} d z_{2} d z_{3}}
$$

with c equal to $c=\frac{1}{(2 \pi)^{k_{1}}}\left(\sigma_{11} \sigma_{2} \tau_{12}^{\sigma_{12}^{2}}\right)^{\frac{-k_{1}}{2}}\left(1-\rho^{2}\right)^{\frac{n}{2}}{\sqrt{\sigma_{22}}}_{i!\left(\frac{n+1}{2}\right)}^{f\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)}$ and rewiting as :
(A. 58) h $\left(z_{1}, z_{2}, z_{3}\right) d z_{1} d z_{2} d z_{3}=$

$$
\frac{c \exp \left(-\frac{1}{2} z_{1}^{\prime} z_{1} \sigma^{11}\right) \exp \left\{-\frac{1}{2}\left[z_{2}^{\prime} z_{2}\left(z_{3}^{2} \sigma^{11}+2 z_{3} \sigma^{12}+\sigma^{22}\right)+2 z_{2}^{\prime}\left(z_{3} z_{1} \sigma^{11}+z_{1} \sigma^{12}\right)\right]\right\}}{\left(1-2 \rho \sqrt{\frac{\sigma_{22}}{\sigma_{11}}} z_{3}+\frac{\sigma_{22}}{\sigma_{11}} z_{3}^{2}\right)^{\frac{1}{2}(n+1)}}
$$

$\mathrm{d} \mathrm{z}_{1} \mathrm{dz}_{2}{ }^{\mathrm{dz}}{ }_{3}$,
we can integrate out z_{2}, by rewriting the part of the above pdf containing z_{2} with substitutions $a_{1}=z_{3}^{2} \sigma^{11}+2 z_{3} \sigma^{12}+\sigma^{22}$ and $a_{2}=z_{3}{ }^{2}{ }_{1} \sigma^{11}+z_{1} \sigma^{12}$, where a_{1} is a scalar random variable and $a_{2}{ }^{a} k_{1}$ - variate random vector as:
(A.59) $\int_{-\infty}^{+\infty} \exp \left\{-\frac{a_{1}}{2}\left(z_{2}^{\prime} z_{2}+\frac{2 z_{2}{ }^{\prime} a_{2}}{a_{1}}\right)\right\} d z_{2}=\int_{-\infty}^{+\infty} \exp \left\{-\frac{a_{1}}{2}\left[\left(z_{2}+\frac{a_{2}}{a_{1}}\right)^{\prime}\left(z_{2}+\frac{a_{2}}{a_{3}}\right)-\frac{a_{2}{ }_{2}{ }_{2}}{a_{1}^{2}}\right]\right\} d z_{2}=$ $=\left(\frac{2 \pi}{a_{1}}\right)^{\frac{k_{1}}{2}} \exp \left(\frac{a_{2}{ }_{2}{ }_{2}}{2 a_{1}}\right)$

So that the joint pdf of z_{1} and z_{3} becomes:
$(A .60) h\left(z_{1}, z_{3}\right) d z_{1} d z_{3}=$
$\frac{c(2 \pi)^{\frac{k_{1}}{2}} \sigma_{11}^{\frac{1}{2}(n+1)} \exp \left(\frac{-z_{1}^{\prime} z_{1} \sigma^{11}}{2}\right) \exp \left[\frac{z_{1}^{\prime} z_{1}\left(z_{3} \sigma^{11}+\sigma^{12}\right)^{2}}{2\left(z_{3}^{2} \sigma^{11}+2 z_{3} \sigma^{12}+\sigma^{22}\right)}\right]}{\left(z_{3}^{2} \sigma^{11}+2 z_{3} \sigma^{12}+\sigma^{22}\right)^{\frac{k}{2}}\left(z_{3}^{2} \sigma_{22}-2 z_{3} \sigma_{12}+\sigma_{11}\right)^{\frac{1}{2}(n+1)}} d z_{1} d z_{3}$
$=c(2 \pi)^{\frac{k}{2}}{ }^{\frac{1}{\sigma_{11}}}{ }^{\frac{1}{2}(n+1)} \exp \left\{\frac{-z_{1}^{\prime} z_{1}}{2\left(z_{3}^{2} \sigma_{22}-2 z_{3} \sigma_{12}+\sigma_{11}\right)}\right\}$
$\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)^{\frac{-k}{2}}\left(z_{3}^{2} \sigma_{22}-2 z_{3} \sigma_{12}+\sigma_{11}\right){ }^{\frac{1}{2}\left(n+\bar{k}_{1}+1\right)} d_{1}{ }_{1} d_{3}$
Expanding the exponent term in a Mac Laurin series and integrating term by term w.r.t. z_{3}, utilizing:
(A.61) $\int_{-\infty}^{\infty} \frac{d z_{3}}{\left(z_{3}^{2} \sigma_{22}-2 z_{3} \sigma_{12}+\sigma_{11}\right)} i+\frac{1}{2}\left(n+k_{1}+1\right)=\frac{1}{\sigma_{22}^{\frac{1}{2}}\left[\sigma_{11}\left(1-\rho^{2}\right)\right]} i+\frac{1}{2}\left(n+k_{1}\right):$
$\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(i+\frac{n+k_{1}}{2}\right)}{\Gamma\left(i+\frac{n+k_{1}+1}{2}\right)}$

$$
\left(\text { since } \sigma_{12}^{2}<\sigma_{22} \sigma_{11}\right)
$$

we obtain the following joint pdf for the elements of

$$
z_{1}=\hat{\beta}_{1}-\beta_{1}-\frac{\hat{\sigma}_{12}}{\hat{\sigma}_{22}} \hat{\beta}_{20}=\beta_{1}^{\mathbf{*}}-\beta_{1}:
$$

(A.62) $h\left(z_{1}\right) d z_{1}=$
$=\frac{c(2 \pi)^{\frac{k}{2}} \sigma_{11}^{\frac{1}{2}(n+1)}}{\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)^{-k} \frac{1}{2}} \sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left(\frac{z_{1} z_{1}}{2}\right)^{i} \int_{-\infty}^{\infty} \frac{d z_{3}}{\left.\left(z_{3}^{2} \sigma_{22}-2 z_{3} \sigma_{12}+\sigma_{11}\right)^{i+\frac{1}{2}(\overline{n+k}+1}\right)^{d} z_{1}}$
$\left.=\frac{c(2 \pi)^{\frac{k_{1}}{2}} \sigma_{11}^{\frac{1}{2}(n+1)} \sigma_{22}^{-\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)}{\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)^{\frac{-k_{1}}{2}}\left[\sigma_{11}\left(1-\rho^{2}\right)\right]} \sum_{i=0}^{\frac{1}{2}\left(n+k_{1}\right)} \frac{(-1)^{i}}{i!}\left(\frac{z_{1}^{\prime} z_{1}}{2 \sigma_{11}\left(1-\rho^{2}\right)}\right)^{i} \frac{\Gamma\left(i+\frac{n+k_{1}}{2}\right)}{\Gamma\left(i+\frac{n+k_{1}+1}{2}\right.}\right)^{d z_{1}}$
or substituting for the constant c, given in (A.57), we find as exact pdf of z_{1} :
$\left.\frac{(A .63) h\left(z_{1}\right) d z_{1}=}{\left[2 \pi \sigma_{11}\left(1-\rho^{2}\right)\right]^{\frac{k_{1}}{2}}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!}\left(\frac{z_{1}^{\prime} z_{1}}{2 \sigma_{11}\left(1-\rho^{2}\right.}\right) \frac{\Gamma\left(i+\frac{n+k_{1}}{2}\right)}{\Gamma\left(i+\frac{n+k_{1}+1}{2}\right.}\right)$
where $\sigma_{11}\left(1-\rho^{2}\right)$ is the asymptotic variance of each element of $z_{1}(\operatorname{see}(A .26))$, which are all equal since it is assurmed that $X_{1}^{\prime} X_{1}=I_{k}$.
As n increases, the ratio of the Gamma functions involved
in (A.63) will rapidly disappear so that the pdf of z_{1} approaches the following normal density:
(A.64) $\left.h\left(z_{1}\right) d z_{1}=c^{\prime} \exp \left\{\frac{-z_{1}^{\prime} z_{1}}{2 \sigma_{11}(1-p}{ }^{2}\right)\right\} d z_{1}$

Appendix B

B. 1 Finite sample bias of the ML estimator of the serial correlation coefficient.

Theorem B. 1

The finite sample bias of the ML estimator for the autoregression parameter β in the model:
(B. 1) $y_{t}=\beta y_{t-1}+\varepsilon_{t} \quad$ with $\varepsilon_{t} \sim N \operatorname{ID}\left(0, \sigma^{2}\right) \quad(t=1,2,3, \ldots, T)$
is equal to:
(B.2a) $E(\hat{B})-\beta=\frac{-2}{T} \beta+O\left(\beta T^{-2}\right) \quad$ (**) if the initial value y_{0} is
fixed at zero or
(B. 2b) $E(\hat{\beta})-\beta=-\frac{2}{T+1+c^{2}} \beta+0\left(B T^{-2}\right)$ if the initial value y_{o} is fixed at a constant value $c \neq 0$ and
(B.3) $E(\hat{\beta})-\beta=-\frac{2}{T+1} \beta+0\left(\beta T^{-2}\right)$ if the initial value y_{o} is a random variable with the same mean and variance as the other y_{t} -
variables.

Proof

Following J.White [25], the expansions for the mathematical expectation will be given up to terms of order T^{-3} and β^{4}.
Model 1 The initial value y_{o} is assumed constant: $y_{o}=c$
Then, under the above assumptions, the ML-estimator of B in (B. 1) results from the unconstrained maximization of the logarithmic transformation of the joint likelihood density of y :
(B. 4) $L_{1}\left(y \mid \beta, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2} T} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{t}-\beta y_{t-1}\right)^{2}\right\}^{2}$,

It is clear that for this model the ML-estimator is equal to the OLS estimator:
(*) The discussion of this theorem follows J. White [25]. For simplicity of notation and discussion, we assume that the initial value is y_{o} and not y_{1}.
(**) See H.Cramèr [6], p. 122 , for the determination of the order of magnitude in probability of different functions.
(B. 5) $\quad \hat{\beta}=\frac{\sum_{t=1}^{T} y_{t} y_{t-1}}{\sum_{t=1}^{T} y^{2} t-1}$

1. A y $=c=0$

Setting $U=\sum_{t=1}^{T} y_{t} y_{t-1}$ and $V=\sum_{t=1}^{T} y_{t-1}^{2} \quad$ the joint moment generating function of U and V is:
(B. 6) $E_{1}[\exp (U u+V v)]=M_{1}(u, v)=\int_{-\infty}^{+\infty} \exp (U u+V v) L_{1}(y) d y$

$$
\begin{equation*}
=(2 \pi)^{-\frac{1}{2} T} \exp \int_{-\infty}^{+\infty}\left(-\frac{1}{2} y^{\prime} D y\right) d y=|D|^{-\frac{1}{2}} \tag{t}
\end{equation*}
$$

where D is a ($T \times T$)-matrix with determinant
$\begin{array}{llllllll}\mathrm{p} & \mathrm{q} & 0 & 0 & \text {. } & \text {. } & 0 & 0\end{array}$
$|D|=\quad \begin{array}{llllllllllll}q & p & q & 0 & . & . & . & . & . & 0 & 0 & 0 \\ 0 & q & p & q & . & . & . & . & . & 0 & 0 & 0\end{array}$

with $p=1+\beta^{2}-2 v$ and $q=-(\beta+u)$.
(B.7) $\frac{E_{1}(\hat{B})}{\beta}=\left.\frac{1}{\beta} \int_{-\infty}^{0} \frac{\partial M_{1}(u, v)}{\partial u}\right|_{u=0} ^{d v}=-\left.\frac{1}{2} \int_{-\infty}^{0} \frac{1}{\beta}|D|^{-\frac{3}{2}} \frac{\partial D}{\partial u}\right|_{u=0} d v$
in a Mac Laurin series and setting $\alpha=\beta^{2}$:
(B. 8) $\frac{E_{1}(\hat{\beta})}{\beta}=Q_{1}(\alpha)=Q_{1}(0)+Q_{1}^{\prime}(0) \alpha+Q_{1}^{\prime \prime}$ (o) $\frac{\alpha^{2}}{2}+\ldots \ldots$, with
(B. 9a) $Q_{1}^{\prime}(0)=-\frac{1}{2} \int_{-\infty}^{0} \frac{\partial}{\partial \alpha}\left(\left.\frac{1}{\beta}|D|^{-\frac{3}{2}} \frac{\partial D}{\partial u}\right|_{u=0}\right) d v \quad$ and
(B. 9 b) $Q_{1}^{\prime \prime}(\mathrm{o})=-\frac{1}{2} \int_{-\infty}^{0} \frac{\partial^{2}}{\partial \alpha^{2}}\left(\frac{1}{\beta}\left|D^{-\frac{3}{2}} \frac{\partial D}{\partial u}\right|_{u=0}\right) d v$
(*) Where, without loss of generality, σ^{2} is set equal to 1 , since \hat{B} is independent of σ^{2}.

