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JACOBI-TYPE ALGORITHMS FOR EIGENVALUES ON VECTOR- AND PARALLEL COMPUTERS

ABSTRACT

After a short introduction to Jacobi-like algorithms a review is given of a
vector and a parallel implementation of the Jacobi method for symmetric
matrices. In the last section a modification of Sameh's parallel eigen-
algorithm is presented based on a problem formulation with so-called Euclidean

parameters of nonmorthogonal shears.



1. INTRODUCTION

The eigenvalue algorithm proposed by Jacobi, long before its time was ripe,
was the favorite of the numerical analists of yesterday because of its sim-
plicity and reliability. The method of Jacobi ([9], 1846) has been redis-
covered in 1950. The rise of the QR algorithm made an end of the revival of
the Jacobi algorithm. But the growing importance of vectorized and parallel
computing restored the interest in Jacobi-like algorithms ([1], [12], [13],
[19], [21]) and gave rise to its second revival.
An historical overview is in figure 1. The centre column describes the high-
lights in the history of the Jacobi algorithm for symmetric matrices. The
other columns give the overview for the skew symmetric case, A = —AT, the
normal case, A A* = A* A, the nonnormal case and the singular value decomposi-
tion. The recent story of parallel eigenvalue computations starts in 1971 with
Sameh's paper "Jacobi- and Jacobi-like Algorithms for a parallel computer”
[19].
It is the purpose of the present contribution to review some recent develop—
ments both theoretical as practical.

In Jacobi-like methods for the computation of the eigenvalues
Aps+eesA in the spectrum o(A) of matrix A IRV a sequence {Ak}, Ag:= A, is
constructed in which the matrices Ak = (a(k)), k =0,1,..., are recursively

ij
defined by the relation

-1
Agr = Vi AVis k= 0,1,... . (1.1)

The matrix Vk differs from the unit matrix in the (lk,mk)-plane- The non-

trivial elements of Vi are the Jacobi parameters; they occur in the 2 x 2-

matrix

O A N LI R

K’k k - _
i (k) v(k) . : Vi * (1+2)
mer b momy ¢ e

This 2 x 2 matrix vk will be called the (zk,mk)—restriction of V.. The choice
of the successive pivot-pairs (lk,mk) is called the pivot-strategy. In several

Jacobi-1like processes the pivot-pairs are selected in some cyclic order.



Figure 1. Historical Overview Jacobi-like Methods

SVD A= -aT A =AT = A*A | aa* # A*a
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In the Jacobi algorithm for the symmetric eigenvalue problem the
Jacobi-parameters are
= = = = - = = e—"”. =
P = =CmCO8 @ , T = q =8 =sing, ¢ SlCpzl- (.3
The rotation angle P is chosen to minimize the sum of the squares
of the nondiagonal elements:

-1 2
min o (vk Akvk)ij(wk) .

In the nomnormal case [2,3,14,17,22] non-unitary shears are used in order to
diminish, even to minimize the Euclidean norms of the matrices in the sequence
thus obtained. The minimization in each step of this process is more difficult
than that in the symmetric case. After some easy but tedious calculations one
observes that nv;lAkalE is a rather simple function of the following varia-
bles:

2 2 2 2 -
B P Y Qe YU R Y8, BT RS TGN Kha%)

to be called the Euclidean parameters of V.

Since the Euclidean norm of A is invariant under a unitary similarity
transformation the optimal normreducing shear V, 1s determined except for a
unitary factor, shear Qk' Matrices S, P € Cnxn will be called row congruent if
S = PU for some unitary matrix U. It is easy to see that S and P are row con-
gruent 1iff SS* = PP*. Hence the shears V, and W, on the same pivot pair are

row congruent iff they share their Euclidean parameters, for

%k

Zx Yk

-~ g

A (1.5)

This property of row contingent shears explains that lv;1 AkaIE is a function
of xp, Y and zy and this quality will be used intensively in section 3.

Section 2 is concerned with the Jacobi process for symmetric matrices.
Sequential as well as parallel algorithms are described. We emphasize the nice

parallel Jacobi-algorithm of Brent-Luk [l] for a systolic array computer. The



complexity result of that algorithm is impressive.
Section 3 reviews some Jacobi-like eigenalgorithms for non-normal
matrices. The description of Eberlein's algorithm [3,14] with Euclidean para-

meters introduces our modification of Sameh's parallel algorithm [19].



