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Abstract

Sensitivity analysis is needed for validation, what-if analysis,
and optimization of complicated simulation models. One set of techniques
for sensitivity analysis are least squares curve fitting, regression ana-
lysis, and statistical designs such as factorial designs. These techniques
are applied to several modules of a large integrated assessment model for
the greenhouse effect, developed in The Netherlands. The regression models
turn out to be valid approximations to the simulation models. Some esti-
mated effects are quite surprising for the simulation users.

Keywords: What-if analysis, validation, optimization, least squares, re-
gression analysis, experimental design, factorial design, ecology, green-
house effect, simulation, metamodel.
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Introduction

Complicated símulation models have been constructed ín many dis-

ciplines. AL1 these models confront the analysts wíth the problem of sen-

sitivity analysis; that is, what are the effects of changíng the parame-

ters and input varíables of the simulatíon model'? That question arisis in

'what if' analysis, validation, optimízation, and so on. This article

íntroduces and illustrates the application of símple techníques that ori-

gínated ín the disciplíne of mathematical statistics. These techniques are

least squares curve-fitting, regression analysis, and statistical designs

such as 2k-p designs. The techniques are applied to an integrated assess-
ment model for the greenhouse effect. This model has been developed at a

large Dutch institute called National Instítute of Public Health and Envi-

ronmental Protection (or RIVM in Dutch).

One of the major immínent ecological threats of the world is the

'enhanced greenhouse problem': the earth and the lower layers of its at-

mosphere have shown rising temperatures over the past hundred years. This

heating phenomenon is probably caused by an íncrease of greenhouse gases

(such as carbon dioxyde, methane, and ozon) that absorb the earth's heat

radiation, so the global average temperature rises. Mankind is largely

responsible for this increased 'greenhouse' gas concentration.

Temperatures are expected to rise, but with dífferent amounts in different

regions of the earth (the tropics will be less affected probably). Higher

temperatures will cause thermal expansíon of the oceans and melting of

artic ice, which raise the sea level. Many more processes, however, are

ínvolved; see [IPCC, 1990]. One consequence of a hígher sea level is ttte

need to raise the level of the dikes in the Netherlands. A survey of the

effects for society ís given in [Gezondheídsraad, 1987].

To gain quantitative insight ínto the greenhouse problem and de-

velop long-term strategíes for copíng with climatic changes, RIVM deve-

loped the Integrated Model for the Assessment of the Greenhouse Effect

or IMAGE. This model is a deterministic simulation (but most of the sensi-



tivity techniques applied to this model can also be used in random simula-

tion models). The state of the dynamic biospheric system is computed per

lialf year, up to the year 2100, while startíng at the year 1900. The model

is composed of modules, whích treat specific parts of the greenhouse pro-

blem. Modules get inputs from other modules. Also see figure 1 and the

references [Rotmans, 1990; Rotmans, et al. 1990; den Elzen ~ Rotmans,

1988].

The sensitivíty analysis techniques are applied to several mo-

dules. Thís paper concentrates on the carbon-cycle module; the dike rai-

síng modules are briefly díscussed; see the shaded modules in figure 1.

Note that there are alternative techniques for sensítivity analy-

sis. Latín Hypercube sampling is a Monte Carlo method, which ís discussed

at length in [Iman and Helton, 1988] and criticízed in [Easterling, 1986];

also see [Kleijnen, 1987, p. 143-145]. This technique was applied to seve-

ral IMAGE modules ín [Lammerts, 1989]; it gave results similar to the

results of this paper. More sophistícated techniques do not treat the

simulation model as a black box; they use analytical dífferential

analysis; see [McRae, 1989].

This article is organized as follows. First the need for sensiti-
víty analysis is díscussed, and the greenhouse case study is introduced.

1'hen metamodels, which explain the input~output behavior of the underlying

simulation model, are explained. The coefficients of the metamodel are

estimated by least squares regression analysís. The resulting metamodel

can be validated. Closely related to the metamodel specífícation ís the

selection of an efficient experimental design. All techniques are demon-

strated by their application to several modules of the greenhouse simula-

tion model.