From (B.6), we may denote the (T×T) matrix $D=D(T)$ and the rightlower submatrices with $D(T-1), D(T-2)$ etc.. so that $D(T)$ satisfies the second order difference equation:
(B.10) $D(T)=p D(T-1)-q^{2} D(T-2)$ with $D(1)=1$ and $D(2)=p-q^{2}$, and solution:
(B. 11) D $\left.=D(T)=p \sum_{\tau=0}^{T-2 T-1}(-1) \quad \tau\left[\begin{array}{c}T-\tau-1 \\ \tau\end{array}\right)-q^{2}\binom{T-\tau-2}{\tau}\right] p^{-2 \tau} q^{2 \tau}$

$$
=\sum_{\tau=0}^{T-1}(-1)\left[(z+\alpha)\binom{\tau-\tau-1}{\tau}-x\binom{T-\tau-2}{\tau}\right](z+\alpha)^{T-2-2 \tau} \begin{gathered}
\tau \\
\text { x }
\end{gathered} \text { with }
$$

$$
z=1-2 v=p-\beta^{2} \quad \text { and } x=(\beta+u)^{2}=q^{2} \text {, }
$$

so that the derivatives involved in (B.9) and (B.10) may be evaluated by means of the various values of $D(i, j)$:
(B. 12) $D(i, j)=D(T, i, j)=\left.\frac{\partial}{\partial \alpha^{j}}\left(\left.\frac{\partial D(T)}{\partial x^{i}}\right|_{x=\alpha}\right)\right|_{\alpha=0} \quad$ since
(B. 13) $\left.\frac{1}{\beta} \frac{\partial D(T)}{\partial u}\right|_{u=0}=\left.\frac{1}{\beta} \frac{\partial D(T)}{\partial x} \frac{\partial x}{\partial u}\right|_{u=0}=\left.\frac{2(\beta+u)}{\beta} \frac{\partial D(T)}{\partial x}\right|_{u=0}=\left.2 \frac{\partial D(T)}{\partial x}\right|_{x=\alpha}$

$$
\text { and }\left.D(T)\right|_{u=0}=\left.D(T)\right|_{x=\alpha=\beta^{2}}
$$

So,

$$
\begin{aligned}
Q_{1}^{\prime}(0) & =\int_{-\infty}^{0}\left\{\frac{3}{2} D(T, 0,0)^{-\frac{5}{2}} D(T, 0,1) D(T, 1,0)-2 D(T, 0,0)^{\frac{3}{2}} D(T, 1,1)\right\} d v \\
= & \int_{-\infty}^{0}\left\{\frac{3}{2} z^{-\frac{5}{2}(T-1)}(T-2) z^{T-3}(z-1) z^{T-3}(2-T-z)-2 z^{\frac{3}{2}(T-1)} z^{(T-5)}\right. \\
& {\left.\left[(T-3)(T-4)-(T-2) z^{2}-(T-3)(T-4) z\right]\right\} d v }
\end{aligned}
$$

(B. 14) $=\int_{-\infty}^{0}\left\{-\frac{(T-2)}{2} z^{-\frac{1}{2}(T+3)}-\frac{(T+2)(T-3)}{2} z^{-\frac{1}{2}(T+5)}+\frac{T^{2}+2 T-12}{2} z^{-\frac{1}{2}(T+7)}\right\} d v$ $=\frac{12}{(T+1)(T+3)(T+5)}=\frac{12}{T^{3}+0\left(T^{-4}\right)}$ and similarly,
(B. 15) $Q_{1}(0)=\frac{T^{2}-2 T+3}{(T-1)(T+1)}=1-\frac{2}{T}+\frac{4}{T^{2}}-\frac{2}{T^{3}}+0\left(T^{-4}\right) \quad$ and
(B. 16) $Q_{1}^{\prime \prime}(0)=\frac{36(T+8)}{(T+3)(T+5)(T+7)(T+9)}=\frac{36}{T^{3}}+0\left(T^{-4}\right)$ or substituting into (B. 8):
(B. 17) $E(\hat{B})=\left(1-\frac{2}{T}+\frac{4}{T^{2}}-\frac{2}{T^{3}}\right) B+\frac{12}{T^{3}} B^{3}+\frac{18}{T^{3}} \beta^{5}+\ldots=\left(1-\frac{2}{T}\right) B+0\left(B T^{-2}\right) \quad \Delta$ $1 \mathrm{~B} \quad \mathrm{y}_{0}=\mathrm{c} \neq 0$ (c is known)

Then the joint moment generating function (B. 6) of the composite variates U and V becomes:
(B.18)M(u,v)=|D(T)|$\left.\right|^{-\frac{1}{2}} \exp \left\{\frac{c^{2}}{2}\left[1-\frac{D(T+1)}{D(T)}\right]\right\}$ with the first term of the Mac Laurin series expansion (B. 8) of $\frac{E(\hat{\beta})}{\beta}=Q_{c}(\alpha)$:
$(B .19) Q_{c}(0)=\left.\int_{-\infty}^{0} \frac{1}{\beta} \frac{\partial M(u, v)}{\partial u}\right|_{u=0 ; \beta=0} d v$ (and integrand transformation)

$$
=\frac{e^{\frac{1}{2} c^{2}}}{2} \int_{1}^{\infty} e^{-\frac{1}{2} c^{2} z}\left[z^{-\frac{1}{2}(T+1)}+\left(T-2+c^{2}\right) z^{-\frac{1}{2}(T+3)}\right] d z \quad(z=1-2 v)
$$

If $a=\frac{1}{2}(T+1)$ and $x=\frac{1}{2} c^{2}$, we can integrate part by part to obtain:
(B. 20) $Q_{C}(0)=\frac{1}{2} e^{x}\left[x^{a-1} \Gamma(1-a, x)-\frac{x^{a}}{a}(2 a+2 x-3) t(1-a, x)+(2 a+2 x-3) \frac{e^{-x}}{a}\right]$, with $\Gamma(1-a, x)$ the incomplete Gamma function ($*$)

(*) This asymptotic expansion of the incomplete Gamma function $\operatorname{Ir}(1-a, x)=\int_{x}^{\infty} e^{-u_{u}-a_{d u}}$ (if $x=0$, usual Gamma function) can be found in Erdélyi, Higher Transcendental Functions, 2, New York, Mc.Graw Hill, 1953,p.140.
(B. 22) $Q_{c}(0)=\frac{1}{2}\left(\frac{2 a+2 x-2}{x+a}\right)+0\left(\frac{T^{2}}{\left(T+c^{2}\right)^{4}}\right)=1-\frac{2}{T+1+c^{2}}+0\left(\frac{T^{2}}{\left(T+c^{2}\right)^{4}}\right)$ or (B. 23) $\mathrm{E}(\hat{\beta})=\left(1-\frac{2}{T+1+c^{2}}\right) \beta+\ldots .$.

From which it is seen that irrespectrive of the remaining terms of $Q_{c}(\alpha)$, the bias of $\hat{\beta}$ vanishes if the initial known constant $\left|y_{o}\right|=|c|$ is large.

Model 2 Stationarity condition: y_{0} is random with same marginal

$$
\text { distribution as } y_{t} \text {. }
$$

If (B. 1) is assumed to satisfy an infinite stationary process:
(B. 24) $y_{t}=\beta y_{t-1}+\varepsilon_{t}=\sum_{\tau=0}^{\infty} \beta^{\tau} \varepsilon_{t-\tau}$ with $\varepsilon_{t-\tau} \approx \operatorname{NID}\left(0, \sigma^{2}\right)$ and $-1<\beta<1$,
then
(B. 25) var $\left(y_{t}\right)=\sum_{\tau=0}^{\infty} \beta^{2 \tau} \operatorname{var}\left(\varepsilon_{t-\tau}\right)=\frac{\sigma^{2}}{1-\beta^{2}}$, so
(B. 26) $y_{t} \approx N\left(0, \frac{\sigma^{2}}{\left(1-\beta^{2}\right)}\right)$ and $y_{0} \approx N\left(0, \frac{\sigma^{2}}{\left(1-\beta^{2}\right)}\right)$
or the probability of obtaining a y_{o}-variable is equal to:
(B. 27$) L_{2}\left(y_{o} \mid \beta_{1} \sigma^{2}\right)=\frac{\left(1-\beta^{2}\right)^{\frac{1}{2}}}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{\left(1-\beta^{2}\right)}{2 \sigma^{2}} y_{o}^{2}\right]$
and since the $\varepsilon_{t} s(t=1, \ldots, T)$, are mutually independently normally distributed, the joint sample likelihood function is (Jacobian of transformation of ε_{t}-variables to y_{t} variables is unity):
(B. 28$) L_{2}\left(y \mid \beta, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}(T+1)}\left(1-\beta^{2}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(1-\beta^{2}\right) y_{o}^{2}+{ }_{t} \sum_{1}^{T}\left(y_{t}-\beta y_{t-1}\right)^{2}\right]\right\}$
(*) For model 1 ($y_{0}=c$), the marginal probability distribution of each observation y_{t} depends critically on the complete history of the stochastic process if $|\beta|>1$ (always possible since convergence is not postulated for model 1 and estimator (B.5) can easily satisfy: $|\hat{\beta}|>1$). Tror this model 2 $y_{0}=\frac{0}{\left(1-\beta^{2}\right)^{\frac{1}{2}}}$ with $|\beta|<1$.

Logarithmizing (B.28), necessary (first order) conditions for the maximum of the likelihood function are provided by:
(B. 29) $\left.\frac{\partial \operatorname{lnL_{2}}\left(\hat{y} \mid \beta, \sigma^{2}\right)}{\partial \beta}\right|_{\beta=\hat{\beta}}=-\frac{\hat{\beta}}{\left(1-\hat{\beta}^{2}\right)}+\frac{1}{\sigma^{2}}\left[y_{0}^{2} \hat{\beta}^{2} \sum_{t=1}^{T}\left(y_{t}-\hat{\beta}_{t-1}\right) y_{t-1}\right]=0$ and
(B. 30$)\left.\frac{\partial \operatorname{lnL}_{2}\left(y \mid \beta, \sigma^{2}\right)}{\partial \sigma^{2}}\right|_{\sigma^{2}=\hat{\sigma}^{2}}=-\frac{(T+1)}{\hat{\sigma}^{2}}+\frac{1}{\hat{\sigma}^{4}}\left[\left(1-\hat{\beta}^{2}\right) y_{o}^{2}+\sum_{t=1}^{T}\left(y_{t}-\hat{\beta}^{y} y_{t-1}\right)^{2}\right]=0$ or
(B. 31) $\sum_{t=1}^{T} y_{t} y_{t-1}=\hat{\beta} \sum_{t=1}^{T} y_{t-1}^{2}-y_{0}^{2} \hat{\beta}+\frac{\hat{\sigma}^{2} \hat{\beta}}{\left(1-\hat{\beta}^{2}\right)}$ and
(B. 32) $\hat{\sigma}^{2}=\frac{1}{T+1}\left[\left(1-\hat{\beta}^{2}\right) y_{0}^{2}+\sum_{t=1}^{T}\left(y_{t}-\hat{\beta} y_{t-1}\right)^{2}\right]=\frac{1}{T+1}\left(A-2 \hat{\beta} B+\hat{\beta}^{2} C\right)$, with
(B. 33) $A=\sum_{t=0}^{T} y_{t}^{2}, \quad B=\sum_{t=1}^{T} y_{t} y_{t-1} \quad$ and $C=\sum_{t=2}^{T} y_{t-1}^{2}$.

