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A NEWTON-LIKE METHOD FOR ERROR ANALYSIS

APPLIED TO LINEAR CONTINUOUS SYSTEMS AND EIGENPROBLEMS

ABSTRACT

This paper discusses bounds for the distance of a point a in Hilbert space

X to a manifold S-{x E XIF(x) - 0}, where f is a Frechet differentiable

mapping into a Hilbert space Y. The Newton-Kantorovich method handled in

the normal space at a of the manifold S-{x E X~F(x) - F(a)}, gives a

realistic upperbound of this distance. In the usual Kantorovich conditions

the Lipschitz continuity of Df effects S to be locally in a set with po-

sitive distance to a; this leads to a lower bound of the distance d(a,S).

This approach leads to a method to distribute, in an"optimal" way the

errors in a ~iiiear dynamical system among input, output and structural va-

riables. A posteriori error analysis in eigenproblems illustrates also

this approach.
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1. INTRODUCTION

In applied mathematics it is of frequent occurence to have only an ap-

proximate solution of an equation. Only approximately the data satisfy

the model equations, despite accuracy the numerical solutions have been

applicated with errors, the structural parameters supposed to be constant

are as well approximately known,...

For this reason it is important to have at disposal a manageable technique

to determine sharp bounds for these errors. Both upper and lower bounds

for the errors are of importance in the evaluation and diagnostics of mo-

dels or to assess a numerical algorithm.

In the late forties Kantorovich proved the convergence of Newton's methcxi

for solving equations (, without assuming previously the existence of a

solution, ) under meanwhile standard assumptions [ 9] ,[ 13] . As an impress-

ive result he also be obtained an upperbound of the distance of starting

value x~ to the locally unique solution xm, being the limit of the Newton

sequence. Lower bounds of this distance are given by Gragg and Tapia [8].

In the Newton-Kantorovich theory one considers the convergence of the

Newton sequence to a zero of the sufficiently smooth function

f : X~W-~Y (1.1)

where W is some ball around a- x0 in a Banach space X and the inverse of

derivative Df(0) maps Banach space Y onto X. At the moment we remind and

emphasize the Kantorovich-Gragg-Tapia bound for xW - xU:

mlDf(x~)-1 f(xU)1 ~ Ixm - x~l ~ MIDf(x0)-1 f(x0)1, (1.2)

where, according to [ 13] M- (1 -~) ~K and according to [ 8]

m-( 1~ - 1)~K. Here K- Lu-1 IDf(xU)-1 f(x0)1 ~ Z where L is a

Lipschitz constant of Df and IDf(x0)-11 ~ u.

In section two of this memorandum we discuss a generalization of the

Newton-Kantorovich theorem. We consider a function f as given in (1.1),

but now Frechet derivative Df(0): X; Y is surjective. A lower and an

upper bound is derived for the distance d(a,S) of a E W to the manifold
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S-{x E Wlf(x) - 0}. As concerns f we assume derivative Df: W i L(X,Y) to

be Litschitz continuous. Let be ~p the restriction of f to the normal space

N2 at a E W to the level surface {x E W~f(x) - f(a)}.

Provided ~ satisfies the usual Kantorovich conditions, the intersection

of W and NZ contains a zero, say z, of f: z E S. So Sa - z) is an upper-

bound of d(a,S). Now the Lipschitz continuity of Df has as consequence

that S around z fluctuates inside a set that can be described by a simple

inequality; this inequality gives a lowerbound of d(a,S).

In practical situations many times the problem under consideration rises

in the following way. Assume in some model, with qiven parameters a E ~~,

some variables v Eir have to satisfy the equation G(y;a) - 0. As a result

of errors G(v,a) ~ 0. Then the question rises to find bounds for the per-

turbation e F~~ and d E~i 9uch thxt f(d,e) -(1, wher~,

f(d,e) - G(v t d; a t e).

In previous papers [ 14] ,[ 15] we have found realistic, and rather usable
upperbounds for these feasible perturbations (d,e) E ~ x v in the least
squares problem and in the discrete linear model.
In section three we analyse the magnitude of sufficient perturbations

(a,B,p,E,n) in the continuous linear model

f(a.B.P.E.~)(t):- Y t n-(a t a(t))(y f n(t)) -

(b t R(t))(x t~(t)) - p(t) - 0 (1.3)

with given a,b E IIt, x E C[ 0,1] and y E C1 [ 0,1] .

The non-linearity of f makes it necessary to use supremum norms ànd thé
contraction theorem in, say, im (Df(0,0,0,0,0)!).
Sence only an upperbound of d(0,5) has been obtained; for the rest, that
upperbound i s sharp for small r:- f(0,0,0,0,0).
In section four we consider the eigenproblem as an area of application of
the mentioned approach. There we describe,in addition to the error bounds,
also a method for the improvement of an approximated eigenpair ( a,x): a
zero ( ó,h) of the function A(x t h) -(a f d)(x t h) is a solution of an
underdeterciined s~!stem [ 2] ,[ 16] . But ~iven that ( a,x) also the question
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rises to construct an optimal perturbation (H,h) such that (A t H)(x f h) -

a(x t h) - 0. Numerical results for this problem demonstrate that if a is

an ill considered eigenvalue than a very small H suffices to fulfill the
equation (A f H)(x f h) 3~(x t h).
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2. BOUNDS FOR THE DISTANCE OF A MANIFOLD IN A HILBERT SPACE TO A NEARBY

POINT.

In this section we describe a method to determine an upper and a lower

bound for the distance of a given point a in a Hilbert space X to a mani-

fold S.

Let S be a manifold imbedded in X, defined as the preimage of zero in Y

of a surjective mapping f of X into Hilbert space Y:

5:- {x E Xlf(x) - 0} (2.1)

in X the distance of a to S is defined by

d(a,S) - inf{Nx - aNlx E S}.

The bounds for d(a,S) are derived under the assumptions that f is a mapping

with Lipschitz continuous derivatives in some ball around a and that

f(a), Df(a) and this Lipschitz constant for Df fit into thc wellknown

Kantorovich conditions. So the point a is near to S as can be described

thanks these conditions.