Metanodeling through regression analysis

A simulatíon model maps its ínputs into one or more outputs; hence

a simulation model is a mathematical function (say) s( ). The inputs are

parameters, input varíables, and behavioral relationships (or submodules);



Figure 1: The modules of IMAGE;
the shaded modules are submitted to sensitivity analyses
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see [Kleijnen, 1987, p. 136]. These inputs are called factors in the sta-
tistical design of experiments. They may be represented by zj with j-
sl,...,k and k 2 1. In the greenhouse model all factors are quantitative,
but the techniques also apply to qualitative factors. The case study con-
centrates on a single output variable (say) y, namely the global average
atmospheric C02 concentration in the year 2100. If there are several out-
puts, the technique can be applied per output. This yields

Y - s(zl,.. , zj,..., zk). (1)

A mathematical function may be approximated by a Taylor series,
under certain mathematical conditions. Suppose the initial approximation
is

Y
~ ~k k-1 k- ó0 J-1 ~j zj }~j-1 ~h-j'1 ájh zj zh. (2)

where yp is called the overall or grand mean; ,yj is the first-order or
main effect of factor j; and yjh is the interaction between the factors j
and h, that is, the effect of factor j depends on the level of Factor h.

Note that the variables in approximation (2) may be functions of
the variables in the simulation model (1); for example, log(zj) or l~zj.
The approximation remains linear in the parameters y; so linear regression
analysis still applies; see [Kleijnen, 198~, pp. 160-161].

The approximation in (2) is called a metamodel: it is a model of
the input~output behavior of the underlying simulation model. The Taylor
seríes argument may be one inspiration for the specification of a metamo-
del. Because the mathematical conditions of the Taylor series do not hold
in complicated simulation models, the validity of the metamodel must be
checked. In other words, the metamodel is only an approximation. Before
that model can be validated, it must be calibrated, that is, its coeffi-
cients or parameters ~ must be estimated. Moreover there is a scaling
problem. These issues are discussed now.
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For simplicity's sake the interactions in the metamodel (2) are
ignored temporarily. If the input variable zj increases by one unit, then
the output changes by ~j units. We assume, however, that sensitivity ana-
lysis is meant to determine ttre effects of changes of the inputs over
the rvhole experimental area, in order to detect the importance of those
inputs. (Next those important factors are further investigated to validate
and optimi-ze the simulation model. If only optimization were the goal,
then local marginal effects would suffice.) So the ímportance of factor j
is measured by the difference between the outputs at the lowest and the
highest value of that factor. Denoting those two extreme values by Lj and
H. respectively (so the 'experimental area' is a k-dimensional rectangle),J
the original variables zj yield the standardized vartables xj, which range
between -1 and tl:

H.-L. H.tL.
zj - ajxj t bj with aj -~-2 and bj -~1 . (3)

The simple transformation (3) together with the original metamodel (2)
yields the standardized metamodel:

~ Lk- k-1 k (4)Y- HD J-1 ~j xj 4~j-1 fh-j'1 ~jh xj xh .

It is simple to prove that ~j reflects the importance of factor j: g. -J~j(Hj-Lj)~2, ignoring interactions. See [Bettonvil and Kleijnen, ~990].

Note that to search for the optimum combination of the input fac-
tors, Response Surface Methodology (RSM) combines a first-order metamodel
with the steepest ascent technique. That search should not use the origi-
nal or standardized model but a centered model:

Y- ó t Ek á(z.-z.) t ~k-1 Lk S ( z.-z.)(z -z )0 j-1 j J J J-1 h-jt1 jh J J h h' (5)

where zj - ïi-1 zij~n assuming that n combinations of input factors are
simulated. See [Bettonvil and Kleijnen, 1990].



Calibratíon means that the parameters of the model are quantified.
So the metamodel's parameters p in (4) are estimated. Therefore the meta-
model is fitted to the simulation data. Let q denote the number of parame-
ters in the metamodel; for example, in (4) q equals 1 t k t k(k-1)~2. To
get estimated parameter values p, n combinations of the factor values are
simulated. That set of simulated combinations yields the n x q matrix of
independent variables X corresponding to the metamodel of (4):

~1' xll~... xlk, xll x12~... .xl k-1 xlk

X - 1, xil,... xik, xil xi2 "" 'xi,k-1 xik (6)