Substituting (B. 32) into (B. 31), and taking account of (B. 33), yields:
(B. 34) $\quad B=\hat{\beta} C+\frac{1}{T+1}\left(A-2 \hat{\beta} B+\hat{\beta}^{2} C\right) \frac{\hat{B}}{\left(1-\hat{\beta}^{2}\right)}$
and rearranging terms according to the power of $\hat{\beta}$:
(B. 35) $g(\hat{B})=\hat{B}^{3}-\frac{(T-1)}{T} \frac{B}{C} \hat{\beta}^{2}-\frac{[A+(T+1) C]}{T C} \hat{\beta}+\frac{(T+1)}{T} \frac{B}{C}=0$.

One root of this cubic equation in $\hat{\beta}$ is the real maximum likelihood estimator, say $\hat{\hat{\beta}}$, of model 2 . We may
try to investigate it by locating the three roots of $g(\hat{B})$ (*). Therefore, from (B.35), we easily determine values of $g(\hat{\beta})$ for the points $\hat{\beta}= \pm \infty$ and $\hat{\beta}= \pm 1$ successively:
(*) The roots may be determined analytically, but this is very cumbersome, and does not produce much contribution for understanding. Indeed, denoting the coefficients of the cubic equations
(B.35) by $a_{1}=-\frac{T-1}{T} \quad \frac{B}{C}$,
$a_{2}=-\frac{[A+(T+1) C]}{T C}$ and $a_{3}=\frac{T+1}{T} \frac{B}{C}$, the roots, say \hat{B}_{1}, \hat{B}_{2} and $\hat{\beta}_{3}$ may be given by:
(B. 36) $\hat{\beta}_{1}=1_{1}^{1 / 3}+1_{2}^{1 / 3} ; \hat{\beta}_{2}=a_{1} 1_{1}^{1 / 3}+a_{2} 1_{2}^{1 / 3}$ and $\hat{\beta}_{3}=a_{2} 1_{1}^{1 / 3}+a_{1} 1_{2}^{1 / 3}$, where

$$
\text { (В. 37) } 1_{1,2}=-\frac{k_{1}}{2} \pm \sqrt{\frac{1}{4} \mathrm{k}_{2}^{2}+\frac{1}{27} \mathrm{k}_{1}^{3}} .
$$

with
(B,38a) $k_{1}=-\frac{1}{3} a_{1}^{2}+a_{2}=-\frac{1}{3} \frac{(T-1)^{2}}{T^{2}} \frac{B^{2}}{C^{2}}-\frac{A+(T+1) C}{T C}$ and
(B. 38 b$) \mathrm{k}_{2}=\frac{2}{27} \mathrm{a}_{1}^{3}-\frac{1}{3} \mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{a}_{3}=\frac{2}{27}\left(\frac{\mathrm{~T}+1}{\mathrm{~T}}\right)^{3} \frac{\mathrm{~B}^{3}}{\mathrm{C}^{3}}-\frac{1}{3} \frac{(\mathrm{~T}-1)[\mathrm{A}+(\mathrm{T}+1) \mathrm{C}]}{\mathrm{T}^{2}} \frac{\mathrm{~B}}{\mathrm{C}^{2}}+\frac{\mathrm{T}+1}{\mathrm{~T}} \frac{\mathrm{~B}}{\mathrm{C}}$.

Clearly, $\hat{\beta}_{1,2}$ are real if $\frac{1}{4} k_{2}^{2}+\frac{1}{27} k_{1}^{3} \geq 0$, but as it
is implied by (b.36-38), exact computation does not gain much comprehensing about the approximate numerical value of the roots.

$$
g(\infty)=\infty \quad \text { and } g(-\infty)=-\infty
$$

(B. 39)

$$
g(1)=-\frac{(A+C)}{T C}<0 \text { and } g(-1)=\frac{A+C}{T C}>0 \text {. }
$$

or the three roots of (B. 35) satisfy:
(B. 40) $\hat{\beta}_{1}<-1<\hat{\beta}_{2}<+1<\hat{\beta}_{3} \quad\left(\hat{\beta}_{1,2}, 3\right.$ in different notation as (B. 36)), where, due to the presupposed stationarity condition for this model $2, \hat{\beta}_{2}=\hat{\beta}$ (unique maximum likelihood estimator lying in feasible region ($-1,+1$)).
For $T \rightarrow \infty$, the cubic equation (B.35) tends to:
(B.41)g $(\hat{B}) \approx \hat{B}^{3}-\frac{B}{C} \hat{\beta}^{2}-\hat{B}+\frac{B}{C}=\left(\hat{B}-\frac{B}{C}\right)\left(\hat{B}^{2}-1\right)=0$, so that the three roots of $g(\hat{B})$ are asymptotically $b_{1}=1, b_{2}=-1$ and $b_{3}=\frac{B}{C}$, or in comparison with (B. 40), the ML estimator for model 2 is asymptotically:
(B. 42) $\hat{\hat{\beta}}=b_{3}=\frac{B}{C}=\frac{\sum_{t=1}^{T} y t^{y} t-1}{\sum_{t=2}^{T} y_{t-1}^{2}}$, so that in conjunction with (B. 5),
it is found that the ML-estimators of both models 1 and 2 only differ by a term y_{0}^{2} in the denominator (\boldsymbol{x}) .

$$
\text { For } U=\sum_{t=1}^{T} y_{t} y_{t-1} \text { and } V=\sum_{t=2}^{T} y_{t-1}^{2} \text {, the joint moment }
$$

generating function (B.6) becomes for this model:
$(B .43) E_{2}[\exp (U u+V v)]=M_{2}(U, V)=\int_{-\infty}^{+\infty} \exp (U u+V v) L_{2}(y) d y$
(*) Note that the ML estimator (B. 42) can directly be derived as a weighted least squares estimator minimizing
$Q_{2}=\left(1-\beta^{2}\right) y_{0}^{2}+\sum_{t=1}^{T}\left(y_{t}-\beta y_{t-1}\right)^{2}=A-2 \beta B+\beta^{2} C \quad w \cdot r \cdot t \cdot B((B \cdot 5)$
is the unweighted least squares estimator).

$$
\begin{aligned}
& =(2 \pi)^{-\frac{1}{2}(T+1)}\left(1-\beta^{2}\right)^{\frac{1}{2}} \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} y^{\prime} D^{*} y\right) d y \\
& =\left(1-\beta^{2}\right)^{\frac{1}{2}}\left|D^{*}\right|^{-\frac{1}{2}}\left(\operatorname{see}\left(\text { В. 28) for } \sigma^{2}=1\right),\right.
\end{aligned}
$$

with D^{\star} a $(T+1) \times(T+1)$-matrix with determinant
with $p=1+\beta^{2}-2 v \quad q=-(\beta+u)$ and $\alpha=\beta^{2}$.
Expanding, as for (B.7), $D^{\star}(T+1)$ by the elements of the first row:
(B. 45) $D^{*}(T+1)=(p-\alpha) D(T)-q^{2} D(T-1)$, with $D(T)$ defined as in model 1 (see (B.11)). Combining (B.45) and (B.11) with $T^{\prime}=T+1$, we find:
(B. 46) $D^{\star}(T+1)=D^{\star}\left(T^{\prime}\right)=(p-\alpha) D\left(T^{\prime}-1\right)-q^{2} D\left(T^{\prime}-2\right)=D\left(T^{\prime}\right)-\alpha D\left(T^{\prime}-1\right)$, and defining:
(B. 47) $D^{\star}\left(T^{\prime}, i, j\right)=\left.\frac{\partial}{\partial \alpha^{j}}\left(\left.\frac{\partial D\left(T^{\prime}\right)}{\partial x^{i}}\right|_{x=\alpha}\right)\right|_{\alpha=0}$
while expanding the integrands in their Mac Laurin series as in model 1 , we obtain:
(B. 48) $\frac{\mathrm{E}_{2}\left(\hat{B}^{(}\right)}{\beta}=Q_{2}(0)+Q_{2}^{\prime}(0) \alpha+Q_{2}^{\prime \prime}(0) \frac{\alpha^{2}}{2}+\ldots .$. or (B. 49) $E_{2}(\hat{\hat{B}})=\left(1-\frac{2}{(T+1)}+\frac{4}{(T+1)^{2}}-\frac{2}{(T+1)^{3}}\right) \beta+\frac{2 \beta^{3}}{(T+1)^{2}}+\frac{2 \beta^{5}}{(T+1)^{2}}+\ldots=$

$$
\left(1-\frac{2}{T+1}\right) \beta+O\left(B T^{-2}\right)
$$

$\Delta-$
B. 2 The bias and inconsistency of the O.L.S. autoregression estimators in autoregressive models.

Theorem B. 2

If the i'th equation of an M-equation model satisfies:
$(B .50) y_{i}(t)=\gamma_{i 11} y_{i}(t-1)+\varepsilon_{i}(t)$ with $\varepsilon_{i}(t)=\rho_{i} \varepsilon_{i}(t-1)+\eta_{i}(t) V_{t}^{i}, 2, \ldots, T$
with $\eta_{i}(t) \approx\left(0, \sigma_{i i}\right)$ and $y_{i}(0)=\varepsilon_{i}(0)=0$ or stochastic, then the OLS estimators of $\gamma_{i 1}$ and ρ_{i} are inconsistent.

Proof 1. The OLS-estimator of $\gamma_{i 1}$ is neither unbiased nor consistent:
From (B.5), the OLS-estimator of $\gamma_{i l}$ is given by:
(B. 51) $\hat{\gamma}_{i 1}=\frac{\sum_{t=1}^{T} y_{i}(t) y_{i}(t-1)}{\sum_{t=1}^{T} y_{i}^{2}(t-1)}=\frac{\sum_{t=2}^{T} y_{i}(t) y_{i}(t-1)}{\sum_{t=2}^{T} y_{i}^{2}(t-1)} \quad$ (see also (B. 42)).

Elimination of the serially correlated disturbances in (B. 50):
$(B .52) y_{i}(t)=\gamma_{i 11} y_{i}(t-1)+\rho_{i} y_{i}(t-1)-\gamma_{i 1} \rho_{i} y_{i}(t-2)+\eta_{i}(t) \quad$,
which multiplied with $y_{i}(t-1)$ and summed w.r.t.tgives:
(B. 53) $\sum_{t=2}^{T} y_{i}(t) y_{i}(t-1)=\left(\gamma_{i 1}+\rho_{i}\right) \sum_{t=2}^{T} y_{i}^{2}(t-1)-\gamma_{i 1} \rho_{i} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2)$

$$
+\sum_{t=2}^{T} \eta_{i}(t) y_{i}(t-1)
$$

or from (B.51)
(B. 54) $\hat{\gamma}_{i 1}=\gamma_{i 1}+\rho_{i}-\gamma_{i 1} \rho_{i} \frac{\sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2)}{\sum_{t=2}^{T} y_{i}^{2}(t-1)}+\frac{\sum_{t=2}^{T} \eta_{i}(t) y_{i}(t-1)}{\sum_{t=2}^{T} y_{i}^{2}(t-1)}$,
from which it is seen that the bias of the O.L. S.estimator $\gamma_{i 1}$ does not tend to zero if the number of observations grows indefinitely.

Indeed, the first ratio in (B. 54) has the same probability limit as $\gamma_{i l}$ and the second ratio tends in probability to zero, so that:
(B. 55) $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} \lim _{\mathrm{Y}}} \hat{\gamma}_{i 1}=\frac{\gamma_{i 1} \rho_{i}}{1+\rho_{i 1} \rho_{i}}$, which does not tend to $\gamma_{i 1}$, even if ρ_{i} is small (unless $\rho_{i}=0$). Therefore, as long as the disturbances of an autoregressive model are autocorrelated, the OLS-estimator of $\gamma_{i l}$ is inconsistent
2. The ols-estimator of ρ_{i} is biased and inconsistent.