The bounds for. d(a,S) are obtained from the restriction of f to the linear

manifold a t N2, where N2 is the orthogonal complement of the nullspace N1

of Df(a). Since N2 - im(Df(a)~), we find for that restriction fIN2:

x y f(a t x), x E N2 -{Df(a)~yly E y},

If f(a t Df(a)~-~) - 0 then

d(a,S) ~ NDf(a)~vN

In order to prepare and structure the proof of theorem 2.1 we start to

formulate some lemmata.

LEI~7A 2.1. Let N1 be a closed subspace of Hilbertspace X and N2 - N1. Let

a, S be positive reals and w- wi t w2 E B(O,B) with wi E Ni (i - 1,2)
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and wl ~ 0. Let be

K:- {(1 - pw1M-lt)wl t x2 E X~t E[~.Nw1N].

x2 E N2 r1 B(w2,ai)~

a subset of a convex cone in X with top w and let

W:- {xl t x2 E XlaNxll t Nx2N c s, xi E Ni, i- l~z}

Then K C B(0,6) if and only if w E W.

(2.2)

(2.3)

PROOF. (i) Assume w E W. If x- xl t x2 E K, then there exists a t E[~,Bw1N]
such that xl -(1 - Nw1N-1T)wl and x2 - w2 t eaTV with e E[0,1) and v a
unit vector in N2.

Hence we investigate

NxN2 - Nx1N2 t Nx2fl2 -(Nwlfl - t)2 t Uw2 t eatvll-~

~(Nw1N - i)2 t(Nw2B t ai)2 -: g(i), 0 c T c Ywlfl.

Now on the interval [O,Nw1N] the quadratic function g attains its maximum
in one of the endpoints O,Nw1N. For t- u we obtain g(0) - Nw1N2 t YwzN2 c SZ

since w E B(O,S) as given. For T- Uw1N we obtaín g(tlwlfl) -(aNwlfl t Nw2fl)2 c S2
since w E W as assumed. So x E B(O,S) since 0 c g(T) c s2 for each
t E [ OrNwll] .

(ii) Conversely, suppose w~ W, i.e. aNw1N t Nw2N ~ g. Now consider
x:- (1 - Iw1N-lt)wl t x2 E K with t- Nwlp and -

x2 -
I aNw1Nv, where v E M2, Nvp - 1, if w2 - 0

Nw1N~ w2 t a~T- w2 , if w2 ~ 0.
2

Then x - x2 and thus NxN - aNwil t fl~v2G ~ S, So x~ B(O,S).
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The spherical symmetric forms in the next lemma make its proof to be a

simple exercise.

LEMMA 2.2. Let w E X and W as in lemma 2,1. The distance d(O,Wc) equals
1

S(1 t a2)2. 0

In the proof of the main theorem 2.1 frequently the decomposition

X- N1 ~ N2, with N2 - Ni, is used. Accordingly vectors x, y are decomposed:

x- xl } x2, y- yl } y2 with xi,yi E Ni, i- 1,2. As appears, the subspace

N; is the nullspace of the Frechet derivative at a given point a in the

c;omain of a differentiable mapping.

THEOREM 2.1. Let X,Y be Hilbertspaces and f: X D B(a,r) -~ Y(r ~ 0) a

Frechet differentiable mapping such that

t -1 t
(i) A:- Df(a) E L(X,Y) is surjective and ~~A p ~ a , where A E L(X,Y) is

the right inverse of A;

(ii) ~Df(x) - Df(y)M ~ Ldx - y~, x,y E B(a,r);

(iii) AAt f(a)M - Y ~ Y~

(iv) K:- LY a-1 ~ 2 and p:- a(1 -~)~L ~ r.

Then the equation f(x) - 0 has a solution z in B(a,~) n N2 which is unique

in B(a,p2) n N2 where N2 is the orthocronal complement of N1:- ker(A) and

;i2 - a(1 t ~)~L. (2.4)

The distance d(a,S), where S-{x E B(a,r)If(x) - 0}, satisfies the in-

equalities
1

p1:- P3(1 t L2p3(a - Lp3)-2)- 2 ~ d(a,S) ~ P. (2.5)

where
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p3 - a(1 t 1-2J Lya ")~L (2.6)

PROOF. Without ].oss of q~nera.lity w~~ may a,~;umc, a- ti, 'I'li~~ a:urjc,c:Civity c~f

A implies that the restriction AINZ of A to the closed subspace Nz is
bijective; by the Banach open mapping theorem its inverse is also conti-
nuous and equals the rightinverse At of A: AAty - y for each y E Y. The
rightinverse of A equals A(AA~)-1 [4], Let ~:- f~N2. This mapoing

sati~fies the conditions of the Kantorovich theorem:

(i) D~p(0) - AIN2 E L(N2,Y) is invertible and ND;p(0)-lq - pAt~ ~~-1

(ii) MD;y(x) - D;p(y)n ~ NDf(x) - Df(y)N ~ LNx - yd, x,y E NZ n B(O,r);

(iii) pD~(0)-1 m(0)~ - Y ~ Y:

(iv) K- Lya-1 ~ 2 and p- a(1 -~)~L ~ r,

Hence the equation cp(x) - 0 has a solution z in B(O,p) n N2 and this
solution is unique in B(O,p2) n N2 with p2 as given .in (2,4) ~II].

This z, zero of f in B(O,p) is used to obtain a lowerbound pl of d(O,S).

Since Df is Lipschitz continuous on B(O,r) we have [17]

~f(z) - f(0) - Az~ ~ 2 LYzdz

and consequently

Y- uAtf(0)p - dz t At(f(z) - f(0) - Az)M ~ Uzp t 2 La-lOzMZ.

Hence the positive zero p3 of the quadratic function

tH2La-1 t2tt-Y

is majorized by Nz~, With ( iv) we find ~z9 ~ p ~ 2 y and consequently

LM zN ~ 2Ly ~ a.
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Let be V:- {x E x~YxN ~ YzY} and

P(x): f)f(x)IN), ~~(x): UI(x)INf, x~ V.