2. JACOBI METHODS FOR THE SYMMETRIC EIGENVALUE PROBLEM

2.1. In each step of the Jacobi method for the symmetric eigenproblem the norm
of the non-diagonal part of the new matrix Alk+l) o VE A(k)Vk is minimized

with respect to the rotation parameter € (- %wgq of the Jacobl parameters

®x
of V- The minimum of

+
i#]j

(k+1)
is obtained iff A = 0. This annihilation of the (zk,mk)-th element occurs

k"
1ff

tan 2¢k =2 uk/vk, (2.1
where
a(®) RO 20

u v,
L T
As an easy consequence of the orthogonality of V, one finds

2

(k+1)
) k

£(A = By =g 2 (2.2)

In the classical Jacobi iteration p, is the largest off-diagonal element in

k
modulus. This optimal pivot-strategy 1s a special case of that described in

THEOREM 2.1. If ul ) E—E-IT £a®)) for each k € N, then 1im (9 - diag(h,)
ko

(

PROOF. With (2.2) we have

ey = ) - 22 ¢ a- e 1))f(A(k)) KE N.
Hence f(A(k)) + 0(,k+=). Let be § = min {lxi—le;xi,x € o(A), A * A }.
Then £(A(K)) < %g 52 for each k larger than some N. jFot k>N therejexists a
permutation m of {1,...,n} such that (A Fy™ (k))2 < f(A(k)) < 16 2 for each
1€ {1,...,n}, as follows from the Hoffmann—Wieland theorem. Since |@ | <
and oKD _ (0 || (kD) (R |

ot T fhon fmom Me B4 |<_6



(k+1)
k’lk w(lk) m(2

ponding interval around A

+ §/4]. Similarly ak+1
) ;
)" The stationary matching of diagonal elements

and eigenvalues together with (x"(i) - aiﬁ) < f(A(k)) + 0(,k + =) implies

€ [A - &8/4, X remains in the corres-

the theorem.[]

As an alternative for the pivot strategy mentioned in theorem 2.1 a
cyclic method can be used, especially the row serial method. Then the elements
are annihilated in the cyclic order (1,2),(1,3),...,(1,n),(2,3),¢..,(n-1,n),
(1,2),... . Forsyth and Henrici [4] proved the convergence of the serial
method. The ultimate convergence is quadratic, i.e. f(Ak+M) < constant fz(Ak),
k large enough, where M = % n(n-1); this has been investigated in
[L0,11,20,23].

(k)Vk requires 4n multiplications plus 2n
additions. On a supercomputer like CYBER 205 it is recommendable to speed up
this timeconsuming process with linked triads [16]. Let a(k) = p H(k)Dk where

D, = ginatd™ ..., (k)), with Dy = I. Since

2.2. The transformation A(k+1) = VE A

RGaY {6+ T o 50

=D 4 Dk+1 = Vk DkH Dkvk 5 (2.3)
- s
where Vk = iz . .
Kk ©
the obvious updating for Dy
(k)
S 4 T TN
1 (k) (2.4)
d; ,» 1€ {Lk,mk}
brings about linked triads in the updating of H(k), viz.
(k+1) T (k)
H = Jk H Jk - (2.5)

The (lk,mk)—restriction of Ji 1s

FILY) (k)
1 B, = /d
Bk ’ “ k mk » tk = tan (Pk.
N %

m
k k



Let be Vie the £, -th column of H(k) and Wi the mk-th column of H(k). The cor-

k
responding columns of H(k)Jk are vi =V, T qw , wé -y + BKvk =

(1+akBk) (wk+8kvk) with B, = Bk/(1+ak8k). With the updating scheme

- (k+1) (k)
% SN N dzk = o dzk
o ] D) c;ld(k) ,

k ~k k o o

(2.6)

one avoids the necessity to copy vy. In a similar way the new rows are com—

1H(k+1)Dk+1 is postponed until the end of the

puted. The multiplication Dy
process. We conclude that variant (2.6) of a serial Jacobi-method is appro-

priate for a CYBER-like supercomputer [16].

2.3. The Jacobl methods described so far all were sequential. In essence the
Jacobi-method with its nested loop for which computations are almost identical
over the entire index set {(1,j)} is pre-eminently suited for processing on an
array processor with regular dataflow [1,12,13]. The systolic implementation
of the Jacobimethod in [l1] has a high degree of modularity, absence of 1long
data paths, near-by connectivity and a simple synchronizing mechanism.