Since the disturbance terms $\varepsilon_{i(t)}$ are in fact unobservable, the autocorrelation parameter is estimated from $\hat{\varepsilon}_{i}(t)=r_{i} \hat{\varepsilon}_{i}(t-1)+\eta_{i}(t) \quad$ with oLS-estimator: $\frac{\sum_{t=1}^{T} \hat{\varepsilon}_{i}(t) \hat{\varepsilon}_{i}(t-1)}{\sum_{t=1}^{T} \hat{\varepsilon}_{i}^{2}(t-1)}$
and assuming that the autoregressive process of the residuals satisfies an infinite stationary process $\left(\left|r_{i}\right|<1\right)$:
(B. 57) $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} \lim _{\mathrm{T}}} \frac{1}{\mathrm{~T}} \sum_{\mathrm{t}}^{\mathrm{T}} \mathrm{E}_{1}^{\mathrm{\varepsilon}}{ }_{\mathrm{i}}^{2}(\mathrm{t}-1)=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p}} \lim _{\mathrm{T}-1} \frac{1}{\mathrm{~T}=2} \sum_{\mathrm{i}}^{\mathrm{T}} \hat{\varepsilon}_{\mathrm{i}}^{2}(\mathrm{t}-1)$
$=\underset{T \rightarrow \infty}{p} \lim _{T-1} \frac{1}{T-1} \sum_{t=2}^{T} y_{i}^{2}(t-1)-2 \underset{T \rightarrow \infty}{p l i m}\left(\hat{\gamma}_{i 1}\right) \underset{T \rightarrow \infty}{p l i m} \frac{1}{T-1} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2)+$

$$
\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} \lim _{\mathrm{T}-1} \frac{1}{\mathrm{~T}} \sum \mathrm{y}_{\mathrm{i}}^{2}(\mathrm{t}-2) \underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} 1 \mathrm{im}}\left(\hat{\gamma}_{\mathrm{i},}^{2}\right)}
$$

$=\left[1-\underset{T \rightarrow \infty}{\operatorname{plim}\left(\hat{\gamma}_{i 1}\right)}\right]^{2} \sigma_{y}^{2} \quad$ and
(B. 58) $\sum_{t=1}^{T} \hat{\varepsilon}_{i}(t) \hat{\varepsilon}_{i}(t-1)=\sum_{t=1}^{T} y_{i}(t) y_{i}(t-1)-\hat{\gamma}_{i 1} \sum_{t=1}^{T} y_{i}^{2}(t-1)-\hat{\gamma}_{i 1} \sum_{t=2}^{T} y_{i}(t) y_{i}(t-2)$

$$
\begin{gathered}
+\hat{\gamma}_{i 1}^{2} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2) \\
=-\hat{\gamma}_{i 1} \sum_{t=2}^{T} y_{i}(t) y_{i}(t-2)+\hat{\gamma}_{i 1}^{2} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2) .
\end{gathered}
$$

Proceeding in the same way as for determining the glim of $\hat{\gamma}_{i 1}$, equation (B.52) may be multiplied with $y_{i}(t-2)$ and sun med w.r.t.t (and divided by $T-1$):
(B. 59$) \frac{1}{T-1} \sum_{t=2}^{T} y_{i}(t) y_{i}(t-2)=\left(\gamma_{i 1}+\rho_{i}\right) \frac{1}{T-1} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2)-$

$$
\gamma_{i 1} \rho_{i} \frac{1}{T-1} \sum_{t=2}^{T} y_{i}^{2}(t-2)+\frac{1}{T-1} \sum_{t=2}^{T} \eta_{i}(t) y_{i}(t-2)
$$

so that subtracting $\hat{\gamma}_{i} \frac{1}{T-1} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2)$ from both sides of (B.59) and transforming to glim's:
(B. 60) p $\underset{T \rightarrow \infty}{ } 1 i^{T-1} \sum_{t=2}^{T} y_{i}(t) y_{i}(t-2)-\underset{T \rightarrow \infty}{p} 1 i m \frac{1}{T-1} \hat{\gamma}_{i} \sum_{t=2}^{T} y_{i}(t-1) y_{i}(t-2)$ $=\left[\left(\gamma_{i 1}+\rho_{i}-\underset{T \rightarrow \infty}{p 1 i m} \hat{\gamma}_{i 11}\right) \underset{T \rightarrow \infty}{p \operatorname{im}} \hat{\gamma}_{i 1}-\gamma_{i 1} \rho_{i}\right] \sigma_{y}^{2}$ or, from (B. 58) and (B.60):
(B.61) $\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{1}{T-1} \underset{t=1}{T} \hat{\varepsilon}_{i}(t) \hat{\varepsilon}_{i}(t-1)=-\underset{T \rightarrow \infty}{\operatorname{plim}} \hat{\gamma}_{i 1}\left[\left(\gamma_{i 1}+\rho_{i}-\underset{T \rightarrow \infty}{p 1 i m} \hat{\gamma}_{i 1}\right) \underset{T \rightarrow \infty}{p 1 i m} \hat{\gamma}_{i 1}-\gamma_{i 1} \rho_{i}\right] \sigma_{y}^{2}$, so that substituting $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \hat{\gamma}_{\mathrm{il}}$ by (B.55) in (B.61) and (B.57) :
 (B. 63) $\underset{\mathrm{T} \rightarrow \infty}{\operatorname{pim}}\left(\hat{\gamma}_{\mathrm{i} 1}+\hat{\rho}_{\mathrm{i}}\right)=\gamma_{\mathrm{i} 1}+\rho_{\mathrm{i}}$.

Hence the estimation of ρ_{i} by $\hat{\rho}_{i}$ entails an inconsistency which is exactly apposite to that generated in the estimation of $\gamma_{i 1}$ by $\hat{\gamma}_{i 1}$.
$\Delta \Delta$

The expressions (B. 55), (1.62) and (B.63) imply that for large samples:
$-\gamma_{i 1}$ underestimates $\gamma_{i 1}$ for $\rho_{i}<0$ and overestimates $\gamma_{i 1}$ for $\rho_{i}>0$;
$-\hat{r}_{i}=\hat{\rho}_{i}$ underestimates r_{i} and so ρ_{i} (since the autocorre-
lation of the residuals $\hat{E}_{i}(t)$ is more moderate than the autocorrelation of the error terms $\left.\varepsilon_{i}(t)\right)$ if $\rho_{i}>0$ and overestimates the negative autocorrelation.

The inconsistency is reduced in magnitude if one or more exogenous variables appear among the explanatory variables of the $i^{\prime} t h e q u a t i o n . ~ H o w e v e r, ~ i t ~ o n l y ~ d i s a p p e a r s ~ i f ~ t h e ~ d i s t u r b a n c e s ~$ $\varepsilon_{i}(t)$ are not generated by a stochastic autoregressive process. This will be the subject of the next paragraph.

B2 $2 \cdot \underline{2}$ _first order_autoregression_and autocorrelation with
exogenous_variables.

Theorem B. 3
The OLS-estimator of the autoregressive parameter $y_{i l}$ in the equation:
$(B .64) y_{i}(t)=\alpha_{i 1} z_{i 1}(t)+\gamma_{i 11} y_{i}(t-1)+\varepsilon_{i}(t) w i t h \quad \varepsilon_{i}(t)=o_{i} \varepsilon_{i}(t-1)+n_{i}(t)$
is biased and inconsistent with inconsistency amounting to:
(B.65) Inc $\left(\hat{\gamma}_{i 1}\right)=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \hat{\gamma}_{i 1}-\gamma_{i 1}=\frac{\rho_{i}\left(1-\gamma_{i 1}^{2}\right)}{\left(1+\gamma_{i 1}{ }_{i}\right)} \cdot \frac{1}{1+\frac{\alpha_{i 1}^{2} \sigma^{2} v_{i(-1)}^{2} \cdot z_{i 1}}{\sigma_{w_{i}}^{2}}}$, with

$$
\begin{align*}
& \sigma_{\left.v_{i(-1}\right)^{z}{ }_{i l}}^{2}=t h a t \text { part of the variance of } v_{i}(t-1)=\sum_{\tau=0}^{\infty} \gamma_{i 1}^{\tau} z_{i 1}(t-1-\tau) \\
& \text { (} \forall t \text {) which is not associated with the } \\
& \text { variance of } z_{i!}(t)(i . e . t h a t \text { part of the variance } \\
& \text { being uncorrelated with } z_{i 1} \text {) } \\
& \sigma_{w_{i}}^{2} \quad=\text { variance of } w_{i}(t)=\sum_{\tau=0}^{\infty} \gamma_{i 1}^{\tau} \varepsilon_{i}(t-\tau) \quad(\forall t) \tag{*}
\end{align*}
$$

Proof

Since (B.64) or
$(B .67) y_{i}(t)=\alpha_{i 1} z_{i 1}(t)+y_{i 1} y_{i}(t-1)+p_{i} \varepsilon_{i}(t-1)+\eta_{i}(t)$
(*) Or, from (B.64):
$(B .66) y_{i}(t)=\alpha_{i 1} \sum_{\tau=0}^{\infty} \gamma_{i 1}^{\tau} z_{i 1}(t-\tau)+\sum_{\tau=0}^{\infty} \gamma_{i 1}^{\tau} \varepsilon_{i}(t-\tau)=\alpha_{i 1} v_{i}(t)+w_{i}(t)$
is the "true" equation and, erroneously,
(B. 68) $y_{i}(t)=a_{i 1} z_{i 1}(t)+c_{i 1} y_{i}(t-1)+u_{i}(t)$ is estimated by OLS.
assuming $u_{i}(t) \approx\left(0, s_{i i}\right)$, we may consider (B.68) as a "misspecified" equation of the "true" relationship (B.76) (*)
(*) In general, the formula for (finite or asymptotic) specification bias and specification inconsistency may be derived as follows:
Consider the true model:
(B. 69) $y_{i}=X_{i} \beta_{i}+\varepsilon_{i}(i=1,2, \ldots, M)$ with initial assumptions $E\left(\varepsilon_{i}\right)=0$, $E\left(\varepsilon_{i} \varepsilon_{i}^{\prime}\right)=\sigma_{i i} I_{T}$ and the columns of X_{i} statistically independent of ε_{i} (always if X_{i} non stochastic)
and the misspecified model:
(B. 70) $y_{i}=\bar{X}_{i} b_{i}+e_{i}$ with $E\left(e_{i}\right)=0, E\left(e_{i} e_{i}^{\prime}\right)=s_{i i} I_{T}$ and the columns of

$$
\overline{\mathrm{x}}_{\mathrm{i}} \text { independent of } \varepsilon_{\mathrm{i}}
$$

Then:
(B.71)E $\left(\hat{b}_{i}\right)=E\left[\left(\bar{x}_{i}^{\prime} \bar{x}_{i}\right)^{-1} \bar{x}_{i}^{\prime} y_{i}\right]=E\left[\left(\bar{x}_{i}^{\prime} \bar{x}_{i}\right)^{-1} \bar{x}_{i}^{\prime} x_{i}\right] \beta_{i}=P_{i} \beta_{i} \quad$,
with $\left(\bar{X}_{i}^{\prime} \bar{X}_{i}\right)^{-1} \bar{X}_{i}^{\prime} X_{i}{ }^{\text {a }}$ matrix of regression coefficients in the set of "auxiliary" OLS-regressions of each x in X_{i} on all the $\bar{x}^{\prime} s$ in \bar{X}_{i} or
(B.72) bias $\left(\hat{b}_{i}\right)=E\left(\hat{b}_{i}\right)-\beta_{i}=\left(P_{i}-I_{k_{i}}\right) \beta_{i} \quad$ and

For the above problem (B.67-B.68), one relevant variable, say $x_{i k}(t)=\varepsilon_{i}(t-1)$ has been left out, so that there is only one nonitrivial "auxiliary" regression, that of $x_{i, k}$ on all the included variables:
(B. 74) $x_{i, k_{i}}=p_{i 11} x_{i 1}+p_{i 2} x_{i 2}+\ldots .+p_{i, k_{i}-1} x_{i, k_{i}-1}+v_{i}$
(the other equations are identities), so that the $\left(\bar{X}_{i}^{\prime} \bar{X}_{i}\right)^{-1} \bar{X}_{i}^{\prime} X_{i}-$ matrix can be partitioned into an identity matrix and a column vector of the p_{i}-values or $P_{i}=\left(I_{k_{i}}-1, P_{i}\right)$ or
(B.75)E($\left.\hat{b}_{i}\right)=\beta_{i}+p_{i} \beta_{i, k_{i}}$ with $\left(\beta_{i}, \beta_{i, k_{i}}\right)=\beta_{i}, \beta_{i}$ having $\left(k_{i}-1\right)$ elements or (B.76)bias $\left(\hat{b}_{i}\right)=\beta_{i, k_{i}} p_{i}$, and due to the lagged dependent variable in X_{i}, (B. 77) inc $\left(\hat{b}_{i}\right)=\beta_{i, k_{i}}{ }^{p}$.