If y- Y1 t Y2. Yi E Ni ( i - 1,2) then

Df(x)y - Df(x)(yl t y2) - P(x)Y1 t 4(x)Y2.

Since P(0) - 0 we derive from the Lipschitz continuity

Yp(x)N - Np(x) - P(0)II ~ IIDf(x) - Df(0)II ~ Lllxll ~ Lllzll, x E V

and similarly

YQ(x) - Q(0)Y ~ YDf(x) - Df(0)N ~ Lllzll, x E V,

But Q(0) - Dcp(0) and so

Y(Q(x) - Q(0))Q(0)-111 c 1,Nzll a ~ lr x E V~

which implies that Q(x) -(I t(Q(x) - Q(0))Q(0)-1) Q(0) is invertible for
each x E V. With Banach's theorem [l~i] we obtain readily an upperbound,
say a, of NQ(x)-1 P(x)Y:

YQ(x)-1 P(x)N ~ NQ(0)-111NPxN~(1 - Lllzll~-1) ~~LII~~-: a, x E V

(2.7)

Let be SZ:- {x E Vlf(x) - 0}. From the uniaueness of the zero z of ~p in
B(O,p) n N2 we conclude that YxY ~ NzN n x E N2 n f(x) - 0 imnlies x- z.
Now we assume w- wl t w2 E S2, with wi E Ni (i - 1,2) and wl ~ 0.
In our investigations we use the line R in N1:

R:- {(1 - tYwlll-1)wl~t E II2}

and the function F defined as follows:
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]R X N~ 3(t,yz) ~-~ F(t,yz):- f((1-tMwlq-1)wl t y2),t2 t tly2~2 ~ r2.

It is clear that F(O,wZ) - 0, Since

F(O,w2 t h2) - F(O,w2) - Df(w)h2 - o(~hZd)(, h2 -~ 0),

the derivative D2F(O,w2) of F in (O,w2) with respect to w2 ecluals

Df(w)INZ - Q(w) and this derivative is a regular element of ],(N2,Y), In

conformity with the implicit function theorem [20], there exists an inter-

val I C IIt around 0 and a differentiable mapping ~: I~ NZ such that

~y(0) - w2, F(t,~(t)) - 0 and too for each t E I

D~(t) - -(D2 F(t,~(t))-1 D1 F(t,~(t))

(, D1 F(t,~(t)) Ueing the di~rivat.ive of F in (t-,i(~(1)) wilh respect tc~ L).

For d small enough the differentiable curve

{(1 - tpwl~-1)wl t~(t) E Xlt E(-d,d) C I}

is a subset of V. On this interval (-d,d) we have

~(t) - ~y(0) - - Ip DZ F(T,tfi(7))-1 D)F(T,i~(T))d7.

By the definition of F

so

D1 F(t,y2) --P((1 - tuwlll-1)wl } y2)Nwlu-1
wl

(2.8)

aDl F(t,y2)4 ~ CP((1 - tBwlll-1)wl t y2)II,

Hence for ~tl ~ d we obtain with (2,7)

qD2F(t,V~(t))-1D1F(t,V~(t))d ~ nQ((1-tpw1G-)wlf~(t))-1P((1-tllwlll-1)wlty(t))II ~ a

(2.9)
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With this upperbound we find easily from (2.8)

N~(t) - w2N ~ a~tl, Itl ~ d. (2.10)

Let us suppose that (, compare with (2.3),)

w E W:- {x - x1 t x2 E VIaMx1N t Nx2N~ NzN, xi E Ni, i- 1,2}

(2.11)

Then, as follows from lemma 2.1, for each t E[O,Nw1N]

(1 - tNw1N-1)wl t x2 E s(O,MzN) (2.12)

if x2 E B(w2,at). So if w E W than the function ~y (, solving y2 from the
equation F(t,y2) - 0 as a function of t,) can be continued to the right
until t- Nw1N. Analogously to (2.10) one finds for this extended mapping

NV~(Nw1N ) - w2N ~ aNw1N .

But

0 - F(Nwll, V~(NwlN)) - f(V~(Nwll)) - ~P(~Y(Nw1N)),

for ~y ( N wl N) F i12 . With ( 2.12 ) we obtain

V~(Iw~N) E B(O,MzN).

This conclusion contradicts that z is the unique zero of ~ in the ball
B(O,p2) n N2. The contradiction proves the incorrectness of assumption
(2.11): We have proved that

g C Wc -{x - xl t x2 E XIaNx1N t Nx2N ~ NzN, xi E Ni, i- 1,2}

(2.13)
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The distance d(O,ft) is minorized by d(O,Wc); with lemma 2.2 one finds

1

d(U,Sl) ~
Nzl - MzN(a-l.lzl) - Izl (1 t (lw)l)- 2.

- 1J ta` ~L2~ z~ 2 t( a-L~ z~ ) 2

where v- Llzd~a E[Lp3a-1,Lpa-1) C(0,1). Since the function

1

v -~ (1 t (1~v)2)- 2

on this interval attains its minimum in the endpoint Lp3a-1, we finally

obtain
1

d(O,SE) ? P3(1 t L2P3(a - I,p3)-2)- 2- P1.

Z , then theREMARK 1. Under the same conditions as in theorem 2.1, if K ~ 1

iterates

xktl'- xk - A~(AA~)-1 f(xk), k E Id,x1:- 0,

are defined for all k, and converge to z E B(O,p) n N2 [20].

This modified Newton's method gives a linearly convergent sequence

{x } C B(O,p2) fl N2 and
k

Ixk - zl ~ 2 L(1 -~)ktl.