1, xnl.... xnk,
xnl xn2~.. , xn k-1 xnkJ

ExampZe: Suppose there are three factors (k-3), which in combination i
have the values tl, -1 and -1 respectively. (Remember that standardization
means that factor 1 is at its highest level H1, factor 2 is at its lowest
level LZ in this combination, and so on; see equation 3.) Then the inter-
action variable xlx2 has the value (tl) (-1) --1 in this combination, and
so on. Obviously ~~ corresponds to the 'variable' that is tl in all combi-
nations. So row i of X equals x: -(tl, tl, -1, -1, -1, -1, tl).i

The output of combination i is yi; see (1). Fitting the metamodel
to the simulation data, using the Zeast squares citerion, yields the esti-
mated parameters p:

~ - (X~X)-1 X' Y . (7)

The least squares criterion yields unique estimates only if X is non-sin-
gular so that the inverse of (X'X) exists. A necessary condition is n z q
(the number of simulated factor combinations is not smaller than the num-
ber of parameters in the metamodel). This condition, however, is not suf-
ficient. For example, if the factors 1 and 2 are changed simultaneously in
the n combinations, then their two columns are identical (xil - xi2 for i
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- 1,...,n) and X is singular. Obviously X is not singular if all its co-
lumns are orthogonaZ ÍFi-1 xij xih - 0, etc.). Under certain statistical
assumptions, an orthogonal matrix X is optimal; see the next section.

The calibrated metamodel can now be validateci. One aspect is how
well this metamodel fits the simulation data. One overall criterion is R2:

n ~ 2
R2 - 1 - fi-1(yi-yi)

Fi-1(yi-y)2
~ (8)

where y- ïi-1 y ~n. A'perfect' fit means that yi - yi for all i, so the
upper limit For R~ is 1. Unfortunately, a lower threshold for R2 is hard
to give. 'Therefore we propose to compute the relative errors (Yi-yi),yi'
which can be 'eyeballed' by the user.

Valídating a model, however, usually means that the model is used
to forecast the output; next that forecast is confronted with the true
output. Therefore cross-validation should be used. Delete one combination
(xi, yi) from the old data set (X,y); denote the remaining set by
(X-i,y-i). Reestimate the metamodel's parameters ~, analogous to (~).

~-1 - (X,1 X-1)-1
X~-i y-i (9)

Predict the output of combination i, not using the data of combination i:

v. - x: .
i i ~-i

Compute the forecast errors

e --i - y-i yi

(10)

The user may again evaluate the relative errors e-i~yi. This procedure is
repeated for all i (i-1,...,n).
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The computation of the errors e. is possible without applying thei
least squares criterion n times (to n-1 combinations). First no data are
eliminated; see (~). Next the so-called 'hat' matrix H is computed:

H - X(X'X)-1 X'

with diagonal elements h... Thenii

e-i - ei~(1-hii) .

(12)

(13)

Many modern regression analysis packages give those 'leave one out resi-
duals'. See [Kleijnen, 198~, p. 178] and [Atkinson, 1985. P. 13].

The mathematical analysis can be refined if a statistical (sub)mo-
del is added for the ftrtting errors e. Kleijnen (198~, p. 164) assumes
that these errors are normally and independently distributed with common
vari-ance 2(say) cs . Then the least squares algorithm yields the Best Linear
Unbiased Estimators (BLUF.); that is, the estimators have minimum variances
and correct expected values. Those variances equal the main-diagonal ele-
ments of the variance-covariance matrix of S:

cov (A) - (X' X)-1 62 .

The parameter o2 can be estimated through the Mean Squared Error:

02 - Ei-1(Yi-Yi)Z~(n-q) .

(~4)

(15)

The estimated variances ( or standard errors) yield the Student t statis-
tic with n - q degrees of freedom:

tn-q - (Rj-~j)~aj ( j-1,...~ q) , (16)

where csj denotes {vár(~j)}~ and pj is the j th element of p; so pl in (16)
is identical to p~ in (4), p2 in (16) is ~el in (4),..., ~q in (16) is
~k-l,k in (4). The significance of pj can be tested statistically, using
the t table for a given significance level or type-I error (say) a; for
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example, for a- 0.05 and v- 12 the critical t value is 2.18 in a two-
sided test, which considers the absolute value of tn-q'

Note that a more sophisticated model for the fitting errors is
used by Sachs et al. (1989). They assume that the errors are not indepen-
dent but form a stationary process with a specific correlation function.
Also see [Kleijnen, 1990].