From (B. 73) and (B. 77), the plim of the OLS-estimator $\hat{c}_{i 1}$ is: (B.78) plim $\hat{\mathrm{c}}_{\mathrm{T} \rightarrow \infty}=\gamma_{\mathrm{il}}+\rho_{\mathrm{i}}^{\mathrm{p}} \underset{\mathrm{T} \rightarrow \infty}{ } \lim _{\mathrm{i} 2}$, where $\hat{\mathrm{p}}_{\mathrm{i} 2}$ is the regression coefficient of $y_{i}(t-1)$ in the auxiliary regression of $\varepsilon_{i}(t-1)$ on $z_{i 1}(t)$ and $y_{i}(t-1)$.
$\underset{\mathrm{T} \rightarrow \infty}{\text { But since }} \underset{\mathrm{T}=1}{\mathrm{~B} .79) \mathrm{plim} \frac{1}{T}} \sum_{\mathrm{i}}(\mathrm{t}-1) \mathrm{z}_{\mathrm{il}}(\mathrm{t})=0$ and $\hat{\mathrm{p}}_{\mathrm{i} 2}=\mathrm{b}_{\varepsilon_{i}}(-1) \mathrm{y}_{\mathrm{i}}(-1) \cdot z_{i 1}=$
${ }^{\mathrm{b}} \varepsilon_{i}(-1) \mathrm{y}_{\mathrm{i}}(-1)^{-\mathrm{b}} \varepsilon_{\mathrm{i}}(-1) \mathrm{z}_{\mathrm{i} 1}{ }^{\mathrm{b}} \mathrm{z}_{\mathrm{i} 1} \mathrm{y}_{\mathrm{i}}(-1)$

$$
1-r_{y_{i}}^{2}(-1) z_{i 1}
$$

and because

$$
\operatorname{plim}_{T \rightarrow \infty} \frac{\sum_{t=1}^{T} \sum_{i}^{T} \varepsilon_{i}(t-1) y_{i}(t-1)}{\frac{1}{T} \sum_{t=1}^{T} y_{i}^{2}(t-1)}
$$

$$
\text { (B. 81) } \underset{T \rightarrow \infty}{\mathrm{plim}} \frac{1}{\mathrm{~T}} \sum_{t=1}^{\mathrm{T}} z_{i 1}(\mathrm{t}) \varepsilon_{i}(\mathrm{t})=0 \text { (see also }(B .80) \text {) and }
$$

$$
\operatorname{plim}_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_{i}(t) \varepsilon_{i}(t-1)=\rho_{i} \sigma_{\varepsilon_{i}}^{2} \text { and by (B.66): }
$$

$$
\text { (B. 82) } \underset{T \rightarrow \infty}{ } \lim _{T \rightarrow} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_{i}(t) y_{i}(t)=\underset{T \rightarrow \infty}{p} \lim _{t=1}^{T} \varepsilon_{i}(t-1) y_{i}(t-1)=
$$

$$
\begin{gathered}
\sum_{\tau=0}^{\infty} \gamma_{i 1}^{\tau} \underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}-\frac{1}{\mathrm{~T} t=1} \sum_{i}^{\mathrm{T}} \varepsilon_{i}(\mathrm{t}) \varepsilon_{\mathrm{i}}(\mathrm{t}-\tau} \\
=\sum_{\tau=0}^{\infty} \gamma_{i 11}^{\tau} \rho_{i}^{\tau} \sigma_{\varepsilon_{i}}^{2}=\frac{\sigma_{\varepsilon}^{2}}{\left(1-\gamma_{i 1} \rho_{i}\right)} \text { (stationarity), }
\end{gathered}
$$

and since the probability limit of a ratio can be written as a ratio of probability limits (*), (B. 80) becomes:
(*) See Slutsky's theorem, e.g. in H.Cramèr, [6], p. 255 .

$$
\frac{\sigma_{i}^{2}}{\left(1-\gamma_{i 1} \rho_{i}\right)} \frac{1}{\sigma_{y_{i}(-1)}^{2}\left(1-r_{y_{i}}^{2}(-1) z_{i 1}\right)}
$$

or substituted into (B.78):
(B.84) $\underset{\mathrm{T} \rightarrow \infty}{ } \lim _{\mathrm{i} 11} \hat{\mathrm{c}}_{\mathrm{T} \rightarrow \infty}^{\mathrm{p} \lim _{\mathrm{i} 1}} \hat{\gamma}_{\mathrm{il}}+\frac{\rho_{\mathrm{i}}}{\left(1-\gamma_{\mathrm{i} 1} \rho_{\mathrm{i}}\right)} \frac{\sigma_{\varepsilon_{i}}^{2}}{\sigma_{\mathrm{y}_{\mathrm{i}}(-1)}^{2}\left(1-r_{\left.y_{i}(-1) z_{i 1}^{2}\right)}\right.}$,
or the magnitude of the inconsistency depends upon ρ_{i} and the relative importance of ε_{i} :
(B.85)inc $\left(\hat{\gamma}_{i 1}\right)=\operatorname{plim}_{\mathrm{T} \rightarrow \infty} \hat{\gamma}_{\mathrm{i} 1}-\gamma_{\mathrm{i} 1}=\frac{\rho_{\mathrm{i}}}{\left(1-\gamma_{i 1} \rho_{i}\right)} \frac{\sigma_{\varepsilon_{i}}^{2}}{\sigma_{y_{i}(-1)}^{2}\left(1-r_{y_{i}(-1) z_{i 1}}^{2}\right)}=$

$$
\frac{\rho_{i}}{\left(1-\gamma_{i 1} \rho_{i}\right)} \frac{\sigma_{\varepsilon_{i}^{2}}^{\sigma_{y_{i}}^{2}(-1) z_{i 1}}}{}
$$

$$
\sigma_{y_{i}}^{2}(-1) z_{i 1} \text { being the part of the variance of } y_{i}(-1) \text { which is }
$$ uncorrelated with the variation of $z_{i 1}$, so that from equation (B.66) and the expression for the asymptotic variance of $w_{i}(t)=\sum_{\tau=0}^{\infty} \gamma_{i 1}^{\tau} \varepsilon_{i}(t-\tau)$, the inconsistency (B. 65) is obtained. Therefrom, it is clear that $\hat{\gamma}_{i l}$ will asymptotically overestimate $\gamma_{i 1}$ as long as $\rho_{i}>0$ (see also opposite inconsistency in previous model:(B.63)).

Corollary B I The introduction of an exogenous variable $z_{i} r^{-}$ duces the absolute value of the inconsistency of the OLS estimator $\hat{\gamma}_{i 1}$.
Proof. From the expression (B. 55), the inconsistency of $\hat{\gamma}_{i l}$ for equation (B.50) is:
(1.86) $\operatorname{Inc}\left(\hat{\gamma}_{i 1}\right)=\frac{\rho_{i}\left(1-\gamma_{i 1}^{2}\right)}{\left(1+\gamma_{i 1} \rho_{i}\right)}$, which is larger in absolute value $t \tan$ (B .65) ($\boldsymbol{*}$). Δ

Cutullary B 2 If the observations of the exogenous variable $z_{i l}$ also follow a 1 st order Markov scheme with parameter R_{i}, the expression (B.65) for inc $\left(\hat{\gamma}_{i 1}\right)$ becomes:

$$
\begin{equation*}
\left(\text { L. Q7) Tnc }\left(\gamma_{i 1}\right)=\frac{\rho_{i}\left(i-\gamma_{i 1}^{2}\right)}{\left(1+\gamma_{i 1} \rho_{i}\right)} . \frac{1}{\left(1+\frac{\alpha_{i 1}^{2} \sigma_{z}^{2}}{\sigma_{\varepsilon_{i 1}}^{2}}\right) \frac{\left(1-R_{i}^{2}\right)\left(1-\gamma_{i 1} p_{i}\right)}{\left(1-\gamma_{i 1} R_{i}\right)^{2}\left(1+\gamma_{i 1} \rho_{i}\right)}}\right. \tag{xt}
\end{equation*}
$$

$$
\underline{\mathrm{i}} \cdot \mathrm{~s}-\mathrm{of}-\underline{\mathrm{a}}-2 \mathrm{nd} \text { order model }
$$

Theorem B. 4
If the true equation is the 2 nd order autoregressive lag scheme:
(B. $88 ; y_{i}(t)=\alpha_{i 1} z_{i 1}(t)+\gamma_{i 1} y_{i}(t-1)+\gamma_{i 2} y_{i}(t-2)+\varepsilon_{i}(t)$
but a first order model is estimated instead (by OLS):
(B. 89) $y_{i}(t)=a_{i 11} z_{i 1}(t)+c_{i 11} y_{i}(t-1)+u_{i}(t)$
where the $z_{i l}(t)$ form a stationary and serially uncorrelated process and the disturbances may be uncorrelated or correlated, stationary or instationary, then the probability limit of the O.L.S. estimator of $c_{i 1}$ is equal to:

Proof. From the stationarity and the serial uncorrelation of $z_{i} \cdot(t): \sigma_{y(-1)}^{2}=\sigma_{y}^{2} \quad$ and

(*) Only if $\alpha_{i 1}=0$, i.e. if there is no exogenous variable in (B. 64), both inconsistencies are equal.
(**) The proof is left for the reader.
$=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \mathrm{b}=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \hat{\mathrm{c}}_{\mathrm{i} 1}=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \hat{\mathrm{r}}_{\mathrm{il}}$ or from (B.73) and(B.77):
(B.92) $\underset{\mathrm{T} \rightarrow \infty}{\lim } \hat{\gamma}_{\mathrm{i} 1}=\gamma_{i 1}+\gamma_{\mathrm{i} 2} \underset{\mathrm{~T} \rightarrow \infty}{\mathrm{plim}} \hat{\gamma}_{\mathrm{i} 1}=\frac{\gamma_{\mathrm{i} 1}}{1-\gamma_{\mathrm{i} 2}}($ see also (B.78)) Δ
B. 3 The consistency and asymptotic (in) efficiency of the feasible Aitken estimator in autoregressive autocorrelated models.

Theorem B 5.
If Aitken's G.L.S. is utilized (equation by equation) using a consistent estimate of the error variance-covariance matrix (say by instrumental variables), then the resulting estimates are consistent but not asymptotic efficient if (a) lagged dependent variable(s) occur(s) among the explanatory variables. Proof. (*)

Consider the i^{\prime} th equation:
$($ B. 93$) y_{i}(t)=\alpha_{i 1} z_{i 1}(t)+\gamma_{i 1} y_{i}(t-1)+\varepsilon_{i}(t-1)$ with $\varepsilon_{i}(t)=p_{i} \varepsilon_{i}(t-1)+\eta_{i}(t)$

the matrix of observations of the explanatory variables in the $i^{\prime} t h$ equation $(i=1,2, \ldots, M)$.
(i) If ρ_{i} and hence $\Omega_{i f}$ are known, the Aitken estimator of $\alpha_{i l}$ and $Y_{i 1}$, being
(B. 94$)\left(\begin{array}{l}\tilde{\alpha}_{i 1} \\ \tilde{\gamma}_{i 1} \\ \tilde{\gamma}_{i 1}\end{array}\right)=\left[\binom{z_{i 1}^{\prime}}{y_{i}^{\prime}(-1)} \Omega_{i i}^{-1}\left(z_{i 11}, y_{i}(-1)\right)\right]^{-1}\binom{z_{i 1}^{\prime}}{y_{i}^{\prime}(-1)} \Omega_{i i_{i}^{-1} y_{i}}$
or
(B. 95) $\tilde{\beta}_{i}=\left(X_{i}^{\prime} \Omega_{i i}^{-1} X_{i}\right)^{-1} X_{i}^{\prime} \Omega_{i i}^{-1} y_{i} \quad$ with
(*) See also T. Amemiya and W.Fuller [1], Section 5, pp 520-523 and K.Wallis [24], Appendix, pp. 566-567.
$(B .96) \Omega_{i i}^{-1}=\frac{1}{\sigma_{i i}}\left[\begin{array}{cccccc}1 & -\rho_{i} & 0 & \ldots . & 0 & 0 \\ -\rho_{i} & 1+\rho_{i}^{2} & -\rho_{i} & \ldots . & 0 & 0 \\ 0 & -\rho_{i} & 1+\rho_{i}^{2} & \ldots . & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \ldots .1+\rho_{i}^{2} & -\rho_{i} \\ 0 & 0 & 0 & \ldots . & -\rho_{i} & 1\end{array}\right]$
is BLUE, consistent and asymptotically efficient if the error term ε_{i} is assumed to be multivariate normally distributed. Then the asymptotic variance-covariance matrix of $\sqrt{ } T\left(\tilde{\alpha}_{i 1}{ }^{-\alpha_{i 1 l}}\right)$ and $\checkmark T\left(\tilde{\gamma}_{i 1}{ }^{-\gamma_{i 1}}\right)$ is given by :

(ii) If ρ_{i} (and/or $\sigma_{i i}$) is not known, then a consistent estimate $\Omega_{i i}$ of $\Omega_{i i}$ may be used to obtain:
(B.98) $\hat{\hat{\beta}}_{i}=\binom{\hat{\hat{\alpha}}_{i 1}}{\hat{\hat{\gamma}}_{i 1}}=\left(X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} x_{i}\right)^{-1} X_{i}^{\prime} \hat{\Omega}_{i i^{-1}} y_{i}$

$$
=\left[\binom{z_{i 1}^{\prime}}{y_{i}^{\prime}(-1)} \hat{\Omega}_{i i}^{-1}\left(z_{i 1^{y}}^{\left.y_{i}(-1)\right)}\right]^{-1}\binom{z_{i 1}^{\prime}}{y_{i}(-1)} \hat{\Omega}_{i i_{i}^{-1} y_{i}}\right.
$$

with sampling error:
(B.99) $\hat{\hat{\beta}}_{i}-\beta_{i}=\left(X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} X_{i}\right)^{-1} X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} \varepsilon_{i}$, and by Slutsky's theorem (*)

$$
=\underset{T \rightarrow \infty}{\operatorname{plim}}\left(\frac{X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} X_{i}}{T}\right)^{-1} \underset{T \rightarrow \infty}{\operatorname{plim}} \frac{x_{i}^{\prime} \hat{\Omega}_{i i}^{-1} \varepsilon_{i}}{\sqrt{T}}
$$

Now, we shall evaluate the two probability limits of the r.h.s. of (B. 100) upto order $0\left(\mathrm{~T}^{-\frac{1}{2}}\right.$).
(1.) First, consider the second plim.