REMARK 2. The bounds for the zero of fIN2 can be obtained by a direct

analysis of the mapping ~p - fIN2. If x E N2, then there exists a unique

y E y such that x- A~y; hence if Q E Y is a zero of K: Y-~ Y, where

K(y) - f(A~y), then z- A~Q E N2 is a zero of f. That Q can be obtained

with modified Newton's method:

yktl.- yk -(AA~)-1 f(A~yk). k E N. Y1:- 0 (2.15)

(2.14)

Evidently, the sequences {xk} and {yk}, given in (2.14) and (2.15) are



strongly related: xk - A~yk. O

REMARK 3. nuite the same results can be derive for f:X -~ Y where X and Y are

Hilbert space over the field of complex numbers. This will occur in section

4 where the results of this section are applied to the eigenproblem. O
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3, UlSPR1HIM1'1ON OF I:ItltORS [N I` I.INI;Ak CON'1'i.NUOl1S 5Y:;f'I;M

3.1.

Let be qiven a real continuous function x E C(I), I being the interval
[0,1] and a real differentiable function y E C1(I). Further we assume to
have at our disposal the numbers a,b E Ht. This quadruple (a,b,x,y) defines
residual r E C(I):

r(t):- y(t) - ay(t) - bx(t), 0 ~ t ~ 1. (3.1)

In order to evaluate how far the pair (x,y) fits in the scalar linear model

y - ay t bx (3,2)

we introduce perturbations

~-(a,s,Pr~,n) E X:- C(I)4 X C1(I)

such that

(3.3)

y(t) t fi(t) -( ata(t)(y(t)tn(t)) t(bfs(t))(x(t)t~(t)) f p(t)

So this quintuple ~ has to satisfy the equation f(c~) L 0 where

f:X -i Y, Y:- C(I), with

f(tD)(t) - f(a,s.P.~,n)(t) - y(t) f n(t) -(ata(t))(y(t)tn(t)) -

(b}S(t))(x(t)tl;(t)) - p(t)

- r(t) t n(t) - an(t) - b~(t) - a(t)y(t) -(3(t)x(t) -

p(t) - a(t)rl(t) - s(t)~(t).

The modification of (3.2) into

(3.4)

(3.5)
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fi(t) -(ata(t))n(t) t R(t)(x(t)t!;(t)) t b~(t) t ay(t) t p(t) - r(t)

(3.6)

gives a weakly nonlinear system ~6~.
The functions a and R are ccasidered to be fluctuations of the structural pa-
rameters a and b respectively. The functions ~ and n are perturbations of
the given functions x and y and p is a corrected residual. In ttris view
the description of the error in the model with residual r, has been re-
placed by a description with the fluctuations a and s, the perturbations
~ and n and the corrected residual p. In a natural way the question rises
to determine the minimal ~-(a,s,p,~,e), with respect to some norm, such
that a, b, x and y fit in system (3.4).
The same problem can be seen as an example of optimal control. The de-
termination of an minimal ~-(a,B,p,~,r1) (, with respect to some norm)
subject to condition (3.6) is just a weakly nonlinear tracking problem.
In the linear state equation (3.6) the state rl and the controls a, S, ~
and p occur in a bilinear wav f1,F,11,12,211.

3.2.
In this section we apply the approach of the preceding section for the
estimation of that minimal rp.
As we see fr.om (l.h)

f(~1t~2)(t) - f(~i)(t) t Df(ml) 2(t) f R(W1:~2)(t) (3.7)

where

Df(~1)~2(t) - r12 - (afai)~2 - (bt~l)~2 - a2(ytnl) - S2(xt~l) - p2

(3.8)

and

R(~1;m2)(t) - - a2n2 - R2n2- (3.9)

with ~ - (a.,S.,P.,~ .rt.), i - 1,2.i i i i i i
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Both ~1 and increment ~2 are elements of the productspace X with inner-

product

~~1.~2~-- (a1.a2) t (R1.R2) t (P1.P2) } (~1.~2) t (n1.~2).

~ir~2 E X.

where Wi - (ai.Ri.Pir~i.ni), i - 1,2.

With the L2-norms in the prehilbert spaces X and Y we find for f:X -r Y
that

R(cp1,~2)~~2M-1 -~ 0 (, ~2 -~ 0),

for each ~1 E X. Nevertheless f is not Frechet differentiable at ~pl E X,
for the linear mapping Df(~1).:z X-~ Y is not bounded; on the other hand f
is Gateaux differentiable at.eách ~ E X.
The constant term r of f(~) equals f(0) and the linear part, relatively
the L2-norms in X and Y, is A~p(t):- Df(0)cy(t) - ~(t) - ar~(t) - hT(t) -
a(t)y(t) - B(t)x(t) - p(t).

The domain X of the Gateaux differential A of f at 0 is dense in H:- L2(I)I
and its range Y is dense in L2(I).

Indeed the mapping f is surjective as is A: for each p E Y we have
f(O,O,r-p,0,0) - A(0,0,-p,0,0) - p.
Now we start to construct the adjoint A~ of A. Suppose ~ E D(A~) and let
be A~~ -(al'sl'pl'~1'nl)' This means that for each (a,S,p,~,n) E X holds

(A(a.B.P~~.n).~) - I~(n-an-b~-ay-Bx-P)(t)V~(t)dt

- ((a.s.P.~.n).(a~.6 P1.~1.n1)) - I~(aa1tR61tPPifE~1}nnl)(t)dt

Thus for each ( a,R,p,~,n) E X we have

IQ[(n-an)V~-nn1~ (t)dt - I~[(b~t~l)~t(y~tal)at(x~tf31)R}(~Y}P~)P1 (t)dt

(3.10)
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If in the quintuple (a,8,p,~,n) E X each element is taken zero except
respectively a, R, p and i; we find

al(t) - -Y(t)V~(t),S1(t) - -x(t)~4(t).P1(t) - -V~(t),E1(t) - -b~(t),

1
If n-- (1 - h f .O we fi ncl wit.h ( 1. 10) 1 Ir:rl f cir ~~.u~li r~ r (' ( I):

I~ [ (n-an)V~-nnll dt - 0.

(3.11)

Since the adjoint of r1 K r1 is the mapping ~y r-~ -~ with ~(0) -~(1) - 0[ 101 .

and that of r1 'f arl is ~r ~ a~y we find

rli(t) --~(t) - aV~(t). V~(0) - V~(1) - 0.