Assume n to be even. Consider the parallel Jacobi-like updating of the
column pairs 22 - 1, 22(,%2=1,...,n/2) and there after the corresponding up-
dating of the same pairs of rows. This achieves the annihilation of the ele-
ments A21—1,2z. In order to achleve an analogous updating of an other set of

n/2 column-row pairs consider the permutation m of {1,...,n} such that

1 , 1=1
i+ 2 g 1i=2,4,...,n-2
w12 =8 , 5«55 emed
Ied , E=3 d=g.

The repeated exeration of this caterpillar permutation is illustrated in
figure 2.

1 3

S —% 13 —>n-1

2e— be— be—o s «—— n-2 ¢—nq

fig. 2. Caterpillar permutation n(l,...,n) = (1,4,2,6,...,n-3,n-1).



The repeated annihilation of codiagonal elements can be performed on a sys-
tolic array processor, see figure 3. The square n/2 by n/2 array consists of
processors Pij,i,j =1,..., n/2, each containing the corresponding 2 x 2 sub-

matrix, viz.

a B a5, Aoig
Xi = e Gij . aZi e 321 el ’ 1, = 1,...,0/2.
i Y13 S14 21,24-1 221,23
e B
In the first time step the processors P11 compute . E and annihilate the
R
elements Bii(=Yii)° Horizontal and vertical output lines transport the

rotation parameters t1 = Si/ci away from the diagonal. In the second time step

the transformation

-8
(2:7)

%y Bijl
Y1y %4y

are executed in the codiagonal processor P the rotationparameters gy

»
are further transmitted along horizontal andiéétiical lines to Pi,j with
[i-3| =_2 and the elements in the codiagonal registers are ifiterchanged along
lines (2 ), see figure 3. In the third time step the transformations (2.7) are
performed in P; 445, the t; are transfered to Pi,it3 and the processors Pij
are provided with the appropriate elements along the lines ,» ready for
timestep 4 = 1(mod 3). Then the diagonal processors annihilate the elements

By = 3 (21-1),7(21) and perform (2.7) in P 1 - 3] =3.

s 599
This systolic system pumps the data around the network. One sweep
corresponds with 3(n-1) time steps. Hence the conclusion that a two-dimen-
sional systolic array of %-x % procession computes the eigenvalue of a n x n
symmetric matrix in O(n log n) time units. Each time approximately % n2/4

processors perform the transformation (2.7).



N

N
3,5 @@
4 N @
f 7 %
i Pss { ‘v® Pi, T*‘QL' P33
e LN o !
(52 (3D

FIG. 3. SYSTOLIC ARRAY. The number of the lines indicate the time they are

active.



10

3. A PARALLEL NORM-REDUCING ALGORITHM FOR THE NONSYMMETRIC EIGENPROBLEM

3.1. In 1962 Eberlein [3] proposed a Jacobi-like norm-reducing method for the

non-normal eigenproblem. In each iteration Ak+1:' Vil Aka a non-orthogonal

shear effectuates a norm reduction nAkné = nAk+1n§ in that k-th step. The

pivot strategy and the non-trivial elements pk,qk,rk,sk of the successive uni-
n
modular V) can be chosen such that [2,3,14,22] lim uAkné = I IAJIZ,AJGG(A),
k e j=1

eigenvalue of A = Aj. This means that sequence {Ak} converges to normality

[5,14]. The unimodularity of Vi implies that the Euclidean parameters (X s Yk
zk) of the real shear Vi satisfy the conditions

2
X Ve >0, Y "% = 1a (3:1)
Easy calculations give the result already announced in the introduction.

THEOREM 3.1 [14]. If V is a real unimodular shear with pivotpair (2,m) and

Euclidean parameters (x,y,z) € IR3, then

nv‘lAVué = f(x,7,2) +a@*+ e ; (3.2)

g z ar. . e=(a, ta )2 - 2 ) and
= i » = a a - a a -a a a
i,3¢{1,m} i L “mm 22°mm “m“me
£(x,y,2) = ax + 8y + 2yz + (-Axtuy+uz)” (3.3)
2 2 2 2

where a = I (aj+a ), 8= I (a; +a° ), y= I (a,a, -a. a.)

i#0,m i mi 1#4,m 21 im thk,m i2%1im i %mi’
and A = aml’ u = alm’ Yy = agg - amm .D-