Expanding $\hat{\Omega}_{i i}^{-1}$ in a Taylor series about ρ_{i} yields:
(*)See footnote on p. 82
(B. 101$) \hat{\Omega}_{\mathrm{ii}}^{-1}=\Omega_{\mathrm{ii}}^{-1}+\frac{\partial \Omega_{i \mathrm{i}}^{-1}}{\partial \rho_{i}}\left(\hat{\rho}_{\mathrm{i}}-\rho_{\mathrm{i}}\right)+0\left(\hat{\rho}_{\mathrm{i}}-\rho_{\mathrm{i}}\right)^{2}$

$$
=\Omega_{i i}^{-1}+\frac{\partial \Omega_{i i}^{-1}}{\partial \rho_{i}}\left(\hat{\rho}_{i}-\rho_{i}\right)+0\left(\frac{1}{T}\right) \quad \text { (*) or }
$$

(B. 102) $\frac{X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} \varepsilon_{i}}{\sqrt{T}}=\frac{X_{i}^{\prime} \Omega_{i i}^{-1} \varepsilon_{i}}{\sqrt{T}}+\sqrt{T}\left(\hat{\rho}_{i}-\rho_{i}\right) \frac{X_{i}^{\prime}\left(\frac{\partial \Omega_{i i}^{-1}}{\partial \rho_{i}}\right) \varepsilon_{i}}{T}+0\left(\frac{1}{\sqrt{T}}\right)$.

Since the (2×1)-matrix $X_{i}^{\prime}\left(\frac{\partial \Omega_{i i}^{-1}}{\partial \rho_{i}}\right) x_{i}$ can be written as:
(B. 103)

$$
=\frac{1}{\sigma_{i i}}\binom{z_{i 1}(1), z_{i 1}(2), \ldots ., z_{i 1}(T)}{y_{i}(0), y_{i}(1), \ldots, y_{i}(T-1)}\left(\begin{array}{l}
-\varepsilon_{i}(2) \\
-\varepsilon_{i}(1)+2 \rho_{i} \varepsilon_{i}(2)-\varepsilon_{i}(3) \\
-\varepsilon_{i}(2)+2 \rho_{i} \varepsilon_{i}(3)-\varepsilon_{i}(4) \\
\vdots \\
\vdots \\
-\varepsilon_{i}(T-2)+2 \rho_{i} \varepsilon_{i}(T-1)-\varepsilon_{i}(T) \\
\varepsilon_{i}(T-1)
\end{array}\right) \text {. }
$$

from which it is seen that the 2 nd element involves terms as
(*) Because $\hat{\rho}_{i}$ is assumed to be a consistent estimator of ρ_{i} such that $\hat{\rho}_{i}-\rho_{i}=0\left(T^{-\frac{1}{2}}\right)$

$$
\begin{aligned}
& X_{i}^{\prime}\left(\frac{\partial \Omega_{i i}^{-1}}{\partial \rho_{i}}\right) \varepsilon_{i}=\frac{1}{\sigma_{i i}}\left(\begin{array}{l}
z_{i 1}(1), z_{i 1}(2), \ldots, z_{i 1}(T), y_{i}(1), \ldots, y_{i}(T-1)
\end{array}\right) \\
& {\left[\begin{array}{cccccc}
0 & -1 & 0 & 0 \ldots . . & 0 & 0 \\
-1 & 2 p_{i}-1 & 0 \ldots . . & 0 & 0 \\
0 & -1 & 2 p_{i} & -1 \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \vdots & \vdots \\
0 & 0 & 0 & 0 \ldots \rho_{i} & -1 \\
\vdots
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{i}(1) \\
\varepsilon_{i}(2) \\
\varepsilon_{i}(3) \\
\vdots \\
\varepsilon_{i}(T)
\end{array}\right]}
\end{aligned}
$$

$y_{i}(t) \varepsilon_{i}(t), y_{i}(t) \varepsilon_{i}(t+1)$ and $y_{i}(t) \varepsilon_{i}(t+2)$ which are assumed to converge in probability to resp.
$\frac{\sigma_{i}}{\left(1-\gamma_{i 1} \rho_{i}\right)}, \frac{\rho_{i} \sigma_{i}^{2}}{\left(1-\gamma_{i 1} \rho_{i}\right)}$ and $\frac{\rho_{i}^{2 \sigma_{\varepsilon_{i}}^{2}}}{\left(1-\gamma_{i 1} \rho_{i}\right)}(\sec ($ B. 81$)$ and (B. 82):stationarity) or
$\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p}_{\mathrm{T}} \mathrm{m}_{\mathrm{T}} \mathrm{X}_{\mathrm{i}}^{\prime}\left(\frac{\partial \Omega_{\mathrm{i}}^{-1}}{\partial \rho_{\mathrm{i}}}\right) \varepsilon_{\mathrm{i}}}$

$=\frac{1}{\sigma_{i i} \lim _{\mathrm{T} \rightarrow \infty} \mathrm{T}}\left[\begin{array}{c}\rho \\ \left.-\frac{\rho_{i}^{2} \sigma_{\varepsilon_{i}}^{2}}{\left(1-\gamma_{i 1} \rho_{i}\right)}+(T-2) \frac{\left(\rho_{i}^{2} \sigma_{\varepsilon_{i}}^{2}-\sigma_{\varepsilon_{i}}^{2}\right.}{\left(1-\gamma_{i 1} \rho_{i}\right)}-\frac{\sigma_{\varepsilon_{i}}^{2}}{\left(1-\gamma_{i 1} \rho_{i}\right)}\right]\end{array}\right]$
$\left.=\frac{1}{\sigma_{i i t \rightarrow \infty}} \lim _{\operatorname{T}}\left[\begin{array}{c}o \\ {\left[T\left(\rho_{i}^{2}-1\right)-3 \rho_{i}^{2}+1\right.}\end{array}\right] \sigma_{i i}\left(1-\rho_{i}^{2}\right)^{-1}\left(1-\gamma_{i 1} \rho_{i}\right)^{-1}\right]$
$=\left[\begin{array}{c}0 \\ -1 \\ \left(1-\gamma_{i 1} \rho_{i}\right)\end{array}\right]$
$\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{1}{T} \sum_{\tau=1}^{T} z_{i 1}(t) \varepsilon_{i}(t-\tau)=0 \quad(\tau=0,1,2, \ldots)$
(*) So, the expression (B. 104) completely vanishes if the set of explanatory variables in the i 'th equation consists only of variables which are asymptotically uncorrelated with the disturbance vector ε_{i}.

Or, from equations (B.102) and (B.104), we find that

$$
\frac{X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} \varepsilon_{i}}{\sqrt{ } T} \text { and } \frac{X_{i}^{\prime} \Omega_{i}^{-1} \varepsilon_{i}}{\sqrt{ } T}+\sqrt{ } T\left(\hat{\rho}_{i}-\rho_{i}\right)\binom{0}{\left.\left.\frac{-1}{\left(1-\gamma_{i 1} \rho_{i}\right)}\right) \text { have the same }{ }^{0}\right)}
$$

limiting probability distributions.
Applying the same Taylor-series expansion as in (B. 101)(B.102) for the covariance matrix, we find:
(B. 105) $\underset{T \rightarrow \infty}{p 1 i m} T\left(X_{i}^{\prime} \hat{\Omega}_{i i}^{-1} X_{i}\right)^{-1} \underset{T \rightarrow \infty}{p \lim _{T \rightarrow}} T\left(X_{i}^{\prime} \Omega_{i i}^{-1} X_{i}\right)^{-1}=V_{i}$.

Substituting into equation ($B .100$), we find that $\sqrt{ } T\left(\hat{\beta}_{i}-\beta_{i}\right)$ is asymptotically distributed as
$\frac{1}{\sqrt{T}} V_{i} X_{i}^{\prime} \Omega_{i i_{i}^{-1} \varepsilon_{i}+V_{i}}^{\left(\frac{-1}{\left(1-\gamma_{i 1} \rho_{i}\right)}\right) \sqrt{T}\left(\hat{\rho}_{i}-\rho_{i}\right) \quad, ~, ~, ~}$
the second term of which implies that $\hat{\hat{\beta}}_{i}$ is not asymptotically efficient. Thus, the magnitude of this asymptotic inefficiency depends upon the asymptotic distribution of $\sqrt{ } T\left(\hat{\rho}_{i}-\rho_{i}\right)$ and it is a consequence of the joint occurrence of (a) lagged dependent variable(s) and the (consistent) estimation of the covariance matrix (otherwise, no Taylor series expansions; see also previous footnote). Δ

Example: First_round_consistent_estimation_by_Instrumental_Variables. If $\hat{\beta}_{i}$ is the consistent instrumental variables estimator:
(B. 106) $\hat{\beta}_{i}=\left(X_{i}^{\star}{ }^{\prime} x_{i}\right)^{-1} \mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{y}_{\mathrm{i}} \quad$ and

$$
=\varepsilon_{i}-x_{i}\left(X_{i}^{\star \prime} X_{i}\right)^{-1} X_{i}^{\star^{\prime}} \varepsilon_{i}
$$

(B. 108) $\hat{\varepsilon}_{i}(-1)=y_{i}(-1)-x_{i}(-1) \hat{\beta}_{i}=\varepsilon_{i}(-1)-x_{i}(-1)\left(X_{i}^{* '} X_{i}\right)^{-1} x_{i}^{\star}{ }^{\prime} \varepsilon_{i}$ with $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \frac{1}{\mathrm{~T}} \mathrm{X}_{\mathrm{i}}^{\star} \mathrm{X}_{\mathrm{i}}=\mathrm{H}_{\mathrm{i}}$ a finite and nonsingular matrix and $\underset{T \rightarrow \infty}{\operatorname{plim}} \frac{1}{T} \mathrm{X}_{\mathrm{i}}{ }^{\prime} \varepsilon_{\mathrm{i}}=0$, where $\mathrm{X}_{\mathrm{i}}^{\star}$ is a ($\mathrm{T} \times \mathrm{k}_{\mathrm{i}}$) matrix of observations on instrumental variables for X_{i}.
Then $\Omega_{i i}^{-1}$ is consistently estimated with the help of:
(B. 109) $\hat{\rho}_{i}=\frac{t \sum_{1}^{T} \hat{\varepsilon}_{i}(t) \hat{\varepsilon}_{i}(t-1)}{\sum_{t=2}^{T} \hat{\varepsilon}_{i}^{2}(t-1)}$ and $\hat{\sigma}_{i i}=\frac{\hat{\varepsilon}_{i}^{\prime} \hat{\varepsilon}_{i}}{T}\left(1-\hat{\rho}_{i}^{2}\right)$, with
(B. 110) plim $\frac{1}{T} \sum_{T \rightarrow \infty}^{T} \hat{\varepsilon}_{i}^{2}(t-1)=\underset{T \rightarrow \infty}{p 1 i m} \frac{1}{T-1} \sum_{t=2}^{T} \hat{\varepsilon}_{i}^{2}(t)=\sigma_{\varepsilon_{i}}^{2}$ and
(B. 111) $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} i \mathrm{im}} \frac{1}{\mathrm{~T}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \hat{\varepsilon}_{\mathrm{i}}(\mathrm{t}) \hat{\varepsilon}_{\mathrm{i}}(\mathrm{t}-1)=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} 1 \mathrm{im}} \frac{1}{\mathrm{~T}} \hat{\varepsilon}_{\mathbf{i}}^{\prime} \hat{\varepsilon}_{\mathrm{i}}(-1)=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} 1 \mathrm{im}} \frac{1}{\mathrm{~T}} \varepsilon_{i}^{\prime} \varepsilon_{i}(-1)$

$$
\begin{aligned}
& +\underset{T \rightarrow \infty}{+p 1 i m} \frac{1}{T} \varepsilon_{i}^{\prime} X_{i}^{\star}\left(X_{i}^{\prime} X_{i}^{\star}\right)^{-1} X_{i}^{\prime} x_{i}(-1)\left(X_{i}^{\star} X_{i}\right)^{-1} X_{i}^{\star}{ }^{\prime} \varepsilon_{i}=\rho_{i} \sigma^{2} \varepsilon_{i}
\end{aligned}
$$