So

I D(A~) - {~ E C1(Z)IV~(0) - ~Y(1) - 0}

A~~(t) - (-y(t)~y(t),-x(t)~(t),-~(t),-b~(t),-~(t)-a~y(t)), 0 ~ t ~ i.

Thus far the mappings f and Df(~) have been consiclered on the domain X; the

nonlinear term S~ in the expression (3.5) of f(cp) prevents F to be defined on
the Hilbert space L2(1)5 X H1(I). Consistently, we now consider the re-

striction of f to

N2:- R(A~) -{(-Y~Y,-x~U,-V~,-bV~,-~-a~4)~V~ E C1(I).V~(0) - V~(1) - 0}.

A usable upperbound of inf{IW12I~y E X, f(~) - 0} can be derived from a

zero of fIN2.
Let t~ E N2. Then there exists a~y E C1(I), with ~y(0) -~(1) - 0, such that

~(t) - (-y(t)~(t),-x(t)rV(t).-V~(t).-bVr(t).-W(t)-aV~(t)). t E I.

(3.12)
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Hence f(~) - U implies

t
where

K(y)(t):- r(t)-~(t)tg(t)~y(t)-y(t)~(t)~(t)-k(t)~2(t) - 0 (3,13)

~(0) - ~(1) - 0 (3.14)

g(t):- a2 t b2 t 1 t x2(t) t y2(t), k(t):- ay(t) t bx(t), t E I.

The solution of the equation f(~) - 0 in N2 can be derived with (3.12)
from the solution of the two point boundary value problem (TPBVP) (3.13),
(3.14). So we investiqate the existence problem for this TPBVP. Instead of
the Newton approach we make use of the Banach fixed point theorem in order
to proof the existence and to estimate the solution of this TPBVP [3], [5].

3.3.
For the proof of the existence of a solution ~ E C1([0,1]) of TPBVP (3.13),
(3,14) we consider the differential operator P:V -~ C([0,1]), where

V:- {V~ E C2[ 0.1] ~V~(0) -~(1) - 0} (3.15)

P~r - w p W(t) - g(t)~y(t) - w(t), t E [ 0,1) (3.16)

Since g(t) ~ 0, 0 ~ t ~ 1, the linear operator P is regular [7].
With respect to the supremum norm ~.~W on C[0,1] operator P has a bounded
inverse P-1 : C[ 0, 1] -~ V such that [ 10]

1 1Ip- 1~ ~ m(g) ,

where

(3.17)

m(g):- inf{g(t)~t E (0,1]}, (3,1II)

Thus for the solution u of TPBVP
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V~ - 9~ - w. ~(0) - V~(1) - 0

we have

1 ~,1 ~
N w! m

Further holds f 7J

~y(t) - I~ G(t,s)(g(s)y~(s) t w(s))ds,

where

(t-1)s, 0 ~ s ~ t ~ 1

G(t,s) - ~ - - -
Illl
t(s-1) 0 ~ t ~ s ~ 1

Now we investigate the mapping T: C1 [ O,1J -~ C1[ 0,1] , where

i7 - qu - r - yvv

Tv - u "~

l u(0) - u(1) - 0.

Hence

- kv2

(3.19)

(3.20)

( 5.21)

u- Tv - P-1(r - yvó - kv2) (3.22)

and

u(t) - I~ G(t,s)(gu t r- yvv - kv2)(s)ds (3.23)

ConsecPaently any point ~ E C1[0,1] is a solution of TPHVP (3.13), (3.14)
1f and only if ~y - T~.

With respect to the norm

Ivls:- Ivl~ t I~Im, V E C1] p,l] (3.24)
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the linear space C1[0,1) is canplete.
In C1[0,1],1.1 we determine a closed ball W:- B(O,p) such that T(W) C W,S
Equation ( 3.2"l) implies

lul~ ~(Irlm t Iy1~Mv~mlvim f Iklmlv~~)Im(g).

From (3.19) we derive

u(t) - j~ át (t,s)(gu t r- yw - kv2)(s)ds,

where

-r s , 0 ~ s ~ t ~ 1

at
(t,s)

jI

s-1, 0 ~ t ~ s ~ 1.

(3.25)

Consequently

Iu1W ~ 2[ Igl~iul~ t Irl~ t IyIWMvimlv~m t Iklmlv~~l . (3.26)

Addition of ( 3.25) and ( 3.26) gives

luls ~ c(g)[ Irl~ t IylWlvl~ Ivl~ t Ikl~lvl~]

~ c(g)[ Irl~ t(lyl~ t IkIW)Iv12] (3.27)- s

where

1 ql
c(g):- 2(m( )

t 1) t m( )'9 g

Thus ~v~s ~ p implies ~Tv~s ~ p if

c(q) (~rl~ t (lyl~ f 9kIW)p2) ~ P.

(3.28)

The last inequality is satisfied if and only if
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where

pl ~p ~p2

1 t(-1)1 1- 4c2(q) (ey~ f Ikl )!r9m ~ m
pi - 2c(g)( y~ t k m)

Evídently, r~~:;idual. r has t.o h~~ sufficie~nt. ::w;ill:

Irl ~ (4c2(g)(My~ t Ikl ))-1
~ - W ~

Now we investigate T:W -~ W (, pl ~ p ~ p2,) on its contraction property.
Let be ui - Tvi, vi E W, i- 1,2.

Then

and

Since

i

u1 - u2 - P-1(y(v2'v2 - vl'vl) t k(vZ - vi))

ul(t) - u2(t) - IO 8t ( t,s)(g(ul-u2)ty(v2v2-vlál)tk(v2-vi))(s)ds.

-v2v2 - vlvl - v2(v2-ál) t (~2-~1)~1

v2 - vi - (v2tv1)(v2-vl),

evidently

Then

2 2 1 1 m- 1 s 2 s 1 2 s~vv-vvA ~ (Ivl t1v~ )Iv-vG

~v2-vi~~ ~ (~vlls t Iv21s)Ivl-v21s.