Statistical design of experiments

The metamodel determines the experimental design;, for example, a
model with interactions such as (4) cannot be calibrated through a design
that changes one factor at a time; see [Kleijnen, 198~, pp. 266-26~]. lf
purely quadratic terms ~jj x~ are added to (4), then the variable xj can-
not be observed at only two levels (-1 and tl).

Given the metamodel, there is more than one design to calibrate
that model. A necessary condition for the design is that the resulting
matrix of independent variables X is non-singular; see (~). Consider, for
example, a first-order model: in (4) the double summation term vanishes.
That model has q- 1 f k effects; so a necessary condition is that the
number of combinations satisfies: n z k t 1. For k- 3 table 1 gives two
designs that give a non-singular X; X was defined in (6).

Table 1: Two designs for a first order model with k- j

Combination One factor at a time design 23-1 design
xl x2 x3 xl x2 x3

1 -1 -1 -1 -1 -1 tl
2 il -1 -1 tl -1 -i

3 -1 41 -1 -1 tl -1

4 -1 -1 tl tl tl tl



- 11 -

The 23-1 design is balanced: each column of X has an equal number of plus
and minus signs, and each pair of columns has an equal number of the four
combinations (-, -), (-, t), (t, -), (t, .). If the classical statistical
model for the errors is assumed, then the covariance matrix of p is given
by (14). An orthogonal X minimizes the variances of pj; see [Kleijnen,
1987, p.3357.

If the metamodel includes interactions, then the number of effects
increases considerably. To keep the number of combinations relatively
small, the user may specify which interactions may be important; the re-
maining interactions are assumed to be negligible. Examples will be pre-
sented later.

The metamodel may be expanded with purely quadratic effects:
ik p x? is added to (4). These quadratic effects quantify the curva-J-1 Jj J
ture of the response surface. Then more than two values per factor must be
simulated 2(otherwise all columns for xj are identical to the column for
x~). A classical design is the central composite design: each factor is
observed not only at -1 and tl but also at the 'center point' 0 and at two
other values, for example, -2 and t2; together five values. The 2k-p de-
signs that is used to estimate main effects and interactions, is augmented
with an observation at the center plus the following 2k combinations:

( 0, 0, .. , 0)
(-2, 0, .. , 0)
(t2, 0, .. , 0)
( 0, -2, .. , 0)
( ~ t2, .. , 0)

( 0, 0, .. , -2)
( ~, 0, .. , }2) .

Next applications of inetamodeling and experimental design will be
presented. First the results for a relatively simple module of IMAGE are
discussed; then results and technical details for a more complicated mo-
dule are presented.
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Dike raising in IMAGE

One module of IMAGE estimates the magnitude of the necessary dike raise

and the resultíng costs; see the lower part of figure 1. Eleven factors

are examined (k-11); for example, the "unít dike raising cost", which is

the cost of increasing the dike level by one meter. Findíng a valid meta-

model takes several iterations; altogether nine dífferent models (and

theír concomitant designs) are tried. In an early iteration the metamodel

helped to detect a seríous error in the underlying simulation model: the

origínal module needed to be splít into two modules; the first submodule

yiel.ds the dike raise necessary to keep the flooding probability under a

fíxed safety level; the second submodule takes that raíse as input and

yields the costs as output. So metamodeling may serve verification of the

símulation model. Moreover, metamodeling may show in which area the simu-

lation model is valid; for factor combínations outsíde that experímental

area the simulation is not a correct model.

To obtain a valíd metamodel for the díke raising costs module, the

ranges of the origínal input variables must be decreased. This makes sense

mathematically: a Taylor approximation ís better in a smaller area. The

fínal metamodel yields relatíve forecast errors smaller than lOX, which is

acceptable for the IMAGE analysts. Nine of the eleven factors are signífí-

cant, and so ís one interaction. The most important factor ís the "unit

dike raísing cost", as the analysts expected. The order of importance of

the other factors was surprising, and gives more insight into the símula-

tion model; for details see [Van Ham et al., 1990].