(or from (B. 109-111), $\hat{\rho}_{i}$ is a consistent estimator of ρ_{i}), and since
(B. 112) $\underset{T \rightarrow \infty}{\mathrm{p} 1 \mathrm{im}} \frac{1}{\mathrm{~T}} \varepsilon_{i}^{\prime} \mathrm{X}_{\mathrm{i}}(-1)=\underset{\mathrm{T} \rightarrow \infty}{\mathrm{p} 1 \mathrm{im} \frac{1}{\mathrm{~T}} \varepsilon_{i}^{\prime}}\left(z_{i 1}(-1), y_{i}(-2)\right)=\left(0, \frac{\rho_{i}^{2} \sigma^{2} \varepsilon_{i}}{\left(1-\gamma_{i 1} \rho_{i}\right)}\right)$ and
(B. 113) $\underset{T \rightarrow \infty}{p 1 i m} \frac{1}{T} X_{i}^{\prime} \varepsilon_{i}(-1)=\underset{T \rightarrow \infty}{p 1 i m} \underset{T}{ }\binom{z_{i 1}^{\prime}}{y_{i}^{\prime}(-1)} \varepsilon_{i}(-1)=\binom{0}{\frac{\sigma_{\varepsilon_{i}}^{2}}{\left(1-\gamma_{i 1} \rho_{i}\right)}}$
(B. 114) $\underset{T \rightarrow \infty}{p 1 i m} \sqrt{T}\left(\hat{\rho}_{i}-\rho_{i}\right)=-\frac{1}{\sigma_{\varepsilon}^{2}}\left[\left(0, \frac{\rho_{i}^{2} \sigma^{2} \varepsilon_{i}}{\left(1-\gamma_{i 1} \rho_{i}\right)}\right) H_{i}^{-1} \underset{T \rightarrow \infty}{p l i m} \frac{\mathbf{x}_{i}^{*^{\prime}} \varepsilon_{i}}{\sqrt{T}}\right.$

$$
\left.\underset{T \rightarrow \infty}{+p_{T} i_{m} \frac{\varepsilon_{i}^{\prime} X_{i}^{*}}{\sqrt{T}}} H_{i}^{\prime-1}\left(\frac{o}{\left(\frac{\varepsilon_{i}}{\left(1-\gamma_{i 1} \rho_{i}\right)}\right.}\right)\right]
$$

and since (B.114) is a scalar quantity:

Substituting (B.115) into the asymptotic distribution of $\sqrt{T}\left(\hat{\beta}_{i}-\beta_{i}\right)$:

$$
\text { with } Q_{i}=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{\left(1+\rho_{i}^{2}\right)}{\left(1-\gamma_{i 1} \rho_{i}\right)^{2}}
\end{array}\right]
$$

$$
\begin{aligned}
& V_{i} Q_{i} H_{i}^{-1} \underset{T \rightarrow \infty}{p 1 i m} \frac{X_{i}^{\star \prime} \varepsilon_{i}}{\sqrt{T}} \underset{T \rightarrow \infty}{ } \frac{\varepsilon_{i}^{\prime} \Omega_{i i}^{-1} x_{i}}{\sqrt{T}} v_{i}+
\end{aligned}
$$

$$
\begin{aligned}
& =V_{i}+2 V_{i} Q_{i} V_{i}+V_{i} Q_{i} \phi_{i} Q_{i} V_{i},
\end{aligned}
$$

where, implicitly, asymptotic expectations have been taken and

$$
\phi_{i}=H_{i}^{-1} \operatorname{plim}_{T \rightarrow \infty}\left(\frac{X_{i}^{*} \Omega i_{i}^{*} X_{i}^{\star}}{T}\right) H_{i}^{\prime-1} \quad \text { is the asymptotic }
$$

variance- covariance matrix of the consistent first round instrumental variable estimator $\hat{\beta}$. Since $2 V_{i} Q_{i} V_{i}+V_{i} Q_{i} \phi_{i} Q_{i} V_{i}$ is positive definite, there is a loss in asymptotic efficiency when comparing $\hat{\hat{\beta}}_{i}$ and $\vec{\beta}_{i}$, i.e. of the feasiblew.r.t. the "usual" Aitken estimator. The same can be said w.r.t. the initial instrumental variable estimator since $V_{i}+2 V_{i} Q_{i} V_{i}$ is positive definite. Only if $\rho_{i}=0$, there is no loss in asymptotic efficiency.

Appendix C A likelihood ratio test on vector equality with

 error variance covariance matrix of arbitrary rank.
Proposition C

The "test statistic" on the vector equality hypothesis
$\left(H_{0}: \beta_{1}=\beta_{2}=\ldots .=\beta_{M}\right):$
(C. 1) $\frac{\mathrm{s}-\mathrm{Mk}}{\mathrm{q}}$.

is F distributed with q and $s-M k$ degrees of freedom, q being the number of restrictions, s the rank of the variance covariance matrix Ω and k the number of explanatory variables in each equation (or here: $q=(M-1) k$).
The known matrix of restrictions is defined as:
$(\mathrm{C} .2) \mathrm{C}=\left[\begin{array}{cccc}I_{k} & -I_{k} & 0 \ldots . . .0 \\ 0 & I_{k} & -I_{k} \ldots . & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 \ldots I_{k}-I_{k}\end{array}\right]$
Proof (*)
a) Under the null hypothesis, the system of linear equations becomes:
(C.3a) $\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{M}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{M}\end{array}\right] \beta_{1}+\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{M}\end{array}\right]$
(C. 3b) $y=z \beta_{1}+\varepsilon$

Following proposition 1.1 an ($s \times M T$)-transformation matrix G exists such that $E\left(G \varepsilon \varepsilon^{\prime} G^{\prime}\right)=\sigma_{1}^{2} G \Omega G^{\prime}=\sigma_{1}^{2} I S_{s}$ and $G^{\prime} G=\Omega^{+}$.
Putting $G y=\dot{y}, G Z=\dot{Z}$ and $G \varepsilon=\dot{\varepsilon}$, the likelihood function under H_{o} becomes:
(C.4) $L_{1}=\frac{1}{\left(2 \pi \sigma_{1}^{2}\right) \frac{s}{Z}}$ exp $\left(-\frac{1}{2 \sigma_{1}^{2}} \dot{\varepsilon}^{\prime} \dot{\varepsilon}\right)$ with concentrated likelihood:
(*) See also A.Zellner [26], Appendix A.
(C. 5) $L_{1}^{\star}=\frac{1}{\left(2 \pi \hat{\sigma}_{1}^{2}\right) \frac{s}{2}} \exp \left(-\frac{1}{2} s\right) \quad$ where
(c. 6) $\hat{\sigma}_{1}^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{s}=\frac{\left(\dot{y}-\dot{z} \hat{\beta}_{1}\right)^{\prime}\left(\dot{y}-\dot{z} \hat{\beta}_{1}\right)}{s} \quad$ with $\hat{\beta}_{1}=\left(\dot{z}^{\prime} \dot{z}^{-1} \dot{z}^{\prime} \dot{y}\right.$
b) Under the hypothesis that there are no restrictions on the coefficients, we find, putting $G X=X$ in model (1.64), the likelihood function:
(C. 7.) $L_{2}=\frac{1}{\left(2 \pi \sigma_{2}^{2}\right)} \frac{s}{2} \exp \left(-\frac{1}{2 \sigma_{2}^{2}} \dot{\varepsilon} \dot{\varepsilon}\right)$ with concentrated likelihood:
(C. 8) $L_{2}^{\star}=\frac{1}{\left(2 \pi \hat{\sigma}_{2}^{2}\right)^{\frac{1}{2}}}$ sexp $\left(-\frac{1}{2} s\right) \quad$ where
(C. 9) $\hat{\sigma}_{2}^{2}=\frac{\hat{\varepsilon}, \hat{\varepsilon}}{s}=\frac{(\dot{y}-\dot{x} \hat{\beta})^{\prime}(\dot{y}-\dot{x} \hat{\beta})}{s}$ with $\hat{B}=\left(\dot{X}^{\prime} \dot{X}\right)^{-1} \dot{x}^{\prime} \dot{y}$.

From (C.5) and (C.8), the estimated likelihood ratio is then:

(C.11) $-2 \ln \quad \ell=\sin \frac{\hat{\sigma}_{1}^{2}}{\widehat{\sigma}_{2}^{2}} \quad(0 \leq 1 \leq 1) \quad$,
which is asymptotically distributed as $X_{(M-1) k}^{2}$, because by defining a singular multivariate normal distribution on each $\varepsilon(t)$ vector, we obtain, by the non singular transformation G of ε, a non singular multivariate normal distribution on each $\varepsilon(\theta)$ vector for which the standard distribution properties for likelihood ratios can be applied.

Now in order to complete the proof, we have to show that :
(C.12) $\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{2}^{2}}=1+\frac{q}{s-M k} F \quad$ q, $-M k \quad$ or alternatively:
(C.13) $\frac{q}{s-M k} F q, s-M k=\frac{\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}}{\hat{\sigma}_{2}^{2}}=\frac{\left(\dot{y}-\dot{z} \hat{\beta}_{1}\right)^{\prime}\left(\dot{y}-\dot{z}_{\hat{B}}\right)-(\dot{y}-\dot{x} \hat{B})^{\prime}(\dot{y}-\dot{x} \hat{\beta})}{(\dot{y}-\dot{x} \hat{\beta})^{\prime}(\dot{y}-\dot{x} \hat{B})}$

$$
=\frac{\dot{y}^{\prime} \dot{x}\left(\dot{x}^{\prime} \dot{x}\right)^{-1} \dot{x}^{\prime} y-\dot{y}^{\prime} \dot{z}\left(\dot{z}^{\prime} \dot{z}\right)^{-1} \dot{z}^{\prime \prime} y}{\dot{y}^{\prime} \dot{y} \dot{y}^{\prime} \dot{x}\left(\dot{x}^{\prime} \dot{x}\right)^{-1} \dot{x}^{\prime} \dot{y}}
$$

$$
\begin{aligned}
& =\frac{y^{\prime} \Omega^{+} x\left(x^{\prime} \Omega^{+} x\right)^{-1} x^{\prime} \Omega^{+} y-y^{\prime} \Omega^{+} z\left(z^{\prime} \Omega^{+} z\right)^{-1} z^{\prime} \Omega^{+} y}{y^{\prime} \Omega^{+} y-y^{\prime} \Omega^{+} x\left(x^{\prime} \Omega^{+} x\right)^{-1} x^{\prime} \Omega^{+} y} \\
& =\frac{y^{\prime} \Omega^{+}\left[x^{\prime}\left(x^{\prime} \Omega^{+} x\right)^{-1} x^{\prime}-z\left(z^{\prime} \Omega^{+} z\right)^{-1} z^{\prime}\right] \Omega^{+} y}{y^{\prime} \Omega^{+} y-y^{\prime} \Omega^{+} x^{\prime}\left(x^{\prime} \Omega^{+} x\right)^{-1} x^{\prime} \Omega^{+} y}
\end{aligned}
$$