ITv -T"v 1 - au -u 1 ~ 1 (lyl tlk~ )(~v ! tBv tl)dv -v 1
1 2 m 1 2 W- m(g) W W 1 s 2 s 1 2 s

(3.32)
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and

lul(t)-u2(t)~ ~ 2 (Igl~lul-u2lmtlylml~2'v2-vlállm Ikl~lv2-vilm)

I gl
~ 2 (m(g) tl)(IylWtlklm)(Ivllstlv2ls)Ivl-v21s.

Addition of (3.32) and (3.33) gives,

ITvl-T~21s ~ c(4) (NylWtlklm) (Ivllstlv2ls)Ivl-v2Ns

~ 2pc(g) (lyl t1k1 )Ivl-v21s.- m m

So the mapping T:W -~ W is a contraction if

1
p~ P3'- 2c(g) ( Y Wt k~)

(3,33)

(3.33)

Remark that, provided condition (3.31) is satisfied, pl ~ p3 ~ n2. Now we
have reached the following result.

The mapping T:W - B(Ó,p~ - ~ W is a contraction for cach f~ ~- ~ f~l,l~ j) if

1 rl ~ 1 .
~ - 4c2(g) ( Iy1~tIkIW)

Under these conditions T has a unique fixed point ~ in B(O,n). Moreover,
the sequence {un}, with u0 - 0 and

un - Tun-1~ n E N~

1 N,1 to that solution of the e uation u- Tu, Forconverges in C[ 0,1] , s ~ q

that solution ~ holds the inequality

lulls
I~Is ~ 1-2Pc(g)( y ~t k ~)

The first iterate ul is solution óf the TPBVP

- gul - r, ul(0) - ul(1) - 0.
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As a consequence of (3.27)

lu1~m ~ c(g)Irl~,

Therefore

~~c( ~)
~~~s - 1-21íc;(g) (Ty m-ÍTÍ`) ~r~~.

With p- pi finally we have

c( )
~~~s ~ 1-2pic(g)( y m k m) ~r~~.

( t. 44)