So the minimization of f on X:= {(x,y,z) | x,y > 0, xy - z2 = 1} provides the
optimal normreducing unimodular shears. An accurate analysis of that minimi-
zation problem leads to

THEOREM 3.2 [14] Let be D = au - 8 - yv, E = v2+4Ay, F = aB = y2. If D and F

are not 'oth equal to zero then f is minimal on H in the point
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o 2uD ~ B(p-E) g - -2AD - a(p-E) . -wD + y(p-E)

p(p-E) 3 p(p-E) k& p(p-E) 4 (3.4

where p is the unique root of the quartic equation
2 2
(p-E) (p=F) + D (2p-E) = 0

for which holds p < min {0,E}. The infimum of f on ¥ is not assumed when

D=0 AF =0 A (a+B*0OV(E=0 A#u)). Then the intersection of the planes

ax + By + 2 yz = 0 and -\x + uyy + vz = 0 is in the tangent cone Xy -22 = 0 of
€. 0

With the new variables

%

wi= (x-y)/2, t:= t(w,z) = (xty)/2 = (1+w2+zz) (3.5)

we get nv-lAvué = g(w,z) + 0 + e, where
g(w,z) = (a+B)t + (a-B)w + 2yz + ((u=-1) t = (pu+A)w + \)z)z. (3.6)

Now let be C = C(A) = aTh = AAT, the commutator of A, being a measure of non-
normality. One easily finds
THEOREM 3.3[14]. Grad g(0,0) = (c

it VI, = min{1v"

T
- cll,chm) . Moreover

AVIE|V unimodular (%,m)-shear} {ff € ™ By ™ B ™ 0,
1

where (c,.) = C(ﬁplAG), the commutator of V ~AV.D

1]

This results gives an indication for an appropriate pivot strategy:

2 2 2
choose in each step (£,m) such that lgrad g(0,0)# (cmm-clz) + 4c2m is

maximal. These choises of (lk,mk) together with optimal normreducing shears
garantee that C(Ak) + 0(,k»=)[2,3,14,22].

Vi

3.1. The purpose of this subsection is to present an improved version of
Sameh's parallel norm-reducing process [19]. Therefore we assume A to be of

even order n = 2k and partitioned as follows

A Ko nee il
11 12
L
A R 5ie &
A= |21 22 2 : (3.7)
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where each submatrix A, 1is given by

2m

329-1,2m-1  22¢-1,2m

2, m=1,...,k . (3.8)
22¢,2m1 229,2m

For convenience we define

‘om®™ 22¢0,1° Yam'T %2¢-1,2m° Yim'T *20-1,20-1 T %22,2¢°

Let be

~ =1

A=V "AV (3.9)
where V = diag(Sl,SZ,...,Sk) with

S, =8 = |p : ) e =grml, 1= L,ene; Ks (3.10)

The computation of V-IAV is readily adapted to parallel computation: firstly
simultaneous updating of the k column pairs, next the simulataneous updating
of the k rows: V-I(AV). With Euclidean parameters (x,y,z) of S in (3.10)one

obtains, analogous to theorem 3.1,

THEOREM 3.4, If V is diag(sl,...,sk) where Si as given in (3.10) then

nV-lAVIg = h(x,y,z) + K, where

k
2
h(x,y,z2) = L (AppX + Hppy + vyn2) {3+11)
2,m=1
K 2
and K = ¢ (tr Alm-Zdet(Alm)) « O
2,m=1

The minimization of h on ¥ leads to a generalized eigenproblem: det(BTB-pH)

= 0, where
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0o % o
¥ 0 o0
0 0 =1

ku2x3
B = |b,b,,by| €ER , H = , with

T
by = ~Qhygadpgressakypolagreenslpg)

T
bz 3 (ull’uIZ""’ulk’UZI’""ukk) (3:12)

T
b3 = (vll’v12""’vlk’v21""’vkk) .

With usual compactness, continuity and convexity arguments one reaches
THEOREM 3.5, If rank (B) = 3, B = QR with R uppertriangular then the vector of
optimal Euclidean parameters of S in V is eigenvector corresponding with the
unique positive eigenvalue of R 1H R™L. O

In case of collinearity in the matrix B it may occur that the function
h is not minimal on X:
THEOREM 3.6. If rank (B) = 1 and im(BT) = {r(pl,pz,pa)T | T€ R} then

(1) min {h(x,y,2z) | x,y > 0, xy - i = 1} >0 1f p§ - 4p;p, < 0.