The carbon-díoxide cycle in II~AGE: ocean nodule

There are two modules for the CU2 cycle in IMAGE: one for the

oceans and one for the terrestrial bíosphere; also see the upper part of

figure 1. This section covers the fírst module; the next section discusses

the second module.
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The oceans show three C02 processes, described ín [Goudriaan 6
Ketner, 1984]. For these processes ten factors are investigated; for ex-
ample, thickness of ocean layers is factor 5. For each factor a range ís
specifíed by the analysts; for example, factor 5 varies between 3,000 and
4,000 meters; factor 2(diffusion coefficient) ranges between 3,716 and
5,984 cmZ~second. These variables are standardized, as described by (3).
The analysts list eleven specific interactions that might be important;
the remaining 34 interactions are neglected. To verífy the design the
reader should know that the following interactions may be important: 1 3,
1 5, 2 3, 2 5, 3 6, 3 1, 5 6, S 1, 5 8, 6 8 and 1 8, where 1 3 stands for
~1 3' and so on. So the metamodel is given by (4) with k e 10 and only
eleven specífic interactíons ,B.h.J

A'full factorial' design requires 210 combinatíons, which takes
too much computer time. The number of effects in the metamodel ís: q~ 1 t
10 t 11 ~ 22. Hence a classical 2k-p design wíth enough combinations
requires: n- 210-p ~ 22 or p S 5(least squares applíed to the whole data
set requires n? q, whereas cross valídation requires n 1 q). There are
many 210-5 designs. Accounting for the eleven specific interactíons, the
following design is selected; detaíls are given in [Kleijnen, 1987, pp.
295-300]. Write down all 2k-p - 25 combinations of the factors 1,2,4,9,
and 10. Write down element í of the column for factor 3 as the product of
the elements i in the columns for the factors 9 and 10; that ís,

xi3 2 xi9
xi10 for i~ 1,..., n and n S 2k-p ~ 25 or in short-hand: 3 s 9 10. This
ís called a'generator' of the design. The 210-5 design ís fully specified
by its p- 5 generators:

3-T 9 10 S-. 4 10 6.. 1 9 I-- 2 9 8- 1 2 4, (~g)

where 8- 1 2 4 means xi8 - xil xi2 xí4- The generator 3~ 9 10 means that
the main effect of factor 3 is confounded or aliased wíth the interaction
between the factors 9 and 10; that is, p3 ~ p9 10 and E(~3) a~3 }~9 10~
If indeed the interaction Q9 10 is neglígíble, then this confounding is
acceptable. Analogously, the generator 8- 1 2 4 means: E(~8) -~8 t

~1 2 4 where ~1 2 4 is a'three factor' interaction, which was not yet
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defined ín this paper; such hígh-order ínteractions, however, are asswned
negligible in metamodelíng.

The combinations of the 210 5 design are simulated, and the out-
puts are compared with the predictions of the calibrated metamodel. This
results in relative errors exceeding 10~ in eight combinations, which is
considered unacceptable. Shrinking the ranges of the original variables
does not help. Next the metamodel is expanded with purely quadratic ef-
fects. The central composite design of (17) requires 1 f 2k extra combína-
tíons. To save computer time, only five of the ten factors are investíga-
ted, namely those five factors that are sígnificant in the previous meta-
model. (Because that metamodel is not valíd, it is dangerous to use it for
the selection of factors; the resultíng new metamodel, however, will be
validated again.)

The quadratic model is used for the factors 3,4,5,7 and 10. Only
four (not ten) interactions between these five factors are conjectured to
be important. So the number of effects excluding purely quadratic effects,
is: 1 t 5 t 4- 10. So the 2k-p design, which is part of the central com-
posíte design, must satisfy: n- 25 p? 10 or p c 1. So one generator is
selected; namely 4- 3 7 10. These sixteen combínations are augmented with
eleven more combinations, followíng (17). This experíment yíelds a
calibrated metamodel, which ís cross-validated. Six more combinations are
selected randomly, simulated, and compared with the predicted outcomes.
Fínally, a'base' combination is examined; this combination is not the
center combination (0,0,...,0) of (17), but is close to it; it is a combí-
nation intuítively specified by the analysts. All validation results are
acceptable: the errors are smaller than 10~. The índividual effects of
this accepted metamodel are discussed next.