For the solution ~:- (-y~,-x~,-~,-b~,-~-a~r) of equation f(~) - 0 we have

I~ ~2(t)dt - IÓI (Y2fx2tlfb2ta2)~2 t~2 t 2a~r~] (t)dt

- !Ó(g(t)~2(t) t ~2(t))dt

since ~(0) - ~(1) - 0, Now

1~12 ~ Iglm(I,~Itl,yl)2

Consequently

- Iql 1~,12
m s

~~~s ~ 1-2p1c(g)( y~~t k m) ~r~~'

This result is su~narized in

Tt~OREM 3, 1, Let be given a, b E IIt, x E C(I) and y E C 1( I), where I -[ 0, 1] .

Let

r(t):- y(t)-ay(t)-bx(t), g(t):- a2tb2titx2(t)fy2(t), k(t) -

ay(t)fbx(t), t E I,

c(g)~

If
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where

with

4~r~m c2(g)(~ylm t Ik~) ~ 1,

1 gl
c(g) - 2(m(g~ t 1) t 1

m(g)

m(9) - inf{4(t)~t E I}.

then there exists a perturbation ~-(a,8,p,r„~) E C(I)4 x C1(I) such that

y t n-(ata)(ytn) t(bts)(xt~) t p

and

where

c(4)~

2 - 1-2pic (g)~yr fTkT j1 ~1 ~

1- 1- 4c2 (g) ( ~ y~ t1 k~ ) ~ r~m m ~
pl - 2c(g)( y Wt k m) . O

REMARK. In a next memorandum we will analyse the vectorial analoque of the
distribution problem and also will be described a numerical method for the

computation of these suboptimal fluctuations and pcrt-urhat:ions,
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4. A POSTERIORI ERROR BOUNDS FOR AN EIGENPAIR AND NUMERICAL RESULTS.

In this section we apply the results of section two to the eiqenproblem.

We assume to have at our disposal an approximate eigenproblem solution

(a,x) for a given complex nX n matrix, For instance, this eigenpair can

be seen as the result of some eigenvalue computations performed with

finite arithmetic.

Let be r:- Ax - ax, the residual vector corresponding to the approximate

eigenpair (a,x); further we assume x to be normalized in length: x~x - 1.

The pair (a,x) has been afflicted with errors (,x ~ 0,) so at the moment

we introduce perturbations (ó,h) in order to compensate these errors, i.e.

(atd, xth) has to be an exact eigenpair for matrix A.

For the analysis of the bounds for the necessary corrections (d,h) we

introduce the nonlinear, smooth function f: C x Cn -~ Cn, defined by

f(ó,h) :- A(xih) - a(xfh).

Then, f(0,0) - r and for P :- Df(0,0) we find

P(d,h) - (A-aI)h - óx.

(a.l)

(4.2)

With respect to the usual innerproducts in Cn and Cntl ,,, C X Cn we derive

for the adjoint P~ : Cn -~ C X Cn of Q:

(P~, (d,h) ) - (k,P(d,h) ) - (k, (A-aI)h- àx)

-(k,-x)ó ~ ((A-aI)~Jt,h), ó E C; h,k E Cn.

So P~)c -((k,-x), ( A-aI)~lc) E C X Cn and with (4.2) we obtain

PP~ - (A-~I) ( A-a)sk - (k,-x)x - (A-aI) (A-aI)~k t xx~k.

For the complex nX n matrix QQ~ we have found

PPY - (A-1I) ( A-aI)x t xx~ . (a.3)

If a is not an eigenvalue of A, then PP~ is reqular. If (a,x) is an eigen-
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pair, then the algebraic multiplicity of a is decessive for the regularity
of PP~.

LEMMA 4.1. Let be (a,x) an eigenpair of matrix A. Then PP~ -
-(A-aI)(A-aI)~ t xx~ is regular .if and only if the algebraic multiplicity
of a is equal to one.

PROOF. Without loss of generality we may assume A-aI to be an uppertriangu-
lar matrix and x to be el, the first unit vector. Moreover, as concerns
the eigenvalues a1~2,...,~n of A we assume (a2-~I ~ I~3-~I ~... ~ I~n-~I.
Let

P - (A-aI:x) -

0 a12 a13 aln 1
0 a2-a a23 a2n 0
0 0 a3-a ... a3n 0

10 0 0 ... a-a 0'
n

Evidently, rank P- n if and only if a2 ~ a. p

After these preparations an obvious application of theorem 2.1 is f~rmulat-
ed in

T1~OREM 4.1. Let f, P: C X Cn ~ Cn be defined by (4.1) and (4.2). If
(i) rank P - n, 1(PP~)-112 - unl ~ u-1, un being the smallest singular

value of P;
~

(ii) (r~(PPt)-lr) - y ~ y, where r- f(0,0) - Ax-ax;
(iii) K - Yu-1 ~ 2,

then the distance d of (0,0) to S-{(5,h) E C X Cnjf(á,h) - 0} satisfies
the inequalities

1
2 -2

P
Pi :- P3(it 3 2) ~ d~ P ~

(U-P3)

where
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P:- u(1-~). P3 :- u( lt~ 2Y~u -.1).

PROOF. The only thing missing for the application of theorem 2.1 is the

Lipschitz constant L of the Lipschitz continuous derivative

DF : C X Cn ~ Mn,ntl~ ~idently Df(a,a)(d,h) -(A-(ata)I)h - d(xta).

Hence

1 (Df(a2,a2) -Df(al,al)) ( d,h)12 - 1 (a1-a2)ht d(al-a2)N,.

Since

1(a -a )h t d(a -a )12 -~a -a ~21h12 t ~d121a -a B2 t Re{(a -a )d(h a-a )}
1 2 2 1 2 1 2 2 2 1 2 1 2 ' 2 1

~ ~a -a I21h12t Id~21a -a R2t 2~a -a ~Idl1a -a G2- 1 2 2 2 1 2 1 2 2 1 2

~ ~a -a ~2Nh12t I dl21a -a 112t ~a -n. ~2~d~2tq~.-~~ 12NtiM~
- 1 2 2 1'l 1 l l t'l. .

- ((aa-a2)2t1a2-a112)(~ó~2tlh12).

With well chosen pair (d,h) the equality signs occur, consequently
1
2

IDf(a2,a2)-Df(a1,a1)12 ~ (~a2-a1)2t1a2-a112) ,

This result implies that L- 1 is a Lipschitz constant for the derivative

Df. Hence, with L- 1, theorem 2.1 immediately leads to this particular

case. O

So far only we dealt about an analytical expression for the error bounds.

But above all the Newton-Kantorovich approach provides a possibility to

improve the approximate eigenvalue solution (a~,xp) :- (a,x).

Numerical results, obtained for F11, the Frank matrix of order eleven,

illustrate the performance of modified Newton's method in (ker P)l:

(dk~hk) -(dk-1' lc-1) - Ptf(dk-1'hk-1)' k E N. (4.4)

The general form of the Frank matrices is adequately illustrated by F5
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which is

5 4 3 2 ll

4 4 3 2 1

0 3 3 2 1

0 0 2 2 1

0 0 0 1 1)

"It can be shown that if ai is an eigenvalue then aí1 is also an eigen-

value so that F2nt1 has one eigenvalue equal to unity. In general the

larger eigenvalues are well-conditioned while the smaller ones are quite

ill-conditioned." [ 16] .

We used a single-precision approximation (a0,x0) of the eigenpair for the

smallest eigenvalue a- 0.034 625 161 711 where a0 - 0.034 623. This

(a0,x0) was obtained by a NAG-implementation of the QR algorithm.

In our implementation of the Newton-algorithm (4.4) we used double length

precision: long reals. With the usual inner product in Cn, the Newton

correction Ptf(ók-1' 7c-1) `'~as computed in the following way.

Firstly, the QR-decomposition is performed of the (ntl) X n matrix P~ with

Householder reflections:

Then

x

P} - P~(PP~)-1 - QR(R~Q~QR)-1 - Q(R~)-1.

Hence

(dk,hk) :- (ók-1' k-1) - Q(R~)-if(ók-1'fk-1)' k E N. (4.5)

t

So in each sweep the lower triangular system
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R~ zk-1 - f(ók-1'fk-1)' k E N

has to be solved.

In Table 1 we give the results for the sequence {ak} where ak -~0 } ak'