(3-13)
(ii) inf {h(x,y,z) | x,y > 0, xy - 2® 1} =0 if p§ - 4pypy 2 0;

this infimum is assumed iff pg - 4p1p2 > 0.
If rank (B) = 2 and ker(B) = {r(pl,pz,p3)T | t€ R}, then
2 2

(1) min {h(x,y,2) | x,y > 0, xy = 2° =1} > 0 1f p,p, < Py

(3.14)

(11) inf {h(x,y,z) | x,y > 0, Xy - z2 - 1} =0 1if PP, D] p§;
this infimum is assumed iff PP,y > p§. 0

The resemblance of the transforms (3.10) and the Eberlein shear transform is
also manifest in the analogue of theorem 3.3. Let be w = (x-y)/2, t = (xty)/2
as in (3.5). Then

-1
IV TAVE = 1(b +b,)t + (b, =b,)w + b3zI2 + K =: g(w,z;A) + K (3.15)

With these new variables w,z and t = t(w,z) = (1+12+w2)¥ we get the analogue

of theorem 3.3 by simple calculations:
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k
T
THEOREM 3.7, Grad g(0,0;A) = 251(c21'1:21'1 ©20.20°2%24-1,20)
Moreover the parallel identical shear transformation v-lav gives an optimal
k
norm-reduction iff lfl(CZQ—l,Zz—l_CZQ,2£’2c2£-1,22) = (0,0), where (cij) =
cevlavy. O
k
3.2. Since grad g(0,0;A) = lil(c2£_1’22_1—c22’2£,2c22_1’21), a prologue trans-

formation [19] with a well chosen direct sum Q = diag(Ql,Qz,...,Qk) of ortho-

gonal shears Ql,£=1,...,k, may enlarge the gradient. Let be (cij) = C(QTAQ)

then

-2

- C20-1,22-1"%22,2¢ -2
3

] ]

: €29-1,22-1"%22,22 .

vy = 2 :'Ql
€20-1,2

2¢29-1,22

\N (3.16)

Each vi has a same direction by an appropriate choice of the Ql' Then

T k k )3
lg(0,0;Q AQ)N =1 ¢ vil = I | vin = I Hvzn . (3.17)
2=1 =1 2=1

The vectors vze R? will be rectified with simultaneous Jacobi annihilations

applied to C such that

0, v 1, 2=1,...,k. (3.18)

] - v = v ~
©20-1,22 €20-1,2¢0-1 ~ 22,22 2

The preconditioning A + A' = QTAQ simplifies the performance of the first

steepest descent iteration for the minimization of g.
A lower bound of lAlé = IIV-1 QTAQVI is given in

THEOREM 3.8. Let be Q = diag(Ql,...,Qk) a direct sum of orthogonal shears such

4 iy
that (c!.) = C(Q AQ) satisfies (3.18). Then there exists a diagonal matrix

ij a
¥ = diaS(X,X-l,x, e ,X ) such that

K
an - vt Qfaqua? > Lians? oz . (3.19)
E e2g"e I '

PROOF. Let be A' = QTAQ and B' = lbi bé bi similar to (3.12). Then
lv—lA'Vlgz- 'Xbi + x-lbél2 + constant. The minimizing x gives
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2 =1 T 2 T 1 2
TAIZ - IV TQAQUEL = (Ibji-1bj1)”.

Since, assuming b!, bé # 0,

= -1 v 2_ - - l v win=L A
llb]"H = llbél (llbil + Ilbéﬂ) (ﬂblll bzll ) Z(Hb1ﬂ+ibzl gw(0,0,A )
we obtain from Ibi! + nbél < nAlE Y2 and
k k
g (0,05A') = T (e e ) = I nv, il
w e 28~1,20-1 ~20.,2% =1 I3
that
k k
2 = . 1 -2 2 1 -2 2
HAHE - W A VIIE Z 3 HANE (B llvz'l) Z 3 IIAIIE z IVEH .
2=1 =1
' ' 2 1 )
In case bz = 0 and b1 # 0 the same bound holds: take x~ < 1 - §-HAIE ubll <l
For the main theorem3.]0 finally we need a modification of a lemma in [3].
THEOREM 3,9, There exists a set of k disjunct index pairs (lj,mj) with
lj # @y, j=1,...,k such that
i 2 2 4 2
t ((c -c )+ 4c ) 2 —= NCLAIN, - (3.20)
L .X m,,m 2.,m = n1 E
j=1 "8 33 479
n 2 n
PROOF. Since I ¢ =0, I (ec,,~c_ )" =(2n-1) I ¢ - ¥eo. e
Gl 22 . 22 “mm 2=1 2L P 22 mm
& 2 _ 3 2
and 0 = ( L ¢,,)" = L c,, + Lc,,c_ , we have for n 228 To(e; 8 )
gl 2L P 22 2#m 22 mm e 22 “mm
. 2 3 5
2n I Coq 24 I Cog * Consequently
2=1 2=1