Because a staYisti.cal model for the fitting errors e ís assumed,
(16) gives the Student t statistic for effects, where the degrees of free-
dom is n-q - (16t11) -(lOtS) ~ 12. For a- 0.05 the critical t value is
t122 - 2.18. Table 2 shows sígníficant effects only.
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Note that if no such statístícal model were assumed, then the last
column should be ignored. If the design were orthogonal, then 'signifi-
cance' and importance would coincide: ( 14) through ( 16) show that t ~n n-q
~~~(o~Jn). So if effects are sorted in order of magnitude ( I~~I), they are
sorted in order of significance ( ~tn ql). The central composite design,
however, ís not orthogonal: quadratic effects and the overall mean are not
orthogonal.

Summarizing, oríginally ten factors are investigated for the ocean
module. Because the metamodel without quadratic effects cannot be accept-
ed, a model including such effects is specifíed. That model, however, is
restricted to fíve factors. The latter model can be accepted, and yíelds
only four important factors. These factors have sígníficant main effects,
one significant quadratic effect, and three significant interactions.

Table 2: Significant effects of ocean module

h:ffe~ct ~atimfite t statistic

1074.66 154.08
-244.95 -139.35
LS8.31 98.1U
51.17 32.07
27.19 14.U5
18.78 11.63

- 17.65 - 8.93
- 12.26 - 6.20
- 8.35 - 4.22

The carbon-dioxide cycle in IMAGE: terrestrial biosphere uodule

The terrestrial biosphere module is described ín [Goudriaan 6~
Ketner, 1984]. The analysis of this module is presented, because the mo-
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dule contains many input variables: k- 62. These 62 variables are des-
cribed in [Van Ham et al., 1990]. There are desígns that yíeld estimators
of maín effects without being biased by possíble ínteractions; moreover,
these designs yield estimators of confounded interactions: so-called reso-
lution-IV desígns ( see Kleijnen, 1987, p. 301). Such designs requíre at
least 2k combinations (so k f 1 GG n GG 1 f k t k(k-1)~2). For k- 62 a
resolution 1V Zk-p design satisfies: 262 p? 124 or p a SS. So 5S genera-
tors must be selected. Each selection yields a specífic confounding pat-
tern of estimated effects. The analysts gíve 26 interactions that míght be
ímportant. Based on that list, 55 generators are selected; see [Van Ham et
a1.,1990]. First one estimated effect turns out to have the wrong sign:
the effect ís significantly positive whereas the analysts expect a nega-
tive effect. Next the ranges of the input varíables are decreased, and the
results become acceptable: the relative forecast errors are small; all (26
confounded) interactions are non-significant; all signíficant (unbiased)
maín effects have the correct sígn. There are only 13 significant main
effects ( significance is measured by the t statistic wíth 128 - (1t62t26)
~ 39 degrees of freedom). Note that for validation purposes an experiment
with twelve randomly selected extra combínations ís executed; íts relative
forecast errors vary between -S.SX and -O.lOX.

Conclusion

Any simulation model requires sensitivity analysis. That model can
be treated as a black box, if the techníques of regressíon analysis and
experimental design are applied. The regression model is a metamodel of
the simulation model, and guídes the experimental design. The design leads
to effícient and effective experimentation.

The case study demonstrates that applicatíon of these statistical
techniques requires knowledge of the underlying simulation model and real
world system. For example, potentially important factors and their ranges
must be given by the analysts. Some statístical expertise is needed to
select the generators for the design.
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The case study was succesful. The metamodels give acceptable fore-
cast errors. The significance of certaín effects surprises the analysts.
For example, quadratic effects ín the ocean module were not expected; and
the major ímportance of the 'biotic growth' factor in the terrestrial
module is also surprisíng. Another surpríse ís the 'bug' in the díke rai-
síng module; the metamodel shows that this module must be split into two
submodules.

The sensitívity analysis of IMAGE took quite some time and effort.
Fortunately this investment in metamodeling is judged to be profitable.
The conclusíons of thís analysis will guíde the development of an interac-
tíve version of IMAGE.

Summarizíng, regression metamodels and experimental designs are
usetul in the sensitivity analysis of símulation models, as the case study
demonstrates. Details on the techniques can be found ín [Kleijnen, 1987];
for sensitívity analysis of simulation models with hundreds of factors,
special screening designs are presented ín [Bettonvil, 1990].
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