with $\mathrm{F}_{\mathrm{q}, \mathrm{s}-\mathrm{Mk}}$ equal to (C.1)
Since $(C .14) \quad Z=\left[\begin{array}{l}X_{1} \\ X_{2} \\ \vdots \\ \vdots \\ X_{M}\end{array}\right]=\left[\begin{array}{llll}X_{1} & 0 & \ldots . . & 0 \\ 0 & X_{2} \ldots . & \ldots & 0 \\ \vdots & \vdots & . & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & 0 & \ldots & X_{M}\end{array}\right]\left[\begin{array}{l}I_{k} \\ I_{k} \\ \vdots \\ \vdots \\ I_{k}\end{array}\right]=\mathrm{XJ} \quad$,
with J an ($M k \times k$) matrix consisting of $M(k \times k)$ unitary matrices, the numerator of (C.13) may be written as:
(C. 15) $y^{\prime} \Omega^{+} x\left[\left(X^{\prime} \Omega^{+} x\right)^{-1}-J\left(J^{\prime} x^{\prime} \Omega^{+} X J\right)^{-1} J^{\top}\right] x^{\prime} \Omega^{+} y=$

$$
=y^{\prime} \Omega^{+} \mathrm{X}\left(\mathrm{X}^{\prime} \Omega^{+} \mathrm{X}\right)^{-1}\left[\left(\mathrm{X}^{\prime} \Omega^{+} \mathrm{X}\right)-\left(\mathrm{X}^{\prime} \Omega^{+} \mathrm{XJ}\right)\left(\mathrm{J}^{\prime} \mathrm{X}^{\prime} \Omega^{+} \mathrm{XJ}\right)^{-1}\left(\mathrm{~J}^{\prime} \mathrm{X}^{\prime} \Omega^{+} \mathrm{X}\right)\right]\left(\mathrm{X}^{\prime} \Omega^{+} \mathrm{X}\right)^{-1} \mathrm{x}^{\prime} \Omega^{+} \mathrm{y}
$$

or to proof (C.1) it has to be verified that:

which is true since from premultiplication of (C.l6) with $C\left(X^{\prime} \Omega^{+} X\right)^{-1}$ and postmultiplication by J :
(C. 17) $\mathrm{C}=\mathrm{C}-\mathrm{CJ}\left(\mathrm{J}^{\prime} \mathrm{X}^{\prime} \Omega^{+} \mathrm{XIJ}\right)^{-1}\left(\mathrm{~J}^{\prime} \mathrm{X}^{\prime} \Omega^{+} \mathrm{X}\right)$
or
(C. 18) $\mathrm{CJ}=\mathrm{C}\left(\mathrm{I}_{\mathrm{Mk}} \mathrm{J}-\mathrm{J}\right)=\mathrm{CJ}-\mathrm{CJ}$
it follows from the definition (C. 2) of the matrix C that both sides of (C.18) are equal to zero matrices.

Corollary C 1

The quantities $\sin \frac{\hat{\sigma}_{2}^{2}}{\hat{\sigma}_{2}^{2}}$ and $\mathrm{qF}_{\mathrm{q}, \mathrm{s}-\mathrm{Mk}}=(\mathrm{M}-1) \mathrm{kF}(M-1) \mathrm{k}, \mathrm{s}-\mathrm{Mk}$ are both asymptotically distributed as X_{q}^{2}.

Proof
Since (C.12) is
(C. 19) $-2 \ln \ell=\sin \frac{\hat{\sigma}_{2}^{2}}{\frac{1}{\hat{\sigma}_{2}^{2}}}=\sin \left(1+\frac{q}{s-M k} F q, s-M k\right)$

$$
=\frac{s q}{s-M k} F_{q, s-M k}^{-s}\left(\frac{q}{s-M k}\right)^{2} F_{q, s-M k}^{2}+s\left(\frac{q}{s-M k}\right)^{3} F_{q, s-M k}^{3}=\cdots
$$

or from the convergence theorem in Cramèr H. [6], p. 254, the corollary is proved \triangle

Proposition C 2
If Ω is unknown and a consistent estimate of it is employed, the resultant test statistic, say F^{\star}, has the same asymptotic probability distribution as $F_{q, s-M k}$.
Proof (*)
If it is shown that
(*) See A.Zellner [27], Appendix B for an alternative proof.
(C. 20) $F^{*}=\frac{s-M k}{q}, \frac{\beta^{*^{\prime}} C^{\prime}\left[C\left(X^{\prime} \hat{\Omega}^{+} x\right)^{-1} C^{\prime}\right]-{ }^{1} C \beta^{*}}{y^{\prime} \hat{\Omega}^{+} y-y^{\prime} \hat{\Omega}^{+} y^{*}}$, with
$y^{*}=X \beta^{*}=X\left(X^{\prime} \hat{\Omega}^{+} X\right)^{-1} X^{\prime} \hat{\Omega}^{+} y$ and $\hat{\Omega}$ a consistent estimate of Ω, has probability 1 imit $F_{q, s-M k}$ defined in (C.l), we may conclude that F^{*} and $F_{q, s-M k}$ have the same limiting distribution.
This is easily established, utilizing the property that (C.21) $\underset{\mathrm{T} \rightarrow \infty}{\mathrm{plim}} \hat{\Omega}=\Omega \quad$ and Slutsky's theorem in the probability limit of (C.20). Δ
Following corollary C, $q F^{*}$ and $q_{q}, s-M k$ have the same asymptotic χ^{2}-distribution with q degrees of freedom:

REFERENCES

1 Amemiya T.and W.A.Fuller:"A Comparative Study of Alternative Estimators in a Distributed Lag Model', Econometrica, vol 35, 1967, pp. 509-529.

Barten, A.P. and T.Kloek : "A Generalization of Generalized Least-Squares", Report 6508, Econometric Institute, Netherlands School of Economics, Rotterdam, July 1965, 15 pp. (unbub1ished)

Bellman, R. : Introduction to Matrix Analysis, Wiley, New York 1961.

Chung, K.L.: A Course in Probability Theory, Brave and World, Harcourt, New York 1968.

Cramèr, H. Mathematical Methods of Statistics, Princeton University Press, Princeton 1951, 575 pp .

7 Dhrymes, P.H. Econometrics: Statistical Foundations and Applications. Harper and Row, New York, 1970,592 pp.

8
Goldberger, A.S.: Econometric Theory, Wiley, New York, 1964, 399 pp.

Hoeffaing, W. and H. Robbins:" The Central Limit Theorem for dependent random Variables", Duke Mathematical Journal, vol 5, 1948, pp. 773-780

10 Kakwani, N.C.: "The Unbiasedness of Zellner's Seemingly Unrelated Regression Equations Estimators", JASA, vol 62, 1967, pp. 141-142.

11 Kendall, M.G. and A.S. Stuart: The Advanced Theory of Statistics, Vol.I : Distribution Theory, Griffin, London, 2nd ed i963, 433 pp .

12 Kmenta, J. and R.F. Gilbert: "Estimation of Seemingly Unrelated Regressions with Autoregressive Disturbance:' JASA, vol 65, 1070 , pp. 186197

13 Lawley, D.N.:"Tests of Significance for the Latent Roots of Covariance and Correiation Matrices", Biometrika, vol 43, 1956 , pp. 128-136

14 Lewis, T.O. and P.L. Ode11: "A Generalization of the Gauss Markov Theorem", JASA, vo1 61, 1966 , pp. 1063-1066

15 Loève, M.: Probability Theory, Van Nostrand, Princeton, 1955, 685 pp.

16 Malinvaud, E. : Statistical Methods in Econometrics, Rand Mc.Nally and North-Holland, Chicago and Amsterdam, 1966, 631 pp .

17 Neudecker, H.: "The Kronecker Matrix Product and Some of its Applications in Econometrics", Statistica Neer1andica, vol 22,1968 , pp. 69-82.

```
    18 Parks, R.W.: "Efficient Estimaticn of a System of
                        Regression Equations when Disturbances
                        are both Serially and Contemporan\inous-
                        ly correlated", JASA, vo1 62, 1967,
                            .pp. 500-509.
    19 Rao, R.C. : Linear Statistical Inference arci its
                                    Applications, Wiley, New York, 1965,
20 Rooy, P.J.L. var: 'Pseudorang, Approximanten \inn
                            Pseudo-Inversen van Matrices met cnbe-
                            kende Rang', Afstudeerverslag, T.H.
                            Eindhoven, 1970, 79 pp. (Dutch-unpublished)
21Sch\ddot{cnfeld, P.: " Generalized Best Linear Unbiased}
                    Estimation", Core Discussion Paper
                        6713, CORE, Louvair, Sept. 1967,
                        41 Fp. (unpublished)
22 Thornber,H.: "An Autoregressive Model: Bayesian
                                    versus Sampling Theory Analyses",
                                    Technical Report no 6504, Center for
                                    Mathematical Studies in Business and
                                    Economics, University of Chicago, Chicago,
                                    1965, 26 pp. (unpublished)
23 Vandaele,W.H. : "Zellner's Seemingly Unrelated
                                    Regression Equations Estimators:
                                    A Survey', EIT-Research Memcrandum,
                                    Tilburg, 1970 (forthcoming)
24 Wallis, K.F. : \begin{tabular}{rl} 
& "Lagged Dependent Variables and \\
& Serially Correlated Errors: A Reapprai- \\
& sal of Three-Pass Least-Squares", \\
& \(\frac{\text { Review of Economics and Statistics },}{1967, ~ p p . ~} 555-567\)
\end{tabular}
```

25 White, J.S. : "Asymptotic Expansions for the Mean and Variance of the Serial Correlation Coefficient", Biometrika, vol 48, 1961 , pp. 85-94

26 Zellner, A. :" An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation bias", JASA, vol 57 , 1962, pp. 348-368

27 Zellner, A. and D.S. Huang: "Further Properties of Efficient Estimators for Seemingly Unrelated Regression Equations', International Economic Review, vol 3, 1962, pp. 300-313

28 Zellner, A. : "Estimators for Seemingly Unrelated Regression Equations: Some Exact Finite Sample Results", JASA, vol 58, 1963, pp. 977-992.

PREVIOUS NUMBERS:

		J. Kriens *) . - . - -	Het verdelen van steekproeven over subpopulaties bil accountantscontroles.
EIT	2	J. P. C. Kleynen *)	Een toepassing van „Importance sampling".
EIT	3	S. R. Chowdhury and W. Vandaele ")	A bayesian analysis of heteroscedasticity in regression models.
EIT	4	Prof. drs. J. Kriens ${ }^{\text {* }}$)	De besliskunde en haar toepassingen.
EIT	5	Prof. dr. C. F. Scheffer	Winstkapitalisatie versus dividendkapitalisatie bij het waarderen van aandelen.
EIT	6	S. R. Chowdhury	A bayesian approach in multiple regression analysis with inequality constraints.
EIT	7	P. A. Verheyen	Investeren en onzekerheid.
EIT	8	R. M. J. Heuts en Walter H. Vandaele	Problemen rond niet-lineaire regressie.
EIT	9	S. R. Chowdhury	Bayesian analysis in linear regression with different priors.
EIT	10	A. J. van Reeken	The effect of truncation in statistical computation.
EIT	11	W. H. Vandaele and S. R. Chowdhury	A revised method of scoring.
EIT	12	J. de Blok	Reclame-uitgaven in Nederland.
EIT	13	Walter H. Vandaele	Madscø, a computer programm for the revised method of scoring.
EIT 1	14	J. Plasmans	Alternative production models. (Some empirical relevance for postwar Belgian Economy)
EIT	15	D. Neeleman	Multiple regression and serially correlated errors.
EIT	16	H. N. Weddepohl	Vector representation of majority voting.
EIT	17	Walter H. Vandaele	Zeliner's seemingly unrelated regression equations estimators: a survey.
EIT	18	J. Plasmans	The general linear seemingly unrelated regression problem. I. Models and inference.
		vailable	
	1970		

[^0]: (*) Since most statistical properties are well-known from literature: see P.Dhrymes [7],pp. 153-167, A. Zellner [26] and [28], A.Zellner and D.Huang|27|, only the most appealing properties will be thoroughly studied. See also appendix for an exact finite sample analys of two-equation models and $\S 1$ for the BLU-property of the Aitken estimator in models with known error variance-covariance matrices.