I ((ey 20 + el ) 3 4 ncan? .

ik 22
E 2, .8
Hence the mean of ¢ ((c2 T g )7+ Acl ) over the sets w of k dis-
L o e i "3

tinct index pairs (lj,mj) satisfies (3.20) for there are n!/(k!Zk) such sets
w and each pair (2,m) occurs in (n—2)!/((k—1)!2k—1) such sets w.[]
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A consequence of the theorems 3.8 and 3.9 is

THEOREM 3. 10, Let a sequence {A starting with Ay = A be constructed recursi-

51
vely by

-1 = .o
Ay = BRED " Ky BTy 3701
where in each step k disjunct indexpairs (Lf,mf),...,(zg,mg) are selected

according to rule (3.20). Pj is a permutation matrix with

4 3 G ([ [ T =
Pj(zl,ml,...,lk,mk) (12,0 005m) 5 Qj is a preconditioning orthogonal bloST
XXy )

as described in theorem 3.3.

diagonal matrix as described in subsection 3.2 and Vj = diag(xj,xgl,...

reduces the Euclidean norm of (Pij)—lAj_1 Pij
Then {Aj} converges to normality.

PROOF. Since A, = IA “2 - 1A l2 + 0(j+») and, as follows from theorem 3.8

i ~1'E jE

and theorem 3.9.

k

1,2 .2 1 -2 2
Aj Z 3 ﬂAHE 151 "vlﬂ Z E?E:TT HAHE nC(Aj_l)ﬂE $

we conclude C(Aj) + 0(j»=).0
REMARK 3.11.Evidently the same choice for Pij together with the optimal norm—
reducing vj = diag(SJ,Sg,...,Sa) where s; =5J, 2 =1,...,k as described 1in

theorem 3.5 provides a sequence {A that so much the more converges to norma-

5
lity.

Finally we mention that each Sg is row congruent with the shear sgug
that diagonalizes the symmetric part of the current matrix. Veselic [22]
proved that a sequence of normreductions interrupted by Jacobi iterations for

the diagonalization of A, + AT effects that 1lim A, = D + K, with
: Joum 3

D = diag(Re(),)), K = -KT and DK = KD. Then Dy #D,, tmplies Ky = 0.0

REMARK 3.12. For concreteness we indicate the parallelization of a cyclic
version of the normreducing process with the caterpillar permutation P. Then
the timeconsuming search in (3.20) is avoided.

(1) Annihilate the elements c2£—1,22’ £ =1,...,k of C(A) with A'":= QT(AQ).
The updating of the column pairs 22-1,2% can be performed simultaneously:

A+ A diag(Ql""’Qk); once this is done the updating of the row pairs 29-1,
22 can be carried out concurrently: AQ » diag(QI

SOrs Gy, ««+,Gy,

,...,QZ) (AQ) with k proces-



17

(i1) Compute with processor GQ:

k 2 k 2
egi= I (ajg_q,2m) » fgi= I (33g 2gm-1)
m=1 m=1

k k
Let be E:= L 2, F= I fz and
g=1 2=1
1 E=F=0
-2 %
(1-knAnE ) y E+0, F=0
X = 3%
F/(l-kuAaE E)e E=0, F#0
E/F 5 E,F £ 0 .

The column and row updates A' =+ A:= V-IA'V with V = diag(x,x-l,...,x,x—l) can
be performed concurrently as in (i).

(iii) Execute the caterpillar permutation A:= PTAP.

After n-1 of these steps the original order has been restored.

The analysis of this parallel process already leads to many problems of design
and it makes clear the importance and difficulties of the dataflow and commu-

nication in the implementation of parallel algorithms.
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