Table 1

k ak
0 0.034 623
1 0.034 625 161 711 439 764 197 778 019 752

2 0.034 625 161 711 425 640 061 346 944 761

3 0.034 625 161 711 425 620 857 605 864 163

4 0.034 625 161 711 425 620 855 414 507 969

5 0.034 625 161 711 425 620 855 414 291 505
6 0.034 625 161 711 425 620 855 414 291 351

correct numbers: 6 13 16 20 24 27

These numtxr:; reflec~ the qu~ldrat ic improvem~~nt in I lu, I ir:.t :;wceY ut Lhi~

modified method of Newton and they are in accordance with the figures of

Symon and Wilkinson. [16] Evidently, if starting with the same (a,x) and

using single precision accuracy, one needs accumulation of innerproducts

in double precision as an adequate precaution for otherwise the theoretic-

al results will be invalidated by rounding errors.

Up to now, we have formulated error bounds in the forward sense. But

theorem 2.1 also can be used to obtain error bounds in the mixed sense:

both a nerturbation H of the given matrix A anda -~erturbation h of the com-

puted eigenvector x(, or of the computed eigenpair (a,x),) are utilized

in order to fulfill the eigenvalue-equation (AtH)(xth) - a(xth). The mixed

error analysis involves the need for an innerproduct in the linear space
n

Mnn of complex nX n matrices. Hence we define (A,B)E ~- q-,,,-~ Akm BRm'
,A,B E Mnn; this product induces the many times used

nEuclidean (Frobenius) norm ~A~E :- (A,A)E. In the product space Mnn x C

we consider the innerproduct
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((A,x),(B,y))a :- (A,B)E t a(x,y)2.(A,x),(B.Y) E Mnn x Cn.

where a ~ 0.

THEORFM 4."L. Let be given A E Mnn, x E Cr~`{0}, ~ E Cn and a~ 0. The

mappings f,P : M X Cn -~ Cn are defined bynn

f(H,h) :- (AtH)(xth) - a(xth) (4.6)

,(H,h) E Mnn x Cn,

P(H,h) :- (A-aI)h t Hx. (4.7)

With respect to the innerproducts (,) in M x Cn and the usual Eucli-a nn
dean innerproduct in Cn

PP~ - IxI21 t á(A-ÀI)(A-~I)~ . (4.8)

Df satisfies a Lip~chitz condition with Lipschit~ constarit L.- If- (Y ~

(i) G(pp~)-1A2 - unl ~ u-1, un being the smallest singular value of P;

(ii) (r~(PP~)-lr)~ - y ~ y, where r:- f(0,0) - Ax - ax;

(iii) K-- Y u-1 L ~ 2,

then the distance d of (0,0) to S:- {(H,h)~f(H,h) - 0} satisfies the

inequalities 1
L2 pZ -2

where

pl :- P3(1 t 3 2) ~ á ~ p
(L-Lp3)

P- U(1-~)~L. P3 - L( 1t2~ LyU -1)~L.

PROOF. With respect to the innerproducts (,)a in MnnX Cn and ( ,)2 in Cn
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we derive for the adjoint P~: Cn i M x Cn of P- Df(0,0):nn

((H,h),P~)a - (P(H,h),k)2 - ((A-aI)h t Hx,k)2

- (h,(A-aI)~)2 t (H,kx~)E - (( H,h),(kx~,á(A-aI)~)a.

So for each k E Cn we have

P~k - (kx~, á(A-aI)~c).

With ( 4.7) we find for PP~ : Cn y Cn:

PP~k - (á(A-aI)(A-aI)~ t Yx~21)k.

(4.9)

The Hermitian matrix PP~ is positive definite, thus P is surjective. Now,
we compute a Lipschitz constant for Df. Evidently, Df(E,e)(H,h) -

- (AtE-aI)h t H(xte). Thus,

1(Df(El,el) - Df(E2,e2))(H,h)OZ - G(E1-E2)h t H(el-e2)N?

~ 21H12 Nel-e212 t 2BE1-EZN2 IhN2

~ á(~E1-E212 t aEel-e2A2)(IHb2 t aAhN2)

~ á ~(E1-E2,e1-e2)Oa.p(H,h)Qa .

Consequently,

IDf(El,el)-Df(E2,e2)1 ~ J áG(E1-EZ,el-ez)~a.

So for the Lipschitz constant L of derivative Df we have found L ~ r~~? .- a
With this bound for L we are able to apply theorem 2.1; that gives the

upper bound p and the lower bound pl for the necessary perturbation (H,h)

such that f(H,h) - 0. ~

This application of the minimization process in the normal space of a

level surface of f at (0,0) can be applied for the construction of vector

x t h nearby to x and a matrix A t H, nearby to A, with a prescribed eigen-



- 31 -

value. A small weight a in the innerproduct (,) effects in the minimiz-a
ation result the term aH~É in 1(H,h)lá to be small relatively ~h12 .

In our experiments the modified methnrl of Newton, in formula

(Hk,hk) .- (Hk-1'hk-1) - P~(PP~)-1f(~-1'hk-1). k E ~.

with starting value (HO,hO) -(0,0) E MnnX Cn, has been implemented in the
following way.

Rowwise the matrix Hk is set in a linear n2 array. So the nX (n2tn) matrix
P equals the Kroneckerproduct I~ xT, bordered by A-aI. Then the matrix
representation of the adjoint Px of P (, relatively the innerproduct

( , )a,) equals, as follows from (4.9),

The Newton correction P~(PP~)-1 f(Hk-1,hk-1) has been obtained from the QR-

decomposition of the appropriately adapted P~:

I A X `
QR - ......

a~ A-aIj

Then

PP~ - RT 9T QR.

Consequently,

(Hk,hk) - (~-1'hk-1) - QR-T f( k-1'hk-1)' k E 4~1.

So, after the initial QR-decomposition, in each step one has to solve a

lower triangular linear system with n unknowns.

As a test we used this algorithm on the Frank matrix F of order 11,(a,x)

being, as in the preceding example, a single-precision approximation of

the eigenpair corresponding with the smallest eigenvalue of F. Single
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precision words on ICL 1902 are of 14 hexadecimals and double-precision
words (long reals) are of 28 hexadecimals, these correspond to 1 6.8 and
3 3.7 decimal digits respectively. In this exvnple we havP chosen ~i- 1q-12.

The smallest eigenvalue is, as mentioned above, ill-conditioned, so a is
fairly inaccurate, but f(H ,h )- x- Ax - ax was of the order of the noise
level of the computer, i.eo 056

In table 2 and 3 we give an informative selection of the numerical results.

wf(H3,h3)~: 5.099 t 10-33

2

- 1.423 ~ 10-12

- 3.562 t 10-6

H3'h3)~ -12 - 3.835 X 10-12
10

Table 3

(i,J) (H3)i7

(2,11) 7.151 ~e 10-13

(2,10) -6.904 t 10-13

(1,11) -6.522 !e 10-13

(1,10) 6.296 !~ 10-13

(2,9) 3.209 ~ 10-13

(1,9) -2.926 i~ 10-13

(2,8) -0.953 x 10-13

(1,8) 0.869 ~ 10-13

(3,11) -0.672 ~t 10-13

(3,10) 0.649 t 10-13

(8,1) 2.241 x 10-27:

Extreme elements of H3

The smallness of this feasible perturbation H3 bases on the ill-condition
of the smallest eigenvalue. As the individual condition number 106 effects

-12 -6that a perturbation of order 10 results in an error of order 10 [19),
here we see that a forced error of order 10-6 can be explained by a per-
turbation of order 10-12

The described method can be generalized by construct a matrix A t H, nearby

to a given matrix A, such that the spectrum of A t H differs in a prescribed
way from that of A. In a next memorandum, we report about that problem.
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